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The Intractability of Computing
the Minimum Distance of a Code

Alexander Vardy,Senior Member, IEEE

Abstract— It is shown that the problem of computing the
minimum distance of a binary linear code is NP-hard, and
the corresponding decision problem is NP-complete. This result
constitutes a proof of the conjecture of Berlekamp, McEliece, and
van Tilborg, dating back to 1978. Extensions and applications of
this result to other problems in coding theory are discussed.

Index Terms—Complexity, linear codes, minimum distance,
NP-completeness.

I. INTRODUCTION

A PROBLEM is said to belong to the class NP if it
can be solved by a nondeterministic Turing machine

in polynomial time. A problem NP is NP-completeif
every problem in NP can be transformed toin deterministic
polynomial time. A problem , which is not necessarily in
NP, is said to be NP-hard if the existence of a deterministic
polynomial-time algorithm for implies the existence of such
an algorithm for every problem in NP. For a more rigorous
definition of these terms, see Garey and Johnson [20].

Berlekamp, McEliece, and van Tilborg [9] showed in 1978
that two fundamental problems in coding theory, namely
maximum-likelihood decoding and computation of the
(nonzero terms in the) weight distribution, are NP-hard for
the class of binary linear codes. The formal statement of the
corresponding decision problems1 follows.

Problem: MAXIMUM -LIKELIHOOD DECODING

Instance: A binary matrix , a vector , and
an integer

Question: Is there a vector of weight , such
that ?

Problem: WEIGHT DISTRIBUTION

Instance: A binary matrix and an integer
Question: Is there a vector of weight , such that

?

Berlekamp, McEliece, and van Tilborg [9] proved that both
problems are NP-complete using a reduction from THREE-
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1The MAXIMUM -LIKELIHOOD DECODING problem was originally termed

COSET WEIGHTS in [9]; it is also referred to as DECODING OFLINEAR CODES in
[20, p. 280], [29], and as MINIMUM DISTANCE DECODING in [7]. The WEIGHT

DISTRIBUTION problem was originally termed SUBSPACE WEIGHTS in [9].

DIMENSIONAL MATCHING, a well-known NP-complete prob-
lem [20, p. 50]. They conjectured, but were unable to prove,
that the following decision problem:

Problem : MINIMUM DISTANCE

Instance: A binary matrix and an integer
Question: Is there a nonzero vector of weight

, such that ?

is also NP-complete. It is easy to see that NP-completeness
of would imply that computing the minimum distance of a
binary linear code is NP-hard. Indeed, letbe a linear code
defined by the parity-check matrix , and let denote the
minimum distance of If is known, then one can answer
the question of by simply comparing and On the
other hand, if one can solve, then one can also find by
successively running an algorithm for with
until the first affirmative answer is obtained.

The MINIMUM DISTANCE problem has a long and convoluted
history. To the best of our knowledge, it was first mentioned
by Dominic Welsh at an Oxford Conference on Combinatorial
Mathematics in 1969. In the printed version [39] of his
paper, Welsh calls for an efficient algorithm to find the
shortest cycle in a linear matroid over a field It is easy
to see that for GF , this is equivalent to finding
the minimum-weight codeword in a linear code over GF
Hence the NP-completeness of MINIMUM DISTANCE implies
that a polynomial-time algorithm for the problem posed by
Welsh [39] is unlikely to exist. Following the publication by
Berlekamp, McEliece, and van Tilborg [9] of their conjecture,
the MINIMUM DISTANCE problem was mentioned as open by
Garey and Johnson in [20, p. 280]. Three years later, it was
posed by Johnson [23] as an “open problem of the month” in
his ongoing guide to NP-completeness column. The problem
remained open despite repeated calls for its resolution by
Johnson [24] and others.

Determining whether computation of the minimum Ham-
ming distance of a linear code is NP-hard is important not
only because this is a long-standing open problem. There are
several more compelling reasons. First, for a host of problems
in coding theory there is an easy reduction from MINIMUM

DISTANCE. A few examples of such problems are presented
in Section V. Thus if MINIMUM DISTANCE is computationally
intractable, then all these problems are intractable as well.
Secondly, it is known that the parameters of almost all
linear codes attain the Gilbert–Varshamov bound [34, p. 77].
Hence it is easy to devise randomized algorithms that with
high probability yield (long) linear codes with large distance.
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If there were a polynomial-time procedure for computing
the minimum distance of a linear code, these randomized
algorithms could be used for code construction. It is, therefore,
important to know that such a polynomial-time procedure is
unlikely to exist.

Due to these and other reasons, the conjecture of Berlekamp,
McEliece, and van Tilborg [9] sparked a remarkable amount
of work, most of it unpublished. In particular, MAXIMUM -
LIKELIHOOD DECODING was shown to remain hard in more
general contexts: with unlimited pre-processing [12], under ap-
proximation within a given constant factor [5], [33], and over
an arbitrary (fixed) alphabet [7]. Furthermore, in an attempt to
establish the NP-completeness of MINIMUM DISTANCE, a great
number of closely related problems were proved to be NP-
complete. For example, the problems of finding the maximum
weight of a codeword, determining the existence of a codeword
of weight , and computing the minimum weight of a code-
word which is nonzero in a specified position, were shown to
be NP-hard by Ntafos and Hakimi [29], Calderbank and Shor
(see [13]), and Lobstein and Cohen [26], respectively. A brief
overview of the plurality of problems of this kind is provided,
for completeness, in the next section. All these problems are
tantalizingly close to MINIMUM DISTANCE. Nevertheless, the
proof of the original conjecture of Berlekamp, McEliece, and
van Tilborg [9] remained elusive for almost two decades.

