
Complexity of Model Checking
by Iterative Improvement:

The Pseudo-Boolean Framework�

Henrik Björklund, Sven Sandberg, and Sergei Vorobyov

Information Technology Department, Box 337, Uppsala University,
751 05 Uppsala, Sweden

{henrikbj,svens}@it.uu.se, vorobyov@csd.uu.se

Abstract. We present several new algorithms as well as new lower and
upper bounds for optimizing functions underlying infinite games perti-
nent to computer-aided verification.

1 Introduction

Infinite two-person adversary full information games are a well established frame-
work for modeling interaction between a system and its environment. A correct
system can be naturally interpreted as a player possessing a winning strategy
against any strategy of the malicious environment. Respectively, a verification
process can be considered as a proof that a system does possess such a strategy.
If the system loses, then a winning strategy for the environment encompasses
possible system improvements. During the last decades a substantial progress
has been achieved both on fitting diverse approaches to computer-aided verifi-
cation into the game-theoretic paradigm and, simultaneously, on developing effi-
cient algorithms for solving games, i.e., determining the winner and its strategy
[6,10,13,18,22,31]. A naturally appealing approach to solving games [12,21,31]
consists in taking an initial strategy of the system and gradually ‘improving’
it, since a non-optimal strategy is outperformed by some counterstrategy of the
environment. This allows for improving either the strategy, or the system, or
both. In this paper we address the complexity of such an approach in an ab-
stract model based on pseudo-Boolean functions possessing essential properties
of games.

Game theory suggests, for numerous types of games, a nice characterization
of the optimal solutions for behaviors of rational players, the so-called Nash
equilibria. The ‘only’ remaining problem left widely open is: ‘What is the ex-
act computational complexity of finding Nash equilibria (optimal strategies) in
two-person games with finitely many strategies? Could such games be solved in
polynomial time? ’ This is a fundamental problem, the solution to which de-
termines whether or not, and to what extent game theory will be applicable
� Supported by Swedish Research Council Grants “Infinite Games: Algorithms and

Complexity” and “Interior-Point Methods for Infinite Games”.

M. Broy and A.V. Zamulin (Eds.): PSI 2003, LNCS 2890, pp. 381–394, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

382 H. Björklund, S. Sandberg, and S. Vorobyov

to solving and optimizing real large-scale games emerging from practical ver-
ification of complex reactive systems. The problem is known to belong to the
complexity class NP∩coNP (therefore, most probably not NP-complete, luck-
ily!) but is not known to be polynomial time solvable. The best currently known
algorithms are exponential (sometimes subexponential). Clearly, superpolyno-
mial algorithms will not allow for practical solutions of the real-life verification
games, no matter how fast the progress in hardware continues. Consequently,
this problem is one of the most practical and (together with the NP versus P)
most fundamental problems in the foundations of computing, complexity theory,
and automata theory [27].

In this paper we address the efficiency of iterative improvement algorithms
for solving games in the following abstract setting. Consider a game where one of
the players has n binary choices, e.g., selects whether to move left or right1 in n
places, and every combination of choices is given a cost, reflecting how good this
strategy (combination of choices) is against a perfect adversary. This results in
an n-dimensional valued Boolean hypercube, or a pseudo-Boolean function. Con-
sequently, everything boils down to optimizing a pseudo-Boolean function. How
fast can we optimize such a function? Despite its simplicity, the question appears
extremely difficult for the classes of functions with special properties pertinent
to games. Not surprisingly, there are not so many strong and general results of
this kind in the literature. The best bound in Tovey’s survey [30] is O(2n/2);
Mansour and Singh [25] suggest an O(20.773n) algorithm (for Markov decision
processes), and we independently obtain an improved bound O(20.453n) for a
similar algorithm in a more general setting [5,8]. Ludwig [24] suggested a subex-
ponential O(2

√
n) algorithm for binary simple stochastic games, which becomes

exponential for games of unbounded (non-binary) outdegree. We suggested sev-
eral [3,6,7,8] subexponential algorithms for games of arbitrary outdegrees.

The development of our theory is primarily motivated by the so-called par-
ity games, which are infinite games played on finite directed bipartite leafless
graphs, with vertices colored by integers. Two players alternate moving a pebble
along edges. The goal of Player 0 is to ensure that the biggest color visited by
the pebble infinitely often is even, whereas Player 1 tries to make it odd. The
complexity of determining the winner in parity games, equivalent to the Rabin
chain tree automata non-emptiness, as well as to the µ-calculus2 model checking
[13,14], is a fundamental open problem in complexity theory [27]. The prob-
lem belongs to NP∩coNP, but its PTIME-membership status remains widely
open. Discounted mean payoff [34] and simple stochastic games [11,12], relevant
for verification of probabilistic systems, are two other classes to which our theory
applies [8].

