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stimation problems in theoretical as well as applied 
statistics have long been of great research interest E given their importance in a great variety of applica- 

tions. Parameter estimation has particularly been an area of 
focus by applied statisticians and engineers as problems 
required ever improving performance [7, 8, 91. Many tech- 
niques were the result of an attempt by researchers to go 
beyond the classical Fourier-limit. 

As applications expanded, the interest in accurately esti- 
mating relevant temporal as well as spatial parameters grew. 
Sensor array signal processing emerged as an active area of 
research and was centered on the ability tofuse data collected 
at several sensors in order to carry out a given estimation task 
(space-time processing). This framework, as will be de- 
scribed in more detail below, uses to advantage prior infor- 
mation on the data acquisition system (i.e., array geometry, 
sensor characteristics, etc.). The methods have proven useful 
for solving several real-world problems, perhaps most nota- 
bly source localization in radar and sonar. Other more recent 
applications are discussed in later sections. 

The first approach to carrying out space-time processing 
of data sampled at am array of sensors was spatial filtering or 

beamforming. The conventional (Bartlett) beamformer dates 
back to the second world-war, and is a mere application of 
Fourier-based spectral analysis to spatio-temporally sampled 
data. Later. adaptive bearmformers [6, 25, 451 and classical 
time delay estimation techniques [ 81 were applied to enhance 
one’s ability to resolve closely spaced signal sources. The 
spatial filtering approach, however, suffers from fundamental 
limitations: its performance, in particular, is directly depend- 
ent upon the physical size of the array (the aperture), regard- 
less of the available data collection time and signal-to-noise 
ratio (SNR). From a statistical point of view, the classical 
techniques can be seen as spatial extensions of spectral Wie- 
ner filtering [ 1501 (or matchedfifiltering). 

The extension of the time-delay estimation methods to 
more than one signal (these techniques originally used only 
two sensors), and the limited resolution of beamforming 
together with an increasing number of novel applications, 
renewed interest of researchers in statistical signal process- 
ing. We might add at this stage, that the word resolution is 
used in a rather informal way. It generally refers to the ability 
to distinguish closely sp,aced signal sources. One typically 
refers to some spectral-like measure, which would exhibit 
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peaks at the locations of the sources. Whenever there are two 
peaks near two actual emitters, the latter are said to be 
resolved. However, for parametric techniques, the intuitive 
notion of resolution is non-trivial to define in precise terms. 
This in turn, resulted in the emergence of the parameter 
estimation approach as an active research area. Important 
inspirations for the subsequent effort include the Maximum 
Entropy (ME) spectral estimation method in geophysics by 
[23] and early applications of the maximum likelihood prin- 
ciple [8 1, 1061. The introduction of subspace-based estima- 
tion techniques [ 13, 1051 marked the beginning of a new era 
in the sensor array signal processing literature. The subspace- 
based approach relies on certain geometrical properties of the 
assumed data model, resulting in a resolution capability 
which (in theory) is not limited by the array aperture, pro- 
vided the data collection time and/or SNR are sufficiently 
large and assuming the data model accurately reflects the 
experimental scenario. 

The quintessential goal of sensor array signal processing 
is the estimation ofparameters by fusing temporal and spatial 
information, captured via sampling a wavefield with a set of 
judiciously placed antenna sensors. The wavefield is as- 
sumed to be generated by a finite number of emitters, and 
contains information about signal parameters characterizing 
the emitters. Given the great number of existing applications 
for which the above problem formulation is relevant, and the 
number of newly emerging ones, we feel that a review of the 
area, with the hindsight and perspective provided by time, is 
in order. The focus is on parameter estimation methods, and 
many relevant problems are only briefly mentioned. The 
manuscript is clearly not meant to be exhaustive, but rather 
as a broad review of the area, and more importantly as a guide 
for a first time exposure to an interested reader. We deliber- 
ately emphasize the relatively more recent subspace-based 
methods in relation to bearrzforming, for which the reader is 
referred for more in depth treatment to the excellent, and in 
some sense complementary, review by Van Veen and Buck- 
ley [133]. For more extended presentations, the reader is 
referred to textbooks such as [SO, 52, 58, 1021. 

The balance of this article consists of the background 
material and of the basic problem formulation. Then we 
introduce spectral-based algorithmic solutions to the signal 
parameter estimation problem. We contrast these suboptimal 
solutions to parametric methods. Techniques derived from 
maximum likelihood principles as well as geometric argu- 
ments are covered. Later, a number of more specialized 
research topics are briefly reviewed. Then, we look at a 
number of real-world problems for which sensor array proc- 
essing methods have been applied. We also include an exam- 
ple with real experimental data involving closely spaced 
emitters and highly correlated signals, as well as a manufac- 
turing application example. 

A studentlpractitioner who is somewhat familiar with the 
field might read the various sections sequentially. For a 
first-time exposure, however, it may be best to scan the 
applications section before the description and somewhat 
more mathematical treatment of the algorithms are discussed. 

Background and For 

In this section, we motivate the data model assumed through- 
out this paper, via its derivation from first principles in 
physics. Statistical assumptions about data collection are 
stated and basic geometrical properties of the model are 
reviewed. 

Wave Propagation 

Many physical phenomena are either a result of waves propa- 
gating through a medium (displacement of molecules) or 
exhibit a wave-like physical manifestation. A wave propaga- 
tion which may take various forms (with variations depend- 
ing on the phenomenon and on the medium, e.g. an 
electro-magnetic (EM) wave in free space or an acoustic 
wave in a pipe), generally follows from the homogeneous 
solution of the wave equation. 

The models of interest in this paper may equally apply to 
an EM wave as well as to an acoustic wave (e.g., SONAR). 
Given that the propagation model is fundamentally the same, 
we will for analytical expediency, show that it can follow 
from the solution of Maxwell’s equations, which, clearly are 
only valid for EM waves. In empty space (no current or 
charge) the following holds 

aB V X E = - -  
at 

(3) 

(4) 

where ., and x, respectively, denote the “divergence” and 
“curl.” Further, B is the magnetic induction, E is the electric 
field, whereas po and EO are the magnetic and dielectric 
constants. Invoking Eq. 1 the following curl property results, 

( 5 )  v x (V x E) = V(V . E) - V*E = -VE . 

Using Eqs. 3 and 4 leads to 

a a2E 
VX(VxE)=--(VxB)=-& at o /J o -, at2 

which, when combined with Eq. 5, yields the fundamental 
wave equation 

(7) 
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The constant c is generally referred to as the speed of 
propagation, and for EM-waves in free space it follows from the 
above derivation c = 1 / & = 3 x 10’m / s .  The homogene- 

ous (no forcing function) wave equation (Eq. 7) constitutes the 
physical motivation for our assumed data model. This is regard- 
less of the type of wave or medium (EM or acoustic). In some 
applications, the underlying physics are irrelevant, it is merely 
the mathematical structure of the data model that counts. 

Though Eq. 7 is a vector equation, we only consider one of 
its components, say E(r,t) where r is the radius vector. It will 
later be assumed that the measured sensor outputs are propor- 
tional to E(r,t). Interestingly enough, any field of the formE(r,t) 
= A d a )  satisfies Eq. 7, , provided I a1 = l/c, with “T’ denoting 
transposition. Througlh its dependence on t-rTa only, the solu- 
tion can be interpreted as a wave traveling in the direction a, 
with the speed of propagation l d  a1 = e. For the latter reason, a 
is referred to as the slowness vector. The chief interest herein is 
in narrowband (This is not really a restriction, since any signal 
can be expressed as a linear combination of narrowband com- 
ponents.) forcing functions. The details of generating such a 
forcing function (i.e. radiation of an antenna) can be found in 
the classic book by Jordan [59]. In complex notation (see e.g. 
[63, Section 15.31) and taking the origin as a reference, a 
narrowband transmitted waveform can be expressed as (upper- 
case and lowercase Greek letters are to be understood as vectors 
or matrices within their context) 

E(0,t) = s ( t ) io t ,  

where s(t) is slowly time-varying compared to the carrier dot. 
For Irl<< c / B ,  where B is the bandwidth of s(t),  we can write 

In the last equa1it:y the so-called wave-vector k = a m  was 
introduced, and its magnitude 1 kl = k = o/c is the wave- 
number. One can also write k = 2z/h, where h is the wave- 
length. Note that k also points in the direction of propagation. 
For example, in the xy-plane we have 

k = k(cos0 sine)‘ , (9) 

where 0 is the direction of propagation, defined counter- 
clockwise relative the x-axis (Fig. 1). 

It should be noted that Eq. 8 implicitly assumed far-field 
conditions, since an isotropic (Isotropic refers to uniform 
propagation/transmission in all directions.) point source 
gives rise to a spherical traveling wave whose amplitude is 
inversely proportional to the distance to the source. All points 
lying on the surface of a sphere of radius R will then share a 
common phase andl are referred to as a wavefront. This 
indicates that the distance between the emitters and the re- 
ceiving antenna array determines whether the sphericity of 
the wave should be taken into account. The reader is referred 
to e.g., [lo, 241 for treatments of near field reception. Far- 
field receiving conditions imply that the radius of propaga- 

tion is so large (compared to the physical size of the array) 
that a flat pilane of constant phase can be considered, thus 
resulting in a plane wave as indicated in Eq. 8. Though not 
necessary, the latter will be our assumed working model for 
convenience of exposition. 

Note thalt a linear medium implies the validity of the 
superposition principle, and thus allows for more than one 
traveling wave. Equation 8 carries both spatial and temporal 
information and represents an adequate model for distin- 
guishing signals with distinct spatio-temporal parameters. 
These may #come in various forms, such as DOA (in general 
azimuth and elevation), signal polarization (if more than one 
component of the wave is taken into account), transmitted 
waveforms, temporal frequency etc. Each emitter is generally 
associated with a set of such characteristics. The interest in 
unfolding the signal parameters forms the essence of sensor 
array signal processing as presented herein, and continues to 
be an important and active topic of research. 

Parametric Data Model 

Most modern approaches to signal processing are model- 
based, in the sense that they rely on certain assumptions made 
on the observed data. In this section we describe the prevail- 
ing model used in the rernainder of this article. A sensor is 
represented as a point receiver at given spatial coordinates. 

T In the 2D-case and as sholwn in Fig. 1, we have ri = (xi yi) . 
Using Eqs, 8 and 9, the field measured at sensor 1 and due to 
a source at azimuthal DOA 8 is given by 

If a flat Frequency response, say g@), is assumed for the 
sensor 1 over the signal hndwidth, its measured output will 
be proportilonal to the field at ri. Dropping the carrier term 
dot for convenience (in practice, the signal is usually down- 
converted to baseband before sampling), the output is mod- 
eled by 

Referring to Eq. 8, wiz see that Eq. 11 requires that the 
array aperture (i.e. the physical size measured in wave- 
lengths) be much less than the inverse relative bandwidth 

I y t  

X 

I .  Two-dimensional array geometry 
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. Uniform Linear Array geometry 

(f/B). In the array processing literature, this is referred to as 
the narrowband assumption. For an L-element antenna array 
of arbitrary geometry, the array output vector is obtained as 

~ ( t )  = a(B)s(t). 