Our main goal in this paper is to prove that MINIMUM

DISTANCE is NP-complete. To this end, we exhibit a polyno-
mial transformation to MINIMUM DISTANCE from MAXIMUM -
LIKELIHOOD DECODING. Thus we settle the conjecture
of [9] in the affirmative, using a reduction from the main
result of [9].

We start with some notation and overview of relevant
background in Section II. We also show in Section II that
MAXIMUM -LIKELIHOOD DECODING remains NP-complete
under certain minor restrictions, and reformulate this problem
as the finite-field version of SUBSET SUM, a well-known
NP-complete problem [20, p. 223]. In Section III, we
use certain simple alternants [11], [25], [28] to show that
computing the minimum distance for the class of linear
codes over a field of characteristic is NP-hard, and the
corresponding decision problem MINIMUM DISTANCE OVER

GF , in short MD , is NP-complete. Our proof is based
on a polynomial transformation from MAXIMUM -LIKELIHOOD

DECODING to MD This, however, does not prove that
MINIMUM DISTANCE is NP-complete, since the set of possible
inputs to MINIMUM DISTANCE is a small subset of the set of
possible inputs to MD Therefore, in Section IV, we map the
code over GF , constructed in Section III, onto a
binary code , in such a way that the minimum distance
of can be determined from the minimum distance
of The particular mapping used employs a simple con-
struction of low-rate binary codes, which was pointed out to
us by Noga Alon [3]. Since the length of is bounded by
a polynomial in the length of , and the mapping itself
can be accomplished in polynomial time, this completes the
proof of the NP-completeness of MINIMUM DISTANCE. We
conclude the paper in Section V, by showing that MINIMUM

DISTANCE is NP-complete for linear codes over an arbitrary,

fixed, finite field. Furthermore, several problems are shown to
be NP-hard in Section V, using a reduction from MINIMUM

DISTANCE. Finally, two important problems in coding theory
that are closely related to MINIMUM DISTANCE are also briefly
discussed in Section V.

One last remark in this section: we point out that the hard-
ness of MINIMUM DISTANCE can be viewed as an essentially
combinatorial question. Indeed, consider the following graph-
theoretic decision problem:

Problem: EVEN VERTEX SET

Instance: A graph and an integer
Question: Is there a nonempty subset of at most

vertices, such that every vertex has
an even number of vertices of among its
neighbors?

It is easy to see that the NP-completeness of MINIMUM

DISTANCE immediately implies that EVEN VERTEX SET is
NP-complete. In fact, MINIMUM DISTANCE is essentially a
restriction of EVEN VERTEX SET to bipartite graphs, obtained
by identifying a parity-check matrix with an adjacency
matrix of a bipartite (Tanner) graph —see [16] for more
details. Thus it is interesting to observe that algebraic tech-
niques deeply rooted in coding theory, such as construction of
MDS codes via alternants [11], [30] and concatenated coding
[17], [19], can be employed to answer a purely combinatorial
question.

II. PRELIMINARIES

In the next subsection, we briefly survey some of the prior
work motivated by the conjecture of Berlekamp, McEliece,
and van Tilborg [9]. In a later subsection, we consider the
MAXIMUM -LIKELIHOOD DECODING problem, and show that
it remains NP-complete under certain, not too restrictive,
conditions.

A. NP-Complete Problems Related to MINIMUM DISTANCE

The following eight problems, closely related to MINIMUM

DISTANCE, are known to be NP-complete. These problems
are included herein for completeness. They are listed in
chronological order, with appropriate references.

First, as noted in [9], MINIMUM DISTANCE is a variation of
WEIGHT DISTRIBUTION, obtained by replacing the phrase “of
weight ” with the phrase “of weight ” It is also easy to
see that MINIMUM DISTANCE is a special case of MAXIMUM -
LIKELIHOOD DECODING, obtained by restricting the input to

and requiring that is nonzero. Thus the problem that
Berlekamp, McEliece, and van Tilborg [9] conjectured to be
NP-complete is in many ways related to the two problems
that they proved are NP-complete.

Three other computational tasks, that even more closely
resemble MINIMUM DISTANCE, were shown to be NP-hard
by Ntafos and Hakimi [29], namely: finding a codeword of
maximum weight, finding a codeword of minimum weight
which is not a multiple of , and finding a codeword whose
weight is in the range Formally, the problems:
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Instance: A binary matrix and an integer
Question: Is there a vector of weight such

that ?

Instance: A binary matrix an integer and
an integer

Question: Is there a nonzero vector of weight
such that and ?

Instance: A binary matrix , integers
Question: Is there a vector such that and

?

are NP-complete [29]. All the three problems are variations
of the WEIGHT DISTRIBUTION problem; they are all somewhat
weaker than this problem, in the sense that the existence of a
polynomial-time algorithm for WEIGHT DISTRIBUTION directly
implies the existence of a polynomial-time algorithm for each
of the three problems (of course, the converse is also true
indirectly, since all these problems are NP-complete). Along
similar lines, Calderbank and Shor (see Diaconis and Graham
[13]) showed that

Instance: A binary matrix , where is a positive
even integer.

Question: Is there a vector of weight , such
that ?

is an NP-complete problem. That is, WEIGHT DISTRIBUTION

remains NP-complete even if the input is restricted to
On the other hand, Lobstein and Cohen [26]

considered a variation of MAXIMUM -LIKELIHOOD DECODING

that is deceptively close to MINIMUM DISTANCE: they showed
that finding a codeword of minimum weight among all the
codewords that are nonzero on the first position is NP-hard.
Formally, the problem:

Instance: A binary matrix and an integer
Question: Is there a vector of

weight , such that and ?

is NP-complete. Lobstein and Cohen [26] also used a polyno-
mial transformation from -DIMENSIONAL MATCHING (cf. [20,
p. 58]) to show that the problem:

Instance: A binary matrix an integer and
an integer

Question: Is there a vector of
weight , such that and

is NP-complete. It is pointed out in [26] that all the eight
problems are strikingly similar to MINIMUM DISTANCE, and
hence provide further evidence to support the conjecture
of [9] that MINIMUM DISTANCE is NP-complete. The ensemble
of all these problems, however, does not suffice to prove this
conjecture.

B. Some Observations on MAXIMUM-LIKELIHOOD DECODING

As mentioned in the Introduction, our proof of the NP-
completeness of MINIMUM DISTANCE is based on a polyno-
mial transformation from MAXIMUM -LIKELIHOOD DECODING.
The particular transformation we will use places certain mi-
nor restrictions on MAXIMUM -LIKELIHOOD DECODING. Hence,
our goal herein is to observe that MAXIMUM -LIKELIHOOD

DECODING remains NP-complete under these restrictions.
First, we slightly modify the question of MAXIMUM -

LIKELIHOOD DECODING by requiring that the solution to
is nonzero. This restriction makes a difference only

for , for if then obviously any solution to
is nonzero. We therefore observe that the proof in [9] of
the NP-completeness of MAXIMUM -LIKELIHOOD DECODING,
based on the transformation from THREE-DIMENSIONAL

MATCHING, uses only the special case where
Hence the same proof establishes that the minor variation of
MAXIMUM -LIKELIHOOD DECODING discussed above is also
NP-complete.

Next, as pointed out in [9], one may assume without loss of
generality that the matrix at the input to MAXIMUM -
LIKELIHOOD DECODING has full row rank. This implies that
the columns of contain a basis for , and we may further
assume w.l.o.g. that Indeed, if is full-rank
and , then the answer to the question of MAXIMUM -
LIKELIHOOD DECODING is trivially “Yes.”

We also assume w.l.o.g. that the columns ofare distinct.
If this is not so, then we can form (in polynomial time) an

matrix by retaining a single representative from
each set of equal columns of It is easy to see that
has a solution of weight at most, if and only if so does

, providing But the case may be safely
excluded from the input, as discussed above. The assumption
that has distinct columns further implies that These
are all the assumptions that we will need.

The key idea in the transformation from MAXIMUM -
LIKELIHOOD DECODING to MINIMUM DISTANCE is to regard
the columns of the parity-check matrix as elements

in the finite field GF The syndrome
vector may be also regarded as an element
in GF With this notation, taking into account the
restrictions discussed in the foregoing paragraphs, we may
rephrase MAXIMUM -LIKELIHOOD DECODING as the finite-field
version of SUBSET SUM (cf. [20, p. 233]), namely:

Problem: FINITE-FIELD SUBSET SUM

Instance: An integer , a set of distinct
elements GF , a nonzero
element GF , and a positive integer

Question: Is there a nonempty subset
of such that

and ?

According to the discussion in this subsection, the NP-
completeness of MAXIMUM -LIKELIHOOD DECODING immedi-
ately implies that FINITE-FIELD SUBSET SUM is NP-complete.
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III. NP-COMPLETENESS FORCODES OFCHARACTERISTIC TWO

Given the input and to FINITE-
FIELD SUBSET SUM, we first construct a series of matrices

which may be thought of as parity-check
matrices for the codes over GF These
matrices are constructed in such a way (see Lemma 1 below)
that the minimum distance of is equal to if

for some Otherwise,
the minimum distance of is equal to , and is an
MDS code [27, p. 317]. The matrix is given by

(1)

and it is easy to see that the minimum distance ofis either
or , according as for some or not.

In general, for the matrix is given by

...
...

...
...

... (2)

Notice that for all the matrix has
columns and linearly independent rows. Hence the
dimension of is , and its minimum distance is at
most , by the Singleton bound
[27, p. 33].

Lemma 1: Let denote the minimum distance of Then
, if

for some

and otherwise.

Proof: Let be a square matrix con-
sisting of some columns of If the last column of ,
namely, , is not among the columns of , then
is a Vandermonde matrix [27, p. 116]. Since are
all distinct, is nonsingular in this case. Otherwise, assuming
w.l.o.g. that is the last column of , we expand
along this column to obtain

detM = �

1 1 � � � 1

�i �i � � � �i
...

...
...

...
���2i ���2i � � � ���2i

���1
i

���1
i

� � � ���1
i

�

1 1 � � � 1

�i �i � � � �i
...

...
...

...
�
��2
i �

��2
i � � � �

��2
i

��i ��i � � � ��i

where with respect to a matrix denotes the determinant. The
first determinant on the right-hand side of the above expression
is again a Vandermonde determinant, while the second one is a
simple first-order alternant [10], [28]. Alternants were studied

by Muir [28] and many others. In general, it is well known that

1 1 � � � 1

X1 X2 � � � Xk

...
...

...
...

X
j�1
1 X

j�1
2 � � � X

j�1
k

X
j+1

1 X
j+1

2 � � � X
j+1

k

...
...

...
...

Xk
1 Xk

2 � � � Xk
k

= Sk�j(XXX)

1�i <i �k

(Xi �Xi )

for where is the th elementary sym-
metric function in the indeterminates .
A proof of the above expression may be found in Muir [28, vol.
III, ch. 5], for instance. The elementary symmetric function

is defined by

(3)

and in particular . In our case,
we indeed have in (3), and the
preceding expression for reduces to

(4)

Since are distinct, the Vandermonde factor in
(4) is nonzero, which implies that if and only
if Thus if no subset of exactly
elements of sums up to , then every
or less columns of are linearly independent. In this case,

by the Singleton bound, and is MDS. On the
other hand, if for some
then obviously Now, deleting the last row of ,
we obtain the parity-check matrix which defines the code

that contains as a subcode. It is easy to verify (cf. [27,
p. 323]) that is an MDS code, and hence

We observe that the MDS codes discussed in Lemma 1 are
of independent interest; they were studied by Roth and Lempel
in [30]. We also point out that the counterpart of Lemma 1
over the positive integers was proved by Khachiyan in [25].
In our context, it follows immediately from Lemma 1 that if we
could find the minimum distance of a linear code over a field
of characteristic in polynomial time, we could solve FINITE-
FIELD SUBSET SUM in polynomial time. Formally, consider
the following problem:

Problem: MINIMUM DISTANCE OVER GF
Instance: An integer , an matrix over

GF , an integer
Question: Is there a nonzero vector of length over

GF , such that and ?

One might argue that the operations in MINIMUM DISTANCE

over GF , in short MD , are over the finite field
GF , whereas the operations in MAXIMUM -LIKELIHOOD

DECODING are over GF If one were to implement the
operations in GF using a table of the field, for example,
then this would require exponential memory. However, if we
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implement the operations in GF as polynomial addition
and multiplication modulo an irreducible polynomial
of degree , then only linear memory is required, and each
operation in GF can be carried out in polynomial time
using operations in GF

Proposition 2: Existence of a polynomial-time algorithm
for MD implies the existence of a polynomial-time algo-
rithm for FINITE-FIELD SUBSET SUM.

Proof: Suppose that is a polynomial-time algorithm for
MD Then, given the input to FINITE-FIELD SUBSET SUM,
we construct the matrices as in (1) and (2). We
then run with and for It
follows from Lemma 1 that if returns “Yes” in at least one of
these queries, then the answer to the question of FINITE-FIELD

SUBSET SUM is “Yes,” otherwise the answer is “No.”
It is also easy to see that in each of thequeries, the

length of the input to MD is bounded by a polynomial
in the length of the input to FINITE-FIELD SUBSET SUM.
If the input and to FINITE-FIELD SUBSET

SUM takes bits, then the number of
bits required to specify each matrix is , and the
number of bits required to specify all of them is at most

Furthermore, each of these matrices can be obviously
constructed in polynomial time from and
using operations in GF The only thing that is not
entirely obvious is that GF itself, namely, an irreducible
polynomial of degree that defines GF , can be
constructed in deterministic polynomial time. However,
Shoup [32] provides a deterministic algorithm for this pur-
pose, whose complexity is strictly less than operations
in GF

The procedure used in the proof of Proposition 2 is called
“Turing reduction” in Garey and Johnson [20]. It uses a poly-
nomial number (namely , in our case) of queries to an oracle

for MD Loosely speaking, a polynomial transformation
is different from a Turing reduction in that it allows only a
singlequery to an oracle. Turing reduction is sufficient to show
that a problem is NP-hard, but not necessarily NP-complete,
at least according to how this terminology is used in Garey
and Johnson [20]. To prove that MD is NP-complete, we
need a polynomial transformation.