We exploit the fundamental fact, apparently unnoticed before, that functions
arising from such games possess extremely favorable structural properties, close

1 The restriction to two successors is no loss of generality, since a game with non-
binary choices may be reduced to binary. However, complexity gets worse, and this
issue is dealt with in Section 9.

2 One of the most expressive temporal logics of programs [13].

Complexity of Model Checking by Iterative Improvement 383

to the so-called completely unimodal functions [19,33,32,30]. These functions are
well known in the field of pseudo-Boolean optimization [9,20], an established area
of combinatorial optimization, in which local search [1,30] is one of the domi-
nating methods. The complexity of local search for different classes of functions
were carefully investigated [30,19,33]. However, all previously known algorithms
for completely unimodal functions were exponential [30,9]. A fruitful idea came
from linear programming. In the early 90’s Kalai [23] and Matoušek, Sharir,
Welzl [29,26] came up with strongly subexponential randomized algorithms for
linear programming. Later Ludwig [24] adapted it to binary simple stochastic
games, and we to binary parity games [28]. We also figured out that Kalai’s and
Sharir–Welzl’s randomized schemes fit perfectly well for completely unimodal
optimization [2,5,4] and parity games [28]. Later we succeeded to generalize and
adapt those subexponential schemes to create a discrete subexponential algo-
rithm for general (non-binary) parity games [6], and extend it to combinatorial
structures (which we call completely local-global) more directly reflecting games
[7,8,3].

In this paper we present new upper bounds on the number of iterations of var-
ious iterative improvement algorithms for optimization of completely unimodal
pseudo-boolean functions (CUPBFs). Such functions possess several remarkable
properties: 1) unique minimum and maximum on every subcube, 2) every vertex
has a unique neighborhood improvement signature. The problem of optimiz-
ing CUPBFs has been studied before [19,33], but only few and weak bounds
are known. Only a very restrictive subclass of decomposable CUPBFs is known
to allow for polynomial time randomized optimization. The best known upper
bounds are exponential, but it is conjectured that any CUPBF can be optimized
in polynomial time [33].

We investigated and compared, both theoretically and practically3, five algo-
rithms for CUPBF optimization: the Greedy Single Switch Algorithm (GSSA),
the Random Single Switch Algorithm (RSSA), the All Profitable Switches Algo-
rithm (APSA), the Random Multiple Switches Algorithm (RMSA), and Kalai-
Ludwig’s Randomized Algorithm (KLRA). The GSSA and the RSSA have been
studied by others in the context of CUPBF optimization. We first proposed the
use of the APSA and RMSA in this context in [2]. It turns out that complete
unimodality allows, knowing all improving neighbors of a vertex, to improve
by simultaneously jumping towards all or some of them. (Actually any 0-1 lin-
ear combination of improving directions gives an improvement; this allows for
non-local search algorithms that behave surprisingly well in practice.) The only
nontrivial lower bound that has been shown is an exponential one for the GSSA
[32]. Local search iterative improvement algorithms are appealing, easy to im-
plement, and efficient in practice. But no nontrivial upper bounds are known for
those algorithms, except for subclasses of all CUPBFs. We settle several such
nontrivial bounds in this paper. The fifth algorithm, KLRA, was first proposed
in [24] for solving simple stochastic games, with a subexponential upper bound

3 Our results on practical evaluation and comparison of the algorithms can be found
in [2,5,4].

384 H. Björklund, S. Sandberg, and S. Vorobyov

on the expected running time. We show that it can be modified to solve the
CUPBF optimization problem, still in expected subexponential time.

Outline of the paper. In Section 2 we recall the definitions and main results
concerning completely unimodal functions. Section 3 describes five iterative im-
provement algorithms for completely unimodal functions. Section 4 is devoted to
the random multiple switches algorithm, whereas Section 5 covers single greedy
single random, and all profitable switches algorithms. Section 6 adds random
sampling to the random multiple switches algorithm, while Section 7 does the
same to all other algorithms. Section 8 describes the Kalai-Ludwig-style algo-
rithm. Section 9 generalizes the previous results to completely local-global func-
tions and presents the Sharir-Welzl-style algorithm for these functions.

2 Completely Unimodal Pseudo-Boolean Functions

Parity and simple stochastic games can be solved by maximizing appropriately
defined functions on neighborhood graphs representing sets of strategies. The
prototypical case of such neighborhood graphs is the Boolean hypercube, and the
essential structure of games pertinent to optimization by iterative improvement
is captured, in the first approximation, by completely unimodal functions on
Boolean cubes [19,32,33,30]. Much of the theory we present can be understood
and developed in terms of completely unimodal functions, and until Section 9
we concentrate on this case.

In general, parity and simple stochastic games require less restrictive neigh-
borhood structures and functions. In [7] we succeeded to characterize them as
a class we called completely local-global (CLG) functions, defined on Cartesian
products of arbitrary finite sets, rather than on Boolean hypercubes. These func-
tions, considered in Section 9, were crucial in our development [6,7] of subex-
ponential algorithms for parity games with arbitrary outdegree. This is because
reducing such games to binary ones quadratically increases the number of ver-
tices. As a consequence, a straightforward reduction renders subexponential al-
gorithms exponential [6].

Let H(n) denote the n-dimensional Boolean hypercube {0, 1}n, for n ∈ N
+. A

pseudo-Boolean function is an injective4 mapping H(n) → R associating a real
number to every n-dimensional Boolean vector. For 0 ≤ k ≤ n, a k-dimensional
face of H(n), or a k-face, is a collection of Boolean vectors obtained by fixing n−k
arbitrary coordinates and letting the k remaining coordinates take all possible
Boolean values. Faces of dimension 0 are called vertices, faces of dimension 1 are
called edges. Faces of dimension n− 1 are called facets. Two vertices that share
an edge are called neighbors. Each vertex v in H(n) has exactly n neighbors,
forming the standard neighborhood of v on H(n).

4 The standard injectiveness restriction is lifted in Section 9.

Complexity of Model Checking by Iterative Improvement 385

Complete Unimodality. A pseudo-Boolean function f is called completely uni-
modal (CUPBF for short) if one of the following four equivalent conditions holds
[19,33]:

1. f has a unique local minimum on each face,
2. f has a unique local maximum on each face,
3. f has a unique local minimum on each 2-face,
4. f has a unique local maximum on each 2-face.

Improving directions. Let f : H(n) → R be a CUPBF and let v be a vertex on
H(n). Number the dimensions of H(n) from 0 to n−1. For each i ∈ {0, 1, ..., n−
1}, let vi be the neighbor of v that is reached by moving in coordinate i from v.
Let pi be 1 if f(v) < f(vi), otherwise 0. Then we call p = [p0, p1, ..., pn−1] the
vector of improving directions (VID) of v under f .

In the sequel we will usually abuse terminology by identifying a function and
a (valued) hypercube it is defined upon. By ‘optimizing’ we mean ‘maximizing ’.

3 Five Iterative Improvement Algorithms

A standard local-search improvement algorithm starts in an arbitrary point v0
of the hypercube H(n) and iteratively improves by selecting a next iterate with
a better value from a polynomial neighborhood N(vi) of the current iterate.

Specific instances of the standard algorithm are obtained when one fixes:

1. the neighborhood structure on H(n),
2. the disciplines of selecting the initial point and the next iterate.

Two major local-search improvement algorithms, the Greedy Single Switch Algo-
rithm (GSSA) and the Random Single Switch Algorithm (RSSA) have previously
been investigated and used for optimizing CUPBFs [30]. We also investigate the
All Profitable Switches Algorithm (APSA) and the Random Multiple Switches
Algorithm (RMSA). Strictly speaking, neither APSA, nor RMSA is a local-search
algorithm. The first one operates with neighborhood structures which vary de-
pending on the CUPBF being optimized. The second chooses the next iterate
from a non-polynomially bounded (in general) neighborhood of the current it-
erate. Finally, we show how the subexponential Kalai-Ludwig’s Randomized Al-
gorithm (KLRA) for solving binary simple stochastic games can be modified
to optimize CUPBFs, and show that it is subexponential for this problem as
well, with expected worst case behavior 2O(

√
n). This algorithm has so far been

unknown in the field of CUPBF optimization.

Greedy Single Switch Algorithm (GSSA). This is a local-search algorithm
that at every iteration chooses the highest-valued neighbor of the current vertex
as the next iterate. Recall that every vertex of H(n) has exactly n neighbors (in
the standard neighborhood). Unfortunately, this algorithm may take exponen-
tially many steps to find the maximum of a CUPBF [32].

386 H. Björklund, S. Sandberg, and S. Vorobyov

Random Single Switch Algorithm (RSSA). This is a local-search algo-
rithm that at every iteration chooses uniformly at random one of the higher-
valued neighbors of the current vertex as the next iterate. This algorithm may
also take exponentially many iterations to find the global maximum. Although
its expected running time for general CUPBFs is unknown, Williamson Hoke
[33] has shown, using a proof technique due to Kelly, that the RSSA has ex-
pected quadratic running time on any decomposable hypercube. Call a facet F
an absorbing facet if no vertex on F has a higher-valued neighbor that is not on
F . A hypercube is called decomposable iff it has dimension 1 or has an absorbing
facet that is decomposable. This result, together with the fact that in a CUPBF
there is a short improving path from any vertex to the maximum (i.e., Hirsch
conjecture holds), form grounds for the polynomial time optimization conjecture
for CUPBFs [33] (currently open).