A single signal at the DOA 8, thus results in a scalar 
multiple of the steering vector (Other popular names for a(0) 
include action vector, array propagation vector and signal 
replica vector.) a(B) = [U, (€) )  ,...,U,(€))]' as the array output. 

Common array geometries are depicted in Figs. 2 and 3. For 
the uniform linear array (ULA) we have ri = ( ( I  - 1)d O)', 
and assuming that all elements have the same directivity gl(0) 
= , . . = g ~ ( 0 )  = g(e), the ULA steering vector takes the form 
(cf. (1 1)) 

where d denotes the inter-element distance. The radius vec- 
tors of the uniform circular array (UCA) have the form rz = 
R(cos(2n(l- 1)lL) sin(2n(l- l)/L))T, from which the form of 
the UCA steering vector can easily be derived. As previously 
alluded to, a signal source can be associated with a number 
of characteristic parameters. For the sake of clarity and ease 
of presentation by referring to Figs. 2 and 3, we assume that 
8 is a real-valued scalar referred to as the DOA. For most of 
the discussed methods the extension to the multiple parame- 
ter per source case is straightforward. 

As noted earlier, the superposition principle is applicable 
assuming a linear receiving system. If A4 signals impinge on 
an L-dimensional array from distinct DOAs 01, ..., 0,w, the 
output vector takes the form 

where sm(t), m = 1, ..., A4 denote the baseband signal wave- 
forms. The output equation can be put in a more compact 
form by defining a steering matrix and a vector of signal 
waveforms as 

Unqorm Circular Array Geometry 

In the presence of an additive noise n(t) we now get the 
model commonly used in array processing 

x(t) = A(B)s( t )  + n(t) . (13) 

The methods to be presented all require that M < L, which 
is therefore assumed throughout the development. It is inter- 
esting to note that in the noiseless case, the array output is 
then confined to an M-dimensional subspace of the complex 
L-space, which is spanned by the steering vectors. This is the 
signal subspace, and this observation forms the basis of 
subspace-based methods . 

The sensor outputs are appropriately pre-processed and 
sampled at arbitrary time instances, labeled t = 1,2, ...,A7 for 
simplicity. Clearly, the process x(t) can be viewed as a 
multichannel random process, whose characteristics can be 
well understood from its first and second order statistics 
determined by the underlying signals and noise. The pre- 
processing of the signal is often done in such a way that x(t) 
can be regarded as temporally white. 

Assumptions 

The signal parameters which are of interest in this article are 
spatial in nature, and thus require the cross-covariance infor- 
mation among the various sensors, i.e. the spatial covariance 
matrix 

R = E{x(t)xH(t)} = AE(s(t)sH(t)}AH + E{n(t)nH(t)) (14) 

where E( ' }  denotes statistical expectation, 

E { s ( t ) s H ( t ) )  = P 

is the source covariance matrix and 

E{n(t)nH(t)} = 021 (16) 
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is the noise covariance matrix. The latter covariance structure 
is a reflection of the noise having a common variance CJ at 
all sensors and being uncorrelated among all sensors. Such 
noise is usually termed spatially white, and is a reasonable 
model, for example receiver noise. However, other man- 
made noise sources need not result in spatial whiteness, in 
which case the noisle must be pre-whitened in many of the 
methods to be described. More specifically, if the noise 
covariance matrix is Q, the sensor outputs are multiplied by 

(Q-"' denotes a Hermitian square-root factor of Q-') 
prior to further processing. The source covariance matrix, P, 
is often assumed to be nonsingular (a rank-deficient P, as in 
the case of coherent signals, is discussed later) or near-singu- 
lar for highly correlated signals. 

In the later development, the spectral factorization of R 
will be of central importance, and its positivity guarantees the 
following representation, 

2 

R = A P A " + d I  =UAUH, (17) 

with U unitary and A. = diag{ hi, 12,  . . ., h ~ )  a diagonal matrix 
of real eigenvalues ordered such that hi 2 h2 2 . . . 2 h ~  > 0. 
Observe that any vector orthogonal to A is an eigenvector of 
R with the eigenvalue C J ~ .  There are L - M linearly inde- 
pendent such vectors. Since the remaining eigenvalues are all 
larger than 02, we can partition the eigenvaluehector pairs 
into noise eigenvectors (corresponding to eigenvalues h ~ + i  
= . . . = 2 h~ = 02) and signal eigenvectors (corresponding to 
eigenvalues hi 2 . . . 2 AM > CJ ). Hence, we can write 2 

2 where An = CJ I. Since all noise eigenvectors are orthogonal 
to A, the columns of Us must span the range space of A 
whereas those of U, span its orthogonal complement (the 
nullspace of AH).  Tlhe projection operators onto these signal 
and noise subspaces, are defined as 

n = u,u: = A ( A ~ A ) - ' A ~  
nL = unug = I - A ( A ~ A ) - ' A ~ ,  

provided that the inverse in the expressions exists. It then 
follows 

Problem Definition 

The problem of central interest herein is that of estimating the 
DOAs of emitter signals impinging on a receiving array, 
when given a finite data set { ~ ( t ) ]  observed overt = 1,2, ...,N. 
As noted earlier, vie will primarily focus on reviewing a 
number of techniques based on second-order statistics of 
data. 

All of the earlier formulation assumed the existence of 
exact quantities, i.e. infinite observation time. It is clear that 

in practice only sample estimates which we denote by a hat , 
i.e., *, are ;available. A natural estimate of R is the sample 
covariance matrix 

1 
N * = I  

R =  - Z x ( t ) x " ( t ) ,  

for which (a spectral repiresentation similar to that of R is 
defined as 

A , . , .  A A , .  

R = U,A ,U: +U,AnUf . 

This representation will1 be extensively used in the descrip- 
tion and implementation of the subspace-based estimation 
algorithms. Indeed, if xit) is a stationary white Gaussian 
process wifh unknown structure (i.e., the data model (13) is 
not used), then R and its eigen-elements are maximum 
likelihood estimates of the corresponding exact quantities 

Throughout the paper, the number of underlying signals, 
M ,  in the observed process is considered known. There are, 
however, good and consiistent techniques for estimating the 
M signals present [31, 68, 108, 1441 in the event that such 
information is not available (see also the "Additional Top- 
ics"). In the following two sections we discuss the best known 
parameter estimation techniques, respectively classified as 
Spectral-Based and Parametric methods. Due to space limi- 
tations, a number of good variations which address specific 
aspects of the underlying problem and which have appeared 
in the literature are overlooked. Our reference list attempts to 
cover a portion of the gap which clearly can never be filled. 

~41. 

Summary of Estimators 

Since the number of algorithms is extensive, it makes sense 
to give an overview of their properties already at this stage. 
The following "glossary" is useful for this purpose: 

Coherent signals Two signals are coherent if one is a scaled 
and delayed version of the other. 

Consistency An estimate is consistent if it converges to the 
true value when the number of data tends to infinity. 

Statistical efficiency A,n estimator is statistically efficient 
if it asyrnptotically attains the CramCr-Rao Bound (CRB), 
which is; a lower bound on the covariance matrix of any 
unbiased estimator (see e.g. [63]). 

We will distinguish between methods that are applicable 
to arbitrary array geometries and those that require a uniform 
linear array. Tables 1 and 2 summarize the message conveyed 
in the algorithm descriptions. The major computational re- 
quirements for each method are also included, assuming that 
the sample covariance matrix has already been acquired. 
Here, 1-D search means that the parameter estimates are 
computed from M one-dimensional searches over the pa- 
rameter space, whereas M-D search refers to a full M-dimen- 
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Method Consistency Coherent ’ Statistical Computations 1 Signals Performance 
~ ~~ 

Bartlett M =  1 1 -  1-D Search 

Capon No No Poor 1-D Search 

MUSIC Yes , No Good EVD, 1-D Search 

~~ ~ 

Min-Norm 

DML 

SML 

WSF 

1 Method 

I 
Yes ~ No Good EVD, 1-D Search 

Yes Yes , Good M-D Search 

Yes Yes Efficient M-D Search 

Yes Yes ~ Efficient EVD, M-D Search 

~~ 

Consistency ~ Statistical Performance 

~ Good 

1 Coherent I Signals 
Computations 

EVD, polynomial 1 Root-Music 

ESPRIT 

IQML 

Root-WSF 

1 Yes 

Yes Yes I Good EVD 

Yes Yes Good Iterative 

Yes I Yes , Efficient EVD, LS 
~ 

1 Yes 

sional numerical optimization. By a “good” statistical per- 
formance, we mean that the theoretical mean square error of 
the estimates is close to the CRB, typically within a few dB 
in practical scenarios. 

Spectral-Based Algorithmic Solutions 

As mentioned earlier, we classify the parameter estimation 
techniques into two main categories, namely spectral-based 
and parametric approaches. In the former, one forms some 
spectrum-like function of the parameter(s) of interest, e.g., 
the DOA. The locations of the highest (separated) peaks of 
the function in question are recorded as the DOA estimates. 
Parametric techniques, on the other hand, require a simulta- 
neous search for all parameters of interest. The latter ap- 
proach often results in more accurate estimates, albeit at the 
expense of an increased computational complexity. 

Spectral-based methods which are discussed in this sec- 
tion, can be classified into beamforming techniques and 
subspace-based methods. 

Beamforming Techniques 

The first attempt to automatically localize signal sources 
using antenna arrays was through beamforming techniques. 
The idea is to “steer” the array in one direction at a time and 
measure the output power. The steering locations which 
result in maximum power yield the DOA estimates. The array 
response is steered by forming a linear combination of the 
sensor outputs 

L 

y ( t )  = C w ; x , ( t )  = W H X ( t ) .  
/ = I  

Given samples y (  l),y(2), ...,y(A9, the output power is meas- 
ured by 

where R is defined in (21). Different beamforming ap- 
proaches correspond to different choices of the weighting 
vector w. For an excellent review of beamforming methods, 
we refer to [132]. 

Conventional Beamformer 
The conventional (or Bartlett) beamformer is a natural exten- 
sion of classical Fourier-based spectral analysis [ 121 to sensor 
array data. For an array of arbitrary geometry, this algorithm 
maximizes the power of the beamforming output for a given 
input signal. Suppose we wish to maximize the output power 
from a certain direction 8. Given a signal emanating from 
direction 8, a measurement of the array output is corrupted 
by additive noise and written as 

x ( t )  = a(O)s(t) + n(t) 

The problem of maximizing the output power is then 
formulated as, 
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m;xE{wHx(t)xH(t)w} = maxwHE{x( t )xH( t )}w (25) 

where the assumptiton of spatially white noise is used. To 
obtain a non-trivial solution, the norm of w is constrained to 
IwI = 1 when carrying out the above maximization. The re- 
sulting solution is then 

The above weight vector can be interpreted as a spatial 
filter, which has been matched to the impinging signal. Intui- 
tively, the array weighting equalizes the delays (and possibly 
attenuations) experienced by the signal on various sensors to 
maximally combine their respective contributions. 

