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The Intractability of Computing
the Minimum Distance of a Code

Alexander Vardy,Senior Member, IEEE

Abstract—It is shown that the problem of computing the DIMENSIONAL MATCHING, a well-known NP-complete prob-

minimum distance of a binary linear code is NP-hard, and lem [20, p. 50] They Conjectured, but were unable to prove,
the corresponding decision problem is NP-complete. This result that the following decision problem:

constitutes a proof of the conjecture of Berlekamp, McEliece, and

van Tilborg, dating back to 1978. Extensions and applications of  prgplem II: MINIMUM DISTANCE

this result to other problems in coding theory are discussed. Instance: A binarymxn matrix H and an integew > 0
Index Terms—Complexity, linear codes, minimum distance, Question: Is there a nonzero vectar € F5 of weight

NP-completeness. < w, such thatHz' = 0?

is also NP-complete. It is easy to see that NP-completeness
of IT would imply that computing the minimum distance of a
PROBLEM 1II is said to belong to the class NP if itbinary linear code is NP-hard. Indeed, fétbe a linear code
can be solved by a nondeterministic Turing machingefined by the parity-check matrik/, and letd denote the
in polynomial time. A problemll € NP is NPeompleteif minimum distance ofC. If d is known, then one can answer
every problem in NP can be transformedlian deterministic the question oflI by simply comparingd and w. On the
polynomial time. A problemll, which is not necessarily in other hand, if one can solvH, then one can also find by
NP, is said to be NPward if the existence of a deterministic successively running an algorithm fof with w = 1,2,---
polynomial-time algorithm foil implies the existence of suchuntil the first affirmative answer is obtained.
an algorithm for every problem in NP. For a more rigorous The MINIMUM DISTANCE problem has a long and convoluted
definition of these terms, see Garey and Johnson [20].  history. To the best of our knowledge, it was first mentioned
Berlekamp, McEliece, and van Tilborg [9] showed in 1978y Dominic Welsh at an Oxford Conference on Combinatorial
that two fundamental problems in coding theory, namelyathematics in 1969. In the printed version [39] of his
maximum-likelihood decoding and computation of thgaper, Welsh calls for an efficient algorithm to find the

(nonzero terms in the) weight distribution, are NP-hard fQfhortest cycle in a linear matroid over a fidfd It is easy
the class of binary linear codes. The formal statement of the see that forF = GF(q), this is equivalent to finding

I. INTRODUCTION

corresponding decision probleillows. the minimum-weight codeword in a linear code over GF
Problem: MAXIMUM -LIKELIHOOD DECODING Hence the NP-completeness ofinium DISTANCE implies
Instance: A binary m x n matrix H, a vectors € F7*, and that a polynomial-time algorithm for the problem posed by
an integerw > 0. Welsh [39] is unlikely to exist. Following the publication by
Question: Is there a vector: € F} of weight < w, such Berlekamp, McEliece, and van Tilborg [9] of their conjecture,
that Hzt = s? the MiNIMUMm DISTANCE problem was mentioned as open by

Garey and Johnson in [20, p. 280]. Three years later, it was
posed by Johnson [23] as an “open problem of the month” in
his ongoing guide to NP-completeness column. The problem
remained open despite repeated calls for its resolution by
Johnson [24] and others.
Berlekamp, McEliece, and van Tilborg [9] proved that both Determining whether computation of the minimum Ham-
problems are NP-complete using a reduction fromrEE ming distance of a linear code is NP-hard is important not
_ . _ only because this is a long-standing open problem. There are
e e by e Eackars ouncason, I NSE, e e SSEAeral more compeling reasons. First, or a host of problerns

under Grant NO0014—-9610129. The material in this paper was presented in far€0ding theory there is an easy reduction fronnMum

as a Plenary Lecture at the 29th Annual Symposium on Theory of ComputiigiSTANCE. A few examples of such problems are presented
El Paso, TX, May 1997. . . . . '
The author is with the Coordinated Science Laboratory, University (IJP Section V. Thus if MNIMUM DISTANCE is gomputatlonally
lllinois, Urbana, IL 61801 USA. intractable, then all these problems are intractable as well.
Publisher Item Identifier S 0018-9448(97)07421-X. Secondly, it is known that the parameters of almost all

1The Maximum-LikeLIHOOD DEcobpING problem was originally termed |inear codes attain the Gilbert—=Varshamov bound [34, p. 77].
CoseTWEIGHTs in [9]; it is also referred to as ECopING oF LINEAR CODES in

[20, p. 280], [29], and as Mimum Distance DEcODING in [7]. The WEIGHT H_ence it is _e_asy_to devise randomized al-gorithms Fhat with
DisTRIBUTION problem was originally termeduspace WEIGHTS in [9]. high probability yield (long) linear codes with large distance.

Problem: WEIGHT DISTRIBUTION

Instance: A binary m x n matrix H and an integetv > 0.

Question: Is there a vector € F5 of weightw, such that
Hzt = 0?
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If there were a polynomial-time procedure for computingixed, finite field. Furthermore, several problems are shown to
the minimum distance of a linear code, these randomized NP-hard in Section V, using a reduction fromniium
algorithms could be used for code construction. It is, therefof@isTANCE. Finally, two important problems in coding theory
important to know that such a polynomial-time procedure iat are closely related to IMMuM DISTANCE are also briefly
unlikely to exist. discussed in Section V.