All Profitable Switches Algorithm (APSA). The All Profitable Switches
Algorithm (APSA) at every iteration computes the VID s of a current iterate v
and inverts the bits of v in positions where s has ones to get the new iterate v′

(i.e., v′ := v XOR s.)
This algorithm may also be seen as a local-search algorithm, but the structure

of the neighborhood is not fixed a priori (as for GSSA and RSSA), but rather
changes for each CUPBF.

APSA is a stepwise improvement algorithm for CUPBFs because the current
iterate v is the unique global minimum on the face defined by fixing all coordi-
nates corresponding to zeros in the VID s. Therefore, the next iterate v′ (which
belongs to the same face) has a better function value.

Random Multiple Switches Algorithm (RMSA). Like APSA, the Ran-
dom Multiple Switches Algorithm (RMSA) at every iteration computes the VID
s of a current iterate v. However, to get the next iterate v′ RMSA inverts bits
in v corresponding to a nonempty subset s′ of the nonzero bits in s, chosen
uniformly at random (i.e., v′ := v XOR s′.)

RMSA is a stepwise improvement algorithm for CUPBFs because the current
point v is the unique global minimum on the face defined by fixing the coordi-
nates in v corresponding to zeros in s′. Thus the next iterate v′, belonging to
this face, must have a better function value. Note that RMSA selects at random
from a neighborhood that may be exponentially big in the dimension. So, strictly
speaking, this is not a polynomial local-search improvement algorithm.

Kalai-Ludwig’s Randomized Algorithm (KLRA). In a major break-
through Kalai [23] suggested the first subexponential randomized simplex al-
gorithm for linear programming. Based on Kalai’s ideas, Ludwig [24] suggested
the first subexponential randomized algorithm for simple stochastic games with
binary choices. We show that Ludwig’s algorithm without any substantial mod-
ifications performs correctly and with the same expected worst-case complexity

Complexity of Model Checking by Iterative Improvement 387

2O(
√

n) for optimizing CUPBFs. Kalai-Ludwig’s algorithm may informally be
described as follows.

1. Start at any vertex v of H(n).
2. Choose at random a coordinate i ∈ {1, . . . , n} (not chosen previously).
3. Apply the algorithm recursively to find the best point v′ with the same i-th

coordinate as vi.
4. If v′ is not optimal (has a better neighbor), invert the i-th component in v′,

set v := v′ and repeat.

4 The Random Multiple Switches Algorithm

The only two algorithms that were previously studied for the CUPBF optimiza-
tion problem are: 1) the GSSA, 2) the RSSA. The GSSA makes an exponential
number of steps on CUPBFs constructed in [32]. If extremely unlucky, the RSSA
can make an exponential number of steps on CUPBFs generated by Klee-Minty
cubes, but nevertheless its expected runtime on such cubes is O(n2), quadratic
in the number of dimensions. The same expected quadratic upper bound holds
for the RSSA running on the class of the so-called decomposable CUPBFs (of
which Klee-Minty’s form a proper subclass) [33, p. 77-78]. Besides these results,
there are no other known: 1) nontrivial lower bounds for the problem, 2) better
upper bounds for any specific algorithms. Nevertheless, [33, p. 78] conjectures
that the RSSA is (expected) polynomial on all CUPBFs.

It is worth mentioning, however, that for any CUPBF with optimum v∗ and
any initial vertex v0 there is always an improving path from v0 to v∗ of length
hd(v0, v

∗), the Hamming distance between v0 and v∗. Therefore, the ‘Hirsch con-
jecture’ about short paths to the optimum holds for CUPBFs (thus the potential
existence of ‘clever’ polynomial time algorithms is not excluded).

Simultaneously, nothing except this ‘trivial linear’ Ω(n) lower bound is cur-
rently known for the CUPBF optimization problem. For the broader classes of
all pseudo-Boolean and all unimin functions5 there are the Ω(2v/

√
n) and the

Ω(2v/n1.5) lower bounds, respectively, for any deterministic algorithms, and the
Ω(2n/2 · n) lower bound for any randomized algorithms [30, Thm. 14, p. 66,
Coroll. 21, p. 71, Coroll. 19, p. 69].

In view of the above results our new, presented in this section, O(20.773n) =
O(1.71n) upper bound for our new RMSA (Randomized Multiple Switch Algo-
rithm)6 should be considered an improvement. The key step consists in exploiting
complete unimodality and the next simple lemma, giving a lower bound on the
per-step improvement of the target function value by the RMSA, exponential in
the number of improving directions in the current vertex.