There are at least two alternative ways to convert our
proof of Proposition 2 into a polynomial transformation.
One way is to reduce directly from THREE-DIMENSIONAL

MATCHING. The key observation here is that the reduction from
THREE-DIMENSIONAL MATCHING to MAXIMUM -LIKELIHOOD

DECODING in Berlekamp, McEliece, and van Tilborg [9] holds
without change if we replace the phrase “of weight ”
with the phrase “of weight exactly ” in the question of
MAXIMUM -LIKELIHOOD DECODING. This eliminates the need
for multiple queries to in the proof of Proposition 2,
and establishes a polynomial transformation from THREE-
DIMENSIONAL MATCHING to MD However, we find some
intrinsic merit in reducing to MD , and hence also to
MINIMUM DISTANCE, from MAXIMUM -LIKELIHOOD DECODING

rather than from THREE-DIMENSIONAL MATCHING. Therefore,
we now describe a simple construction which shows that a

single query to would suffice to solve FINITE-FIELD SUBSET

SUM, and hence also MAXIMUM -LIKELIHOOD DECODING.
As before, given and we first construct

the matrices given by (1) and (2), which
define the codes Next, for
we let denote the linear code obtained by repeating each
codeword of exactly times. A parity-check matrix
for is given by

...
...

(5)

where is the identity matrix and
blanks denote zeros. Clearly, the length of is ,
its dimension is , and its minimum distance is
which is equal to either or by Lemma 1.
The integers are defined, recursively, as follows:

(6)

and

for (7)

Finally, we define the code over GF as the direct
sum of the codes Thus a parity-check matrix
for is given by

...
(8)

where are given by (5), and blanks again
denote zeros. Clearly, the length of is

its dimension is

and its minimum distance is given by

We now show that the number of bits required to specify
is bounded by a polynomial in It is easy to see from (7)
that and, therefore,

Using the relation
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which follows from (7), it can be readily verified by (re-
verse) induction that for all , we have

(9)

Substituting in (9) yields

(10)

where the last two inequalities follow from (6). Hence
, and the number of bits

required to specify is at most
Since the expressions in (5) and (8) are straightforward, this
argument is all we need to prove that can be constructed
from and in polynomial time.

We are now ready to prove that FINITE-FIELD SUBSET SUM

can be solved using only a single query to an oracle for MD

Theorem 3: MD is NP-complete.
Proof: Clearly, MD is in NP, since given a putative

solution , we can verify and in
polynomial time. We exhibit a polynomial transformation
from FINITE-FIELD SUBSET SUM to MD as follows. Given
the input to FINITE-FIELD SUBSET SUM, we construct in
polynomial time the matrix in (8), and then run the oracle

for MD with and By the definition of
the integers in (7), we have
for all This implies

(11)

(12)

Now, suppose that the answer to the question of FINITE-FIELD

SUBSET SUM is “Yes.” Then it follows from Lemma 1 that
for at least one Therefore,

(13)

in view of (11), and will necessarily return “Yes.” On the
other hand, suppose that the answer to the question of FINITE-
FIELD SUBSET SUM is “No.” Then, by Lemma 1, we have

for all and

(14)

where the third equality follows from (12), and the last inequal-
ity is precisely (10). Hence, in this case, will necessarily
return “No.”

Obviously, the NP-completeness of MD is a weaker
result than the NP-completeness of MINIMUM DISTANCE, since
the set of inputs to MINIMUM DISTANCE is a special case
of the set of inputs to MD However, Theorem 3 is a
useful stepping stone in the proof of the NP-completeness of
MINIMUM DISTANCE, which is the subject of the next section.

IV. NP-COMPLETENESS FORBINARY CODES

Given the transformation from FINITE-FIELD SUBSET SUM

to MD in Theorem 3, the NP-completeness of MINIMUM

DISTANCE would follow if we could map, in polynomial time,
the code constructed in (8) onto a binary linear code
in such a way that the minimum distance of could be
determined from the minimum distanceof A mapping of
this kind is exhibited in this section.

Certain simple mappings from codes over GF to
binary codes are well known [27, pp. 207–209]; however,
none of these mappings is adequate for our purposes.
For example, we could let be the binary subfield
subcode of , as is commonly done in obtaining BCH
codes from Reed–Solomon codes. In this case
Alternatively, one could let be the trace code (cf. [27,
p. 208]) of , in which case Yet another option
is to represent each element of GF as a binary -tuple
(cf. [27, p. 298]), using a fixed basis for GF over GF
In this case, we again have All these mappings
establish bounds on , and it can be shown that these
bounds are reasonably tight. However, such mappings are not
sufficient to determine the value of exactly, which is what
we need in the present context.

Instead, we will employ a concatenated, or multilevel,
coding scheme [17], [19], using as the outer code. We
let denote the binary linear code used as
the inner code in the concatenation: namely, we require that

and represent each element of GF by a codeword
of Specifically, fix a basis for GF
over GF and a generator matrix for Then each
element of GF is mapped
onto

(15)

which is a binary -tuple. When this mapping is applied
to , the result is a binary linear code of
length and dimension It is obvious that a parity-
check matrix for can be constructed in polynomial time
from a parity-check matrix for and a generator matrix
for Henceforth, we let denote the minimum distance
of the concatenated code constructed in this manner. The
following lemma provides an upper bound onin terms of

and

Lemma 4:

Proof: Since is a linear code over GF , if it
contains a codeword of weight , then it contains
such codewords, namely, all the multiples ofby the nonzero
elements of GF Let denote
these codewords, and consider the
matrix having as its rows. It is obvi-
ous that each of the nonzero columns of contains
each of the nonzero elements of GF exactly
once. Now let be the images of

under the mapping and consider the
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matrix having as its
rows. If some columns of correspond to a nonzero
position of then every nonzero codeword of
appears exactly once in these columns. It follows that the
weight of each nonzero column of is precisely , and
there are at most such columns. Thus the total weight
of is at most The lemma now follows by
observing that has rows.

