
 Programming with Concurrency: Threads, Actors, and Coroutines

Zhen Li and Eileen Kraemer

Department of Computer Science

The University of Georgia

Athens, GA USA

e-mail: janeli@uga.edu, eileen@uga.edu

Abstract—We describe an elective upper-division

undergraduate / graduate course that focuses on programming

with concurrency and puts into practice topics from the PDC

curriculum. We introduce three approaches to concurrent

programming: threads (using Java), Actors (using Scala) and

Coroutines (using Python) for both shared memory and

message passing applications. We also address synchronization

issues such as race conditions, conditional synchronization,

deadlock and fairness. We use a pseudocode notation to

support language-independent evaluation of students’

comprehension of concurrency concepts. Students engage in

intensive lab sessions to implement solutions to classical

problems in concurrency. We present data analyses that we

hope will provide insight and inform the pedagogy associated

with concurrent programming.

Concurrency; programming; undergraduate curriculum

I. INTRODUCTION

A recent report of the NSF/IEEE-TCPP Curriculum

Initiative on Parallel and Distributed Computing on Core

Topics for Undergraduates correctly states that “Parallel and

Distributed Computing (PDC) now permeates most

computing activities,” impacting both programmers and

users [1]. The report further emphasizes the “imperative that

users be able to depend on the effectiveness, efficiency, and

reliability of this technology”.

The NSF/IEEE-TCPP report identifies a number of topics

that could be included in advanced and/or elective curricular

offerings. In this paper we describe our current efforts to

further our students’ understanding of PDC via a new course

for upper-division undergraduates and graduate students,

titled “Programming with Concurrency.”

 This four-hour course covers programming techniques

used in building concurrent systems: the basics of multi-core

architectures, and concurrency and synchronization issues in

both shared memory and message passing concurrent

systems using three approaches: (1) Threads in Java, (2)

Actors in Scala, and (3) Coroutines in Python. Students

explore the features and libraries available, and investigate

the efficiency of these implementations. In this context,

students assess the advantages and disadvantages, including

performance and the ease of programming and debugging for

each approach.

II. BACKGROUND

The pervasive growth in programming concurrent and

parallel systems has led to the development of different

programming languages and programming models in

academia and industry. In this course, we teach the threads

model using Java, the Actors model using Scala and the

Coroutine model using Python.

A. Java and the Thread Model

We introduce threading at the programming level of

abstraction and choose Java because of its pervasive use over

a large array of devices and the fact that it is a popular

introductory programming language in many CS curricula.

Java synchronization syntax including the synchronized

keyword, wait(), notify() and notifyAll() functions, together

with the thread package provides a good set of coding

schemes for the concurrency issues being covered and

discussed in this course. Also, Java provides a collection of

well-defined and easy-to-use concurrent data structures for

advanced programming requirements.

B. Scala and the Actors Model

Scala is a recently popularized general purpose

programming language that integrates features of object-

oriented and functional languages. Scala programs also run

on Java virtual machines and the program byte code is

compatible with Java. Therefore, Scala allows usage of

existing Java libraries and application packages. Scala

programs may be called from Java and vice versa, with

seamless integration. Accordingly, it is possible to

implement concurrency and synchronization in Scala by

using Java threads artifacts with the java.lang.Thread and

java.util.concurrent libraries, which provide several thread

definition mechanisms, inter-thread communication

mechanisms and some high-level synchronized object

classes. The thread synchronization and monitor models

available in Java are also fully accessible in Scala.

However, Scala differs from the Java programming

language in that it provides another means to implement

concurrency – the Actor model. An Actor model is a

mathematical theory of computation that treats “Actors” as

the universal primitives of concurrent digital computation

[2]. An Actor is a computational entity that, in response to a

message it receives, can concurrently:

mailto:janeli@uga.edu
mailto:eileen@uga.edu

 send messages to other Actors;

 create new Actors;

 designate how to handle the next message it receives

No assumed order exists for the above actions and they

may be carried out concurrently. In addition, two messages

sent concurrently can arrive in either order. The Actor model

enables asynchronous communication and control structures

as patterns of message processing.