5 Possessing a unique minimum.
6 Which is not local-search type. Maybe this is the reason it was not considered in

general pseudo-Boolean optimization; it is only correct for CUPBFs.

388 H. Björklund, S. Sandberg, and S. Vorobyov

Lemma 1. The expected function value improvement of the RMSA step from a
vertex v with i > 0 improving directions is at least 2i−1.

This makes the RMSA attractive: we can guarantee that the expected ‘value
jump’ in each step is relatively high, provided, there are many improving direc-
tions. If the average number of improving directions per vertex visited during
a run of the RMSA were at least k, the algorithm would terminate in at most
O(2n−k) steps. In particular, n/2 average improving directions would give an
O(2n/2) upper bound. Can we guarantee any nontrivial lower bound on the
number of improving directions in any run of the RMSA? Fortunately, the fun-
damental property that in every completely unimodal cube every possible bit
vector of improving directions is present exactly once [33, p. 75-76] allows us to
do this. The proof of the following theorem assumes the worst (and seemingly
unrealizable) case that the algorithm is always unlucky, selecting a vertex with
the fewest possible number of improving directions, and the cube generated by
these direction is numbered by the smallest possible successors of the current
value. This forces the worst case and settles an upper bound on the number of
RMSA iterations in the worst case.

Theorem 1. The expected number of iterations made by the RMSA on an n-
dimensional CUPBF is less than 20.773n = 1.71n, for sufficiently large n.

After we obtained the bound from Theorem 1, we were pointed out that a
similar bound for the same algorithm, but applied to Markov decision processes,
was proved earlier in [25]. Later it became clear that our result is stronger, after
we succeeded to reduce simple stochastic games to CLG-functions and CLG-
functions to CU-functions [7]. Moreover, we substantially improve the bound
from Theorem 1 below 2n/2 in Section 6 (for a variant of the algorithm).

5 Single Greedy, Single Random, and All Profitable
Switches Algorithms

We start with a simple lower bound on the per-step improvement for all three
algorithms. This bound is weaker than for the RMSA. Consequently, the upper
bounds we can settle for these algorithms are weaker. Nevertheless, the practi-
cal behavior of these algorithms shown in experiments [2,5,4] make them very
attractive.

Proposition 1. When the APSA, the GSSA, or the RSSA makes a switch in
a vertex with i improving directions the value of the target function increases at
least by i (by expected value at least i/2 for the RSSA).

Theorem 2. For any 0 < ε < 1 the APSA, the GSSA,, and the RSSA make
fewer than 2n−(1−ε) log(n) iterations on any n-dimensional CUPBF, for suffi-
ciently large n.

Complexity of Model Checking by Iterative Improvement 389

Remark 1. 1) Note that it is stronger than claiming ‘fewer than 2n−c (for a
constant c > 0)’, but 2) weaker than ‘fewer than 2cn (for a constant 0 < c < 1)’.
3) This upper bound is better than the 5/24 · 2n − 45 lower bound for any local
improvement algorithm on a uniminmax function [30, Thm 23, p. 72].

6 Adding Random Sampling to the RMSA

The RMSA can be considerably improved by adding random sampling. If we start
the RMSA from a ‘good’ vertex, with a value close to the optimum, the RMSA
guarantees a reasonably short run before finding it, as is shown in Section 4.
The trick is to select a good initial vertex by making an optimal number of
random probes picking the one with the best value, and to minimize the overall
running time. We call the modified algorithm the RMSA-RS and parameterize
it by the number of randomly sampled vertices. For this modified algorithm, a
better upper bound can be shown, when we choose the parameter optimally:

Theorem 3. The RMSA-RS can be parameterized in such a way that its ex-
pected running time on an n-dimensional CUPBF is O(20.453n) = O(1.37n).

As described, the RMSA-RS always makes 20.453n random samplings, before
starting any optimizations, so its expected best case is Ω(20.453n). Although
other single or multiple switch algorithms we consider have worse known upper
bounds, they show much better practical behavior.

7 Adding Random Sampling to the APSA, the GSSA,
and the RSSA

As we saw in the previous section, a better bound can be proved for the RMSA
when random sampling is added. In this section we show that random sampling
also allows for better bounds for the APSA, the GSSA, and the RSSA. The
bounds are not as strong, however, as the one for the RMSA with random
sampling.

Theorem 4. For any 0 < ε < 1/2 the All Profitable Switches, the Greedy Sin-
gle Switch, and the Randomized Single Switch Algorithms with initial random
sampling of 2

n
2 −(1

2 −ε) log(n) vertices make less than 2
n
2 −(1

2 −ε) log(n) iterations on
any n-dimensional CUPBF, for sufficiently large n.

Corollary 1. With the initial random sampling of 2
n
2 −(1

2 −ε) log n vertices, for
any ε ∈ (0, 1/2), the APSA, the GSSA, and the RSSA have running times
(expected in the case of RSSA) that are O(2

n
2 −(1

2 −ε) log n).

390 H. Björklund, S. Sandberg, and S. Vorobyov

8 Kalai-Ludwig’s Algorithm for CUPBFs

We were the first to observe [2] that the Kalai-Ludwig’s Randomized Algorithm
(KLRA) initially designed for linear programming [23] and later adapted for sim-
ple stochastic games [24], works perfectly for CUPBF optimization, also provid-
ing subexponential expected running time 7. Modified for CUPBF optimization
the KLRA is shown below.

Algorithm 1: Kalai-Ludwig’s Algorithm for CUPBFs
KLRA(CUPBF H, initial vertex v0)
(1) if dim(H) = 0
(2) return v0
(3) else
(4) choose a random facet F of H containing v0
(5) v∗ ← KLRA(F , v0)
(6) if neighbor u of v∗ on H\F is better than v∗

(7) return KLRA(H \ F , u)
(8) else
(9) return v∗

It turns out that the algorithm is correct and terminating:

Theorem 5. For every CUPBF, KLRA terminates and returns the global max-
imum.

The following adjusts the theorem and proof in [24] to the case of CUPBFs.

Theorem 6. The expected running time of KLRA on a CUPBF is 2O(
√

n).

Our experiments on randomly generated CUPBFs [2,5,4] indicate that KLRA
performs better than its theoretical subexponential upper bound. Surprisingly,
7 Added in proof: Bernd Gärtner pointed out to us that he came up to similar

results in [16] (journal version [17]), also building on the ideas of Kalai, Matoušek,
Sharir, and Welzl. Rather than using the standard terminology of completely uni-
modal functions [19,32,33,30], B. Gärtner employs a less common and quite inex-
pressive term abstract optimization functions instead, and this unfortunate choice
partially explains why his results have not become widely known in pseudo-Boolean
optimization. It should be noted, however, that our algorithms and analysis are more
general (see the next section), since they apply not only for Boolean cubes, but to
hyperstructures (products of simplices) as well. We also allow the functions to take
values in partially rather than totally ordered sets. Additionally, we relax and do
not stipulate the “unique sink on every subcube” property. All this is more ade-
quate for games and provides for better complexity bounds. We thank B. Gärtner
for his pointers and observations.

Complexity of Model Checking by Iterative Improvement 391

the other four algorithms considerably outperform KLRA, although no subexpo-
nential bounds are currently known for them. It is reasonable to believe that for
some of the algorithms there may be subexponential or better upper bounds. In
this work we proved the first nontrivial upper bounds for these algorithms. The
bounds we showed are still exponential, but not expected to be tight. Rather,
they are to be viewed as a first step towards settling the precise complexity of
these algorithms on CUPBFs.

9 Completely Local-Global (CLG) Functions

So far we restricted our attention to binary games. Although every non-binary
game can be reduced to a binary one, the resulting number of vertices is propor-
tional to the size of the initial graph. This may give a quadratic blow-up in the
number of vertices (e.g., for graphs of linear outdegree), and the 2O(

√
n) bound

becomes exponential, since n is quadratic in the initial number of vertices. In
this section we show how to apply more sophisticated algorithms directly on
non-binary structures, maintaining the subexponential bounds. We start with a
non-binary generalization of hypercubes.

Definition 1 (Hyperstructure). For each j ∈ {1, . . . , d} let Pj = {ej,1, . . . ,

ej,δj} be a finite set. Call P =
∏d

j=1 Pj a d-dimensional hyperstructure, or
structure for short. ��

A substructure P ′ ⊆ P is a product P ′ =
∏d

j=1 P ′
j , where ∅ �= P ′

j ⊆ Pj for
all j. If each P ′

j has only two elements, then identify P ′ with H. Call P ′ a facet
of P if there is a j such that P ′

k = Pk for all k �= j, and P ′
j has only one element.

Say that x, y ∈ P, are neighbors iff they differ in only one coordinate. Thus each
x ∈ P has exactly

∑d
j=1(δj−1) neighbors. The neighbor relation defines a graph

with elements of the hyperstructure as nodes, allowing us to talk about paths
and distances in the hyperstructure. A structure P =

∏d
j=1 Pj has d dimensions

and n =
∑d

j=1 δj facets.
Throughout this section, let D be some partially ordered set. We now con-

sider functions defined on P with values in D. Functions with partially ordered
codomains are better suited for games [7].