Due to these and other reasons, the conjecture of Berlekampone last remark in this section: we point out that the hard-
McEliece, and van Tilborg [9] sparked a remarkable amoufgss of MNnIMUM DISTANCE can be viewed as an essentially

of work, most of it unpublished. In particular, MIMUM -  combinatorial question. Indeed, consider the following graph-
LIKELIHOOD DECODING was shown to remain hard in moretheoretic decision problem:

general contexts: with unlimited pre-processing [12], under ap-

proximation within a given constant factor [5], [33], and over prgblem: EVEN VERTEX SET

an arbitrary (fixed) alphabet [7]. Furthermore, in an attempt to |nstance: A graphG = (V,E) and an integets > 0.
establish the NP-completeness oiNWium DISTANCE, a great  Question: Is there a nonempty subs&f C V of at most

number of closely related problems were proved to be NP- w vertices, such that every vertexe V has
complete. For example, the problems of finding the maximum an even number of vertices df’ among its
weight of a codeword, determining the existence of a codeword neighbors?

of weightn /2, and computing the minimum weight of a code-

word which is nonzero in a specified position, were shown {p ;¢ easy to see that the NP-completeness afiMUM
be NP-hard by Ntafos_and Hakimi [29], Calderba_nk and SthSTANCE immediately implies that ¥EN VERTEX SET is
(see [13]), and Lobstein and Cohen [26], respectively. A brigip_complete. In fact, MimMum DISTANCE is essentially a

overview of the plurality of problems of this kind is provided,restriction of E/EN VERTEX SET to bipartite graphs, obtained

for completeness, in the next section. All these problems aﬁ identifying a parity-check matrixd with an adjacency
tantalizingly close to MNIMUM DISTANCE. Nevertheless, the : A

- X . t f a bipartite (T — 16] f
proof of the original conjecture of Berlekamp, McEliece, ang]al rix of a bipartite (Tanner) grapti—see [16] for more

) . . etails. Thus it is interesting to observe that algebraic tech-
van Tilborg [9] remained elusive for almost two decades. . ; ; .
> ; ) . nigues deeply rooted in coding theory, such as construction of
Our main goal in this paper is to prove thatiNvum

DiSTANCE is NP-complete. To this end, we exhibit a polynoMDS codes via alternants [11], [30] and concatenated coding

mial transformation to MuMuM DISTANCE from Maxivum - 1+ [19], can be employed to answer a purely combinatorial
LIKELIHOOD DEecobpING. Thus we settle the conjecturequeSt'on'
of [9] in the affirmative, using a reduction from the main Il. PRELIMINARIES

result of [9]. In the next subsection, we briefly survey some of the prior
We start with some notation and overview of relevant ’ y y P

background in Section Il. We also show in Section Il thawork mot|\{ated by the conjecture of Bferlekamp, MgEIlece,
MAXIMUM -LIKELIHOOD DECODING remains NP-complete and van Tilborg [9]. In a later subsection, we consider the
under certain minor restrictions, and reformulate this proble_tSAAx"V'U'V| "LIKELIHOOD DECODING problem, and show that

as the finite-field version of WSET Sum. a well-known 't rémains NP-complete under certain, not too restrictive,

NP-complete problem [20, p. 223]. In Section I, we-onditions.

use certain simple alternants [11], [25], [28] to show thg{ NP-Complete Problems Related taNifium DISTANCE
computing the minimum distance for the class of linear he followi iah bl loselv related
codes over a field of characteristic is NP-hard, and the The following eight problems, closely related taium

corresponding decision problem iMvUM DISTANCE over ~D!STANCE, are known to be NP-complete. These problems

GF(2™), in short MDy, is NP-complete. Our proof is based®'€ included herein for comple.teness. They are listed in
on a polynomial transformation from AkiMuM -LikeLiHoop ~ chronological order, with appropriate references.
DECODING to MD,~. This, however, does not prove that First, as noted in [9], NMMUM DISTANCE.IS a variation of
MINIMUM DISTANCE is NP-complete, since the set of possibldVEIGHT DISTRIBUTION, obtained by replacing the phrase “of
inputs to MNIMUM DISTANCE is a small subset of the set ofWeightw” with the phrase “of weight< w.” It is also easy to
possible inputs to MB-.. Therefore, in Section IV, we map theS€€ that NNIMUM DISTANCE is a special case of MIMUM -
code C# over GF(2™), constructed in Section Ill, onto al/KELIHOOD DECODING, obtained by restricting the input to
binary codeC, in such a way that the minimum distances = 0 and requiring that is nonzero. Thus the problem that
of C# can be determined from the minimum distancBerlekamp, McEliece, and van Tilborg [9] conjectured to be
of C. The particular mapping used employs a simple cofP-complete is in many ways related to the two problems
struction of low-rate binary codes, which was pointed out fdiat they proved are NP-complete.

us by Noga Alon [3]. Since the length @ is bounded by  Three other computational tasks, that even more closely
a polynomial in the length ofc#, and the mapping itself resemble NNIMUM DISTANCE, were shown to be NP-hard
can be accomplished in polynomial time, this completes tiwy Ntafos and Hakimi [29], namely: finding a codeword of
proof of the NP-completeness of iIMvuM DISTANCE. We maximum weight, finding a codeword of minimum weight
conclude the paper in Section V, by showing thatnMum  which is not a multiple oft, and finding a codeword whose
DisTANCE is NP-complete for linear codes over an arbitraryweight is in the rangéw, w-]. Formally, the problems:
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Instance: A binary m x n matrix H and an integetv > 0. B. Some Observations onAMiMUM-LIKELIHOOD DECODING
Question: Is there a vector: € Fy of weight > w, such  As mentioned in the Introduction, our proof of the NP-
that Hz* = 0? completeness of MiMum DISTANCE is based on a polyno-

) ) _ mial transformation from MXIMUM -LIKELIHOOD DECODING.
Instance: A binary m x n matrix H, an integenw >0, and  The particular transformation we will use places certain mi-

an integerk > 2. nor restrictions on MXIMUM -LIKELIHOOD DECODING. Hence,
Question: Is there a nonzero vectarc F3 of weight< w, our goal herein is to observe that AMIMUM -LIKELIHOOD
such thatHz' = 0 andwt (z) # 0 (mod k)? DEcoDING remains NP-complete under these restrictions.