The Actor model illustrates a fundamental concept of the

“happened before” relation, a relation among distinct events

in a universe that defines the concept of time [3]. This partial

relation may be extended to a full relation with an algorithm

that results in a non-deterministic event sequence in a

distributed system. In such a distributed system, tasks may

be carried out on computational units that are either spatially

separated or on a single processor. These fundamental

notions characterize a concurrent system with non-

deterministic ordering of task executions. Therefore, the

Actor model illustrates a way of implementing concurrency.

To support the Actor model, Scala provides a set of

language utilities to deal with sending, receiving, and

handling messages and the creation and recognition of

different Actors. Due to the relationship between Java and

Scala, their similarities and differences, as well as the Actor

features provided by Scala, we choose it as a contrast to Java

and its thread model.

C. Python and Coroutine Model

Coroutines differ greatly from both the Java thread model

and the Scala Actor model. The concept of coroutines was

introduced in the early 1960s and constitutes one of the

oldest proposals of a general control abstraction. The

fundamental characteristics of a coroutine are introduced in

[4] as follows: 1) The values of data local to a coroutine

persist between successive calls to that coroutine; and 2)

The execution of a coroutine is suspended as control leaves

it, only to carry on where it left off when control re-enters

the coroutine at some later stage.

In addition to this fundamental description, three further

issues are identified in [5] for a coroutine: 1) the control-

transfer mechanism, which can provide symmetric or

asymmetric coroutines; 2) whether coroutines are provided

in the language as first-class objects, which can be freely

manipulated by the programmer, or as constrained

constructs; and 3) whether a coroutine is a stackful

construct, i.e., whether it is able to suspend its execution

from within nested calls.

Based on these three issues, the authors of [5] classify

coroutines into different categories and claim that a first-

class stackful coroutine provides the same expressiveness as

obtained with one-shot continuations, which support

concurrency as stated in [6]. Therefore, a system that

supports coroutines is capable of defining a concurrent

system.

We choose Python not only because it is one of the most

popular languages that take the advantage of coroutine

concepts, but also because Python provides language

features to implement concurrency with traditional thread

models as well. Therefore, we expect to bring another

dimension to expand students’ thinking about the nature of

concurrency.

III. RATIONALE

Current trends in multi-core and multi-processor

architectures demand that students in Computer Science and

Computer Engineering develop substantial practical skills in

concurrent and parallel programming. However, even with

recent updates to the undergraduate curriculum to include

PDC concepts, Computer Science students are not

systematically introduced to these concepts. Difficulties in

programming such systems correctly and efficiently are seen

in both academia and industry. Improved understanding of

human comprehension of PDC systems and a comprehensive

study of how programmers use different programming

language approaches to concurrency may help to provide

guidance in solving these difficulties.

This new course provides a systematic introduction to

concurrent programming issues and corresponding practical

programming experience in working with these systems. The

course is designed to not only emphasize concepts in

concurrency and concurrent systems, but also to provide

hands-on programming practice and experience. We have

designed the course so that data collected from integrative

course activities may provide meaningful data in our

ongoing study of how programmers comprehend different

types of concurrent systems and the costs and benefits of

different programming approaches for concurrent systems.

IV. COURSE CONTENT

A. Multi-core architecture and Overview of Parallel and

Concurret Programming

During the first two weeks of the course we briefly

introduce students to modern computer architectures,

including multi-processor and multi-core architectures. We

then provide an overview of parallel and concurrent

programming, introducing two basic types of concurrent

systems: shared memory systems and distributed memory

systems.

A primary learning objective of this portion of the course

is for students to know the history of parallel and distributed

computing and to comprehend the growing importance of

parallel and concurrent programming given current trends in

hardware development.

The lab assignment in this portion of the course involves

an observation of the architecture of the student’s personal

computer, in which students run two pre-compiled multi-

threaded Java programs (a thread pool arithmetic program

and a dining philosopher program) and are asked to report on

both the nature of the dining philosophers problem and the

utilization of CPU, RAM, and other resources during each of

these programs.

B. UML and UML Modeling of Concurrent Systems

Next, we spend 1 to 1.5 weeks introducing UML 2.0 class,

state and sequence diagrams and studying how to use these

diagrams to model concurrent systems. In particular, we

study the well-defined transformation from state diagrams to

threads-based implementations of monitor constructs and

condition variables, and a corresponding transformation to a

message-passing implementation. The goal of this module is

for students to gain experience in applying abstraction and

modeling to the problem of reasoning about concurrent

systems and in mapping from models to code.

