
Predator Hunting Party (Competition Contribution)

Petr Muller, Petr Peringer, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. This paper introduces PredatorHP (Predator Hunting Party), a pro-
gram verifier built on top of the Predator shape analyser, and discusses its partici-
pation in the SV-COMP’15 software verification competition. Predator is a sound
shape analyser dealing with C programs with lists implemented via low-level
pointer operations. PredatorHP uses Predator to prove programs safe while at the
same time using several bounded versions of Predator for bug hunting.

1 The Underlying Verification Approach
At the heart of PredatorHP there is the Predator shape analyser [2]. The main aim of
Predator is sound shape analysis of sequential, non-recursive C programs that use low-
level pointer operations for working efficiently with various kinds of linked lists. Preda-
tor supports many advanced uses of pointer arithmetics, address alignment, and block
operations common in highly optimized system code, such as operating system kernels,
drivers, memory allocators, and the like.

Predator is based on abstract interpretation with the abstract domain of symbolic
memory graphs (SMGs) [2]. In a nutshell, SMGs consist of two kinds of nodes—
namely, individual memory regions and uninterrupted list segments—and two kinds
of edges, in particular, the so-called has-value and points-to edges. SMGs were inspired
by separation logic with higher-order list predicates but with an added support for low-
level memory operations. Moreover, all the needed algorithms for dealing with SMGs
(symbolic execution of program statements, the join operator, widening in the form of
abstraction, entailment checking) were newly designed to be as efficient as possible
by leveraging the graph structure of SMGs. The most essential role is played by the
join operator: both abstraction and entailment checking are built on top of it. Predator
supports inter-procedural analysis by means of function summaries.

Recently, a new extension of Predator was implemented [1]. It uses the Predator
kernel for transforming programs with list containers implemented by low-level pointer
operations into equivalent programs with high-level container operations, which can be
useful, e.g., for code understanding, easier verification, parallelisation, optimisation, etc.

2 From Predator to Predator Hunting Party
Predator is implemented as a GCC plug-in, which provides it with an industrial-strength
compiler front-end. In particular, GCC is used to pre-process the input programs and to
compile them into an intermediate representation (known as GIMPLE), which is further
transformed into a bit more concise representation of the Code Listener framework [3]
over which Predator runs. Predator is written in C++ with a use of the Boost libraries,
mainly to enable using legacy compilers for building it.

Predator requires all external functions used in an analysed program to be properly
modelled wrt. memory safety in order to exclude any side effects that could possibly



break soundness of the analysis. The distribution of Predator includes models of some
memory manipulating functions (like malloc, free, memset, memcpy, etc.).

PredatorHP is implemented as a Python script which runs several instances of Preda-
tor in parallel and composes the results they produce into the final verification verdict.
In particular, PredatorHP first starts four Predators: One of them is the original Predator
that soundly over-approximates the behaviour of the input program—we denote it as
the Predator verifier below. Apart from that, three further Predators are started which
are modified as follows: Their join operator is reduced to joining SMGs equal up to
isomorphism, they use no list abstraction, and they use a bounded depth-first search to
traverse the state space. They use bounds of 400, 700, and 1000 GIMPLE instructions,
and so we call them as Predator DFS hunters 400, 700, and 1000, respectively.

If the Predator verifier claims a program correct, so does PredatorHP, and it kills all
other Predators. If the Predator verifier claims a program incorrect, its verdict is ignored
since it can be a false alarm (and, moreover, it is highly non-trivial to check whether it is
false or not due to the involved use of list abstractions and joins). If one of the Predator
DFS hunters finds an error, PredatorHP kills all other Predators and claims the program
incorrect, using the trace provided by the DFS hunter who found the error.1 If a DFS
hunter claims a program correct, its verdict is ignored since it may be unsound.

In case the Predator verifier claims a program incorrect and no Predator DFS hunter
finds an error within the appropriate bound, then PredatorHP starts one more Predator—
a Predator BFS hunter. The BFS hunter does not use list abstraction and its join is
reduced to equivalence up to isomorphism, but it performs an unlimited breadth-first
search. If it manages to find an error within the SV-COMP’15 time budget, PredatorHP
claims the program incorrect (note that without a time limit, the BFS hunter is guar-
anteed to find every error). If the BFS hunter finishes and does not find an error, the
program is claimed correct. Otherwise, the verdict “unknown” is obtained.