We note that Lemma 4 is just a variation of the well-known
Plotkin bound [27, p. 41]. Yet, it provides exactly the kind
of instrument we need for our purposes. Indeed, suppose that

as in (13), where is defined by (6) and (7). Then
Lemma 4 implies that

(16)

On the other hand, suppose that as in (14). Then,
since by construction, we obviously have

(17)

In the present context, one is more interested in the reverse
interpretation of the bounds in (16) and (17). Namely, given
(say, by an oracle for MINIMUM DISTANCE), we would like to
distinguish between the two possibilities for Fortunately, if

(18)

then the right-hand side of (17) is strictly greater than the right-
hand side of (16). Thus our goal can be achieved, provided
the minimum distance of is sufficiently large.

We observe that in view of (10), and
as discussed in Section II-B. Thus in order to satisfy (18), it
would certainly suffice to require that

(19)

These considerations may be translated into a specific set of
conditions relating to the code used as the inner code in
our construction:

P1: The length of is bounded by a polynomial
in , and a generator matrix for can be
constructed in polynomial time.

P2: The dimension of is at least (if is
strictly greater than , then any subcode of
will suffice for our purposes).

P3: The ratio of the minimum distance of to its
length satisfies (19).

Less formally, what we need is a sequence of binary linear
codes, whose relative distance approaches the Plotkin bound

, and whose rate tends to zero only polynomially
fast as a function of their dimension. Furthermore, we should
be able to construct each code in the sequence in polynomial
time. This rules out codes that attain the Gilbert–Varshamov
bound [27, p. 557], as well as Zyablov codes [40], since the
complexity of Zyablov’s construction [40] becomes exponen-
tial at low rates. Nevertheless, many other known constructions

of asymptotically good families of low-rate codes suffice for
our purposes: concatenated binary codes constructed in [38]
from Drinfeld’s modular curves, low-rate codes constructed
in [31] using a variation of Justesen’s concatenation, and
codes constructed using expander graphs in [4] are just a few
examples. As pointed out by a referee, duals of the binary
BCH codes also have the required parameters, in view of
the Carlitz–Uchiyama bound [27, p. 281]. In what follows,
however, we shall use a simple construction, suggested by
Noga Alon [3], which is concise enough to be completely
described in one paragraph.

Alon’s Construction: Given an integer and a non-
negative integer , consider a concatenation of the

Reed–Solomon code over GF with the
binary simplex code [27, p. 30]. The result

is a binary linear code with the following parameters:

(20)

(21)

(22)

Alon [3] notes that a generator matrix for may be
specified directly as follows. The columns of this matrix are
indexed by pairs , where GF and ,
while its rows are indexed by integer pairs , where

and Let be a
basis for GF over GF Then the entry in row and
column is defined as where is computed
in GF , and denotes the inner product of and
as binary -tuples with respect to the basis .

We take and in the foregoing con-
struction. Then trivially satisfies propertyP2,
since Furthermore,

so that also satisfies propertyP1. Thus the length
of the concatenated code is at most

Now, for our choice of and , we have

where the last inequality holds for all (and follows
straightforwardly from the fact that
for such ). Thus also satisfies propertyP3. With both
and at hand, we are finally ready to prove our main result.

Theorem 5: MINIMUM DISTANCE is NP-complete.
Proof: Clearly, MINIMUM DISTANCE is in NP. A poly-

nomial transformation from FINITE-FIELD SUBSET SUM to
MINIMUM DISTANCE can be described as follows. Given the
input GF and to FINITE-FIELD

SUBSET SUM, we answer the question of FINITE-FIELD SUBSET

SUM by exhaustive search if Otherwise, we construct
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in polynomial time a parity-check matrix for the concatenated
code as described above. We then query an oracle for
MINIMUM DISTANCE for the existence of a codeword of weight
at most

where is defined by (6) and (7), and By
the foregoing discussion, the oracle for MINIMUM DISTANCE

will return “Yes” if and only if the answer to the question of
FINITE-FIELD SUBSET SUM is “Yes.”

This concludes the proof of the conjecture of Berlekamp,
McEliece, and van Tilborg [9]. In the next section, we discuss
certain extensions and consequences of this result.