The lab assignment here is to model a book inventory

system using UML class diagrams. Later in the course

students implement both shared memory and message

passing solutions for this system.

Simple Statement

variable = expression

Simple statements are

executed atomically.

Assignment is an example of

a simple statement

total = 0

name = “John Smith”

condition = True

height = 3.3

Figure 1. Pseudocode (Assignments)

If Statement (Conditional)

IF condition THEN

 statement(s)

ELSE IF condition THEN

 statement(s)

ELSE

 statement(s)

ENDIF

The calculation of condition

is not necessarily atomic if

it involves function call

statements. However, the

choice of branch based on a

calculated condition value

is executed atomically.

IF testScore >= 90

THEN

 PRINTLN “A”

ELSE IF testScore

>= 80 THEN

 PRINTLM “B”

ELSE IF testScore

>= 70 THEN

 PRINTLN “C”

ELSE

 PRINTLN “F”

ENDIF

testScore = 88

Output

B

Figure 2. Pseudocode (Contional Statement If)

C. Comprehension and Pseudo Code Modeling

In the next 3-4 weeks of the course we introduce

concurrency issues including race conditions, conditional

synchronization, deadlock, and fairness with both shared

memory and message passing approaches. In prior work,

Tew [7] developed and validated pseudocode that supports

language-independent measurements of CS1 knowledge. We

have extended this pseudocode to incorporate elements

related to the design and modeling of both shared memory

and message passing approaches. A selected subset of this

pseudocode can be seen in the figures. Figure 1 shows the

pseudocode notation associated with assignment statements

and Figure 2 shows the pseudocode notation associated with

conditional statements. In Figure 3 we provide an example of

the pseudocode we have devised for representing concurrent

execution. Pseudocode designed to represent constructs in

shared memory approaches are seen in Figure 4 and

pseudocode designed to represent constructs in message

passing approaches is seen in Figure 5.

Parallel Execution

Statements

PARA

 statement(s)

ENDPARA

Statements within the

PARA/ENDPARA block are

executed concurrently.

Atomic statements within

PARA/ENDPARA are executed

in any order.

Statements defined in a

function that is called

within the PARA/ENDPARA

block are executed

sequentially.

Statements defined in

functions that are called

within a PARA/ENDPARA

block are executed in any

order of interleaving

with simple statements

within the same

PARA/ENDPARA block.

Statements defined in two

functions that are called

within the same

PARA/ENDPARA block are

executed in any order of

interleaving while

statements from any one

of the functions are

executed in their order

of definition.

PARA

 PRINT “hello ”

 PRINT “world ”

ENDPARA

Output

possibility 1: hello

world

possibility 2: world

hello

DEFINE print()

 PRINT “hi”

 PRINT “there”

ENDDEF

PARA

 print()

ENDPARA

Output

hi there

DEFINE print()

 PRINT “hi”

 PRINT “there”

ENDDEF

PARA

 print()

 PRINT “world”

ENDPARA

Output

possibility 1: world hi

there

possibility 2: hi world

there

possibility 3: hi there

world

Figure 3. Pseudocode (Concurrent Execution)

Use of this pseudocode allows us to evaluate student

comprehension of concurrency concepts in a language-

independent manner. While Tew’s pseudocode has been

validated for language-independent measurement of CS1

knowledge, our extensions and their use for purposes of

evaluating understanding of concurrency concepts are

exploratory.

Shared Memory Concurrency

Exclusively Accessed

Statement

EXC_ACC

 statement(s)

END_EXC_ACC

Only appears within a

function definition.

When one function call

executes statements

inside an

EXC_ACC/END_EXC_ACC

block, other function

calls that read or modify

the same variables that

appear inside the markers

may not execute until the

first function call

completes or executes a

WAIT function.

x = 10

DEFINE changeX(diff)

 EXC_ACC

 x = x + diff

 END_EXC_ACC

ENDDEF

PARA

 changeX(1)

 changeX(-2)

ENDPARA

PRINTLN x

Output

9

Wait and Notify Functions

WAIT()

NOTIFY()

Only be called inside a

EXC_ACC/END_EXC_ACC

block.

Once a WAIT() function

starts execution, another

function call that reads

or modifies variables

inside the

EXC_ACC/END_EXC_ACC block

may execute.