First, we slightly modify the question of MIMUM -
Instance: A binary m x n matrix H, integersw, > w; >0. LIKELIHOOD DECODING by requiring that the solution to
Question: Is there a vector: € F} such thatdz' = 0 and Hz' = s is nonzero. This restriction makes a difference only
wy < wt(z) < we? for s=0, for if s£0 then obviously any solutiom to Hz!=s
is nonzero. We therefore observe that the proof in [9] of
are NP-complete [29]. All the three problems are variationRe NP-completeness of AKIMUM -LIKELIHOOD DECODING,
of the WEIGHT DISTRIBUTION problem; they are all somewhatbased on the transformation fromHREEDIMENSIONAL
weaker than this problem, in the sense that the existence d¥laTCHING, uses only the special case where= (11---1)*.
polynomial-time algorithm for WIGHT DisTRIBUTION directly Hence the same proof establishes that the minor variation of
implies the existence of a polynomial-time algorithm for eacilAXIMUM -LIKELIHOOD DECODING discussed above is also
of the three problems (of course, the converse is also tr)E-complete. , _
indirectly, since all these problems are NP-complete). Alon Next, as pointed out in [9], one may assume without loss of

L . . nerality that then matrix H at the input to MXxIMuM -
similar lines, Calderbank and Shor (see Diaconis and Grah rﬁlELlHoZ)D DECODII>\I<GnhaS full row rank pThis implies that

[13]) showed that the columns offf contain a basis foF4*, and we may further
Instance: A binary m x n matrix H, wheren is a positive assume w.l.o.g. thaty < m — 1. Indeed, if H is full-rank
even integer. andw > m, then the answer to the question ofakMMuM -
Question: Is there a vector: € F} of weight n/2, such LIKELIHOOD DECODING is trivially “Yes.” o
that Hzt = 0? We also assume w.l.0.g. that the columngbtre distinct.

If this is not so, then we can form (in polynomial time) an
is an NP-complete problem. That is, &féHT DISTRIBUTION 1, x 5/ matrix H’ by retaining a single representative from
remains NP-complete even if the input is restricted t@ach set of equal columns &f. It is easy to see thafz! = s
w = n/2. On the other hand, Lobstein and Cohen [26jas a solution of weight at most, if and only if so does
considered a variation of MKIMUM -LIKELIHOOD DECODING H'z! = s, providings # 0. But the cases = 0 may be safely
that is deceptively close to MiMuM DISTANCE: they showed excluded from the input, as discussed above. The assumption
that finding a codeword of minimum weight among all théhat# has distinct columns further implies that< 2™. These

codewords that are nonzero on the first position is NP-haff€ all the a§sum[)_tions that we will n_eed.
Formally, the problem: The key idea in the transformation from AMIMUM -

LIKELIHOOD DECODING to MINIMUM DISTANCE is to regard
Instance: A binary m x n matrix H and an integet > 0.  the columns of then x n parity-check matrixH as elements
Question: Is there a vectorr = (z1,---,2,) € Fy of aq,a2,--+,a, in the finite field GR2™). The syndrome

weight < w, such thatdz! = 0 andz; = 1? vector s € F3' may be also regarded as an elemght

is NP-complete. Lobstein and Cohen [26] also used a polyn'8- G.F@ )- W'th this . notation, talgng into_account the
_ _ restrictions discussed in the foregoing paragraphs, we may
mial transformation fronk-DIMENSIONAL MATCHING (cf. [20,

rephrase MXIMUM -LIKELIHOOD DECODING as the finite-field

p. 58]) to show that the problem: version of $BSET SuM (cf. [20, p. 233]), namely:
Instance: A binary m x n matrix H, an integery > 0, and Problem: FINITE-FIELD SUBSET SUM
an integerk > 3. Instance: An integer m >0, a set ofn < 2™ distinct
Question: Is there a vectorr = (x1,---,z,) € F3 of elementsay, wg, - -+, o, € GF(2™), @ nonzero
weight < w, such thatHz! = 0 and elements € GF(2™), and a positive integer
Tl :-772:"':-77|_wk/(k+1)J:1? . _wSm_l'
Question: Is there a nonempty subséty;, , a,, -, }
is NP-complete. It is pointed out in [26] that all the eight of {a1, a2, -, an}, such that
problems are strikingly similar to MiMmum DISTANCE, and g+, oy, = f
hence provide further evidence to support the conjecture and 6 < w?

of [9] that MiNIMUm DISTANCE is NP-complete. The ensembleaccording to the discussion in this subsection, the NP-
of all these problems, however, does not suffice to prove thismpleteness of MXIMUM -LIKELIHOOD DECODING immedi-
conjecture. ately implies that RITE-FIELD SUBSET SuM is NP-complete.
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[ll. NP-COMPLETENESS FORCODES OFCHARACTERISTICTWO by Muir [28] and many others. In general, it is well known that

Given the input a1, 2, -, 0y, /3, and w to FINITE- 1 1 ... 1
FIELD SUBSET SuM, we first construct a series of matrices| y, X, - X
Ay, Ag, -+, Ay, which may be thought of as parity-check | . .
matrices for the code€;, Cs,---,C, over GF2™). These TR iy . N
matrices are constructed in such a way (see Lemma 1 belowjzgfj+l X§+l X*JTHL = Sk-i(X) H (X, = Xo)
that the minimum distance ofs is equal to§ + 1 if AT X X ISisipsk
i, + @i, + -+ i, = 3 for someiy, is, - - -, is. Otherwise, : : : :
the minimum distance of; is equal toé + 2, andC; is an Xk ooxk o X}

MDS code [27, p. 317]. The matriX; is given by
forj=1,2,---,k—1, whereS,(.) is therth elementary sym-
1 1 ... 1 1 metric function in the indeterminate¥ = X, Xo,---, Xx.
ar s o oan fB (1) A proof of the above expression may be found in Muir [28, vol.
lll, ch. 5], for instance. The elementary symmetric function
and it is easy to see that the minimum distanc€ pfis either S,.(+) is defined by

A =

2 or 3, according ag? = «; for somei = 1,2,---,n or not. def s ‘
In general, for§ = 2,3,---,w, the matrix 45 is given by Sr(X) = ‘ Z ‘ Xi X X 3)
1<ty <to < < <k
-1 1 1 07 and in particulats; (X) = X7 + Xy + -- - + Xj. In our case,
we indeed have = k—j=6—(6—1) =1in (3), and the
1 o e (7% . .
5 5 ) preceding expression fatet M reduces to
al a2 PRI an
As = L. (2) detM = —(o;,+o,+ -+, =) H (v, —av;, ). (4)
<a<b<é
o/{_2 ag_Q afl_Q 0 tsashs
ad™t bt ad 11 Sinceay, oo, - - -, vy, are distinct, the Vandermonde factor in
L of of QB _(4) is nonzero, which implies thqletM = 0 if and only
if o, +ai,+---+ i, = 3. Thus if no subset of exactly
Notice that for all6 = 1,2, .-, w, the matrixAs hasn +1 elements offay, ag, -+, an } sums up tos, then everys + 1

columns andé + 1 linearly independent rows. Hence theor less columns ofds are linearly independent. In this case,
dimension ofCs is n — 8, and its minimum distance is atds = 6 + 2 by the Singleton bound, an@s is MDS. On the
most(n + 1) — dim Cs + 1 = § + 2, by the Singleton bound other hand, ifv;, +a;, +- - -+, = 8 for someiy, iz, -+, is,
[27, p. 33]. then obviouslyds < 6 + 1. Now, deleting the last row ofi;,
we obtain the parity-check matrix; which defines the code
Lemma 1: Let ds denote the minimum distance ©f. Then C} that containgCs as a subcode. It is easy to verify (cf. [27,
ds = 6§ + 1, if p. 323]) thatC} is an MDS code, and hendg > df = 6+1.00

We observe that the MDS codes discussed in Lemma 1 are
of independent interest; they were studied by Roth and Lempel
in [30]. We also point out that the counterpart of Lemma 1
over the positive integers was proved by Khachiyan in [25].

Proof: Let M be a(é§+41)x (& + 1) square matrix con- Inour context, it follows immediately from Lemma 1 that if we
sisting of some’+1 columns ofA;. If the last column of4s, could find the minimum distance of a linear code over a field
namely,(0---01/3)*, is not among the columns @f/, then)s  of characteristi@ in polynomial time, we could solvelRiTE-
is a Vandermonde matrix [27, p. 116]. Sineg, a2, - - -, o, are  FIELD SUBSET SUM in polynomial time. Formally, consider
all distinct, M is nonsingular in this case. Otherwise, assumirigje following problem:
w.l.0.g. that(0---013)" is the last column of\/, we expand

o, tag, + o, =06, for someiy, i, -+, s

and ds = 6 + 2 otherwise.

along this column to obtain Problem: MINIMUM DISTANCE OVER GF(2™)
Instance: An integer m >0, an r x n matrix H over
1 Lol 1 Lol GF(2™), an integerw > 0.
Qip Qg ot Qg Qip Qg Qg Question: Is there a nonzero vectar of length n over
det M = 3| oo - oo GF(2™), such thatH{z' = 0 andwt (z) < w?
(}'fl_z (,152_2- (}zf;Q afl_z f2—2 e ozf;2 . ) )
Tt afTh gt a8 ab oAb One might argue that the operations inNWUM DISTANCE

P iy g

over GF(2™), in short MD,~, are over the finite field
where|-| with respect to a matrix denotes the determinant. TH&F(2™), whereas the operations in AMMUM -LIKELIHOOD
first determinant on the right-hand side of the above expressiDECODING are over GHK2). If one were to implement the
is again a Vandermonde determinant, while the second one ispeerations in GE2™) using a table of the field, for example,
simple first-order alternant [10], [28]. Alternants were studiethen this would require exponential memory. However, if we
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implement the operations in GB™) as polynomial addition single query to? would suffice to solve INITE-FIELD SUBSET
and multiplication modulo an irreducible polynomig{z) Sum, and hence also MKIMUM -LIKELIHOOD DECODING.

of degreem, then only linear memory is required, and each As before, giveny, s, - - -, a,, 3, andw, we first construct
operation in GK2™) can be carried out in polynomial timethe matricesA;, 4,,---, A,, given by (1) and (2), which
using operations in Gg). define the code€;,C,,---,C,. Next, foré = 1,2, w,

we letCj denote the linear code obtained by repeating each

Proposm'on 2 Emstencg of a polynom|al-t|me algor'thmcodeword of Cs exactly Is times. A parity-check matrix
for MD,~ implies the existence of a polynomial-time algo;

PR
rithm for ANITE-FIELD SUBSET SUM. for Cj is given by
Proof: Suppose thab is a polynomial-time algorithm for r 7

MDs~. Then, given the input to INITE-FIELD SUBSET SuM, As

we construct the matrices,, A,,---, A, asin (1) and (2). We Liyy | =Ly

then rund with H = As andw = 6+1,for6 =1,2,--- w. It r— |7 (5)
follows from Lemma 1 that ifd returns “Yes” in at least one of 6 7 |intl “inAl

these queries, then the answer to the questionnofEFIELD
SUBSET SuM is “Yes,” otherwise the answer is “No.”

It is also easy to see that in each of thequeries, the [Lnt1 —dnt1 ]
length of the input to MR-~ is bounded by a polynomial
in the length of the input to INITE-FIELD SUBSET Sum.
If the input oy, a2, -+, and 3 to RANITE-FIELD SUBSET
Sum takesm(n + 1) = O(n?) bits, then the number of
bits required to specify each matriAs is O(n?), and the
number of bits required to specify all of them is at mo
O(n*). Furthermore, each of these matrices can be obviously w(w + 1)
constructed in polynomial time fromy, as, - -, q,, and j3, by =243+ +w = 9
using operations in GR™). The only thing that is not
entirely obvious is that GR2™) itself, namely, an irreducible and
polynomial g(z) of degreem that defines GF2™), can be ls41(6 +2)
constructed in deterministic polynomial time. However, ‘® — [ §+1
Shoup [32] provides a deterministic algorithm for this pur-
pose, whose complexity is strictly less thém?) operations Finally, we define the cod€# over GF(2™) as the direct
in GF(2). O sum of the code€’, C5,---,C,,. Thus a parity-check matrix
qr C# is given by

where I,,41 is the (n + 1) x (n 4+ 1) identity matrix and
blanks denote zeros. Clearly, the length@f is /5(n + 1),
its dimension is: — ¢, and its minimum distance i$; = /sds
which is equal to eithefs(é + 1) or I5(6 4+ 2) by Lemma 1.
S‘{'he integerdy, ls,---, [, are defined, recursively, as follows:

-1 (6)

—‘, foré=w-1,w-2,---,1. (7)

The procedure used in the proof of Proposition 2 is caIIef
“Turing reduction” in Garey and Johnson [20]. It uses a poly- H{
nomial number (namelw, in our case) of queries to an oracle " H)
$ for MD,=. Loosely speaking, a polynomial transformation H" = . (8)
is different from a Turing reduction in that it allows only a ' H
singlequery to an oracle. Turing reduction is sufficient to show w
that a problem is NP-hard, but not necessarily NP-completghere H{ Hj, --- H are given by (5), and blanks again
at least according to how this terminology is used in Garejenote zeros. Clearly, the length 6 is
and Johnson [20]. To prove that Mb is NP-complete, we
need a polynomial transformation. n# = (li+l+ - +l)(n+1)

There are at least two alternative ways to convert our o
proof of Proposition 2 into a polynomial transformation!tS dimension is
One way is to reduce directly from HREE-DIMENSIONAL
MATCHING. The key observation here is that the reduction from
THREEDIMENSIONAL MATCHING t0 MAXIMUM -LIKELIHOOD  and its minimum distance is given by
DecobpING in Berlekamp, McEliece, and van Tilborg [9] holds
without change if we replace the phrase “of weightw” d* = min{lidy, loda, -+, lydy )}
with the phrase “of weight exactlyy” in the question of ) )
MAXIMUM -L IKELIHOOD DECODING. This eliminates the need We now show that the number of bits required to spedify
for multiple queries to® in the proof of Proposition 2, iS bounded by a polynomial in. It is easy to see from (7)
and establishes a polynomial transformation fromrEe thatliy >l > --- >1,, and, therefore,
DIMENSIONAL MATCHING to MD»-.. However, we find some 5
intrinsic merit in reducing to MB-, and hence also to wt = (htl++l)n+1) < whin+l) < b,
MINIMUM DISTANCE, from MAXIMUM -LIKELIHOOD DECODING Using the relation
rather than from WREE-DIMENSIONAL MATCHING. Therefore,
we now describe a simple construction which shows that a 6+ 1Dls <(6+2)s41+(6+1)

B = (1= 1)+ (0= w) = O@?)
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which follows from (7), it can be readily verified by (re- IV. NP-COMPLETENESS FORBINARY CODES

verse) induction that for at = w—1,w —2,---,1, we have  Gjyen the transformation fromifTE-FIELD SUBSET SUM

to MDy~ in Theorem 3, the NP-completeness ofNWum
DisTaNCE would follow if we could map, in polynomial time,
Substitutings = 1 in (9) yields the codeC# constructed in (8) onto a binary linear co@e
in such a way that the minimum distand& of C# could be
20 < (w4 Dl +(2+3+-+w) = (w+2)l, <w® (10) determined from the minimum distandeof C. A mapping of
this kind is exhibited in this section.
where the last two inequalities follow from (6). Hence certain simple mappings from codes over @P) to
n* < hn? < w’n? = O(n?), and the number of bits pinary codes are well known [27, pp. 207-209]; however,
required to specifyf# is at mostn* (n* — k#)m = O(n'). none of these mappings is adequate for our purposes.
Since the expressions in (5) and (8) are straightforward, thig; example, we could letC be the binary subfield
argument is all we need to prove thEt* can be constructed g;,pcode ofC#, as is commonly done in obtaining BCH
from ay, g, -+, @, f#, andw in polynomial time. codes from Reed-Solomon codes. In this case> d#.
We are now ready to prove thaldFTE-FIELD SUBSET SUM  Alternatively, one could letC be the trace code (cf. [27,
can be solved using only a single query to an oracle fobMD , 208]) of C#, in which cased < d#. Yet another option

Theorem 3:MD, is NP-complete. is to represent each element of &) as a binarym-tuple
Proof: Clearly, MD,~. is in NP, since given a putative (¢f. [27, p. 298]), using a fixed basis for G&™) over GF(2).

solution z, we can verifyHz! = 0 and wt(z) < w in N thls_ case, we again haveé 2 d#. All these mappings
polynomial time. We exhibit a polynomial transformatiorgstablish bounds om#, and it can be shown that these
from FINITE-FIELD SUBSET SUM to MD as follows. Given Pounds are reasonably tight. However, such mappings are not
the input to RNITE-FIELD SUBSET SuMm, we construct in Sufficient to determine the value df* exactly, which is what
polynomial time the matrix# in (8), and then run the oracleWe need in the present context. _
® for MD4= with H = H# andw = 2l;. By the definition of Instead, we will employ a concatenated, or multilevel,
the integersy, la, - - -, L, In (7), we have(6+1)ls > (6+2)l541 coding scheme [17], [19], usin@# as the outer code. We

O+Dls <(w+ Dl + @+ +(6+2)+---+w. (9)

forall § = 1,2,---,w — 1. This implies let C* denote the(n*,k*,d*) binary linear code used as
the inner code in the concatenation: namely, we require that
20 > 3ly > > (w+ Dl (11) k* = m and represent each element of @) by a codeword
3l > dly > > (w4 2)l,. (12) of C*. Specifically, fix a basig?, 32, -, By, for GF(2™)

over GK(2) and a generator matri¢?* for C*. Then each
Now, suppose that the answer to the questionieftfE-FIELD  element3 = by 81 + b2z + - - -+ by B, Of GF(2™) is mapped
SUBSET SuM is “Yes.” Then it follows from Lemma 1 that onto

ds = 6 + 1 for at least on& = 1,2, ---,w. Therefore, .
' o(B) = (b, b, b)G (15)

d* = min{lidy,ladz, -, lpdy _ _ : o ,
min{lady, lody, -+ } which is a binaryn*-tuple. When this mapping is applied

< max{2ly, 3z, -+, (w+ Dl } to C#, the result is a binary linear code = ¢(C#) of
=20 (13) lengthn*n#* and dimensionnk*. It is obvious that a parity-

o _ ) . ., check matrixH for C can be constructed in polynomial time
in view of (11), and® will necessarily return “Yes.” On the fom a parity-check matrix foiC# and a generator matrix

other hand, suppose that the answer to the questiomafe= o, ¢+ Henceforth, we letd denote the minimum distance
FIELD SUBSET Sum is “No.” Then, by Lemma 1, we have uf the concatenated cod@ constructed in this manner. The
ds = é+2forall 6 =12, w, and following lemma provides an upper bound dnin terms of

# % *
d# = min{lidy, lada, -+, Ludu} d7,n®, and k* = m.

= min{3ly,4ls, -, (w+2)l} Lemma 4:
— m—1
> 20 (24) 2m —1

- Qj # H m H 3
where the third equality follows from (12), and the last inequal- Rroof. Since C* is a I_mear#code over G@ ), if it
- . ; . . ' "7contains a codeword of weight d#, then it contain™ — 1
ity is precisely (10). Hence, in this case, will necessarily

N such codewords, namely, all the multiplescdfy the nonzero
return “No.

elements of GE2™). Let ¢i,¢p,-++,com_y € C# denote
Obviously, the NP-completeness of MD is a weaker these2™ — 1 codewords, and consider th@™ —1) x n#
result than the NP-completeness ofN\WiuM DISTANCE, since matrix A/ having ¢1, ¢z, -, com_1 @S its rows. It is obvi-

the set of inputs to MiMuM DISTANCE is a special case ous that each of the/# nonzero columns ofd/ contains
of the set of inputs to MB.. However, Theorem 3 is aeach of the2”™ — 1 nonzero elements of GB™) exactly
useful stepping stone in the proof of the NP-completenessarfce. Now letc;,c, -+, chn_; € C be the images of
MINIMUM DISTANCE, which is the subject of the next sectionc;, ¢, -+, com_1 under the mappings(-) and consider the
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(2™ — 1) x n*n¥ matrix M’ havingc;,ch,--+,chm_, as its of asymptotically good families of low-rate codes suffice for
rows. If somen* columns of M’ correspond to a nonzeroour purposes: concatenated binary codes constructed in [38]
position of ¢ € C#, then every nonzero codeword @* from Drinfeld’s modular curves, low-rate codes constructed
appears exactly once in thes& columns. It follows that the in [31] using a variation of Justesen’s concatenation, and
weight of each nonzero column af’ is precisely2™~1, and codes constructed using expander graphs in [4] are just a few
there are at most*d# such columns. Thus the total weightexamples. As pointed out by a referee, duals of the binary
of M’ is at mostn*d#2™~1, The lemma now follows by BCH codes also have the required parameters, in view of
observing thatd/’ has2™ — 1 rows. O the Carlitz—Uchiyama bound [27, p. 281]. In what follows,
however, we shall use a simple construction, suggested by
oga Alon [3], which is concise enough to be completely
g§cribed in one paragraph.

We note that Lemma 4 is just a variation of the well-know
Plotkin bound [27, p. 41]. Yet, it provides exactly the kin
of instrument we need for our purposes. Indeed, suppose t
d# < 21, as in (13), wheré, is defined by (6) and (7). Then Alon’s Construction: Given an integerr > 2 and a non-

Lemma 4 implies that negative integes < 2¥ — 2, consider a concatenation of the
gm—1 (2¥,s+1,2" — s) Reed-Solomon code over GE') with the
d < 24n* om 1" (16) (2 —1,v, 271) binary simplex code [27, p. 30]. The result

is a binary linear cod€* (v, s) with the following parameters:
On the other hand, suppose thi#t > 21, +1 as in (14). Then,

sinced > d*d# by construction, we obviously have w=2E 1) 29
E*=v(s+1) (21)
d > d"(2l; +1). a7) df = 2712V — s). (22)

In the present context, one is more interested in the reversg
interpretation of the bounds in (16) and (17). Namely, giden
(say, by an oracle for MiMum DISTANCE), we would like to
distinguish between the two possibilities #f . Fortunately, if

n [3] notes that a generator matrif* for C*(v, s) may be
specified directly as follows. The columns of this matrix are
indexed by pairs(x,y), wherez,y € GF(2”) andy # 0,
while its rows are indexed by integer pai(s, j), where

2L, om-l 1 =0,1,---,sandj = 1,2,---,v. Let ay, s, -+, be a
o, +1 2m 1 (18) pasis for GH2”) over GH(2). Then the entry in rowi, j) and

column is defined aga ;* whereq,z* is computed
then the right-hand side of (17) is strictly greater than the righj; GF(2(”3; yaznd () denofeasjfhéy?r;ner proczljlfct of 2 apndy
1 bl ]

hand side of (16). Thus our goal can be achieved, providsg binaryy-tuples with respect to the basig, aa, - - -, v,
the minimum distance of* is sufficiently large. e

We observe thatl; < w? in view of (10), andw < m — 1 We.takes =mandv =[5 log_;Q_nﬂ in t.he. foregoing con-
as discussed in Section II-B. Thus in order to satisfy (18), $truction. ThenC* = C*(v, s) trivially satisfies propertyP2,

d*> n*

would certainly suffice to require that sincek* = v(m + 1) > m. Furthermore,
* 3 _ m—1 mo_ .3 * _ guioUv _ < 2(5log, m+1) _ 10 _ 10
ar > mi—1 2 20'5_L 2m —m . 9) n 2"(2¥ —1) < 2 2 4m O(n™")
n* m3  2m—1 m3 2(2m — 1)

so thatC* also satisfies propertP1. Thus the length*n#
These considerations may be translated into a specific seiobtthe concatenated codg is at most

conditions relating to the codé* used as the inner code in . 10 4 s
our construction: gm > (m—17%n+1)=0(n>).

P1: The length ofC* is bounded by a polynomial ~Now, for our choice ofs and v, we have

in n, and a generator matrix fo€* can be d* v=1(2v _ ) s

constructed in polynomial time. w T (1) z 05— AT
P2: The dimension ofC* is at leastmn (if dim C* is - 3
strictly greater thann, then any subcode df* > 05— L > 0.5 - — 2T —me
will suffice for our purposes). B 2m* m? 2(2m —1)
P3: The ratio of the minimum distance @* to its where the last inequality holds for ath > 10 (and follows
length satisfies (19). straightforwardly from the fact that™ > m? + m2 4+ m + 1

. : . for suchm). ThusC* also satisfies proper§3. With bothC#
Less formally, what we need is a sequence of binary Imegrr] C* at hand, we are finally ready to prove our main result
codes, whose relative distance approaches the Plotkin boun&I ' y ytop ’
d* /n* < 0.5, and whose rate tends to zero only polynomially Theorem 5: MINIMUM DISTANCE is NP-complete.

fast as a function of their dimension. Furthermore, we should Proof: Clearly, MNIMUM DISTANCE is in NP. A poly-

be able to construct each code in the sequence in polynomiiaimial transformation from INITE-FIELD SUBSET SuMm to
time. This rules out codes that attain the Gilbert—Varshamd¥NiMum DISTANCE can be described as follows. Given the
bound [27, p. 557], as well as Zyablov codes [40], since theput oy, az, -+, an, 8 € GF(2™) and w to FNITE-FIELD
complexity of Zyablov’'s construction [40] becomes exponerBuBsET SuM, we answer the question ofNFTE-FIELD SUBSET

tial at low rates. Nevertheless, many other known constructioBsm by exhaustive search if. < 10. Otherwise, we construct
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in polynomial time a parity-check matrix for the concatenateldeed—Muller code over Gfg), see [8, p. 362].) To complete
code C as described above. We then query an oracle ftre proof, one can again take=m and v = [5log, m] in
MiINIMuM DISTANCE for the existence of a codeword of weighthis construction.

at most The complexity of approximation algorithms for NP-hard
m—1 om problems has been a subject of much research recently
211H*W = 112”(2”—1)2m 1 (see [6] and references therein), and it is natural to ask

whether approximating the minimum distance of a linear
where!; is defined by (6) and (7), and = [5log, m]. By code is still hard. Since our proof of the NP-completeness
the foregoing discussion, the oracle fonNium DISTANCE of MINIMUM DISTANCE is based on a transformation from
will return “Yes” if and only if the answer to the question ofMAXIMUM -LIKELIHOOD DECODING and it is known [5], [33]
FINITE-FIELD SUBSET SUM is “Yes.” O that MAXIMUM -LIKELIHOOD DECODING remains NP-complete

under approximation within a constant factor, it is plausible

This concludes the proof of the conjecture of Berlekam[tlhat the same should be true forMUM DISTANGE. We
McEliece, and van Tilborg [9]. In the next section, we dlscuﬁgave a more rigorous investigation of this question as an

certain extensions and consequences of this result.
open problem.

V. FURTHER RESULTS AND CONCLUDING REMARKS Another immediate consequence of our proof is that certain
We note here that our proof of Theorem 5 can be i u_seful_computauonal tasks in coding theory are NP-hard, as
. . ) ere is an easy transformation fromNum DISTANCE to
mediately extended to codes over an arbitrary, fixed, &ach of these tasks. There is a large number of computational
nite field GF(g). This is based on the observation (cf. [7]) ' 9 P

that the transformation fromHAREE-DIMENSIONAL MATCHING problems of this kind; we will give just three examples here.
t0 MAXIMUM -LIKELIHOOD DECODING in [9] holds without First, we observe that determining whether a given linear

change if the input to MXIMUM -LIKELIHOOD DECODING s an code is MDS is NP-complete. Formally, lebe a fixed prime,

mxn matrix H over GKg), rather than a binary matrix. Givenamd consider the following decision problem:
the NP-completeness of MIMUM -LIKELIHOOD DECODING Problem: MDS CobE
over GFg), one can essentially go through the proof in Instance: Positive integers,n,m, and anr x n matrix 4

Sections 1I-1V, replacing each instance 2fby ¢. There over GFp™).
are a few intricate points along the way, that require someQuestion: Is there a nonzero vector of length n over
explanation. GF(p™), such thatdz! = 0 andwt (z) < r?