V. FURTHER RESULTS AND CONCLUDING REMARKS

We note here that our proof of Theorem 5 can be im-
mediately extended to codes over an arbitrary, fixed, fi-
nite field GF This is based on the observation (cf. [7])
that the transformation from THREE-DIMENSIONAL MATCHING

to MAXIMUM -LIKELIHOOD DECODING in [9] holds without
change if the input to MAXIMUM -LIKELIHOOD DECODING is an

matrix over GF , rather than a binary matrix. Given
the NP-completeness of MAXIMUM -LIKELIHOOD DECODING

over GF , one can essentially go through the proof in
Sections II–IV, replacing each instance of by There
are a few intricate points along the way, that require some
explanation.

First, in rephrasing MAXIMUM -LIKELIHOOD DECODING as
FINITE-FIELD SUBSET SUM, one should leave the expression

in the question of FINITE-FIELD

SUBSET SUM as is, rather than ask whether is a linear
combination of This is certainly not the
question that one would be concerned with for decoding
purposes, but it is legitimate in an NP-completeness proof
given the specific transformation from THREE-DIMENSIONAL

MATCHING to MAXIMUM -LIKELIHOOD DECODING in [9].
(It is easy to see that a vector GF of weight
satisfies for the incidence matrix
constructed in [9] only if all the nonzero positions in
are equal to .) Secondly, the bound in Lemma 4 becomes

and one has to modify (19) accordingly. Fortunately, Alon’s
construction [3] works in this case as well. Here, the columns
of would be indexed by GF , so that (21)
remains without change, (20) becomes , and
(22) becomes

(23)

The key observation in the proof of (23) is as follows: if
GF and , then as ranges over all the elements

of GF , the inner product takes each value in GF
exactly times. (Alternatively, this can be viewed as a
concatenation of the Reed–Solomon code over
GF with the first-order generalized

Reed–Muller code over GF , see [8, p. 362].) To complete
the proof, one can again take and in
this construction.

The complexity of approximation algorithms for NP-hard
problems has been a subject of much research recently
(see [6] and references therein), and it is natural to ask
whether approximating the minimum distance of a linear
code is still hard. Since our proof of the NP-completeness
of MINIMUM DISTANCE is based on a transformation from
MAXIMUM -LIKELIHOOD DECODING and it is known [5], [33]
that MAXIMUM -LIKELIHOOD DECODING remains NP-complete
under approximation within a constant factor, it is plausible
that the same should be true for MINIMUM DISTANCE. We
leave a more rigorous investigation of this question as an
open problem.

Another immediate consequence of our proof is that certain
useful computational tasks in coding theory are NP-hard, as
there is an easy transformation from MINIMUM DISTANCE to
each of these tasks. There is a large number of computational
problems of this kind; we will give just three examples here.

First, we observe that determining whether a given linear
code is MDS is NP-complete. Formally, letbe a fixed prime,
and consider the following decision problem:

Problem: MDS CODE

Instance: Positive integers and an matrix
over GF

Question: Is there a nonzero vector of length over
GF , such that and ?

The fact that MDS CODE is NP-hard, even for , follows
directly from Lemma 1. The NP-completeness of MDS CODE

then follows from the observation that the phrase “of weight
” in the question of MAXIMUM -LIKELIHOOD DECODING

can be changed to the phrase “of weight exactly,” as
discussed in Section III.

As another example, consider the problem of determining
the trellis complexity of a linear code. More precisely, the
computational task is to find a coordinate permutation that
minimizes (the logarithm of) the number of vertices at a
given time in the minimal trellis for a binary linear code.
The corresponding decision problem [21] can be posed as:

Problem: PARTITION RANK

Instance: A binary matrix , and positive integers
and

Question: Is there a column permutation that takesinto
a matrix , such that is a
matrix andrank rank ?

This problem is important in the theory of block-code trellises
(for more details on this, see [36]). Horn and Kschischang [21]
recently proved that this problem is NP-complete, using an
ingenious and elaborate transformation from SIMPLE MAX CUT

[20, p. 210] which spans over five pages. On the other hand,
given the NP-completeness of MINIMUM DISTANCE, this result
can be established in a few lines as follows. First, observe
that the least integer for which

rank rank rank
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is equal to where denote, respectively, the
distance and the dual distance of the code defined byNotice
that it does not matter whether is viewed as a parity-check
or as a generator matrix in this problem. Now, suppose that
is an binary linear code whose minimum distance we
would like to determine, and let denote the dual distance
of Given , we first construct a binary linear Reed–Muller
code of length and order , where
and Then is an self-dual code,
where

We then use the well-known Kronecker product construction
[27, p. 568] to obtain a generator matrix for the product code

where is the dual code of Evidently, the
length of is , and its minimum distance is

On the other hand, it is easy to see that the dual distance of
is the minimum of the dual distances of and , namely,

Hence, running a polynomial-time algorithm
for PARTITION RANK with the input being a generator matrix
for , we can determine in polynomial time. The foregoing
Turing reduction from MINIMUM DISTANCE shows that, given
a linear code , computing either the minimum distanceor
the minimum dual distance is NP-hard. This furthermore
proves that PARTITION RANK remains NP-hard, even if the
input is restricted to rank In other words, even
if all we want to know is whether for some permutation,
the computational task of determining this is still NP-hard.
This is a somewhat stronger result than the one reported by
Horn and Kschischang in [21].