Once a NOTIFY() function

is executed, all WAIT()

functions finish their

execution.

Both WAIT() and NOTIFY()

functions are atomic.

x = 10

DEFINE changeX(diff)

 EXC_ACC

 WHILE x + diff < 0

DO

 WAIT()

 ENDWHILE

 x = x + diff

 NOTIFY()

 END_EXC_ACC

ENDDEF

PARA

 changeX(-11)

 changeX(1)

ENDPARA

PRINTLN x

Output

0

Figure 4. Pseudocode (Shared Memory)

The pedagogical objective of this portion of the course is

for students to know the two types of concurrent

programming systems (shared memory vs. message passing),

to comprehend the related concurrency issues (race

conditions, conditional synchronization, deadlock and

fairness), and to comprehend and apply the corresponding

solutions to these issues (lock mechanisms vs. private data,

wait and notify vs. message protocol design, and asymmetric

design in concurrent systems). Another pedagogical

objective is to familiarize students with the pseudocode

notation so that they can use this notation to comprehend and

reason about various concurrency problems and scenarios.

Students complete several in-class quizzes to practice

using the pseudocode notation to create or enhance models

of different concurrent scenarios such as a sum & workers

system, a bounded buffer system, a dining philosophers

system and a readers-writers system. Students also model a

book inventory system with pseudocode and use sequence

diagrams to depict and reason about some critical scenarios

of the system with their model. In a homework assignment,

students search for and study different concurrency-related

bugs (mainly through the open source MySQL bug report

database). The goal of this assignment is to promote

students’ understanding of concurrency concepts via these

practical examples.

Message Passing Concurrency

Message Variable

MESSAGE.message-

name(value...)

A special message variable

that carries a collection

of values. The message-

name is used to

distinguish message

variables from one

another.

m1 =

MESSAGE.h(“hello”)

m2 =

MESSAGE.w(“world”)

Send Statement

Send(message

variable).To(object)

Send a message specified

by message variable to a

receiver object.

A send statement is

asynchronous, which means

that the order in which

messages are received may

differ from the order in

which they were sent.

m1 =

MESSAGE.h(“hello”)

m2 =

MESSAGE.w(“world”)

Send(m1).To(r1)

Send(m2).To(r1)

Receive Statement

ON_RECEIVING

 message

 statement(s)

 message

 statement(s)

 ...

Accept the next message

and execute statement(s)

according to the type of

the message.

CLASS Receiver

 DEFINE receive

 ON_RECEIVING

 MESSAGE.h(var)

 PRINT var

 MESSAGE.w(var)

 PRINTLN var

 ENDDEF

ENDCLASS

m1 =

MESSAGE.h(“hello”)

m2 =

MESSAGE.w(“world”)

r1 = new Receiver()

r1.receive()

Send(m1).To(r1)

Send(m2).To(r1)

Output

possibility1: hello

world

possibility2: world

 hello

Figure 5. Pseudocode (Message Passing)

D. Implementation of Concurrent Systems

This portion of the course takes about 8-10 weeks and has

three major phases. First, we introduce students to general

knowledge about the Java, Scala and Python programming

languages. Students at UGA are already familiar with Java,

but Scala is new to most students and Python is new to

many. We then focus on the threading elements of Java, the

Actors elements of Scala, and the Coroutine elements of

Python. Finally, we look at some of the advanced

concurrency programming elements in each of these

languages. During this portion of the course we employ a

“flipped classroom” approach, meaning that students learn

about programming in these languages by reading and

making use of online resources while at home and then

engage in actual coding in the classroom.

Students then complete labs that employ basic Java, Scala

and Python programming elements to become familiar with

these three languages. Next, students implement the party-

matching and sleeping barber problem with Java threads,

Scala Actors and Python Coroutines during in-class lab

projects. Finally, students implement the book inventory

system as both a shared memory system and a message

passing system.

The learning objectives of this portion of the course are

for students to know, comprehend, and apply knowledge of

these programming languages and their concurrency

constructs to implement solutions to concurrent problems.

E. Research in Human Factors and Software Engineering

of Concurrent Systems

This element of the course is conducted in parallel with

the implementation components. The pedagogical objective

of this portion is to make students aware of the difficulties

inherent in programming concurrent software, the historical

and practical concerns of designing development

environments for these programming activities and the

human factors issues involved. Paper presentations and in-

class discussions are the means by which the objective is

achieve. Students choose a paper that addresses concurrent

or parallel software engineering issues or human factors in

programming and present it to the class. Each student reads

every paper and participates in the discussion of all presented

papers.

V. STUDY DESIGN

In the context of teaching this course, we observe and

collect data on characteristics of students’ comprehension of

shared memory and message passing concurrent systems, the

impact of learning each approach on students’

comprehension of concurrency concepts, and the ease or

difficulty with which students are able to apply these

approaches (design, implement, and debug) to the solution of

classical problems in concurrency.

As described in sections III.A, III.B and III.C all subjects

receive, as a group, the same instruction on 1) general

knowledge about multi-core architectures and parallel and

concurrent programming; 2) UML and UML modeling of

concurrent systems; 2) the threading elements of Java, the

Actors elements of Scala, and the Coroutine elements of

Python; and 3) Comprehension of shared memory and

message passing systems and pseudocode modeling.

For purposes of Test 1, subjects are separated into two

groups, a shared memory group (S) and a distributed

memory group (D), such that the groups have equivalent

performance on previous homeworks, labs and quizzes. The

test contains two sections of questions, and both groups take

both sections of the exam. However, to account for any

practice/learning effect that may result from answering

similar questions on the two sections we had group S take

the shared memory section first and group D take the

message passing section first.

In this test, we expect to learn about and compare student

difficulties in comprehending the same problem in two forms

(shared memory vs. message passing), regardless of actual

programming models.

The program used in the test is the single-lane bridge

problem in which cars travel in two directions using the same

single-lane bridge. In the test, we describe the problem using

both natural language (English) and the pseudocode notation

described above. We give descriptions of what has already

happened in the system and ask students to predict what

could happen next, and to explain their reasoning. Figures 7-

8 illustrate sample test questions in shared memory and

message passing sections in a scenario consisting of a bridge,

two red cars and a blue car.

Students’ answers to these test questions are graded

according to the misconceptions apparent in their

explanations. In an earlier study [8], we identified and

categorized concurrency-related misconceptions about

shared memory systems into a hierarchy of 5 categories. In

this study, we identify misconceptions about message

passing system and combine this into the hierarchy of 5

categories, as depicted in Table II and discussed in Section

VI.

Next, as a group, subjects receive instruction in

programming with basic elements of Java, Scala and Python

(without the concurrency-specific programming features).

We then review solutions to Test 1 and instruct subjects to

implement two concurrent programs, a party-matching

problem and a sleeping-barber problem in three different

forms: shared memory (with Java Threads), message passing

(with Scala Actors) and cooperative (with Python

Coroutines).

In the party-matching problem, boys and girls come to a

party individually, but may only leave with a partner of the

opposite sex. In the sleeping-barber problem, customers

come to a barber’s shop with a limited waiting area, wait if

all barbers are busy or are served if one of the barbers is

available. The barbers keep working when customers are

waiting or take a rest when no customer is in the shop.

PARA

 redCarA.run()

 redCarB.run()

 blueCarA.run()

END_PARA

Suppose redCarA has called the redEnter() method on line 9 but has not
returned. Then redCarB invokes its run() method and calls the redEnter()

method but also has not returned.

Decide if each of the scenarios below (k-t) could happen immediately

after the above. Circle YES if the sequence is possible; otherwise, circle

NO. Then please provide a brief explanation of your reasoning.

(m)redCarB returns from the redEnter() method, then calls the redExit()

method on line 19 and blocks on the EXC_ACC marker on line 20.

 YES NO

 Explanation:

Figure 6. A Sample Question in Shared Memory Section of Test 1

PARA

 bridge.start()

 redCarA.start()

 redCarB.start()

 blueCarA.start()

END_PARA

Suppose redCarA has sent the redEnter message but has not yet received

any messages. Then redCarB invokes its start() method, and sends the
redEnter message but has not yet received any messages.

Decide if each of the scenarios below (k-t) could happen immediately

after the above. Circle YES if the sequence is possible; otherwise, circle

NO. Then please provide a brief explanation of your reasoning.

 (m)redCarB receives a succeedEnter message, then sends a redExit

message and receives MESSAGE.succeedExit(2).

 YES NO

 Explanation:

Figure 7. A Sample Question in Message Passing Section of Test 1

TABLE I. CONCURRENCY-RELATED MISCONCEPTIONS IN

HIERARCHY

Description Level

D1 Misconceptions of the system and/or problem descriptions

Terminology Level

T1 Misinterpretation of a term that describes thread or process behavior

Concurrency Level

C1 Misconceptions about thread or process behaviors

Implementation Level

I1 Misconceptions about synchronous mechanisms

I2 Misconceptions about asynchronous mechanisms

Uncertainty Level

U1
Confusion about space of executions; include impossible execution
sequences or fail to consider possible execution sequences

During this period of time, subjects are required to finish

online reading materials at home and complete lab

assignments in class. Therefore, they learn to use the three

programming languages to program two different concurrent

scenarios in three different forms. Next, students all attend

the same Test 2, which is a computer-based practical

programming test. In this test, students are required to

implement the single-lane bridge problem with Java threads,

Scala Actors and Python Coroutine models in shared

memory, message passing and cooperative forms. This test

provides information on the costs and benefits of

implementing the same problem in three forms with three

different approaches.

Next, we review solutions to Test 2 and separate students

into two groups with equivalent performance in the prior

assignments and tests: a pair programming group (PP) and a

solo programming group (SP). Students in both groups then

finish the same labs involving programming the book

inventory system in shared memory and message passing

forms. Students in the PP group work on these lab

assignments with their designated pair partner and students

in the SP group work on these lab assignments individually.

According to our previous study[9], students in the PP group

and SP group likely experience basically the same level of

challenge in finishing such programming labs.

Using the data collected during this period, including

survey answers and lab submissions, we hope to evaluate the

benefits and costs of pair programming in programming

concurrent systems. Throughout the semester we collect

survey data on the time required to complete each

assignment, perceived time pressure, perceived performance,

and other evaluations of preferences and subjective

satisfaction. These survey data, in combination with the

objective data on performance, are used to empirically

evaluate the costs and benefits of the different programming

models and languages employed in this course.

VI. INITIAL DATA

Surveys on effort and preferences were collected with

each lab and homework assignments. Students consistently

reported difficulties with shared memory systems. In

homeworks 2 (shared memory) and 3 (message passing),

students were asked to write pseudocode for the bounded-

buffer and dining-philosopher problems discussed in class.

In a survey conducted after homework 3, only 1 student

indicated that message-passing is more difficult, and 10

indicated that shared memory is more difficult. The

remaining students either indicated that the two approaches

were equally difficult, or they did not respond to the

question.

 In lab 2 (shared memory) and lab 3 (message passing)

students were asked to design a book inventory system. In

the post-lab survey, 8 of 11 students who responded

indicated that shared memory is more difficult, 1 indicated

that message passing is more difficult, and 2 students found

the assignments equally difficult.

TABLE II. PERFORMANCES ON TEST 1

Group Shared Memory

Section Mean

Message Passing

Section Mean

Overall Mean

S (9 students) 56.67 / 100 (1st) 81.72 / 100 (2nd) 138.39 / 200

D (7 students) 76.14 / 100 (2nd) 65.93 / 100 (1st) 142.07 / 200

All 65.19 / 100 74.81 / 100

TABLE III. MISCONCEPTIONS SHOWN IN TEST 1

Message Passing

[D1]M1: Question setting (#students: 6)

[T1]M2: Misinterpret “race condition” as “different order of messages”

(#students: 1)
[C1]M3: Send semantics : assume ability to send depends on condition at

receiver or interpret send as a synchronous method call (#students: 7)

[C1]M4: Receive semantics: assume receipt of acknowledgement message
is synchronous with the occurrence of the event ((bridge entered or exited)

(#students: 7)

[I2]M5: Conflate message sending order with receiving order (#students: 6)
 Four scenarios:

 1) different senders, same receiver (covered by test problem)

 2) different senders, different receivers
 3) same sender, different receivers (covered by test problem)

 4) same sender, same receiver

[U1]M6: Uncertainty (#students: 7)
 Increased size of state spaced causes illogical (self-contradictory)

reasoning or occurrence of misconceptions not seen in simpler scenarios

Shared Memory

[D1]S1: Conflate order of cars with their thread’s name (#students: 3)
[T1]S2: Misinterpret “race condition” as “different interleaving”