Inserting the weighting vector Eq. 26 into Eq. 24, the 
classical spatial spectrum is obtained 

For a uniform linear array of isotropic sensors, the steering 
vector a(0) takes the form (cf. (12)) 

where 

is termed the electrical angle. By inserting Eq. 28 into Eq. 
27, and noting that ja,,IA(0)12 = M ,  we obtain P B F ( ~ )  as the 

spatial analogue of the classical periodogram in temporal 
time series analysis, see e.g. [96]. Unfortunately, the spatial 
spectrum shares the: same resolution limitation as the perio- 
dogram. The standard beamwidth for a ULA is qB = 2x / L , 
and sources whose electrical angles are closer than (I~ will 
not be resolved by the conventional beamformer, regardless 
ofthe available data quality. This point is illustrated in Figure 
4, where the beamforming spectrum is plotted versus the 
DOA in two different scenarios. A ULA of A4 = 10 sensors 
of half-wavelength inter-element spacing (Such a ULA is 
often termed a standard ULA, because d = n/k is the maxi- 
mum allowable eleiment separation to avoid ambiguities.) is 
used to separate two uncorrelated emitters, based on a batch 
of N = 100 data samples. The signal-to-noise ratio (SNR) for 
both sources is 0 dlB. The beamwidth for such an array is 
2x / 10 = 0.63, implying that sources need to be at least 12' 
apart in order to be separated by the beamformer. This is also 
verified in the figune, because for IO" separation, the sources 
are nearly (but not quite) resolved. 
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Capon's Beamformer 
In an attempt to alleviate the limitations of the above beam- 
former, such as its resollving power of two sources spaced 
closer than a beamwidth, researchers have proposed numer- 
ous modifications. A well-known method was proposed by 
Capon [25], and was later interpreted as a dual of the beam- 
former by Lacoss [74]. The optimization problem was posed 
as 

m i n P ( w )  

subject to w"a(e) = 1, 
w 

where P(w) is as defined in Eq. 24. Hence, Capon's beam- 
former (also known as the Minimum Variance Distorsionless 
Response filter in the acoustics literature) attempts to mini- 
mize the power contributed by noise and any signals coming 
from other directions than 8, while maintaining a fixed gain 
in the "look direction" 0. (This can be viewed as a sharp 
spatial bandpass filter.) The optimal w can be found using, 
e.g., the technique of Lagrange multipliers, resulting in 
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Inserting the above weight into (24) leads to the following 
“spatial spectrum” 

It is easy to see why Capon’s beamformer outperforms the 
classical one given in Eq. 27, as the former uses every 
available degree of freedom to concentrate the received en- 
ergy along one direction, namely the bearing of interest. This 
is reflected by the constraint given in Eq. 30. The power 
minimization can also be interpreted as sacrificing some 
noise suppression capability for more focused “nulling” in 
the directions where there are other sources present. The 
spectral leakage from closely spaced sources is therefore 
reduced, though the resolution capability of the Capon beam- 
former is still dependent upon the array aperture and clearly 
on the SNR. A number of alternative methods for beamform- 
ing have been proposed, addressing various issues such as 
partial signal cancelling due to signal coherence [149] and 
beam shaping and interference control [22,44, 1321. 

Subspace-Based Methods 

Many spectral methods in the past, have implicitly called 
upon the spectral decomposition of a covariance matrix to 
carry out the analysis (e.g., Karhunen-Lokve representation). 
One of the most significant contributions came about when 
the eigen-structure of the covariance matrix was explicitly 
invoked, and its intrinsic properties were directly used to 
provide a solution to an underlying estimation problem for a 
given observed process. Early approaches involving invari- 
ant subspaces of observed covariance matrices include prin- 
cipal component factor analysis [SS] and errors-in-variables 
time series analysis [6S]. In the engineering literature, Pis- 
arenko’s work [94] in harmonic retrieval was among the first 
to be published. However, the tremendous interest in the 
subspace approach is mainly due to the introduction of the 
MUSIC (Multiple SIgnal Classification) algorithm [ 13,1053. 
It is interesting to note that while earlier works were mostly 
derived in the context of time series analysis and later applied 
to the sensor array problem, MUSIC was indeed originally 
presented as a DOA estimator. It has later been successfully 
brought back to the spectral analysis/system identification 
problem with its later developments (see e.g. [118, 1351). 

The MUSIC Algorithm 
As noted previously, the structure of the exact covariance 
matrix with the spatial white noise assumption implies that 
its spectral decomposition can be expressed as 

R = APA + 0’1 = UsAsUr + o2UnU;, (33) 

where, assuming APAH to be of full rank, the diagonal matrix 
As contains the M largest eigenvalues. Since the eigenvectors 
in U, (the noise eigenvectors) are orthogonal to A, we have 

uga(e)=o, e €{e l,...,e,,,} (34) 

To allow for unique DOA estimates, the array is usually 
assumed to be unambiguous; that is, any collection of L 
steering vectors corresponding to distinct DOAs q k  forms a 
linearly independent set {a(ql), ..., a ( q L ) }  (recall M < L). If 

a(.) satisfies these conditions and P has full rank, then APAH 
is also of full rank. It then follows that 01,. . . , 0 ~  are the only 
possible solutions to the relation in Eq. 34, which could 
therefore be used to exactly locate the DOAs. 

In practice, an estimate R of the covariance matrix is 
obtained, and its eigenvectors are separated into the signal 
and noise eigenvectors as in Eq. 22. The orthogonal projector 
onto the noise subspace is estimated as 

fiL = u,,u;. 

The MUSIC “spatial spectrum” is then defined as 

(35) 

Although PW(Q is not a true spectrum in any sense (it is 
merely the distance between two subspaces), it exhibits peaks 
in the vicinity of the true DOAs, as suggested by (34). The 
performance of the various spectral-based estimators is illus- 
trated in Fig. 5, where the scenario is identical to that of Fig. 4. 

The performance improvement of the MUSIC estimator 
was so significant that it became an alternative to most 
existing methods. In particular, it follows from the above 
reasoning that estimates of an arbitrary accuracy can be 

- 1  
110 120 130 14C 

DOA (deg) 

5. Normalized spectra versus DOA. The dash-dotted curve repre- 
sents the conventional beamformer, the dashed curve is Capon’s 
method and the solid curve is the “Music Spectrum.” True DOAs 
indicated by dotted vertical lines. 
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obtained if the data clollection time is sufficiently long or the 
SNR is adequately high, and the signal model is sufficiently 
accurate. Thus, in contrast to the beamforming techniques, 
the MUSIC algorithm provides stutistically consistent esti- 
mates. Though the MUSIC functional (Eq. 36) does not 
represent a spectral estimate, its important limitation is still 
the failure to resolve closely spaced signals in small samples 
and at low SNR scenarios. This loss of resolution is more 
pronounced for highly correlated signals. In the limiting case 
of coherent signals, the property (Eq. 34) is violated and the 
method fails to yield consistent estimates, see e.g. 1671. The 
mitigation of this limitation is an important issue and is 
separately addressed at the end of this section. 

Extensions to MUSIC 
The MUSIC algorithm spawned a significant increase in 
research activity which led to a multitude of proposed modi- 
fications. These were attempts to improve/overcome some of 
its shortcomings in various specific scenarios. The most 
notable was the unifying theme of weighted MUSIC which, 
for different W, particularized to various algorithms 

(37) 

The weighting matrix W is introduced to take into account 
(if desired) the influence of each of the eigenvectors. It is 
clear that a uniform weighting of the eigenvectors, i.e. W = 
I, results in the original MUSIC method. As shown in [114], 
this is indeed the optimal weighting in terms of yielding 
estimates of minimal asymptotic variance. However, in dif- 
ficult scenarios involving small samples, low SNR and highly 
correlated signals, a carefully chosen non-uniform weighting 
may still improve the resolution capability of the estimator 
without seriously increasing the variance. 

One particularly useful choice of weighting is given by 
I691 

where el is the first column of the L x L identity matrix. This 
corresponds to the Min-Norm algorithm, derived in [72,99] 
for ULAs and extended to arbitrary arrays in [75]. As shown 
in [61], the Min-Norm algorithm indeed exhibits a lower bias 
and hence a better resolution than the original MUSIC algo- 
rithm, at least when applied to ULAs. 

Resolution-Enhunced Spectral Bused Methods 
The MUSIC algoritlhm is known to enjoy a property of high 
accuracy in estimating the phases of the roots corresponding 
to DOA of sources. The bias in the estimates’ radii 1691, 
however, affects the resolution of closely spaced sources 
when using the spatial spectrum. 

A solution first proposed in 1141, and later in [21, 401, is 
to couple the MUSIC algorithm with some spatial prefilter- 
ing, to result in what is known as Beumspuce Processing. This 
is indeed equivalent to preprocessing the received data with 

a predefined matrix T, whose columns can be chosen as the 
steering vectors for a set cif chosen directions: 

~ ( t )  = T H x ( t )  (39) 

Clearly, the steering vectors a(@) are then replaced by 
T a(0) andl the noise culvariance for the beamspace data 
becomes 02TTEIT. For the latter reason, T is often made 
orthogonal ,and of norm 1 before application to x( t ) .  

It is clear that if a certain spatial sector is selected to be 
swept (e.g. some prior knowledge about the broad direction 
of arrival of the sources may be available), one can potentially 
experience some gain, the most obvious being computational, 
as a smaller dimensionaliuy of the problem usually results. It 
has, in addition, been shown that the bias of the estimates is 
decreased when employing MUSIC in beamspace as opposed 
to the “elernent space” NIKJSIC [40, 1581. As expected, the 
variance of the DOA estimates is not improved, but a certain 
robustness to spatially conrelated noise has been noted in 1401. 
The latter fact can intuitively be understood when one recalls 
that the spatial pre-filter has a bandpass character, which will 
clearly tendl to whiten the noise. 

Other attempts to improving the resolution of the MUSIC 
method are presented in 135, 62, 1561, based on different 
modifications of the criteirion function. 

H 

Coherent Signals 

Though unlikely that on(: would deliberately transmit two 
coherent signals from distinct directions, such a phenomenon 
is not uncommon as either a natural result of a multipath 
propagation effect, or in1 entional unfriendly jamming. The 
end result i:i a rank deficiency in the source covariance matrix 
P. This, in tuum, results in ii divergence of a signal eigenvector 
into the noise subspace. Therefore, in general Ufa(0) # 0 for 
any 8 and the MUSIC “spectrum” may fail to produce peaks 
at the DOA locations. Iin particular, the ability to resolve 
closely spaced sources is dramatically reduced for highly 
correlated signals, e.g., [YrOI. 

In the simple case of iwo coherent sources being present 
and a uniform linear array, there is a fairly straightforward 
way to “dc-correlate” the signals. The idea is to employ a 
forward-backward (FB) averaging as follows. Note that a 
ULA steering vector (28 1 remains invariant, up to a scaling, 
if its elements are reversed and complex conjugated. More 
precisely, let J be anL L exchange matrix, whose components 
are zero except for ones om the anti-diagonal. Then, for a ULA 
it holds that 

The so-called backward array covariance matrix therefore 
takes the form 
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where CD is a diagonal matrix with i4k, k = 1,. . . ,M on the 
diagonal, and $k as previously defined. By averaging the 
usual array covariance and RB, one obtains the FB array 
covariance 

R, = - (R+ 1 JR*J) 
2 -  

= APA” + 0’1, 

where the new “source covariance matr ix” 
= (P + W(L-’)P@-(L-’))  / 2 generally has full rank. The FB 

version of any covariance-based algorithm simply consists of 
replacing R with kFB,  defined as in Eq. 42. Note that this 
transformation has also been used in noncoherent scenarios, 
and in particular in time series analysis, for merely improving 
the variance of the estimates. 

In a more general scenario where more than two coherent 
sources are present, forward-backward averaging cannot re- 
store the rank of the signal covariance matrix on its own. A 
heuristic solution of this problem was first proposed in [ 1491 
for uniform linear arrays, and later formalized and extended 
in [33, 43, 1081. The idea of the so-called spatial smoothing 
technique is to split the ULA into a number of overlapping 
subarrays, as illustrated in Figure 6. The steering vectors of 
the subarrays are assumed to be identical up to different 
scalings, and the subarray covariance matrices can therefore 
be averaged. Similar to (42), the spatial smoothing induces a 
random phase modulation which in tum tends to decorrelate 
the signals that caused the rank deficiency. A compact ex- 
pression for this smoothed matrix R can be written in terms 
of selection matrices Fk as follows. Let p denote the number 
of elements in the subarrays, implying that the number of 
subarrays is K = L - p  + 1. Then, the spatially smoothed array 
covariance matrix can be expressed as 

The rank of the averaged source covariance matrix R can 
be shown to increase by 1 with probability 1 [29] for each 
additional subarray in the averaging, until it reaches its maxi- 
mum value IM. 

The drawback with spatial smoothing is that the effective 
aperture of the array is reduced, since the subarrays are 
smaller than the original array. However, despite this loss of 
aperture, the spatial smoothing transformation mitigates the 
limitation of all subspace-based estimation techniques while 
retaining the computational efficiency of the one-dimen- 
sional spectral searches. As discussed in the next section, the 
parametric techniques generally do not experience such prob- 
lems when faced with coherent signals. They require, on the 
other hand, a more complicated multidimensional search. We 
again stress the fact that spatial smoothing is limited to 
regular arrays with a translational invariance property, and 
FB averaging requires a ULA. When using more general 

c I 

Subarray 1 
4 z 

Subarray 2 
< > 

Subarray 3 
~ 

i Spatial smoothing means that the array is split into identical 
subarrays, the covariances of which are averaged 

arrays (e.g. circular), some sort of transformation of the 
received data must precede the smoothing transformation. 
Such a transformation is conceptually possible, but generally 
requires some a priori knowledge of the source locations. 

Parametric Methods 

While the spectral-based methods presented in the previous 
section are computationally attractive, they do not always 
yield sufficient accuracy. In particular, for scenarios involv- 
ing highly correlated (or even coherent) signals, the perform- 
ance of spectral-based methods may be insufficient. An 
alternative is to more fully exploit the underlying data model, 
leading to so-calledparametric array processing methods. As 
we shall see, coherent signals impose no conceptual difficul- 
ties for such methods. The price to pay for this increased 
efficiency and robustness is that the algorithms typically 
require a multidimensional search to find the estimates. For 
uniform linear arrays (ULAs), the search can, however, be 
avoided with little (if any) loss of performance. 

Perhaps the most well known and frequently used model- 
based approach in signal processing is the maximum likeli- 
hood (ML) technique. This methodology requires a statistical 
framework for the data generation process. Two different 
assumptions about the emitter signals have led to correspond- 
ing ML approaches in the array processing literature. In this 
section we will briefly review both of these approaches, 
discuss their relative merits, and present subspace-based ML 
approximations. Parametric DOA estimation methods are in 
general computationally quite complex. However, for ULAs 
a number of less demanding algorithms are known, as pre- 
sented shortly. 

Deterministic Maximum Likelihood 

While the background and receiver noise in the assumed data 
model can be thought of as emanating from a large number 
of independent noise sources, the same is usually not the case 
for the emitter signals. It therefore appears natural to model 
the noise as a stationary Gaussian white random process 
whereas the signal waveforms are deterministic (arbitrary) 
and unknown. (The carrier frequencies are assumed to be 
known.) Assuming spatially white and circularly symmetric 
(A complex random process is circularly symmetric if its real 
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and imaginary parts are identically distributed and have a 
skew-symmetric cross-covariance, i.e., E[Re(n(t))Im(n (t)))  
= -EIIm(n(t))Re(nT(t))]] noise, the second-order moments of 
the noise term take the form 

T 
,. I N  R = -CX(~)X"(~) 

N i = l  

E{n(t)nH(s)} = 0*1[6,,~ (43) 

E{n(t)n'(s)} = 0.  (44) 

As a consequence of the statistical assumptions, the obser- 
vation vector x(t) is also a circularly symmetric and tempo- 
rally white Gaussian random process, with mean A(8)s(t) and 
covariance matrix 0'1. The likelihood function is the prob- 
ability density function (PDF) of all observations given the 
unknown parameters. The PDF of one measurement vector 
x(t) is the complex L,-variate Gaussian: 

where 1 1 .  (1 denotes thle Euclidean norm, and the argument of 

A(0) has been droppled for notational convenience. Since the 
measurements are independent, the likelihood function is 
obtained as 

As indicated above, the unknown parameters in the like- 
lihood function are the signal parameters @, the signal wave- 
forms s(t)  and the noise variance c2. The ML estimates of 
these unknowns are calculated as the maximizing arguments 
of L(B, s(t) ,  02), the rationale being that these values make 
the probability of the observations as large as possible. For 
convenience, the ML estimates are alternatively defined as 
the minimizing arguments of the negative log-likelihood 
function -logL(0, ~ ( t ) ,  CI ). Normalizing by N and ignoring 
the parameter-independent L log n-term, we get 

2 

l D M L ( 0 , ~ ( t ) , d )  = Llogd  +TCIlx( t ) -As( t ) l (  l N  , (47) 
CJ N ,=I 

whose minimizing arguments are the deterministic maximum 
likelihood (DML) estimates. 

As is well-known [15, 1421, explicit minima with respect 
to o2 and s(t)  are given by 

6' = -Tr{IIiR} 1 
L 

where R is the sample covariance matrix, A' is the Moore- 
Penrose pseudo-inverse of A and IIi is the orthogonal pro- 
jector onto the nullspace of A , i.e., H .  

Substituting Eqs. 48 and 49 into Eq. 46 shows that the 
DML signal parameter estimates are obtained by solving the 
following minimization problem: 

(54) 

The interpretation is that the tpeasurements x(t) are pro- 
jected onto a model subspace orthogonal to all anticipated 
signal components ,  and a power measurement 
~ $ l l r ~ ~ ~ ( t ) \ l ~ =  Tr{niR}. is evaluated. The energy should 
N i = ~  

clearly be smallest when the projector indeed removes all the 
true signal components, i.e., when 8 = 80. Since only a finite 
number of noisy samples is available, the energy is not 
perfectly measured and e,,, will deviate from 80. However, 
if the scenario is stationary, the error will converge to zero as 
the number of samples is increased to infinity . This remains 
valid for correlated or even coherent signals, although the 
accuracy in finite samples is somewhat dependent upon sig- 
nal correlations. Notice also that Eq. 54 reduces to the Bartlett 
beamfomer in the case of a single source ( M  = 1). 

To calculate the DML estimates, the non-linear M-dimen- 
sional optimization problem (Eq. 54) must be solved numeri- 
cally. Finding the signal waveform and noise variance 
estimates (if desired) is then straightforward, by inserting 
e,,, into Eqs. 48-49. Given a good initial guess, a Gauss- 
Newton technique (see e.g. [24, 1371) usually converges 
rapidly to the minimum of Eq. 47. Obtaining sufficiently 
accurate initial estimates, however, is generally a computa- 
tionally expensive task. ILf these are poor, the search proce- 
dure may converge to a local minimum, and never reach the 
desired global minimum. A spectral-based method is a natu- 
ral choice for an initial estimator, provided all sources can be 
resolved. Another possibility is to apply the alternating pro- 
jection technique of [ 1621. However, convergence to the 
global minimum can still not be guaranteed. Some additional 
results on the global properties of the criteria can be found in 
1901. 

Stochastic Maximum Likelihood 

The other ML technique reported in the literature is termed 
the stochastic maximum likelihood (SML) method. This 
method is obtained by modeling the signal waveforms as 

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 77 



Gaussian random processes. This model is reasonable, for 
instance, if the measurements are obtained by filtering wide- 
band signals using a narrow bandpass filter. It is, however, 
important to point out that the method is applicable even if 
the data is not Gaussian. In fact, the asymptotic (for large 
samples) accuracy of the signal parameter estimates can be 
shown to depend only on the second-order properties (powers 
and correlations) of the signal waveforms [89,115]. With this 
in mind, the Gaussian signal assumption is merely a way to 
obtain a tractable ML method. Let the signal waveforms be 
zero-mean with second-order properties 

E{~(t)s‘(s)) = 0, 

leading to the observation vector x(t) be a white, zero-mean 
and circularly symmetric Gaussian random vector with co- 
variance matrix 

(57) R = A(0)PA (0) + 0’1. 

The set of unknown parameters is, in this case, different 
from that in the deterministic signal model. The likelihood 
function now, depends on 8, P and CJ . The negative log-like- 
lihood function (ignoring constant terms) is in this case easily 
shown to be proportional to 

2 

Although this is a highly non-linear function, this criterion 
allows explicit separation of some of the parameters. For 
fixed 0, the minimum with respect to CJ and P can be shown 
to be [16, 571 

2 

1 
L - M  

Oi,(O) = ---Tr{ni} 
(59) 

With these estimates substituted into (58) ,  the following 
compact form is obtained 

Os,, = arg I R  minlogAPs,(8)AN I +6tML(0)Il] 

In addition, this criterion has a nice interpretation, namely 
that the determinant, termed the generalized variance in the 
statistical literature, measures the volume of a confidence 
interval for the data vector. Consequently, we are looking for 
the model of the observations with the “lowest cost” and in 
harmony with the ML principle. 

The criterion function in Eq. 61 is also a highly non-linear 
function of its argument 0. A Newton-type technique imple- 
mentation of the numerical search is reported in [90] and an 

excellent statistical accuracy results when the global mini- 
mum is attained. Indeed, the SML signal parameter estimates 
have been shown to have a better large sample accuracy than 
the corresponding DML estimates [89, 1151, with the differ- 
ence being significant only for small numbers of sensors, low 
SNR and highly correlated signals. This property holds re- 
gardless of the actual distribution of the signal waveforms; in 
particular they need not be Gaussian. For Gaussian signals, 
the SML estimates attain the Cram&-Rao lower bound 
(CRB) on the estimation error variance, derived under the 
stochastic signal model. This follows from the general theory 
of ML estimation (see e.g. [ 1301), since all unknowns in the 
stochastic model are estimated consistently. This in contrast 
with the deterministic model for which the number of signal 
waveform parameters ~ ( t )  grows without bound, as the 
number of samples increases, implying that they cannot be 
consistently estimated. Hence, the general ML theory does 
not apply and the DML estimates do not attain the corre- 
sponding (“deterministic”) CRB. 

Su bspace-Based Approximations 

As noted previously, subspace-based methods offer signifi- 
cant performance improvements in comparison to conven- 
tional beamforming methods. In fact, the MUSIC method has 
been shown to yield estimates with a large-sample accuracy 
identical to that of the DML method, provided the emitter 
signals are uncorrelated [ 1121. However, the spectral-based 
methods usually exhibit a large bias in finite samples, leading 
to resolution problems. This problem is especially notable for 
high source correlations. Recently, parametric subspace- 
based methods that have the same statistical performance 
(both theoretically and practically) as the ML methods have 
been developed [116,117,136,137]. Thecomputational cost 
for these so-called Subspace Fitting methods is, however, 
less than for the ML ditto. As will be seen later, a computa- 
tionally attractive implementation for the ubiquitous case of 
a uniform linear array, is known. 

Recall the structure of the eigendecomposition of the array 
covariance matrix (Eq. 33), 

R = A P A ~  + 0‘1 (62) 

As previously noted, the matrices A and Us span the same 
range space whenever P has full rank. In the general case, the 
number of signal eigenvectors in Us equals M’, the rank of P. 
The matrix Us will then span an M’-dimensional subspace of 
A. This can easily be seen by first expressing the identity in 
(62) as I = U5Up + UnU,v. Cancelling the 02U,,Uf -term in 
(63) then yields 

(64) APAH + oZUqU: = U,AsUf .  
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Post-multiplying on the right by U, (note that UpUA = I )  
and re-arranging givles the relation 

where T is the full-rink M M’ matrix 

The relation in 13q. 65 forms the basis for the Signal 
Subspace Fitting (SSF) approach. Since 0 and T are un- 
known, it appears natural to search for the values that solve 
Eq. 65. The resulting 0 will be the true DOAs (under general 
identifiability conditions [ 146]), whereas T is an uninterest- 
ing “nuisance paranieter.” If an estimate U> of Us is used 
instead, there will be no such solution. In this case, one 
attempts to minimize some distance measure between U, and 
AT. For this purpose, the Frobenius norm turns out to be a 
useful measure, andl when squared, it can be conveniently 
expressed as the sunn of the squared Euclidean norms of the 
rows or columns. In light of this formulation, the connection 
to standard least-squares estimators is made clear. The SSF 
estimate is obtained by solving the following non-linear 
optimization problem: 

Similar to the DML criterion (Eq. 47), this is a separable 
nonlinear least squares problem [47]. The solution for the 
linear parameter T (for fixed unknown A) is 

which, when substitiuted into Eq.67, leads to the concentrated 
criterion function 

Since the eigenvectors are estimated with a quality, commen- 
surate with the closeness of the corresponding eigenvalues to 
the noise variance, it is natural to introduce a weighting of the 
eigenvectors and aririve at 

A natural questiion which arises is how to pick W to 
maximize the accuracy, i.e., to minimize the estimation error 
variance. It can be shown that the projected eigenvectors 
Hk(Oo)uL,k = 1, ..., Ad‘ are asymptotically independent. 
Hence, following from the theory of weighted least squares, 
[46], W should be a diagonal matrix containing the inverse 

of the covariance matrix of ni (€ln)uk , k  = 1,. . . , M’ . This leads 

to the choice [117, 1361 

Wept = (As - o ~ I ) ~ A :  . 

Since WOp, depends on unknown quantities, we use in- 
stead 

w”p, = ( A i s  

where 6’ denotes a consistent estimate of the noise variance, 
for example the average of the L - M’ smallest eigenvalues. 
The estimator defined by (70) with weights given by (72) is 
termed the Weighted Subspace Fitting (WSF) method. It has 
been shown to theoretically yield the same large sample 
accuracy as the SML method, and at a lower computational 
cost provided a fast method for computing the eigendecom- 
position is used. Practical evidence, e.g., [90], have given by 
hand that the WSF and SML methods also exhibit similar 
small sample (i.e. threshold) behaviour. 

An alternative subspace fitting formulation is obtained by 
instead starting from the “MUSIC relation” 

AH(e)Un = o if e = e , ,  (73) 

which holds for P having full rank. Given an estimate of Un, 
it is natural to look for the signal parameters which minimize 
the following Noise Subspace Fitting (NSF) criterion, 

6 = arg{mulnTr(AHU~CJ~AV)], (74) 

where V is, some positiviz (semi-)definite weighting matrix. 
Interestingly enough, the estimates calculated by Eqs. 70 and 
74 asymptotically coincide, if the weighting matrices are 
(asymptotically) related by [90] 

V = At(€ln)UyWU~At*(O,). (75) 

Note also that the NlSF method reduces to the MUSIC 
algorithm for V = I, provided 1 a(€))\ is independent of 0. 
Thus, in a sense the general estimator in Eq. 74 unifies the 
parametric methods and also encompasses the spectral-based 
subspace methods. 

The NSF method has the advantage that the criterion 
function in Eq. 74 is a quadratic function of the steering 
matrix A. This is useful if any of the parameters of A enter 
linearly. An analytical solution with respect to these parame- 
ters is then readily available (see e.g., [138]). However, this 
only happens in very special situations, rendering this fore- 
mentioned advantage of limited importance. The NSF formu- 
lation i s  also fraught with some drawbacks, namely that it 

cannot produce reliable estimates for coherent signals, and 
that the optimal weighting Vopt depends on 00, so that a 
two-step procedure has to be adopted. 
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Uniform Linear Arrays attributed to a larger bias of estimates for spectral-based 
methods, as compared to the parametric techniques [69,98]. 

The steering matrix for a uniform linear array has a very 
special, and as it turns out, useful structure. From Eq. 28, the 
ULA steering matrix takes the form 

This structure is referred to as a Vandermonde matrix. 
(Each component of a column of a Vandermonde matrix is 
an integer power of the first component, and the integer 
coincides with its row number.) [47]. 

Root-MUSIC 
The Root-MUSIC method [ 1 I], as the name implies, is a 
polynomial-rooting version of the previously described MU- 
SIC technique. The idea dates back to Pisarenko's method 
[94]. Let us define the polynomials 

p , ( z )  = uYp(z), I = M +  l , M +  2,. . .( L , (77) 

where ui is the 1:th eigenvector of R and 

p(z) =[l ,z , . . . ,zL-L]T 

From our problem formulation, one makes the basic ob- 
servation that pi(zj has M of its zeros at i@", m = l,2,. . . , M, 
provided that P has full rank. To exploit the information from 
all noise eigenvectors simultaneously, we want to find the 
zeros of the MUSIC-like function 

However, the latter is not a polynomial in i (note that 
powers of z* are now present), which complicates the search 
for zeros. Since the values of z on the unit circle are of interest, 
we can use pT(z-') for pH(z>, which gives the Root-MUSIC 
polynomial 

Note that p ( z )  is a polynomial of degree 2(L-1), whose 
roots occur in mirrored pairs with respect to the unit circle. 
Of the ones inside, the phases of the M that have the largest 
magnitude, say i, &,. . .,?,,yield the DOA estimates, as 

G m  = arccos -arg{z } , m = 1,2 ,..., M .  
C d  1 

It has been shown [ 112, 1131 that MUSIC and Root-MU- 
SIC have identical asymptotic properties, although in small 
samples Root-MUSIC has empirically been found to perform 
significantly better. As previously alluded to, this can be 

ESPRIT 
The ESPRIT algorithm [93, 1011 uses the structure of the 
ULA steering vectors in a slightly different way. The obser- 
vation here is that A has a so-called shift structure. Define the 
sub-matrices A1 and A2 by deleting the first and last rows 
from A (defined in (13)) respectively, i.e., 

first row 
'=[kis:iow]=[ A, ] 
By the structure of Eq. 76, A1 and A2 are related by the 

formula 

where CD is a diagonal matrix having the roots m = 
l,2,. . ., M, on the diagonal. Thus, the DOA estimation prob- 
lem can be reduced to that of finding Q. Analogously to the 
other subspace-based algorithms, ESPRIT relies on proper- 
ties of the eigendecomposition of the array covariance ma- 
trix. Applying this deletion transformation to Eq. (6Sj, we get 

where Us has been partitioned conformably with A into the 
sub-matrices U1 and U2. Combining (83) and (84) yields 

which, by defining '€' = T - b T ,  becomes 

U, = U]Y . (86) 

Note that '€' and CD are related by a similarity transforma- 
tion, and hence have the same eigenvalues. The latter is of 
course given by e'@", m = 1,2,.. ., M,  and are related to the 
DOAs as in Eq. 8 1. The ESPRIT algorithm is now stated: 

I. Compute the eigendecomposition of the array covariance 
matrix R 

2. Form U, and Uz from the M principal eigenvectors 
3. Solve the approximate relation Eq. 86 in either a Least- 
Squares sense (LS-ESPRIT) or a Total-Least-Squares [46, 
471 sense (TLS-ESPRIT) 
4. The DOA estimates are obtained by applying the inversion 
formula Eq. 8 1 to the eigenvalues of \i. 

It has been shown that LS-ESPRIT and TLS-ESPRIT 
yield identical asymptotic estimation accuracy [97], although 
in small samples TLS-ESPRIT usually has an edge. In addi- 
tion, unlike LS-ESPRIT, TLS-ESPRIT accounts for the noisy 
nature of both U, and U, which is more intuitively appealing. 
Note also that the ESPRIT algorithm allows more flexibility 
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in partitioning of the array (or of the A matrix), so long as a 
shift structure can be obtained and subsequently estimated. 

IQML and Root- WSF 
Another interesting exploitation of the ULA structure was 
presented in [ 1 91, although the idea can be traced back to the 
Steiglitz and McBride algorithm for system identification 
[ 1 111. The IQML (Iterative Quadratic Maximum Likelihood) 
algorithm is an iterative procedure for minimizing the DML 
criterion 

V(0)  = Tr(nhR}. (87) 

The idea is to re-parameterize the projection matrix IIi 
using a basis for thc nullspace of AH. Towards this end, one 
defines a polynomial b(z) to have its M roots at e‘4m, m = 

1,2 ,..., M ,  i.e., 

Then, by construction the following relation holds true 

L 

U BHA = 0. 

Since B has a full rank of L - M ,  its columns do in fact 
form a basis for the nullspace of AH. Clearly the orthogonal 
projections onto these subspaces must coincide, implying 

n; = H ( H ~ B ) - ’ I z ~ .  (90) 

Now the DML criterion function can be parameterized by 
the polynomial coefficients b k  in lieu of the DOAs Ok. The 
DML estimate (54) can be calculated by solving 

b = arg min Tr ( Bl(BHH)-’BHR) 

and then applying Eq. 81 to the roots of the estimated poly- 
nomial. Unfortunately, Eq. 91 is still a difficult non-linear 
optimization problem. However, [ 191 suggested an iterative 
solution as follows 

1. Set U = I 
2. Solve the quajdratic problem 

b = argmjnTr(BUHHR} (92) 

3. Form B and put U = (B”B)-’ 

4. Check [or convergence. If not, goto Step 2 
5.  Apply (81) to the roots of b(z )  

Since the roots of b(z) should be on the unit circle, [20] 
suggested iusing the constraint 

b,,, = bz ~, m = 1,2,. . ., iM (93) 

when solving Eq. 92. Now, Eq. 93 does not guarantee unity 
magnitude roots, but it can be shown that the accuracy loss 
due to this fact is negligible. While the above described 
IQML algorithm cannot be guaranteed to converge, it has 
indeed been found to perform well in simulations. 

An improvement over IQML was introduced in [ 1161. The 
idea is sirnply to apply the IQML iterations to the WSF 
criterion Eq. 70. Since tlhe criteria have the same form, the 
modification is straightforward. However, there is a very 
important advantage of using the rank-truncated form 
UsWUy rather than R in Eq. 92, with W as defined in Eq. 
72. That is, after the second pass of the iterative scheme, the 
estimates already have the asymptotic accuracy of the true 
optimum! Hence, the resulting Root-WSF algorithm is no 
longer an iterative procedure: 

1. Solve the quadratic problem 

b = argm$Tr(HH”U,WUy} 

2. Solve the quadratic problem 

(94) 

(95) 

3. Apply (81) to the roots of i ( z ) .  

Note that this algorithm is essentially in closed form (aside 
from the eigendecomposition and polynomial rooting), and 
that the resulting estimates have the best possible asymptotic 
accuracy. Thus, the Root-WSF algorithm is a strong candi- 
date for the “best” method for ULAs. 

Additional Topics 

The emphasis in this paper is on parameter estimation meth- 
ods in sensor array processing. Because of space limitations, 
we have clearly omitted1 several interesting issues from the 
main discussion. To partially fill the gap, a very brief over- 
view of these additional topics is given in the following. We 
structure this section in the form of a commented enumera- 
tion of refierences to selected specialized papers. 

Number of Signals Estimation 

In applications of model-based methods, an important prob- 
lem is the determination of M ,  the number of signals. In the 
case of non-coherent signals, the number of signals is equal 
to the number of “large” eigenvalues of the array covariance 
matrix. This fact is used to obtain relatively simple non-para- 
metric algorithms for diztermining M .  The most frequently 
used approach emanate:s from the factor analysis literature 
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[4]. The idea is to determine the multiplicity of the smallest 
eigenvalue, which theoretically equals L - M .  A statistical 
hypothesis test is proposed in [105], whereas [144, 1611 are 
based on information theoretic criteria, such as Akaike’s AIC 
(an information theoretic criterion) and Rissanen’s MDL 
(minimum description length). Unfortunately, the aforemen- 
tioned approach is very sensitive to the assumption of a 
spatially white noise field [ 1571. An alternative idea based on 
using the eigenvectors rather than the eigenvalues is pursued 
in the referenced paper. Another non-parametric method is 
presented in [31]. 

In the presence of coherent signals, the methods as just 
stated will fail, since the dimension of the signal subspace is 
in this case smaller than M .  However, for ULAs one can test 
the eigenvalues of the spatially smoothed array covariance 
matrix to determine M as proposed in [ 1081 and improved by 
[681. 

A more systematic approach to estimating the number of 
signals is possible if the maximum likelihood estimator is 
employed. A classical generalized likelihood ratio test 
(GLRT) is described in [90], whereas [143] presents an 
information theoretic approach. Another model-based detec- 
tion technique is presented in [90, 1371, based on the 
weighted subspace fitting method. For determining the 
number of signals the model-based methods require signal 
parameter estimates for an increasing hypothesized number 
of signals, until some pre-specified criterion is met. The 
approach is thus inherently more computationally intensive 
than the non-parametric tests. Its performance in difficult 
signal scenarios is, however, improved and is in addition less 
sensitive to small perturbations of the assumed noise covari- 
ance matrix. 

Reduced Dimension Beamspace Processing 

At the exception of the beamforming-based methods, the 
estimation techniques discussed herein require that the out- 
puts of all elements of the sensor array be available in digital 
form. In many applications, the required number of high-pre- 
cision receiver front-ends and AD converters may be pro- 
hibitive. Arrays of 10 elements are not uncommon, for 
example in radar applications. Techniques for reducing the 
dimensionality of the observation vector with minimal effect 
on performance, are therefore of great interest. As already 
discussed previously, a useful idea is to employ a linear 
transformation 

4 

~ ( t )  = T*x(t), (96) 

where T is L R,  with (usually) R << L. The transformation 
is typically implemented in analog hardware, thus signifi- 
cantly reducing the number of required A/D converters. The 
reduced-dimension observation vector z(t) is usually referred 
to as the beamspace data, and T is a beamspace transforma- 
tion. 

Naturally, processing the beamspace data significantly 
reduces the computational load of the digital processor. How - 

ever, reducing the dimension of the data also implies a loss 
of information. The beamspace transformation can be 
thought of as a multichannel beamformer. By designing the 
beamformers (the columns of T) so that they focus on a 
relatively narrow DOA sector, the essential information in 
x(t) regarding sources in that sector can be retained in z(t). 
See e.g., [41, 134, 159, 1651 and the references therein. With 
further a priori information on the locations of sources, the 
beamspace transformation can in fact be performed with no 
loss of information [5]. As previously alluded to, beamspace 
processing can even improve the resolution (the bias) of 
spectral-based methods. 

Note that the beamspace transformation effectively 
changes the array propagation vectors from a(0) into T*a(0). 
It is possible to utilize this freedom to give the beamspace 
array manifold a simpler form, such as that of a ULA, [43]. 
Hence, the computationally efficient ULA techniques are 
applicable in beamspace. In [82], a transformation that maps 
a uniform circular array into a ULA is proposed and analyzed, 
enabling computationally efficient estimation of both azi- 
muth and elevation. 

Estimation Under Model Uncertainty 

As implied by the terminology, model-based signal process- 
ing relies on the availability of a precise mathematical de- 
scription of the measured data. When the model fails to reflect 
the physical phenomena with a sufficient accuracy, the per- 
formance of the methods will clearly degrade. In particular, 
deviations from the assumed model will introduce bias in the 
estimates, which for spectral-based methods is manifested by 
a loss of resolving power and a presence of spurious peaks. 
In principle, the various sources of modeling errors can be 
classified into noise covariance and array response perturba- 
tions. 

In many applications of interest, such as communication, 
sonar and radar, the background noise is dominated by man- 
made noise. While the noise generated in the receiving equip- 
ment is likely to fulfill the spatially white assumption, the 
man-made noise tends to be quite directional. The perform- 
ance degradation under noise modeling errors is studied in, 
e.g. 177, 1401. One could in principle envision extending the 
model-based estimation techniques to also include estimation 
of the noise covariance matrix. Such an approach has the 
potential of improving the robustness to errors in the assumed 
noise model [143, 1521. However, for low SNR’s, this solu- 
tion is less than adequate. The simultaneous estimation of a 
completely unknown noise covariance matrix and of the 
signal parameters poses a problem unless some additional 
information which enables us to separate signal from noise, 
is available. It is, for example, always possible to infer that 
the received data is nothing but noise, and that the (unknown) 
noise covariance matrix i s  precisely the observed array sam- 
ple covariance matrix. Estimation of parametric (structured) 
noise models is considered in, e.g., [ 18,641. So-called instru- 
mental variable techniques are proposed, e.g. in [ I  191 (based 
on assumptions on the temporal correlation of signals and 
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noise) and [ 1531 (utilizing assumptions on the spatial corre- 
lation of the signals and noise). Methods based on other 
assumptions appeared in [92, 13 11. 

At high SNR, the modeling errors are usually dominated 
by errors in the assuimed signal model. The signals have a 
non-zero bandwidth, the sensor positions may be uncertain, 
the receiving equipment may not be perfectly calibrated, etc. 
The effects of such errors are studied e.g. in [42,76,125,126]. 
In some cases it is possible to physically quantify the error 
sources. A “self-calibrating’’ approach may then be applica- 
ble [loo, 138, 1471, albeit at quite a computational cost. In 
[ 125, 126, 1391, robust techniques for unstructured sensor 
modeling errors are considered. 

Wideband Data Processing 

The methods presented herein are essentially limited to proc- 
essing narrowband data. In many applications (e.g. radar and 
communication), this is indeed a realistic assumption. How- 
ever, in other cases (e.g. sonar), the received signal may be 
broadband. A natural extension of all these methods is to 
employ narrowband filtering, for example using the Fast 
Fourier Transform (FFT). An optimal exploitation of the data 
entails combining information from different frequency bins 
1661, see also 11451. A simpler suboptimal approach is to 
process the different FFT channels separately using a stand- 
ard narrowband metlhod, whereafter the DOA estimates at 
different bins must be combined in some appropriate way. 

Another approach is to explicitly model the array output 
as a multidimensional time series, using an autoregressive 
moving average (ARMA) model. The poles of the system are 
estimated, e.g. using the overdetermined Yule-Walker equa- 
tions. A narrowband technique can subsequently be em- 
ployed using the estimated spectral density matrix, evaluated 
at the system poles. In [ 1221, the MUSIC algorithmis applied, 
whereas [88] proposes to use the ESPRIT algorithm. 

A wideband DOA estimation approach inspired by beam- 
space processing is the so-called coherently averaged signal 
subspace method, originally introduced in [ 1411. The idea is 
to first estimate the signal subspace at a number of FFT 
channels. The information from different frequency bins is 
subsequently merged by employing linear transformations. 
The objective is to make the transformed steering matrices A 
at different frequencies as identical as possible, for example 
by focusing at the center frequency of the signals. See, e.g. 
[56, 71, 1091 for further details. 

Fast Subspace Calculation and Tracking 

The implementation of subspace-based methods in applica- 
tions with real-time operation usually experiences a bottle- 
neck in the calculation of the signal subspace. A scheme for 
fast computation of i.he signal subspace is proposed in [60], 
and methods for subspace tracking are considered in [30]. 
The idea is to exploit the “low-rank plus (5 I” structure of the 
ideal array covarianc,e matrix. An alternative gradient-based 
technique for subspace tracking is proposed in [160]. 

2 

Therein, it is observed that the solution W, of the constrained 
optimization problem, 

qxTr{W*RW) 
subject to W‘W = I 

spans the signal subspace. 
For some methods, estimates of the individual principal 

eigenvectors are required, in addition to the subspace they 
span. A number of different methods for eigenvalue/vector 
(The referenced paper conisiders tracking of the principal left 
singular values of the datal matrix. Mathematically, but per- 
haps not numerically, these are identical to the eigenvectors 
of the sample covariance matrix.) tracking is given in [28]. A 
more recent approach based on exploiting the structure of the 
ideal covariance is proposed and analyzed in [155]. The 
so-called fast subspace decomposition (FSD) technique is 
based on a Lanczos method for calculating the eigendecom- 
position. It is observed that the Lanczos iterations can be 
prematurely terminated without any significant performance 
loss. 

Signal Striucture Methods 

Most “standard” approaches to array signal processing make 
no use of any available information about the signal structure. 
However, many man-made signals have a rich structure that 
can be used to improve the estimator performance. In digital 
communicztion applications, the transmitted signals are often 
cyclostationary, which innplies that their autocorrelation 
functions are periodic. This additional information is ex- 
ploited in e.g. [ l ,  154, 1941, and algorithms for DOA estima- 
tion of cyclostationary signals are derived and analyzed. In 
this approach, the wideband signals are easily incorporated 
into the framework, and the number of signals may exceed 
the number of sensors with the provision that they do not all 
share the same cyclic frequency (which refers to the fre- 
quency at which the spatial correlation function repeats it- 
self). 

A different approach utilizing signal structure is based on 
high-order statistics. As is well-known, all information about 
a Gaussian signal is conveyed in the first and second order 
moments. HLowever, for non-Gaussian signals, there is poten- 
tially more to be gained by using higher moments. This is 
particularly so if the noise can be regarded as Gaussian. Then, 
the high-order cumulants will be theoretically noise-free, as 
they vanish for Gaussian signals. Methods based on fourth- 
order cumnlants are proposed in [26, 951, whereas [lo71 
proposes to use high-order cyclic spectra (for cyclostationary 
signals). 

A common criticism of both approaches (those based on 
cyclostationarity and those based on high-order statistics) is 
that they require a considerable amount of data to yield 
reliable results. This is due to the slower convergence of the 
estimated cyclic and high-order moments to their theoretical 
values as the number of dita is increased compared to that of 
second order moments. 
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Polarization Sensitivity Personal Communications 

Most antenna arrays used in electro-magnetic applications 
are sensitive to polarization differences among the received 
signals. Recall that the wave equation (7) is in fact vector- 
valued, and that a similar equation holds for the magnetic 
components. Provided that each polarization component can 
be calibrated separately, the signal polarization can be util- 
ized for improving the DOA estimation performance, even if 
the array only measures the sum of the polarization compo- 
nents. An extension of the MUSIC method to polarization 
sensitive arrays is proposed in [39], whereas [78, 127, 1631 
consider parametric methods. In [148], it is shown that PO- 
larization diversity can also significantly improve the signal 
waveform estimates, a fact which has long been known in 
microwave communications and which could be of consid- 
erable interest in array processing applications, e.g. commu- 
nication applications. 

A more complete signal model is considered in [54, 861. 
Therein, it is assumed that the receiving sensors measure all 
six field components of the electric and magnetic fields. This 
allows source localization using only one so-called vector 
sensor. 

Time Series Analysis 

The DOA estimation problem employing a ULA shares some 
common aspects with time series analysis. Indeed, an impor- 
tant pre-cursor of the MUSIC algorithm is Pisarenko’s 
method [94] for estimation of the frequencies of dampedhn- 
damped sinusoids in noise, whose covariance function meas- 
urements are given. Similarly, Kung’s algorithm for 
state-space realization of a measured impulse response [73] 
is an early version of the ESPRIT algorithm. An important 
difference between the time series case and the (standard) 
DOA estimation problem is that the time series data is usually 
estimated using a sliding window. A “sensor array-like data 
vector” x(t) is formed from the scalar time series y ( t )  by using 

x(t) = [ y ( t ) ,  y ( t  + l), . . . y ( t  + L - 1)17 

The windowing transformation induces a temporal corre- 
lation in the L-dimensional time series x( t ) ,  even if the scalar 
process y ( l )  is temporally white. This fact complicates the 
analysis, as in the case of spatial smoothing in DOA estima- 
tion, sec e.g. [27, 68, 1881. A further complication arises in 
time series analysis problems when there is a known input 
signal present. This problem has fortunately, also been suc- 
cessfully tackled using ideas from sensor array signal proc- 
essing [ 1351. 

Applications 

The research progress of parameter estimation and detection 
in array processing has resulted in a great diversity of appli- 
cations, and continues to provide fertile ground for new ones. 
In this section we discuss three important application areas. 

Receiving arrays and related estimatioddetection techniques 
have long been used in High Frequency communications. 
These applications have recently reemerged and received a 
significant attention by researchers, as a potentially useful 
“panacea” for numerous problems in personal communica- 
tions (see e.g., [3, 120, 123, 1511). They are expected to play 
a key role in accommodating a multiuser communication 
environment, subject to severe multipath. 

One of the most important problems in a multiuser asyn- 
chronous environment is the inter-user interference, which 
can degrade the performance quite severely. This is also the 
case in a practical Code-Division Multiple Access (CDMA) 
system, because the varying delays of different users induce 
non-orthogonal codes. An interesting application of the MU- 
SIC algorithm for estimating these propagation delays is 
presented in [121]. The base stations in mobile communica- 
tion systems have long been using spatial diversity for com- 
bating fading due to the severe multipath. However, using an 
antenna array of several elements introduces additional de- 
grees of freedom, which can be used to obtain higher selec- 
tivity. An adaptive receiving array can be steered in the 
direction of one user at a time, while simultaneously nulling 
interference from other users, much in the the same way as 
the beamforming techniques described previously. 

The multipath which may be caused by buildings reflec- 
tions or hills, etc. introduces difficulties for conventional 
adaptive array processing. Undesired cancelation may occur 
[149], and spatial smoothing may be required to achieve a 
proper selectivity. In [ 3 ] ,  it is proposed to identify all signal 
paths emanating from each user, whereafter an optimal signal 
combination is performed. A configuration equivalent to the 
beamspace array processing with a simple energy differenc- 
ing scheme serves in localizing incoming users waveforms 
[ 1031. This beamspace strategy underlies an adaptive optimi- 
zation technique proposed in [120], which addresses the 
problem of mitigating the effects of dispersive time varying 
channels. 

Communication signals have a rich structure that can be 
exploited for signal separation using antenna arrays. Indeed, 
the DOAs need not be estimated. Instead, signal structure 
methods such as the constant-modulus beamformer [48] have 
been proposed for directly estimating the steering vectors of 
the signals, thereby allowing for blind (i.e., not requiring a 
training sequence) signal separation. Techniques based on 
combining beamforming and demodulation of digitally 
modulated signals have also recently been proposed (see [80, 
100, 128,1291). It is important to note that the various optimal 
andor suboptimal proposed methods are of current research 
interest, and that in practice, many challenging and interest- 
ing problems remain to be addressed. 

Radar and Sonar 

The classical application of array signal processing is in radar 
and sonar, and modern model-based techniques have also 

84 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996 



found their way to these areas [34, 51, 52, 79, 911. The 
antenna array is, for example, used for source localization, 
interference cancelation and ground clutter suppression. 

In radar applications, the mode of operation is referred to 
as active. This is on account of the role of the antenna array 
based system which radiates pulses of electro-magnetic en- 
ergy and listens for the return. The parameter space of interest 
may vary according to the geometry and sophistication of the 
antenna array. The radar returns enable estimation of parame- 
ters such as velocity (Doppler frequency), range and DOAs 
of targets of interest [130]. Using passive far-field listening 
arrays, only the DOAs can be estimated. 

In sonar applications, on the other hand, the signal energy 
is usually acoustic, ,and measured using arrays of hydro- 
phones. The sonar can operate in an active as well as passive 
mode. In a passive mode, the receiving array has the capabil- 
ity of detecting and locating distant sources. Deformable 
array models are often used in sonar, as the receiving antenna 
is typically towed under water [79]. Techniques with 
piecewise linear subarrays are used in the construction of the 
overall solution. Recent experimental results using passive 
sonar and also seismic (seismometer) arrays are presented in 

In an active mode, a sonar system emits acoustic (electro- 
magnetic arrays are also used underwater) energy and moni- 
tors and retrieves any existing echo. This again can be used 
for parameter estimalion, such as bearings and velocity etc., 
using the delay of the echo. Despite its limitations due to the 
bending speed-of-propagation profiles and the high propaga- 
tion losses, sonar together with related estimation techniques, 
remains a reliable tool for range, bearing estimation and other 
imaging tasks in underwater applications. However, the dif- 
ficult propagation conditions under water may call for more 
complex signal modeling, such as in matchedfieldprocessing 
(see e.g. [ 101). 

~ 7 1 .  

Industrial Applications 

Sensor array signal processing techniques have drawn much 
interest from industriial applications, such as manufacturing 
and medical applications. In medical imaging and hyperther- 
mia treatment [37,38], circular arrays are commonly used as 
a means to focus eneirgy in both an injection mode as well as 
reception mode. It has also been used in treatment of tumors 
[36]. In electrocardiograms, planar arrays are used to track 
the evolution of wavefronts which in turn provide informa- 
tion about the condition of a patient’s heart. Array processing 
methods have also been adopted to localize brain activity 
using biomagnetic sensor arrays, so-called super-conducting 
quantum interference device (SQUID) magnetometers [85]. 
It is expected that the medical applications will proliferate as 
more resolution is sought, e.g. signals emanating from a 
womb may be of more interest than those of a mother. 

Other applications in industry are almost exclusively in 
automatic monitoring and fault detectionAocalization. In en- 
gines, sensors are placed in a judicious and convenient way 
to detect and potentially localize faults such as knocks or 

broken gears [49, 1661. Another emerging and important 
application of array signal processing is in using notions from 
optics to cairry out tasks in product quality assurance in a 
manufacturing environment [2] ,  and in object shape charac- 
terization in tomography [133,84]. An example is provided in 
“Radar Example.” 

Future Directions 

In summary, and as demonstrated by the above applications 
which are miore or less adrianced in their stage of investiga- 
tion, new connections of certain problems (new or old) keep 
being made to array processing methods whose resolving 
power, in turn, provides in many cases a superb improvement 
over more conventional solutions. It is clear that the theoreti- 
cal interest in sensor array processing has somewhat dimin- 
ished in recent years, aiid is largely due to the lag of 
applications. However, we believe that the future holds nice 
surprises as the applications are catching up with the theoreti- 
cal foundations, and new perspectives from fields such as 
geometry of polynomials :md other insights from communi- 
cations (e.g. equalization) start making inroads into the re- 
search community. It is our belief that we will be witnessing 
an explosiv~e developmenit of array processing algorithms 
within personal communications, as the various network 
operators start demanding smart antennas (which already 
happened). ’We also look forward to more impact of model- 
based array signal processing in various imaging problems, 
where more traditional approaches dominate at present. Ex- 
amples include synthetic aperture radar (SAR) and underwa- 
ter acoustic imaging. Thiz interest in remote sensing and 
imaging is expected to grow, particularly on account of the 
applications in environmental studies. Other “unexpected” 
environmental applications have also recently appeared, such 
as chemical sensor arrays [87]. 