3 Strengths and Weaknesses
The main strength of Predator lies in its sound treatment of heap manipulation. Un-
like for various bounded model checkers, when Predator claims a program safe, all
its possible behaviours are indeed safe. At the same time, Predator is also quite effi-
cient. On the other hand, due to using over-approximation, it can easily generate false
alarms. This danger was greatly reduced in PredatorHP by combining the sound Preda-
tor verifier with Predator hunters. This way, false alarms caused by abstraction are often
suppressed, and a program claimed possibly unsafe by Predator can even be proved cor-
rect if its behaviour is bounded. Unfortunately, true error warnings can sometimes be
also suppressed, resulting in a neutral “unknown” answer. However, overall, the balance
is positive: about twice more false than true alarms were prevented on the SV-COMP
benchmarks in the two categories where PredatorHP competes. The benefit is further
amplified by the SV-COMP scoring scheme, which rewards preventing a wrong answer
over keeping a correct one.

The improvement manifested mainly in the MemorySafety category, containing
testcases causing list abstractions in Predator to produce false alarms. By preventing all
but a single one, while keeping all correct answers, PredatorHP is much more reliable

1 The obtained trace can still be spurious due to the harsh abstraction of non-pointer data by
Predator: All such data, apart from integers up to some fixed bound, are abstracted away.



than Predator alone. PredatorHP reduced false positives even for remaining SV-COMP
categories, but unfortunately not enough to allow us to successfully participate in these.

The main weakness of PredatorHP is inherited from Predator, and it is the same as in
previous years of SV-COMP. Namely, it is a rather weak support of non-pointer data and
missing models of some library functions, which has not changed since SV-COMP’14.
That is why, PredatorHP is participating in the MemorySafety and HeapManipulation
categories only. Even within these categories, PredatorHP loses some points due to
imprecise treatment of non-pointer data, leading to false alarms. The only other reason
for Predator losing points in the MemorySafety and HeapManipulation categories is the
fact that it cannot handle tree-like data structures and skip lists. In fact, it can handle
them in a bounded way (i.e., in the same way as bounded model checkers)2, but we
have decided not to “harvest” easy points by sacrificing soundness of the verifier.

4 Tool Setup and Configuration
The source code of the PredatorHP release used in the competition can be downloaded
from the project web page3. The file README-SVCOMP-2015 included in the archive
describes how to build PredatorHP from source code and how to apply the tool on
the competition benchmarks. After successfully building the tool from sources, a script
named predatorHP.py can be invoked, once for each input program. The script
takes a verification task file as a single positional argument. Paths to both the property
file and the desired witness file are accepted via long options. The verification outcome
is printed to the standard output. The script does not impose any resource limits other
than terminating its child processes when they are no longer needed.

5 Software Project and Contributors
Predator is an open source software project developed at Brno University of Technology
(BUT) and distributed under the GNU General Public License version 3. The main
author of Predator is Kamil Dudka. Besides Kamil and the PredatorHP team, numerous
external contributors are listed in the docs/THANKS file in the distribution of Predator.
Collaboration on further development of Predator (e.g., better support of non-pointer
data, handling of incomplete code, support of tree data structures, etc.) is welcome.

Acknowledgement. The work was supported by the Czech Science Foundation project
14-11384S, the internal BUT project FIT-S-14-2486, and the EU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References
1. K. Dudka, L. Holı́k, P. Peringer, M. Trtı́k, and T. Vojnar. From Pointers to Containers. Under

submission, 2015.
2. K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipu-

lation. In Proc. of SAS’13, LNCS 7935, pages 214–237, Springer, 2013.
3. K. Dudka, P. Peringer, and T. Vojnar. An Easy to Use Infrastructure for Building Static

Analysis Tools. In Proc. of EUROCAST’11, LNCS 6927, pages 527–534, 2013.

2 According to our experiments, if we interpreted the fact that no error was found by any Preda-
tor DFS hunter such that the program is correct, we could successfully handle all programs
manipulating trees and skip lists present in the SV-COMP’15 benchmark.

3 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp


