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Abstract
Large scale software is composed of libraries produced by different
entities. Non-intrusive and efficient mechanisms for adapting data
structures from one library to conform to APIs of another are essen-
tial for the success of large software projects.Conceptsandconcept
maps, planned features for the next version of C++, have been de-
signed to support adaptation, promising generic, non-intrusive, effi-
cient, and identity preserving adapters. This paper analyses the use
of concept maps for library composition and adaptation, comparing
and contrasting concept maps to other common adaptation mecha-
nisms. We report on two cases of data structure adaptation between
different libraries, indicating best practices and idioms along the
way. First, we adapt GUI controls from several frameworks for use
with a generic layout engine, extending the application of concepts
to run-time polymorphism. Second, we develop a transparent adap-
tation layer between an image processing library and a graph algo-
rithm library, enabling the efficient application of graph algorithms
to the image processing domain.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism;
D.1.0 [Programming Techniques]: General

General Terms Design, Algorithms

Keywords generic programming, C++, software libraries, poly-
morphism

1. Introduction
Modern software systems commonly make use of components from
a variety of software libraries. Software libraries at programmers’
disposal are typically developed by different entities without cen-
tralized control. Consequently, interfaces of different libraries are
seldom compatible as such. Using several libraries in one program
can require significant amounts of “glue code” between compo-
nents of different libraries. The amount and complexity of the nec-
essary glue code affects the cost of using an existing software li-
brary for a particular problem. For complicated glue code the costs
can become prohibitive—it may be easier to rewrite the needed
components rather than to write the glue code to interface to them,
or the composition mechanism may incur unacceptably high per-
formance costs.
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The language constructs and idioms for adaptation vary greatly
between different programming languages, and can impact the cost
of adaptation. This paper discusses library composition with the
adaptation mechanism offered by C++ “concepts” [17], a set of
extensions to C++ template system, likely to be included to the
next revision of standard C++. Concepts augment C++’s template
system with constrained templates. From here on, we refer to C++
extended with concepts asConceptC++; C++ refers to the language
as specified in its current standard [21].

Generic interfaces in ConceptC++ are defined using the lan-
guage constructconcept . Component adaptation can be imple-
mented using theconcept_map language construct. Concept maps
are non-intrusive to the data structures they adapt. Consider a data
structure defined in one library such that the data structure satis-
fies semantically, but not syntactically, the interface requirements
of routines in another library. With concept maps it is possible to
define a transparent adaptation layer between the libraries such that
values from the first library can be directly used as input to the
routines of the second: wrapping values explicitly into objects of
another type is not necessary.

Adaptation with concept maps is efficient—combined with
standard compiler optimizations, mainly inlining, adaptation with
concept maps can be free of any performance cost. In contrast to in-
terfaces defined using object-oriented abstract base-classes, generic
interfaces defined using concepts do not directly support run-time
polymorphism.

Currently ConceptGCC [16] is the only compiler for Con-
ceptC++. Large parts of the C++ standard library have been im-
plemented in ConceptC++, but otherwise use of the new features is
modest. An efficient and flexible adaptation mechanism has been
a design goal for ConceptC++, but sufficient evaluation of whether
this goal has been met is lacking, as are patterns and idiomatic uses
of the features for library composition. Furthermore, C++ standard
library’s collection of generic algorithms and data structures, for-
merly called the Standard Template Library (STL) [46], was the
central use case that influenced the design of ConceptC++; the nat-
ural next step is to explore the applications of these new features to
broader domains. Our goals for this work are thus to (1) evaluate
how ConceptC++ supports complex library composition by exer-
cising its new features in a real-world setting, (2) to develop the
idioms and patterns for effective adaptation between libraries, (3)
to evaluate the performance implications of the new features, and
(4) to compare and relate the features to other existing adaptation
mechanisms in C++ and in other languages.

The structure of the paper is as follows. Section 2 briefly sum-
marizes the paradigm ofgeneric programming, the origin of con-
cepts and concept maps. ConceptC++’s language constructsconcept
andconcept_map , and their use with constrained templates, is ex-
plained as well. Section 3 demonstrates the use of concept maps
for adapting generic components in the domain of graphical user
interfaces, and discusses idioms for combining run-time polymor-



phism with the static polymorphism offered by concepts. Section 4
describes a complex library composition scenario where a trans-
parent adaptation layer enables the use of an open-ended set of
image types as input to a library of graph algorithms. We discuss
the performance of such adaptation in Section 5. We relate con-
cepts and concept maps to other adaptation mechanisms, such as
instance declarations in Haskell and inheritance in object-oriented
languages, in Section 6. Conclusions follow in Section 7.

2. Background
The design of ConceptC++ has mainly been motivated by the de-
sire to better support the paradigm ofgeneric programming, as
practiced, e.g., in the design and implementation of the Standard
Template Library, the Boost Graph Library (BGL) [41], the Matrix
Template Library [42], the Adobe Source Library [3] and many
other generic libraries in a variety of domains [4,9,13,40]. Generic
programming is a systematic approach to designing and organiz-
ing software. It focuses on finding the most general (or abstract)
formulations of algorithms together with their efficient implemen-
tations [23].

The generic programming approach to library design has proven
to lead to efficient and reusable libraries. Characteristic to these li-
braries are rigorously specified interfaces, including both syntactic
and semantic requirements. Roughly, syntactic requirements spec-
ify what operations must be supported by types to satisfy an inter-
face, semantic requirements place constraints on the behavior and
complexity of the operations. Generic programming strives for li-
brary interfaces that are complete in the sense that they capture
the essential features necessary for implementing a class of effi-
cient algorithms, and minimal in the sense that they are satisfied
by many different data structures. For example, the STL and the
BGL are both large libraries providing extensive functionality but
the interfaces to these libraries are quite small. Through careful
consideration of the essential requirements for certain classes of
algorithms, the interface to a large number of library components
has been made small and uniform. For these reasons the generic
programming paradigm, and generic libraries, are of interest in the
context of library composition—adapting a data structure for a par-
ticular library interface may open up a large part of the library for
direct use. For example, the BGL, with a few dozens of lines of
code, implements a transparent adaptation layer on top of graph
data structures of the LEDA library [33], making the entire BGL
usable for LEDA graphs without requiring any explicit wrapping
or adaptation.

2.1 From C++ to ConceptC++

C++ templates are unconstrained. Generic C++ libraries therefore
express the constraints on type parameters of generic algorithms as
part of algorithms’ documentation. The STL established a system-
atic documentation style for this [5,45]. Sets of requirements on one
or more types are referred to asconcepts. (This is the reason for the
naming of the language featureconcept in ConceptC++.) Concepts
describe the functions and operators that the types must support.
They can also require a set of other accessible types, calledasso-
ciated types. Usually concepts also specify semantic requirements
as algebraic laws that implementations of the functions and opera-
tors must satisfy, as well as upper bounds for the complexity of the
functions and operators.

Despite the fact that concept descriptions are systematic, they
are not understood by the C++ type checker. In C++, concepts are
treated as mere documentation, though libraries providing some
support for enforcing concept constraints have been proposed [32,
43]. ConceptC++ makes these descriptions known to the compiler,
enabling modular type checking of templates and notably more
informative and accurate compiler error diagnostics.

Type checking in ConceptC++ is not concerned with algebraic
laws or complexity guarantees in concepts. Nevertheless, Con-
ceptC++ does specify the syntax for expressing algebraic laws [17,
§3.2.5] to serve as a hook for language tools.

2.2 Generic Programming in ConceptC++

This section briefly describes the new language constructs in Con-
ceptC++. For a detailed description and specification, see [17, 19].
The central language construct of ConceptC++ is concept . Concepts
define sets of requirements on a type, or on a tuple of types. We
say that types that satisfy the requirements of a conceptmodelthat
concept. For example, the following concept requires that the “less
than” operator< is defined for objects of typeT:

concept LessThanComparable<typename T> {
bool operator <(T, T);

}

The operator< can be defined as a member function or as a non-
member function defined in namespace scope; for some types it
comes built-in. Concepts are not concerned with how the operator
has been defined: any means is adequate to satisfy the requirement.

ConceptC++ requires an explicit declaration to establish that
a particular type (or a parametrized class of types) is amodel
of a concept. The language construct used for these declarations
are concept maps.1 For example, the following two declarations
state that the typesint and complex<double> are models of the
LessThanComparable concept:

concept_map LessThanComparable<int > { }

concept_map LessThanComparable<complex<double > > {
bool operator <(complex<double > a, complex<double > b) {

return abs(a) < abs(b);
}

}

The two definitions differ in howLessThanComparable ’s require-
ments are satisfied. Forint , the built-in< operator for integers sat-
isfies the requirement for the< operator. Forcomplex<double> , we
explicitly provide a definition in the body of the concept map. For
a concept map to type check, each required operation must either
have a definition in the concept map’s body, or a definition must be
found in the scope where the concept map is defined.

Concept maps can be templates. The following concept map
declares all instances of the standard templatepair to be models
of LessThanComparable :

template <typename T, typename U>
requires LessThanComparable<T>, LessThanComparable<U>
concept_map LessThanComparable<pair<T, U> > {

bool operator <(const pair<T, U>& a, const pair<T, U>& b) {
return a.first < b.first || (!(b.first < a.first) && a.second < b.second);

}
}

Explicit definitions of functions in the bodies of concept maps
are a powerful tool for adaptation: consider thecomplex<double>
type discussed above. The C++ standard library does not define
operator< for complex number types. Therefore,complex<double>
does not modelLessThanComparable , which requires an imple-
mentation ofoperator< that defines astrict weak ordering. Com-
plex numbers can, however, be defined a strict weak ordering, e.g.
with the help of theabs function, as we do in the concept map
above. In this adaptation, no change in the definition of the type
complex<double> is necessary; neither is there a need to define a

1 In earlier versions of the concepts extensions the possiblymore descriptive
keywordmodel was used. It was replaced withconcept_map which occurs
far less frequently in existing C++ code.



template <typename Iter>
requires ForwardIterator<Iter>, LessThanComparable<Iter::value_type>
Iter min_element(Iter first, Iter last) {

Iter best = first;
while (first != last) {

if (∗first < ∗best) best = first;
++first;

}
return best;

}

Figure 1. Themin_element generic algorithm.

wrapper type forcomplex<double> objects. The less than operator
defined in the concept map is only visible in contexts constrained
by theLessThanComparable concept.

Adaptation with concept maps is stateless. To be precise, certain
features of C++, e.g. static local variables, enable the use of concept
maps as stateful adapters—we do not discuss such uses.

Figure 1 shows an example of a simple generic algorithm
min_element that uses theLessThanComparable concept as a con-
straint. Constraints on type parameters are stated in therequires
clauses of templates. Bodies of templates are type checked assum-
ing the constraints in therequires clauses hold. Correspondingly, at
the time of template instantiation, the type checker checks that the
template arguments satisfy the constraints in therequires clauses.

The ForwardIterator concept that appears in the constraints of
min_element is shown in Figure 2. This concept provides basic
iteration capabilities. The dereferencing operator∗ gives the value
that an iterator refers to. The++ operator advances an iterator to
the next element. Equality comparison is used to decide when the
end of the sequence is reached. Requirements for the operators==
and!= are not stated directly in the body ofForwardIterator , but are
obtained throughrefinementof another conceptEqualityComparable
(not shown). Syntax of refinement is that of inheritance between
classes. The associated typevalue_type denotes the type of values
that the iterator refers to. Arequires clause in the body of a concept
can place additional constraints on the parameters or associated
types of a concept. Here,value_type must modelCopyConstructible ,
which is one of the (draft) standard concepts and has its expected
meaning. Examples of models ofForwardIterator include all pointer
types and the iterator types of standard containers.

The min_element algorithm works for any sequence of values
defined as a pair of iterators, as long as the iterator type is a
model of theForwardIterator concept and the iterator’s value type
is a model ofLessThanComparable . Assuming the concept map
definition forcomplex<double> we showed above, the following call
satisfies the constraints ofmin_element . The invocation of the less
than operator in the body ofmin_element then calls the definition
given in the concept map.

vector<complex<double > > cd;
// fill cd with values
complex<double > smallest = min_element(cd.begin(), cd.end());

A concept definition can be preceded with the keywordauto ,
signifying that no explicit concept map is necessary to establish
a models relation between a type and a concept—structural con-
formance to the requirements suffices. Concept maps can, how-
ever, be written explicitly forauto concepts as well. Simple con-
cepts with only a few requirements typically defined asauto . For
example, the draft standard library usesauto in the definition of
LessThanComparable :

auto concept LessThanComparable<typename T> { ... }

ConceptC++ provides a syntactic shortcut for succinctly ex-
pressing constraints. Type constraints can be stated directly in the

concept ForwardIterator<typename Iter> : EqualityComparable<Iter> {
typename value_type;
requires CopyConstructible<value_type>;

value_type& operator ∗(Iter);
Iter& operator ++(Iter&);
Iter operator ++(Iter&, int );

}

Figure 2. TheForwardIterator concept (simplified from the one in
the STL).

template parameter list: instead of the keywordtypename , a con-
cept name then precedes a template parameter. The shortcut is par-
ticularly convenient for single-parameter concepts. The following
function signature uses the shortcut to constrainIter to be a model
of ForwardIterator :

template <ForwardIterator Iter>
requires LessThanComparable<Iter::value_type>
Iter min_element(Iter first, Iter last);

To the compiler, apart from parsing this function signature is no
different from the signature in Figure 1.

A similar shortcut can be used with associated types. The dec-
laration

CopyConstructible value_type;

can replace the following lines in Figure 2:

typename value_type;
requires CopyConstructible<value_type>;

We use both of these shortcuts in our examples.

3. Concept maps and adaptation
This section discusses the use of concept maps to adapt complex
library interfaces encountered in a commercial software develop-
ment environment.

An analysis carried out at a large commercial software develop-
ment company revealed that roughly a third of the code and up to
half of the reported bugs were related to the management of Graph-
ical User Interfaces (GUI) [39]. There is little reuse across GUI
related code between applications, and the features offered by the
GUI frameworks tend to be used directly—higher level abstractions
are rare.

One common task in the domain of GUIs is to layout widgets in
a dialog box in an multi-lingual application. A single fixed layout is
seldom suitable for many languages due, in part, to different glyph
size and alignment characteristics. Manually maintaining multiple
layouts, however, comes with a high cost. This makes a good case
for the creation of a component to perform widget layout. There are
many GUI frameworks with widely varying APIs for discovering
the extents of widgets and for positioning them on screen. To sup-
port multiple platforms, and as a result of software evolution over
time, it is not unusual for a suite of applications to support a half
dozen GUI frameworks. A generic layout engine must be able to
view and manipulate different widgets from different frameworks,
making an adaptation layer necessary.

We discuss one such layout engine, Adobe’sEve, a component
of Adobe Source Library (ASL) [3]. ASL is Adobe’s generic open
source library used in dozens of Adobe products. The layout engine
calculates positions for a collection of widgets in a window, taking
account of each widget’s size and alignment requirements. We refer
to this information as the “extents” of a widget.

Figure 3 shows a simplified layout engine based on Eve. This
simplified engine is written in terms of the operations defined by
thePlaceable concept:



template <Placeable P>
struct layout_engine {

void append(P placeable) {
placeables_m.push_back(placeable);

5 }

void solve() {
extents_t rect;
extents_m.resize(placeables_m.size());

for (int i = 0; i != placeables_m.size(); ++i)
10 measure(placeables_m[i], extents_m[i]);

// ‘‘solve’’ layout constraints and update place_data_m

for (int i = 0; i != placeables_m.size(); ++i)
place(placeables_m[i], place_data_m[i]);

}

15 vector<extents_t> extents_m;
vector<P> placeables_m;
vector<place_data_t> place_data_m;

};

Figure 3. A simplified layout engine modeled after Eve.

concept Placeable <typename T> : CopyConstructible<T> {

void measure(T& t, extents_t& result);
void place(T& t, const place_data_t& place_data);

}

Widgets are added to a layout problem using theappend member
function. Thesolve member function uses themeasure operation
from Placeable to query the extents of each widget (line 10), calcu-
lates a solution satisfying the layout constraints (not shown), and fi-
nally invokes thePlaceable ’s place operation to inform each widget
of its calculated location (line 13). The three vectorsplaceables_m ,
extents_m , place_data defined on lines 15–17 hold, respectively, the
widgets to be placed, their extents, and the ultimately the position-
ing information for the widgets, as computed by the layout engine.

To measure a widget’s size, in Apple’s Carbon toolkit we
might employ an API such asGetBestControlRect , whereas un-
der Microsoft’s Win32, one key step of this task is to invoke the
GetThemePartSizePtr function. Code in Figure 4 adapts widgets
from these toolkits to model thePlaceable concept.

With these definitions in place, we are ready to exercise our
layout engine. We illustrate in Figure 5 with driver code for the
Carbon toolkit. First we parse the layout specification and create
a collection of Carbon widgets storing alignment constraints in
their user data area (line 5). Second, we instantiate the layout
engine and populate it with the widget collection (line 6). When
we ask the engine tosolve (line 9) it must query each widget for
its extents, solve the layout, and inform each widget of its final
location. Finally, we make the window visible (line 10).

In sum, the concept map definitions we wrote adapt concrete
GUI widget types to the API of our layout engine. As a result, we
can directly instantiate the layout engine for any of the widget types
for which we have written adapters.

3.1 Run-time polymorphism

The system presented above achieves transparent adaptation of
widgets, but is too limited for our purposes. We want a layout en-
gine that supports widgets from multiple toolkits simultaneously.
Concepts and concept maps, however, do not directly support run-
time variability. Most of the research and practice of generic pro-
gramming in the context of C++ is concerned with the case where
types of the inputs to generic algorithms are known at compile
time—less emphasis has been placed on programming with con-
cepts in cases where run-time variability is required. When pro-
grammers need run-time polymorphism they turn to inheritance

concept_map Placeable<HIViewRef> {
void measure(HIViewRef p, extents_t& result) {

Rect size;
GetBestControlRect(p, &size, 0);
// update result with size and other extents information

}

void place(HIViewRef& p, const place_data_t& place_data) {
Rect r;
// place_data −> r
SetControlBounds(p, &r);

}
};

(a)

concept_map Placeable<HWND> {
void measure(HWND p, extents_t& result) {

SIZE r;
// ...
GetThemePartSizePtr(theme, dc, widget_type,

kState, 0, measurement, &r);
// update result with size and other extents information

}

void place(HWND& p, const place_data_t& place_data) {
int X, Y, nWidth, nHeight;
// place_data −> X, Y, nWidth, nHeight
MoveWindow(X, Y, nWidth, nHeight, true );

}
};

(b)

Figure 4. Adapters for Carbon (a) and Win32 (b) widgets.

and object oriented programming rather than concepts and generic
programming. ASL, however, contains machinery that allows tem-
plate functions constrained with concepts to be used when run-time
polymorphism is required. This machinery is an extension of the
ideas described in [38].

For our layout engine, in a multi-toolkit scenario, it will no
longer be possible to instantiate the layout engine with a single
fixed widget type. Instead, we can instantiate the engine with a wid-
get wrapper type that augments concretePlaceable widgets with
an external run-time dispatching facility. This adaptation layer is
implemented as the classpoly<placeable_rep> , where poly tem-
plate provides the concept independent boilerplate code for creat-
ing “run-time dispatching wrappers” andplaceable_rep the minimal
concept dependent part. Thepoly template is described in details
in [30]; for programmer documentation, see [3].

Thepoly<placeable> class nearly models thePlaceable concept:
it provides themeasure andplace operations, but it provides them as
member functions, whereasPlaceable requires the operations to be
available as non-member functions. This disparity between mem-

layout_engine<HIViewRef> le;
vector<HIViewRef> mac_widgets;

HIViewRef top_level_window =
5 parse_and_create_widgets("specification file", &widgets);

for (vector<HiViewRer>::iterator i = mac_widgets.begin();
i != mac_widgets.end(); ++i)

le.append(∗i);

le.solve();
10 ShowWindow(top_level_HIView);

Figure 5. Driver code for Carbon toolkit.



auto concept PlaceableMF <typename T> : std::CopyConstructible<T> {
void T::measure(extents_t& result);
void T::place(const place_data_t& place_data);

};

template <PlaceableMF T>
concept_map Placeable<T> {

void measure(T& t, extents_t& result) { t.measure(result); }
void place(T& t, const place_data_t& place_data)

{ t.place(place_ data); }
};

Figure 6. The member to non-member function adaptation idiom.

ber and non-member functions is a recurrent theme in C++. We can
bridge this gap with an additional concept and a concept map. In
our case,poly<placeable> is adapted to conform to thePlaceable
concept with the code in Figure 6.PlaceableMF is a concept specify-
ing that themeasure andplace operations are implemented as mem-
ber functions. We adapt all models of thePlaceableMF concept to
model thePlaceable concept with thePlaceable<PlaceableMF> con-
cept map. In ASL we use the same idiom for thin wrappers, such as
the reference wrappersin the (draft) C++ standard library [7, §20]
and varioussmart pointers[2], to satisfy the requirements of a con-
cept when their underlying type satisfies those requirements.

We can now replace the first line of the layout engine’s client
code in Figure 5 with the instantiation:

layout_engine<poly<placeable_rep>> le;

There is no change in behavior; the window will be populated and
laid out as before. We can now, however, use widgets from more
than one toolkit at run-time.

In summary, the layout engine can be instantiated with any
Placeable type. Our first use of concept maps is to adapt concrete
widget types to become models of thePlaceable concept. Our sec-
ond use of concept maps is to adapt a run-time polymorphic wid-
get wrapper—implicitly constructible from anyPlaceable concrete
widget type—to be a model ofPlaceable , for use with the layout
engine. These adaptations allow us to accommodate multiple GUI
toolkits at run-time with no changes to the client code, the widgets,
or the layout engine, all of which are possibly obtained as compo-
nents of different software libraries.

The layout engine is generic, its parameters are constrained us-
ing concepts. It can be instantiated directly, or with an instance
of the poly adapter to provide run-time polymorphism—clients of
this library component decide whether to use run-time polymor-
phism or not. The adaptation layer providing run-time polymor-
phism is independent of other other adaptation layers; it can be
“sandwiched” between multiple static adaptation layers that are im-
plemented using concept maps.

4. Cross-domain composition
When a concept map adapts a particular type to model a concept,
the concept map implements the concept’s operations in terms of
the functionality provided by that type. In this section we move be-
yond adaptation of individual types to adaptation between entire
library interfaces. In this situation, concept maps adapt collections
of types. All types that model conceptA are adapted to model con-
ceptB by a concept map that implementsB’s required operations in
terms of the operations provided by conceptA. This kind of adap-
tation was already encountered in Figure 6, where calls to member
functions are mapped to calls to non-member functions. We now
explore a mapping between concepts that is much more complex
than simply a direct translation between signatures: a mapping that
adapts abstractions from one domain to those of another domain.

Our example is from the domains of image manipulation and
graph algorithms. Many image algorithms can be viewed as graph
algorithms given a suitable representation of images as graphs. In
this section we present a partial composition of the Boost Graph
Library (BGL) [41] and the Generic Image Library (GIL) [9]. We
show the mapping from image related concepts defined in GIL
to the graph concepts of BGL. Concept maps are instrumental
for such cross-domain compositions. The adaptation code involves
relatively few lines of code, is transparent to the client, and comes
with minimal performance cost.

The Generic Image Library is Adobe’s open source image pro-
cessing library, and also part of theC++ Boost [8] collection of
peer-reviewed C++ libraries. The GIL defines concepts for raster
images of any dimension, and provides generic implementations of
basic image algorithms, such as copying, comparing, and applying
a convolution. The GIL’s algorithms operate on an open-ended set
of image types that may vary in color-space, pixel type, storage
order, and other image characteristics.

The Boost Graph Library is a widely used library of generic
algorithms for manipulating graphs. The BGL defines concepts
that describe different capabilities for graph data structures, such
as incidence graphsthat provide access to the outgoing edges of
each vertex,vertex list graphsthat additionally allow access to all
vertices in the graph, andedge list graphsthat add the ability to
access all edges in the graph. The BGL also provides useful data
structures modeling these concepts, many implemented in terms of
STL containers (essentially as compositions of vectors, lists, and
maps). For BGL documentation see [44].

Neither BGL nor GIL are yet implemented using ConceptC++.
We reimplement in ConceptC++ as much of the interfaces and
implementations of these libraries as is necessary for our experi-
ments. We omit support for mechanisms like BGL’s “named pa-
rameters”. BGL and GIL describe their algorithm requirements us-
ing STL-style concept documentation; our concepts are straightfor-
ward translations of this documentation into ConceptC++.

We focus on theflood-fill operation for images. Flood-fill trans-
forms the color of a set of contiguous pixels that satisfy a predicate.
The implementation of this algorithm performs a recursive search
through neighboring pixels of an initial seed pixel. Applications of
the flood-fill algorithm include transformation of a block of one
color to another, insertion of a background texture (green screen-
ing), and image segmentation.

4.1 Implementation of the composition

The flood-fill algorithm is a breadth first graph search when an im-
age is represented as a graph. In this representation, pixels corre-
spond to vertices and each of the edges connect two vertices cor-
responding to neighboring pixels. BGL’s breadth first search algo-
rithm imposes several concept requirements on its parameters. We
can establish the image to graph correspondence directly with con-
cept maps, by adapting concrete image types to model the BGL
graph concepts. However, a more general adaptation for an open
ended class of image types is achieved if we adapt the GIL image
concepts to model BGL concepts. In both approaches the adapta-
tion is not specific to flood-fill; many algorithms in the BGL use
the same handful of concepts in their constraints.

Thebreadth_first_search function in our graph library is shown
in Figure 7. For brevity, in all code examples we omit header in-
cludes, and the namespace prefixes of names from both GIL and
BGL, as well as the prefixstd:: for names defined in the stan-
dard library. Thebreadth_first_search function is parametrized on
the graph type, the type of queue used for storing references to
vertices to maintain search state, a visitor type used for providing
callback functions for various event points of the algorithm, and
the type of color map used for tracking which vertices have already



template <typename G, typename Queue,
typename Visitor, typename CMap>

requires IncidenceGraph<G>, Buffer<Queue>,
BFSVisitor<Visitor>, ColorMap<CMap>,
SameType<G, Visitor::graph>,
SameType4<G::vertex_t, Visitor::vertex_t,

CMap::key_type, Queue::value_type>,
SameType<G::edge_t, Visitor::edge_t>

void breadth_first_search (G const & g,
G::vertex_t const & s, Queue &Q, Visitor V, CMap Color);

Figure 7. The signature of thebreadth_first_search function in the
BGL. The somewhat verbosesame typeconstraints guarantee that
types of the function arguments are consistent, e.g., that the types
of the values in the queue argument are the same as the types of the
vertices in the graph.

been visited. Thebreadth_first_search function uses four concepts
to constraint its template parameters. TheIncidenceGraph concept
specifies the requirements for the graph type: operations for enu-
merating out-edges of a given vertex, along with their incident ver-
tices. The other concepts areBuffer that describes the operations of
the vertex queue;BFSVisitor that specifies the dictionary of the call-
back functions; andColorMap that defines the interface to the data
structure storing vertex visitation information.

We focus on theIncidenceGraph concept, shown in Figure 8,
in the description of the adaptation layer between images and
graphs. TheGraph concept, also in Figure 8, specifies associ-
ated vertex and edge types, which via refinement are provided
by IncidenceGraph as well. Directly IncidenceGraph provides the
out_edges , out_degree , source , and target operations, defined on
lines 11–14. Theout_edges function returns a pair of iterators that
specify the sequence of edges emanating from a given vertex, and
out_degree is for querying how many such edges there are. The
associated typesout_edge_iterator anddegree_size_type on lines 6
and 7 have their expected meaning.

The ImageView concept in Figure 9 describes the interface that
the GIL imposes on images. From the point of view of a type mod-
eling a concept, operations specified in a concept are requirements
that must be satisfied. From the point of view of an algorithm con-
strained by a concept, the operations are capabilities that can be re-
lied upon. In our example, the GIL concepts’ capabilities are used
to satisfy the BGL concepts’ requirements.

The ImageView concept on line 13 provides capabilities like
those of STL containers:value_type is (usually) the type of the
pixels, and the member functionsbegin andend return the iterator
range for traversing the pixels of the image. The constraint on the
iterator type is LocatorIterator , declared on line 8, that provides
random access iteration and location services.

The concept_map that adaptsImageView to IncidenceGraph is
shown in Figure 10. Lines 3–6 provide definitions for the associated
types of IncidenceGraph . We represent vertices as pixel iterators.
Edges are pairs, consisting of a pixel iterator and an integer. The
first value of the pair is a GIL pixel iterator which specifies the
source pixel, a point in an n-dimensional space. The second value
of the pair encodes the direction that specifies which neighbor of
the source pixel the target pixel is.

The out_edges function on lines 7–11 constructs the pair of
edge iterators that denotes the sequence of out edges. The number
of neighboring pixels, i.e. the number of out edges, for a given
pixel is obtained as thedistance between the beginning and end
of the sequence of out edges. This formulation gives directly the
implementation for theout_degree function on lines 17–20.

The first element of the pair representing an edge is the source
vertex, and thus the implementation ofsource on line 12 is trivial.

concept Graph<typename G> {
Regular vertex_t;
Regular edge_t;

};

5 concept IncidenceGraph<typename G> : Graph<G> {
InputIterator out_edge_iterator;
UnsignedIntegral degree_size_type;

requires Regular<out_edge_iterator>,
Sametype<out_edge_iterator::value_type, edge_t>,

10 SameType<out_edge_iterator::reference, edge_t&>;

pair<out_edge_iterator, out_edge_iterator> out_edges (vertex_t, G);
degree_size_type out_degree (vertex_t, G);
vertex_t source (edge_t, G);
vertex_t target (edge_t, G);

15 };

Figure 8. The IncidenceGraph concept. TheRegular concept from
the ASL specifies a type that is “well-behaved”, that is, it can
be constructed, destructed, copied, assigned, and compared for
equality. Furthermore, these operations respect obvious laws, such
as a value and its copy comparing equal. TheInputIterator and
UnsignedIntegral concepts (not shown) are defined in the draft C++
standard library.

concept Locator<typename T> {
SignedIntegral difference_type;
difference_type axis (T);

void axis (T&, difference_type);
5 long dimensions (T);

bool valid (T);
};

concept LocatorIterator<typename T>
: RandomAccessIterator<T>, Locator<T> {

10 requires SameType<RandomAccessIterator<T>::difference_type,
Locator<T>::difference_type>;

};

concept ImageView<typename T> {
typename value_type;

15 LocatorIterator iterator;

requires SameType<iterator::value_type, value_type>;

iterator T::begin () const ;
iterator T::end () const ;

};

Figure 9. Capabilities provided by the GIL concepts. The concepts
RandomAccessIterator andSignedIntegral (not shown) are defined in
the draft C++ standard library.

The implementation of thetarget function (lines 13–16) is a bit
more complex. GIL iterators have anorientation, which specifies
the direction (horizontal or vertical in two-dimensional images) to
move in an image when incrementing or decrementing the iterator.
The GIL iterator that represents the source pixel of an edge is
oriented along the axis towards the target pixel. The parity of
the integer in the edge object, the second element of the pair,
determines whether to decrement or increment the GIL iterator to
find the target vertex.

To arrive at a flood-fill algorithm, we make one additional adap-
tation: we use a color map that is tailored to flood-fill, instead
of BGL’s default color map forbreadth_first_search . The color
map stores the state of search by associating the status (as col-
ors) of unseen (white), in progress (grey), or processed (black)
to vertices. Only “white” vertices are added to the work queue.
We associate the seed color with “white” and the desired output



template <ImageView Img>
concept_map IncidenceGraph<Img> {

typedef Img::iterator vertex_t;
typedef pair<vertex_t,int > edge_t;

5 typedef out_edge_adapter<Img::iterator> out_edge_iterator;
typedef unsigned long degree_size_type;

pair<out_edge_iterator, out_edge_iterator>
out_edges (vertex_t const & v, Img) {

out_edge_iterator oetr (v), oend (v, 2 ∗ dimensions (v));
10 return make_pair (oetr, oend);

}

vertex_t source (edge_t const & e, Img) { return e.first; }

vertex_t target (edge_t const & e, Img) {
if (is_even (e.second)) return next(e.first);

15 else return previous(e.first);
}

degree_size_type out_degree (vertex_t const & v, Img) {
pair<out_edge_iterator, out_edge_iterator> it = out_edges (v);
return distance(it.first, it.second);

20 }
}

Figure 10. The concept_map adapting models of GILImageView
to become models of BGLIncidenceGraph .

color with “black”. The default queue and visitor parameters of
breadth_first_search that the BGL provides need no customization.

With the adaptations described above, the generic implementa-
tion of flood-fill in terms of thebreadth_first_search becomes:

template <ImageView Img>
void flood_fill(const Img& img, Img::iterator start_pixel,

Img::color target, Img::color replacement) {
if (target == replacement || target != ∗start_pixel) return ;
deque<Img::iterator> queue;
basic_bfs_visitor<Img> visitor;

breadth_first_search(img, start_pixel, queue, visitor
image_colormap(target, replacement));

}

The queue and visitor parameters are those used in the BGL by
default. We need to specify them explicitly since our graph library
does not implement BGL’s named parameters mechanism.

5. Performance
Adaptation mechanisms can have a negative impact on perfor-
mance. Mitchell et al. [34] give a detailed analysis of case where
multiple inefficient adaptation layers had a major effect on perfor-
mance of a large software system. In our examples we have used
adaptation freely, adding layers as appropriate to meet our design
goals. In this section we explore the performance costs of adapta-
tion using concept maps.

We use the flood-fill algorithm as a test case and compare the ex-
ecution times of two different test programs. The first program uses
a flood-fill algorithm written directly in terms of the GIL concepts.
Its implementation is essentially a breadth first search tailored for
images. The second program uses concept maps to adapt GIL con-
cepts to BGL concepts, and uses BGL’sbreadth_first_search func-
tion, as described in Section 4. The direct implementation does not
require an explicit representation of edges.

We compiled both test programs using the ConceptGCC [1]
compiler, with the -O3 flag on a MacMini Intel Core Duo, 1.67
GHz, with 2 GB of RAM. The test set consists of 50 square
images, from the size of 20×20 pixels to 1000×1000 pixels. In
each test program the flood-fill algorithm is used to fill the entire
input image. Figure 5 shows the results. Both test programs have
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Figure 11. The timing results.

essentially the same run-time performance. The implementation
using cross-domain adaptation achieves performance on a par with
a hand written GIL search algorithm.

The zero-overhead adaptation is due to C++’s template compila-
tion model, where specialized code is generated for each different
template instantiation. Calls to functions defined in concept maps
can be statically resolved, and often inlined, allowing the optimizer
to see through adaptation layers.

6. Concepts and other adaptation mechanisms
This section relates the adaptation capabilities offered by Con-
ceptC++’s concepts and concept maps to those of several other
mainstream languages, including C++.

Concept maps are a non-intrusive adaptation mechanism. To
provide new functionality, or make a type conform to a new in-
terface, no changes to the original definition of the type are needed.
The adapters written as concept maps are stateless. Without trick-
ery, such as static function scope variables, function definitions in
the bodies of concept maps cannot store state and manifest different
behavior in different call times.

The template system of C++, and ConceptC++, is based on in-
stantiating templates with full type information at compile time,
allowing all functions defined in concept maps to be statically re-
solved, possibly inlined, and further optimized. Several concept
map adapters can be layered without the adaptation mechanism
causing performance degradation. The downside is that all template
instantiations to be used in a program must be known at compile
time. While this may be acceptable in domains like graph algo-
rithms or linear algebra—indeed, generic C++ template libraries
have found widespread use in these domains— more “dynamic”
domains, such as GUIs, necessitate run-time polymorphism.

In object-oriented languages, libraries publish their interfaces
as abstract classes. Here, the term covers the “interface” language
construct found in some languages. To satisfy the requirements of
an interface then means defining a class that inherits from a par-
ticular abstract base class. This achieves run-time polymorphism
but, in mainstream object-oriented languages, the subclass relation
is established at the time of defining a class, which makes inheri-
tance a relatively rigid mechanism for library composition. A class
cannot retroactively, without altering its definition, be made to be a
subclass of another class. Forms of structural subtyping have been
proposed as cures for problems of rigid class hierarchies [6,27] but
have not found wide use. Amongst object-oriented languages, Ce-
cil [28] lets one define subtype relationships outside of class defini-
tions. Aspect-oriented programming systems can be used to mod-
ify classes retroactively, independently of their original definitions,
e.g. to implement new interfaces using “static crosscutting” [25].



The adapter pattern[14] is widely used to work around prob-
lems of rigid class hierarchies when composing libraries. Adapters
can be divided into object and class adapters. Both kinds of adapters
inherit an abstract base class that defines the desired interface. Ob-
ject adapters store the adaptee as a member (as a reference to a dis-
tinct object), whereas class adapters inherit from the adaptee, stor-
ing both the adapter and adaptee as a single object. The problems
of library composition and adaptation in object-oriented program-
ming are widely studied and recognized. For example, if there is a
need to adapt a class with new functionality, but neither the defini-
tion of that class nor code that is hard-wired to use that class can be
changed, an adapter is not an adequate solution (see, e.g., [31,47]).
Class adapters suffer fromhierarchy hardeningand object adapters
from inconsistency problems caused by breaking the state of a sin-
gle entity into multiple objects [20].

We demonstrate the techniques to combine run-time polymor-
phism with concepts in Section 3.1. Essential in our idioms is that
we avoid the use of an abstract base class to describe the library
interface. Instead, the library interface is specified in terms of con-
cepts. As concept maps are entirely external to both the types they
adapt from and the concepts they adapt to, the problems of object-
oriented adapters are avoided. We use concept maps to adapt client
code to and from the abstract base class interface, which is provided
for the sole purpose of run-time polymorphism. The constructions
to achieve this are somewhat involved, see [30], but can be hidden
behind simple abstractions. The benefit is that the choice of whether
to use run-time polymorphism is deferred to the time when the
components are composed, rather than dictated by the library. Run-
time dispatching may incur a performance penalty, which is thus
avoided in the cases where run-time polymorphism is not needed.

Concepts are in many ways similar to Haskell type classes [49],
and concept maps to Haskell’s instance declarations. A Haskell
type class defines the signatures of the functions that instances
(models) of the type class must implement.Instance declarations
establish that a type, or a sequence of types in the case of multi-
parameter type classes, belong to a particular type class. Analogous
to concept maps, instance declarations are non-intrusive: external to
both the definitions of the types and the definition of the type class.
Lämmel and Ostermann collect formulations of problems reported
in the object-oriented integration mechanisms [26], and demon-
strate how type classes are effective solutions to many of them.
Essential in evading the problems is the non-intrusive adaptation
with instance declarations. Our experiences with non-intrusiveness
of concept maps support this view.

In their standard form, type classes have a few obvious restric-
tions, which have largely been remedied in non-standard but com-
mon extensions. First, standard type classes only accept one pa-
rameter. Multi-parameter type classes, however, are widely sup-
ported by Haskell compilers and interpreters. Second, standard type
classes do not support associated types. They can, however, be em-
ulated to an extent with functional dependencies [24], a widely
supported extension, or expressed directly using more recent ex-
tensions [11,12].

There are also less obvious differences between concepts and
type classes, some of which affect adaptation and library composi-
tion. We explain those differences, but refrain from a comparative
evaluation; we have not produced Haskell implementations of any
of the library composition and adaptation scenarios described in
this paper. For comparative evaluation of the suitability of different
mainstream languages to generic programming, see [15].

Haskell can infer the type class constraints of polymorphic
functions automatically, while ConceptC++ does not support the
analogous “concept inference”. To ensure that the constraints of a
generic function can be uniquely determined, Haskell requires that
an overloaded function name (when called without module qual-

data Canvas = ...

class Rectangle r where
draw :: r −> Canvas −> Canvas
move :: r −> Int −> Int −> r

class Cowboy c where
draw::c −> c
move::c −> Int −> Int −> c
shoot::c −> c

drawShoot = shoot . draw

concept Rectangle<typename R> {
void draw(R r, Canvas& w);
void move(R& r, int x, int y);

}

concept Cowboy<typename C> {
void draw(C& c);
void move(C& c, int x, int y);
void shoot(C& c);

}

template <Cowboy C>
void draw_shoot(C& c) {

draw(c); shoot(c);
}

Figure 12. Accidental use of the same function name in two differ-
ent type classes (left column) and in two difference concepts (right
column).

ification) is declared in exactly one type class. When composing
independently developed libraries, it is possible that the same func-
tion name is accidentally used in two type classes in different mod-
ules. Figure 12 translates the classic example of accidental confor-
mance [29] to ConceptC++ and to Haskell. The Haskell version is
erroneous and can be fixed by qualifying the calls todraw andshoot
with the module prefix asCowboy.draw andCowboy.shoot ; the Con-
ceptC++ version is inevitably valid because ConceptC++ requires a
disambiguating annotation, the “Cowboy C ” constraint, regardless
of whether conflicting concepts exist or not.

An instance declaration in Haskell is in effect in all functions in
which the declaration is visible. A concept map, however, is only in
effect in a context where a type is constrained with the correspond-
ing concept. The example in Figure 13 illustrates. The operator∗

for integers is defined differently in two different concept maps.
The first concept map retains the∗ operator’s original meaning,
the second maps the operator to perform addition. Neither map-
ping has an effect outside generic functions. One or the other of the
mappings, neither of them, or both can be in effect within a particu-
lar generic function, depending on the functions constraints. In our
slightly contrived example function, both meanings apply.

Concept maps are a new layer on top of the existing overloading
mechanism of C++: the application of concept maps is geared for
adapting interfaces. Concept maps define views that are only active
when requested, which is a desirable trait for adaptation and library
composition. However, this may prove to be confusing as well, as
it creates a rift between generic and non-generic functions.

The Scala programming language [37] provides external adap-
tation with rather different mechanics,implicit parameters, but
with an outcome that is close to adaptation using type classes or
concepts. An implicit parameter to a method can be left out in a
call to the method. The Scala compiler attempts to find a unique
best matching value for that parameter in the call’s context. When
the implicit parameters represent dictionaries of functions, a fairly
faithful emulation of type classes follows [36]. Furthermore, Scala
viewsutilize implicit parameters to non-intrusively define implicit
conversions between types. Views seem promising for implement-
ing cross-domain compositions like we discussed in Section 4; a
possible experiment for future work.

C++ (without concepts) allows the definition of efficient non-
intrusive adaptation layers. For example, we mentioned BGL’s
transparent adapters for LEDA graphs in Section 2. Breuer et
al. [10] report on a cross-domain library composition between the
domains of linear algebra and graph theory. They adapt several
concepts from the Parallel Boost Graph Library [18] to concepts
found in the Iterative Eigensolver Template Library [48]. Their
implementation is in C++, and uses overloading and template spe-



concept Monoid <typename C, typename Tag> {
C operator ∗(C, C);
C identity();

}

class additive {}; class multiplicative {};

concept_map Monoid<int , multiplicative> {
int identity() { return 1; }

}

concept_map Monoid<int , additive> {
int operator ∗(int a, int b) { return a + b; }
int identity() { return 0; }

}

template <InputIterator It, InputIterator It2, typename U>
requires SameType<It::value_type, It2::value_type>,

Monoid<It::value_type, multiplicative>, Monoid<U, additive>,
Assignable<U>, Convertible<It::value_type, U>

U inner_product (It i1, It i1e, It2 i2, U init) {
for (; i1 != i1e; ++i1, ++i2)

init = init ∗ ((∗i1) ∗ (∗i2));
return init;

}

int main() {
vector<int > v;
v.push_back(3); v.push_back(5);
cout << inner_product(v.begin(), v.end(), v.begin(), 100) << endl;

}

Figure 13. Concept maps are only in effect in contexts constrained
by the corresponding concept. In theinner_product function, the
multiplication between∗i1 and∗i2 comes fromMonoid<U, additive> ,
and is therefore integer addition as defined by the concept map
Monoid<int, additive> . The multiplication betweeninit and the re-
sult of the “additive” element-wise multiplication comes from
Monoid<It::value_type, multiplicative> , and is thus integer multipli-
cations as defined by the concept mapMonoid<int, multiplicative> .
The Assignable , Convertible , andInputIterator concepts come from
ConceptGCC’s implementation of the draft standard library. The
inner_product function computes the inner product of two se-
quences, accumulating to an initial seed valueinit . When executed,
the program outputs134.

cialization to achieve the necessary adaptation, notconcept and
concept_map constructs of ConceptC++. Non-intrusive adaptation
in C++ relies in a host of tricky template techniques, such astraits
classes[35] and conditional overloading using theenable_if tem-
plate [22]. Though C++ can support complex non-intrusive adapta-
tion, the techniques are brittle.

7. Conclusions
In addition to improving modular type-checking and error diagnos-
tics of template libraries, “concepts”, a forthcoming set of new fea-
tures of C++, offers powerful mechanisms for adapting data types
to specific library interfaces. This paper provides an analysis of
this aspect of C++ concepts, and a description of their use in rel-
atively complex cases of adaptation. We demonstrate that transpar-
ent adaptation of data structures to several library interfaces is pos-
sible and straightforward. Also, we show that adaptation can be ap-
plied between entire library interfaces, and that adaptation imposes
no performance penalties, even in our complex adapters.

As future work, we plan to extend the composition of GIL and
BGL to cover a larger set of concepts in these libraries, and thus
a larger set of algorithms, and move our experiments to production
versions of these libraries once full implementations in ConceptC++
become available.

The main benefits of ConceptC++’s adaptation mechanisms are
non-intrusiveness (a type can be adapted to one or more interfaces
without altering the definition of the type), flexibility (instead of
single data types, a generic family of data types, or classes of
data types described using concepts, can be adapted with a single
adapter), and performance (adaptation is implemented using small
functions whose addresses are statically resolved, and are thus
inlineable and optimizeable).

The compilation model of C++ templates is that of generating
specialized code for each instantiation of a template with different
types. This does not change with the introduction of constrained
templates to the language. The generic library interfaces defined
in ConceptC++ do not directly support run-time polymorphism.
We describe the idioms to combine run-time polymorphism and
concepts. As a result, run-time polymorphism appears as simply
another adaptation layer that can be used by those clients of the
library that need it. Clients that do not need run-time polymorphism
can instantiate library components directly.

We are working on several aspects of the combination of run-
time polymorphism and static polymorphism of generic program-
ming, such as modeling the notion of concept refinement at run-
time, and minimizing the amount of concept-specific code in run-
time polymorphic concept adapters. Early results of this work is
reported in [30].
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