A local maximum of a function f : P → D is a vertex in P with value bigger
than or equal to all its neighbors. A global maximum is a vertex with a function
value bigger than or equal to the values of all other vertices. In particular, any
global maximum is comparable with all other vertices. Local and global minima
are defined symmetrically.

Definition 2 (CLG-function on a hyperstructure). Let f : P → D be a
function such that all neighbors have comparable values. Say that f is a CLG-
function if the following properties hold on every substructure of P:

1. any local maximum of f is also global;
2. any local minimum of f is also global;
3. any two local maxima are connected by a path of local maxima;

392 H. Björklund, S. Sandberg, and S. Vorobyov

4. any two local minima are connected by a path of local minima.
By a CLG-structure we mean a CLG-function together with the underlying

hyperstructure.

We note in passing that CLG-functions can be defined on hypercubes as
well (with the same four properties), and CUPBFs can be defined: 1) with a
partial set D as co-domain, and 2) on hyperstructures. The relaxation of the
co-domain from R to D is an advantage (the essential properties rely only on the
order of neighbors), important for the applications to games. Many properties
are also carried on from hypercubes to hyperstructures, usually with a modified
formulation. Multiple switches algorithms, like APSA and RMSA, generalize to
hyperstructures as well.

As shown in [7], Algorithm 2 optimizes CLG-functions on hyperstructures

in expected time 2O(
√

d log(n/
√

d)+log n), where n =
∑d

j=0 δj . For games, where
the maximal outdegree is d and n = O(d2), the bound collapses to 2O(

√
d log d).

The algorithm is adapted from the linear programming algorithm by Matoušek,
Sharir and Welzl [29,26]. If P happens to be binary, the algorithm coincides with
Kalai-Ludwig’s algorithm; see Section 8.

Algorithm 2: MSW-Style Optimization Algorithm
Optimize(CLG-structure P, initial vertex v0)
(1) if P = v0
(2) return v0
(3) else
(4) choose a random facet F of P, not containing v0
(5) v∗ ← Optimize(P \ F, v0)
(6) if neighbor u of v∗ on F is better than v∗

(7) return Optimize(F, u)
(8) else
(9) return v∗

The importance of CLG-functions stems from the fact that the strategy mea-
sures from [24,31,6] are indeed CLG-functions, as shown in [7]. Moreover, CLG-
functions on hypercubes can be transformed to CUPBFs by introducing an arti-
ficial order on unordered neighbors [7]. Also, CLG-functions on hyperstructures
can be transformed analogously to CUPBF-like functions on hyperstructures. Fi-
nally, we showed in [7] that any CLG-function reduces to an LP-type problem, an
abstract framework for linear programming [29] and problems in computational
geometry [26,15]. These reductions provide a strong argument for CLG-functions
as a link between well-studied areas that look very different on the surface.

CLG-functions simultaneously allow for subexponential and multiple switch
algorithms. Although the latter currently have worse known upper bounds, good
practical behavior of such algorithms, confirmed by experiments, make them

Complexity of Model Checking by Iterative Improvement 393

very attractive and competitive [2,5,4]. We hope that a thorough investigation
of random walks on the favorable CU- or CLG-structures will allow for improved
bounds for multiple switching algorithms, both on the average and in the worst
case.

References

1. E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons, 1997.

2. H. Björklund, V. Petersson, and S. Vorobyov. Experiments with iterative
improvement algorithms on completely unimodal hypercubes. Technical Re-
port 2001-017, Information Technology/Uppsala University, September 2001.
http://www.it.uu.se/research/reports/.

3. H. Björklund and S. Sandberg. Algorithms for combinatorial optimization and
games adapted from linear programming. In B. ten Cate, editor, Proceedings of
the Eighth ESSLLI Student Session, 2003. to appear.

4. H. Björklund, S. Sandberg, and S. Vorobyov. An experimental study of
algorithms for completely unimodal optimization. Technical Report 2002-
030, Department of Information Technology, Uppsala University, October 2002.
http://www.it.uu.se/research/reports/.

5. H. Björklund, S. Sandberg, and S. Vorobyov. Optimization on completely unimodal
hypercubes. Technical Report 018, Uppsala University / Information Technology,
May 2002. http://www.it.uu.se/research/reports/.

6. H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm
for parity games. In H. Alt and M. Habib, editors, 20th International Symposium
on Theoretical Aspects of Computer Science, STACS’2003, volume 2607 of Lecture
Notes in Computer Science, pages 663–674, Berlin, 2003. Springer-Verlag. Full
preliminary version: TR-2002-026, Department of Information Technology, Uppsala
University, September 2002.

7. H. Björklund, S. Sandberg, and S. Vorobyov. On combinatorial struc-
ture and algorithms for parity games. Technical Report 2003-002, De-
partment of Information Technology, Uppsala University, January 2003.
http://www.it.uu.se/research/reports/.