(#students: 1)

[T1]S3: Misinterpretation on terminology “block on” (#students: 2)

[C1]S4: Conflate order of method return with order of entering/exiting

bridge (#students: 4)

[C1]S5: Conflate locking with conditional waiting (#students: 9)
[I1]S6: Misinterpretation of WAIT() function’s effect and conflate wait

with continuous execution of the enclosing while loop (#students: 1)

 [I1]S7: Conflate order of method invocation/return with get/release lock
(#students: 10)

 [U]S8: Uncertainty (#students: 2)

 Increased size of state spaced causes illogical (self-contradictory)
reasoning or occurrence of misconceptions not seen in simpler scenarios

In the cases of both the homeworks and the labs, students

were asked to first solve the problem for the shared-memory

case and then for the message-passing case. Thus, ordering

effects could explain the preference for message-passing.

Therefore, for Test 1, students were assigned into two groups

S and D such that the groups had equivalent performance on

previous assignments and asked to complete the sections of

the exam in opposite orders. In the 1st session group S took

the shared-memory section of the exam and group D took the

message-passing section of the exam. In the 2nd session,

each group took the remaining section of the exam. The

testing order is listed in Table I.

After test 1, we again surveyed students on their perceived

difficulty of the two different systems. In this survey, 11 of

the 15 students who responded indicated that questions in the

shared memory section were harder to answer than those in

the message passing section. In the same survey, students

were given the opportunity (without knowing their scores) to

choose which of the two sections of the exam would count as

their midterm grade. (In fact, we always used the higher-

scoring section to count toward their class grade). Of the

respondents, 10 of the 15 chose the message passing section.

Of the 5 students who chose the shared memory section, 4

took the shared memory portion in the 2
nd

 session. Of these

15 students, 13 chose correctly, in that they selected the

section in which they actually scored higher. The two

students who chose incorrectly chose the shared memory

section but actually scored slightly higher on the message-

passing section.

Test results are listed in Table III. We found no significant

difference in performance between the shared-memory and

message-passing sections. However, we did find that

students performed better in the 2
nd

 session (79.20%) than in

the 1
st
 session (60.71%) (p=0.005), likely as a result of

learning that occurred during the exam and/or additional

studying that may have occurred between sessions. However,

the students’ better raw scores on the message passing

section than on the shared memory section supports the

survey result that students found the shared memory model

more difficult to understand.

By analyzing students’ explanations for each test question,

we identified some frequently seen misconceptions about

shared memory and message passing concurrent systems, as

illustrated in Table IV.

One major misconception seen with message passing is a

misunderstanding of the send function. In [C1]M3, we saw

some students interpret a message send as a method call that

could not happen unless the condition were satisfied at the

receiver. For example, in a scenario in which redCarA

successfully entered the bridge, a student indicated that

redCarB could enter the bridge but could not exit because

“redCarB cannot send the redExit message until redCarA

sends redExit”. Some students interpret a message send as a

synchronous call, writing “redCarA calls redEnter first and

the bridge has to process its message first before any other

messages.”

The next major misconception, seen in [C1]M4, is the

assumption that the occurrence of an event (entering/exiting

the bridge) implies that an acknowledgement message has

been received. For example, one student wrote, “redCarA is

not on the bridge since it has not received any message yet”.

 Students exhibited difficulty in fully managing the

asynchronous nature of message passing systems. Table IV

lists four scenarios that may actually happen in asynchronous

systems, but due to the nature of single-lane bridge problem,

students were only tested on scenario 1 (different senders,

same receiver) and 3 (same sender, different receivers).

Looking closer into students’ explanations, we see that

student understanding is quite unreliable – among the six

students who displayed the misconception that messages are

necessarily received in the order sent, two of the six applied

this only to messages from the same color cars but correctly

reasoned about messages from different color cars.

 The major misconception in reasoning about shared

memory was a conflation of the order of method

invocation/return with the order of obtaining/releasing the

lock (e.g. “redCarA has not returned from the redEnter

method so it must still hold the lock”), likely because most

students had prior experience in Java, in which entry to a

synchronized method may be thought to occur

simultaneously with obtaining the lock and release of the

lock may be thought to occur simultaneously with return

from the synchronized method.