Measured Data Experiment 

In this section, the viability of the various methods is tested 
on experimental data. In the first example, the results using 
radar data are presented in some detail, whereas the second 
example uses image data. 

Radar Example 

The receiver is an L = 32-element uniform linear array, which 
is mounted vertically so that the DOA is in this case the 
elevation angle. With reference to Figure 1, we will assume 
that the array is mounted along the y-axis, so that 8 = 0 
corresponds to the array broadside. The sensors have a hori- 
zontal polarization. The array is located on the shore of Lake 
Huron, whereas the transmitter is on the opposite side. Thus, 
the surface o f  the lake will ideally generate a specular multi- 
path component. There will most likely also be a diffuse 
multipath. ‘The data collixtion system, referred to as the 
Multi-Parameter Adaptive Radar System (MARS), was de- 
veloped at the Communications Research Laboratory at 
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McMaster University. More details of the MARS system and 
the experimental conditions can be found in [32]. The par- 
ticular data sets used herein were also employed by Zoltowski 
[ 1641, who obtained good results with a maximum-likelihood 
technique operating on beamspace data. The major goal 
herein is to investigate the achievable performance of “stand- 
ard” DOA estimation methods on experimental data. A 
beamspace implementation is also considered. 

Five data sets labeled 141 through 145 were available. Each 
set consists of a total of 127 snapshots, sampled at baseband 
with a sampling rate of 62.5 Hz. Due to potentially non-sta- 
tionary conditions, the data set were divided into 8 batches, 
each comprising N = 16 snapshots, before further processing. 
The theoretical DOAs of the direct and reflected signal paths 
are fixed (at 81=0.0835” and 82=-0.303” respectively), but 
the carrier frequency varies between 8.62 GHz and 12.34 
GHz. This causes the electrical angle separation to vary 
between A$ = BWl3 and A$ = BWl2, where BW = 2 d L  
represents the standard beamwidth of the array (in radians). 
Note that the electrical angle for this setup is defined as 

Q, = -kdsinO, 

because the DOA is defined relative to the array broadside. 
The given five data sets were processed using the previously 
described methods assuming a perfect ULA array response 
(Eq. 28), given that the array is quite carefully calibrated. As 
in any real data experiment, there are many possible sources 
of errors. The most obvious in this case, is the diffuse multi- 
path, which may be modeled as a spatially extended enlitter, 
the waveform of which probably has some correlation with 
that of the more point-like signal paths. To illustrate the 
problem, the eigenvalues of a typical sample covariance are 
depicted in Fig. 7, along with a realization from the theoreti- 
cal model with two point sources in spatially white noise. 
Other sources of errors include inaccurate calibration and 
insufficient SNR for resolving within-beamwidth emitters. 

Below, we display the results for the various methods 
along with the theoretical DOAs. However, one should bear 
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in mind that in a real data experiment, there are actually no 
true values available for the estimated parameters. The pos- 
tulated DOAs are calculated from the geometry of the experi- 
mental setup, but in practice the multipath component may 
very well be absent from some of the data sets, or it may 
impinge from an unexpected direction. We first apply beam- 
forming techniques to the “simplest” case, which is the 12.34 
GHz data. The angle separation is here about A$ = BWl2. In 
Figure 8 ,  the results from applying the traditional beamform- 
ing and the Capon methods to the 8 data batches are pre- 
sented. The “spatial spectra” are all normalized such that the 
peak value is unity. The “true” DOAs (electrical angles, 
measured in fractions of the beamwidth) are indicated by 
vertical dotted lines in the plot. As expected, the Bartlett 
beamformer cannot quite resolve the sources and neither can 
Capon’s method in this scenario. The high variance of the 
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latter is due to the short data record (in fact, the sample 
covariance matrix is not invertible because N < L, so a 
pseudo-inverse was used in Eq. 32). 

Next, the spectral-based subspace methods are applied. 
Since the signal comiponents are expected to be highly corre- 
lated, these methods are likely to fail. However, the signals 
can be “de-correlated’ by pre-processing the sample covari- 
ance matrix using forward-backward averaging (42). In Fig- 
ure 9, the results for the MUSIC method with and without FB 
averaging are shown. It is clear that FB averaging improves 
the resolution capability and reduces the variance of the 
estimates in this case. The Min-Norm method was also applied 
and the resulting normalized “spatial spectra” are depicted in 
Fig. IO. The Min-Norm method is known to have better resolu- 
tion properties than MUSIC because of the inherent bias in the 
radii of the roots [61, 691. Indeed, the Min-Norm method 
performs slightly better than MUSIC in this case, and it nearly 
resolves the sources (even without FB averaging. 

Finally, we applied parametric methods to the same data 
sets. The “optimal” methods described earlier all produced 

virtually identical estimates in all of the available data sets. 
Therefore, only those of the WSF method are displayed in the 

In Fig. II 1, we show the WSF estimates along with those 
of the ESPRIT method with FB averaging. For comparison, 
we also applied the WSF method to beamspace data. The 
beamspace dimension was chosen as R = 8, and the transfor- 
mation matrix was designed as follows: First, new “beam- 
space outputs” were obtained by summing the outputs of 
sensors 1-25, 2-26, etc. up to 8-32. This corresponds to 8 
parallel Bartlett beamformers, all of them steered to the DOA 
0” (but with different phases). The SVD of the corresponding 
32 X 8 transformation matrix (which is a Toeplitz matrix with 
1/0 entries was computed, and its left singular vectors were 
taken as the beamspace transformation matrix T (cf. (Eq. 
96)). The !WD was applied because it is desirable to have 
orthonormal columns in the transformation matrix, so as not 
to destroy the spatial color of the noise (if it was white in the 
first place) The beamspace data were processed using the 
WSF method similarly to the element-space version. The 
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results for the parametric methods are shown in Fig. 1 1. The 
parametric methods also perfom satisfactorily on this data 
set, and the estimation error is on the order of a 10:th of a 
beamwidth. This is clearly smaller than for any of the spec- 
tral-based methods. 

Next, we applied the various algorithms to a more difficult 
case, namely the 8.62 GHz data. The results for the Bartlett 
beamformer and the FB Min-Norm method are shown in 
Fig. 12. It is clear that the spectral-based methods as applied 
here fail to locate the multipath component. It is possible that 
other modifications such as spatial smoothing or beamspace 
processing can improve the situation, but such a test falls 
beyond the scope of this study. 

The estimation results for the parametric methods, applied 
to the remaining data sets, are shown in Figs. 13 and 14. As 
seen in the figures, the WSF method performs reasonably 
well in all data sets except for the one at 9.76 GHz where only 
one signal is detected, although there is a large bias in the 
estimate of the multipath component in the 8.62 GHz data. 
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GHz data. This is obviously intriguing, and perhaps it gives 
an indication of the expected accuracy of the SNR estimates. 
Another possibility is that more than one reflected component 
constructively interfered to give one diffuse specular compo- 
nent. 

A Manufacturing Example 

In the steady march towards a fully automated factory envi- 
ronment, different techniques are constantly being explored 
for various stages of a production line. Applications of sensor 
array processing to quality assurance and fault detection have 
recently been reported [2 ,53] .  A linear array of photosensors 
placed along one side of a target is shown in Figure 15 and 
data is accordingly collected. Assuming that the image of 
interest is quantized to 1 bit (i.e. 110 pixels), a simplified data 
model follows by assigning data z.1 to a sensor in row 1 as, 
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4. As in Figure 11, but for the 9.76 GHz (le@) and 9.79 GHz 
(right) data. 

where xii, ... ,XH represent the 1-pixels in the I: th row. If the 
image contains a single straight line as in Fig. 15, there will 
be only one non-zero pixel in each row, and a little geometry 
shows that 

where xo is the offset and 0 is the orientation of the line. The 
vector of "sensor outputs" is modeled as a complex sinusoid 
with the row number being the analog of sensor index in our 
formulation previously. The line offset and orientation can 
be easily computed from the amplitude and frequency of the 
sinusoid. The model is straightforwardly extended to the 
multiple-lines case in gray-scale images, and objects other 
than lines in the image will appear as noise in the data model. 
Given the sum-of-sinusoids model, Aghajan and Kailath [2] 
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5. Typical linear array setup of photosensors for detection of 
lines (defects) in a manufacturing environment, by merely using 

suggested to apply the computationally efficient TLS ES- 
PRIT algorithm to spatially smoothed data to obtain estimates 
of the frequencies and amplitudes. 

For illustration purposes, an image of a semiconductor 
wafer is shown in Fig. 16. A linelscratch is manifested as a 
bright line of pixels. Anomalous pixels (This may be a defect 
in the wafer or an inscription put in for orientation.) are on a 
line typically of brighter intensity and are to be detected and 
localized. The results of estimating the line orientation by a 
subspace-based detector (dashed) and by the more classical 
Hough transform (solid) are displayed in Fig. 17. Figure 18 
shows the corresponding result for the line offset estimates. 
Though the two methods relatively perform equally well, the 
computational and storage efficiency are not an asset for the 
Hough transform [2]. In light of the comparison of a sub- 
space-based technique to the more classical approach from 
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tomography, namely the Hough transform, shown in these 
figures, there is reason to believe that sensor array processing 
solutions need no longer be limited to the framework they 
were developed in (i.e. signal processing in Radar, Sonar etc.) 
and potentially offer a wealth of efficient and highly perform- 
ing algorithms. 

Conclusions 

The depth acquired from the theoretical research in sensor 
array processing reviewed in this paper has played a key role 
in helping identify areas of applications. New real-world 
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problems which are solvable using array signal processing 
techniques are regu1,arly introduced, and it is expected that 
their importance will only grow as automatization becomes 
more widespread in iindustry, and as faster and cheaper digital 
processing systems become available. This manuscript is not 
meant to be exhaustive, but rather to serve as a broad review 
of the area, and more importantly as a guide for a first time 
exposure to an interested reader. The focus is on algorithms, 
whereas deeper analyses and other more specialized research 
topics are only briefly touched upon. 

In concluding, the recent advances of the field, we think 
it is safe to say that the spectral-based subspace methods and, 
in particular, the more advanced parametric methods have 
clear performance improvements to offer as compared to 
beamforming methods. Resolution of closely spaced sources 
(within fractions of a beamwidth) have been demonstrated 
and documented in :several experimental studies. However, 
high performance is not for free. The requirements on sensor 
and receiver calibration, mutual coupling, phase stability, 
dynamic range, etc. become increasingly more rigorous with 
higher performance specifications. Thus, in some applica- 
tions the cost for achieving within-beamwidth resolution may 
still be prohibitive. 

The quest for algorithms that perform well under ideal 
conditions and the understanding of their properties has in 
some sense slowed down in light of the advances over the 
past years. However, the remaining work is no less challeng- 
ing, namely to adapt the theoretical methods to fit the particu- 
lar demands in specific applications. For example, real-time 
requirements may place high demands on algorithmic sim- 
plicity, and special array and signal structures present in 
certain scenarios must be exploited. The future work, also in 
academic research, will be much focused on bridging the gap 
that still exists between theoretical methods and real-world 
applications. 
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