8. H. Björklund, S. Sandberg, and S. Vorobyov. Randomized subexpo-
nential algorithms for parity games. Technical Report 2003-019, De-
partment of Information Technology, Uppsala University, April 2003.
http://www.it.uu.se/research/reports/.

9. E. Boros and P. L. Hammer. Pseudo-boolean optimization. Technical Report RRR
48-2001, RUTCOR Rutger Center for Operations Research, 2001.

10. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
11. A. Condon. The complexity of stochastic games. Information and Computation,

96:203–224, 1992.
12. A. Condon. On algorithms for simple stochastic games. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 13:51–71, 1993.
13. E. A. Emerson. Model checking and the Mu-calculus. In N. Immerman and Ph. G.

Kolaitis, editors, DIMACS Series in Discrete Mathematics, volume 31, pages 185–
214, 1997.

14. E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In
Annual IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991.

394 H. Björklund, S. Sandberg, and S. Vorobyov

15. B. Gärtner. A subexponential algorithm for abstract optimization problems. SIAM
Journal on Computing, 24:1018–1035, 1995.

16. B Gärtner. Combinatorial linear programming: Geometry can help. In RAN-
DOM’98, volume 1518 of Lect. Notes Comput. Sci., pages 82–96, 1998.

17. B Gärtner. The random-facet simplex algorithm on combinatorial cubes. Random
Structures and Algorithms, 20(3):353–381, 2002.

18. E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics and Infinite
Games. A Guide to Current Research, volume 2500 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

19. P. L. Hammer, B. Simeone, Th. M. Liebling, and D. De Werra. From linear
separability to unimodality: a hierarchy of pseudo-boolean functions. SIAM J.
Disc. Math., 1(2):174–184, 1988.

20. P. Hansen, B. Jaumard, and V. Mathon. Constrained nonlinear 0-1 programming
(state-of-the-art survey). ORSA Journal on Computing, 5(2):97–119, 1993.

21. A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management
Science, 12(5):359–370, 1966.

22. M. Jurdziński. Small progress measures for solving parity games. In H. Reichel
and S. Tison, editors, 17th STACS, volume 1770 of Lect. Notes Comput. Sci., pages
290–301. Springer-Verlag, 2000.

23. G. Kalai. A subexponential randomized simplex algorithm. In 24th ACM STOC,
pages 475–482, 1992.

24. W. Ludwig. A subexponential randomized algorithm for the simple stochastic
game problem. Information and Computation, 117:151–155, 1995.

25. Y. Mansour and S. Singh. On the complexity of policy iteration. In Uncertainty
in Artificial Intelligence’99, 1999.

26. J. Matoušek, M. Sharir, and M. Welzl. A subexponential bound for linear pro-
gramming. In 8th ACM Symp. on Computational Geometry, pages 1–8, 1992.

27. C. Papadimitriou. Algorithms, games, and the internet. In ACM Annual Sympo-
sium on Theory of Computing, pages 749–753. ACM, July 2001.

28. V. Petersson and S. Vorobyov. A randomized subexponential algorithm for parity
games. Nordic Journal of Computing, 8:324–345, 2001.

29. M. Sharir and E. Welzl. A combinatorial bound for linear programming and related
problems. In 9th Symposium on Theoretical Aspects of Computer Science (STACS),
volume 577 of Lecture Notes in Computer Science, pages 569–579, Berlin, 1992.
Springer-Verlag.

30. C. A. Tovey. Local improvement on discrete structures. In E. Aarts and Lenstra J.
K., editors, Local Search in Combinatorial Optimization, pages 57–89. John Wiley
& Sons, 1997.

31. J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving
parity games. In E. A. Emerson and A. P. Sistla, editors, CAV’00: Computer-Aided
Verification, volume 1855 of Lect. Notes Comput. Sci., pages 202–215. Springer-
Verlag, 2000.

32. D. Wiedemann. Unimodal set-functions. Congressus Numerantium, 50:165–169,
1985.

33. K. Williamson Hoke. Completely unimodal numberings of a simple polytope. Dis-
crete Applied Mathematics, 20:69–81, 1988.

34. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158:343–359, 1996.

	Introduction
	Completely Unimodal Pseudo-Boolean Functions
	Five Iterative Improvement Algorithms
	The Random Multiple Switches Algorithm
	Single Greedy, Single Random, and All Profitable Switches Algorithms
	Adding Random Sampling to the RMSA
	Adding Random Sampling to the APSA, the GSSA, and the RSSA
	Kalai-Ludwig's Algorithm for CUPBFs
	Completely Local-Global (CLG) Functions