Also, some students showed misconceptions in

differentiating lock mechanisms from wait/notify

mechanisms. When the question asked whether a particular

thread will be blocked on the acquisition of lock, the students

explained that “the condition is not satisfied yet for the

thread to get the lock” or “the first red car has not exited yet,

so the second red car cannot get the lock and execute redExit

function”. This misconception is similar to that in which a

message send is interpreted as a method call that cannot

happen unless the condition is satisfied at the receiver. In

both cases, the student’s incorrect reasoning is based on

global knowledge not actually available to the current thread

or process.

Some students performed quite well on the test. However,

even the most advanced students had difficulty when

reasoning about a large space of possibilities. When students

are not quite able to manage the execution space (usually

over 3-4 possibilities), they tend to reduce the complexity by

falling back into one of the lower level misconceptions,

perhaps as result of increased cognitive load. At this time,

they either give a correct explanation but choose an incorrect

answer or conflate two concepts in a way that reduces the

execution space.

VII. CONCLUSIONS

Prior to the efforts of the NSF/IEEE-TCPP, knowledge

and practical skills related to parallel and distributed

computing have been under-represented in CS curricula. In

this paper, we describe a course that focuses on

systematically introducing concepts and programming tactics

with concurrency at the application level of abstraction. We

introduce two types of concurrent applications, shared

memory and message passing systems. We introduce various

concurrency issues such as race conditions, conditional

synchronization, deadlock and fairness in concurrent

systems. We also introduce three typical programming

models used in the programming of concurrent applications,

threads, Actors and Coroutines by using the Java, Scala and

Python programming languages. We employ language-

independent evaluation of students’ understanding of

concurrency concepts to provide information for further

course design. We also emphasize intensive lab and research

activities to promote the development of actual programming

skills and critical thinking. With careful organization and

arrangement of the course, we also collect data from which

we begin to gain insight to inform the pedagogy associated

with concurrent programming. Through the first one-third of

the course, we made following observations: 1) This class is

challenging, especially to undergraduate students who have

limited knowledge of concurrency and are inexperienced in

programming. Some students report time pressure on

completing homework and lab projects. From the feedback

of students who withdrew from the course, 2 of 3 expressed

unmanageable course workload as their major reason for

dropping; 2) The pseudocode system is useful for students to

comprehend and reason about concurrent systems, but it

requires further refinements on wording and validation; 3) A

standard glossary of well-defined terminology is essential; 4)

Shared memory is harder for students to understand, design,

write pseudocode for, and reason about.

The described course and the study are in progress during

the Spring semester of 2013 at the University of Georgia. We

expect to form more solid conclusions after carrying out the

whole course and study plans.

VIII. REFERENCES

[1] Sushil K Prasad et al., "NSF/IEEE-TCPP curriculum

initiative on parallel and distributed computing: core

topics for undergraduates," , 2011, pp. 617--618.

[2] Carl Hewitt, "Actor Model of Computation," Arxiv

preprint arXiv10081459, pp. 1-29, 2010.

[3] Leslie Lamport, "Time, clocks, and the ordering of

events in a distributed system," Commun. ACM, vol. 21,

pp. 558--565, jul 1978.

[4] Chris D. Marlin, Coroutines: A Programming

Methodology, a Language Design and an

Implementation.: Springer, 1980, vol. 95.

[5] Ana Lucia de Mour and Roberto Ierusalimschy,

"Revisiting Coroutines," techreport 2004.

[6] R Hieb and R. K. Dybvig, "Continuations and

concurrency," SIGPLAN Not., vol. 25, pp. 128--136, feb

1990.

[7] A Elliott Tew, "Assessing Fundamental Introductory

Computing Concept Knowledge in a Language

Independent Manner," 2010.

[8] Zhen Li, Zhe Zhao, and Eileen T. Kraemer,

"Characterizing Comprehension of Concurrency

Concepts," in Proceedings of the 22nd Annual

Workshop of the Psychology of Programming Interest

Group, Madrid, Spain, 2010, pp. 88-99.

[9] Zhen Li, Christopher Plaue, and Eileen T. Kraemer, "A

Spirit of Camaraderie: The Impact of Pair Programming

on Retention (unpublished)," University of Georgia,

Athens, GA, 2012.