Moreover, we believe that the techniques developed in
the proof of NP-completeness of MINIMUM DISTANCE can
be now used to show that determining themaximumtrellis
state-complexity of a code, namely , is also
NP-complete. Indeed, Jain, M̆andoiu, and Vazirani [22] have
recently employed the results of Section III of this paper
to prove that computing is NP-hard for linear codes
of characteristic , namely codes over GF where is
variable. This result is similar in spirit to our Theorem 3,
and the argument used by Jain, Măndoiu, and Vazirani [22] is
essentially a variation of Lemma 1. We point out, however,
that the problem is still open for binary codes.

As a third example, we mention the problem of finding
the largest subcode with a prescribed contraction index [37].
Namely, given a generator matrix for a binary linear
code and a positive integer , we wish to find the largest
subcode which has a generator matrix with at most

distinct columns. This problem is of importance
in soft-decision and majority-logic decoding (see [37] for an
extensive treatment), and it is possible to show that it is NP-
hard using a transformation from MINIMUM DISTANCE. The
proof of this is a bit tedious, and we omit the details.

Finally, we would like to mention two important problems
in coding theory, for which we do not have a polynomial

transformation from MINIMUM DISTANCE, but believe that it
should be possible to find one.

The first problem is that of bounded-distance decoding of
binary linear codes. While the intractability of maximum-
likelihood decoding has been thoroughly studied [5], [7],
[9], [12], and [33], most of the decoders used in practice
are bounded-distance decoders. It is still not known whether
bounded-distance decoding is NP-hard for the general class of
binary linear codes. For bounded-distance decoding up to the
error-correction radius of a code, the corresponding decision
problem can be formulated as follows:

Problem: BOUNDED-DISTANCE DECODING

Instance: An integer , a binary matrix , such
that every columns of are linearly
independent, a vector , and an integer

Question: Is there a vector of weight , such
that ?

Notice that BOUNDED-DISTANCE DECODING is not likely to be
in NP, since in view of our main result in this paper, verifying
that every columns of are linearly independent is
NP-hard. Hence, this is an example of apromise problem
(cf. [18]). Nevertheless, we could ask whether BOUNDED-
DISTANCE DECODING is NP-hard. We concur with the remark
of Barg [7], and conjecture that this is so. Moreover, we
believe that the NP-completeness of MINIMUM DISTANCE

should be instrumental in proving this conjecture.
We point out that a hardness result for bounded-distance

decoding of binary linear codes in a somewhat different
context was recently established in [16]. Downey, Fellows,
Vardy, and Whittle [16] show that MAXIMUM -LIKELIHOOD

DECODINGis hard for the parametrized complexity class
Namely, it is unlikely that there exists an algorithm which
solves MAXIMUM -LIKELIHOOD DECODING in time ,
where is a constant independent ofand is an arbitrary
function. Many NP-complete problems are fixed-parameter-
tractable. For example, VERTEX COVER, a well-known NP-
complete problem [20, p. 53] which asks whether a graph

on vertices has a vertex cover of size at most, can
be solved in time Loosely speaking, the
parametrized complexity hierarchy

FPT

introduced by Downey and Fellows [14], [15] distinguishes
between those problems that are fixed-parameter-tractable and
those that are not. The result of [16] implies that bounded-
distance decoding of linear codes is hard in the following
sense: if a polynomial-time algorithm for this purpose ex-
ists then the parametrized complexity hierarchy collapses
with FPT Nevertheless, the question whether the
BOUNDED-DISTANCE DECODING problem, as defined above, is
NP-hard is still open.

The second problem we would like to mention is that
of finding the shortest vector (in the Euclidean norm) in a
sublattice of The overall status of computational problems
for lattices is remarkably similar to the situation with linear
codes. Peter van Emde Boas [35] proved in 1980 that finding
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the nearest vector (which is equivalent to maximum-likelihood
decoding) in a sublattice of is NP-hard, and conjectured that
finding the shortest vector should be hard as well. Formally,
van Emde Boas conjectured that the following problem:

Problem: SHORTEST VECTOR

Instance: A basis for a lattice , and
an integer ,

Question: Is there a nonzero vector in , such that
?

is NP-complete. Despite a considerable amount of work, the
proof of this conjecture remains elusive. Arora, Babai, Stern,
and Sweedyk [5] classify this as a “major open problem.”
Moreover, this conjecture becomes particularly significant in
view of the celebrated result of Ajtai [1], who showed how
to efficiently generatehard instancesof certain computational
problems related to integer lattices. Moreover, Ajtai [2] has
recently proved that the SHORTEST VECTOR problem is hard
for NP under randomized reductions. This comes very close
to proving the conjecture of [35].

Intuitively, finding the shortest vector in a lattice should be
at least as “difficult” as finding the minimum-weight vector
in a binary linear code. Thus it is reasonable to suggest that
there should be a polynomial transformation from MINIMUM

DISTANCE to the SHORTESTVECTOR. Specifically, we pose the
following problem: given a binary linear code construct,
in polynomial time, a lattice so that the minimum
distance of can be determined from the minimum norm
of In view of our main result, solving this problem would
amount to proving that SHORTEST VECTOR is NP-complete.
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