First, in rephrasing MXIMUM -LIKELIHOOD DECODING as The fact that MDS ©DE is NP-hard, even fop = 2, follows
FINITE-FIELD SUBSET SuM, one should leave the expression,.
. . directly from Lemma 1. The NP-completeness of MDSDE
a; + o, + -+ «;, = Fin the question of RITE-FIELD . " .
e : . then follows from the observation that the phrase “of weight
SUBSET SuM as is, rather than ask whethgr is a linear . )
S . . < w” in the question of MXIMUM -LIKELIHOOD DECODING
combination ofa;,, v, -+, a;,. This is certainly not the “ , ,
: 1772 ) .can be changed to the phrase “of weight exaatly as
question that one would be concerned with for decodin : .
fscussed in Section Ill.

purposes, but it is legitimate in an NP-completeness proo . -
. e . As another example, consider the problem of determining
given the specific transformation fromHREE-DIMENSIONAL : : ) .
the trellis complexity of a linear code. More precisely, the

MATCHING to MAXIMUM -LIKELIHOOD DECODING in [9]. . . ' ; .
. " . computational task is to find a coordinate permutation that
(It is easy to see that a vectorc GF(¢)" of weight < m/3 L . .
o . " e . minimizes (the logarithm of) the number of verticesat a
satisfiesHz* = (11---1)* for them x n incidence matrixd . L o . . :
given time: in the minimal trellis for a binary linear code.

constructed in [9] only if all then/3 nonzero positions in: . - )
are equal tal.) Secondly, the bound in Lemma 4 becomes The corresponding decision problem [21] can be posed as:

Problem: PARTITION RANK

m—1

d < n*d* 4 Instance: A binary kxn matrix H, and positive integers
qnl—1+qnl—2,,,+q+1 andw.
and one has to modify (19) accordingly. Fortunately, Alon's Question: Is there alcolumn permutation that takésinto
construction [3] works in this case as well. Here, the columns amatrix’ = [A;| B, ], such thatd; is ak xi
of G* would be indexed byz,y € GF(¢"), so that (21) matrix andrank (4;) + rank (B,,—;) < w?
remains without change, (20) becomes= ¢”(¢” — 1), and Thjs problem is important in the theory of block-code trellises
(22) becomes (for more details on this, see [36]). Horn and Kschischang [21]
d* > (q—1)g¢"Hg" - s). 23) recently proved that this problem is NP-complete, using an

ingenious and elaborate transformation fromree MAX CuT
The key observation in the proof of (23) is as follows: if20, p. 210] which spans over five pages. On the other hand,
¢,y€GF(¢”) and¢ £0, then agy ranges over all the elementsgiven the NP-completeness ofiMvuM DISTANCE, this result
of GF(¢"), the inner product¢, ) takes each value in Glg) can be established in a few lines as follows. First, observe
exactly ¢“~! times. (Alternatively, this can be viewed as dhat the least intege for which
concatenation of thg;”, s+1, ¢*—s) Reed—Solomon code over
GF(g¢¥) with the (¢"—1,v, (g—1)g"™) first-order generalized rank (4;) + rank (B,—;) <rank(H) + ¢
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is equal tomin{d,d'} whered, d* denote, respectively, thetransformation from MiIMUM DISTANCE, but believe that it
distance and the dual distance of the code definefl ijotice should be possible to find one.
that it does not matter whethéf is viewed as a parity-check The first problem is that of bounded-distance decoding of
or as a generator matrix in this problem. Now, suppose@hatbinary linear codes. While the intractability of maximum-
is an(n, k, d) binary linear code whose minimum distance wékelihood decoding has been thoroughly studied [5], [7],
would like to determine, and let denote the dual distance[9], [12], and [33], most of the decoders used in practice
of C. GivenC, we first construct a binary linear Reed—Mulleare bounded-distance decoders. It is still not known whether
codeC’ of length2™ and orderr, wherem = 2[log, n] +1 bounded-distance decoding is NP-hard for the general class of
andr = [log,n]. ThenC’ is an (n/, k', d') self-dual code, binary linear codes. For bounded-distance decoding up to the
where error-correction radius of a code, the corresponding decision
o = 92Mlog nl+l < g2 problem can be formulated as follows:

Problem: BOUNDED-DISTANCE DECODING

) Mo, ] 41 Instance: An integerd, a binarym x n matrix H, such
m—r O n .

d =2m7" = 2 2 2n. that everyd — 1 columns of H are linearly

We then use the well-known Kronecker product construction independent, a vector € F3', and an integer
[27, p. 568] to obtain a generator matrix for the product code oW < [(d-1)/2]. .
C* = CL®C’, whereC- is the dual code of. Evidently, the Question: Is there a vector: € F5 of weight < w, such
) . 1 t
length of C* is n* = nn’ < 8n3, and its minimum distance is that Hz" = s?
& = dtd > ondt >n > d Notice that BD UNDED-DISTANCE DECODING is not likely to be

L . in NP, since in view of our main result in this paper, verifying
On the other hand, it is easy to see that the dual distan€e of, ., everyd — 1 columns of H are linearly independent is

is the minimum of the dual distances 6f- and C’, namely, NP-hard. Hence, this is an example ofpeomise problem

min{d, d’} = d. Hence, running a polynomial-time algorith_m(cf. [18]). Nevertheless, we could ask whetheoUBIDED-
for PARTITION RANK with the inputff being a generator matrix py .\ ce Decoping is NP-hard. We concur with the remark

for C*, we can determind in polynomial time. The foregoing of Barg [7], and conjecture that this is so. Moreover, we

Turing reduction from NNIMUM DISTANCE shows that, given believe that the NP-completeness ofiNWUM DISTANCE
a linear codeC, computing either the minimum distandeor should be instrumental in proving this conjecture.

the mlnltrrr:utmﬂdual d'StSZCé IS NP ha,\:g' rThlg furtherT(:rr]e We point out that a hardness result for bounded-distance
_provte_s at' tRT(;T['ON_ NkK ;}emémsl | -tr?r ’ evsn : edecoding of binary linear codes in a somewhat different
input is restricted tav = rank (H)+—1. In other words, even ., 0 \vas recently established in [16]. Downey, Fellows,

if all we want to know is whethes; # ¢ for some permutation, vardy, and Whittle [16] show that WKIMUM -LIKELIHOOD

the_ c_omputational task of determining this is still Np'har(%EcomNGis hard for the parametrized complexity clagg1].
This is a somewhat stronger result than the one reported Xmely, it is unlikely that there exists an algorithm which

Hol\r/ln and Ksch|sctr)1al|_1g mt[tht].th techni developed solves MAXIMUM -LIKELIHOOD DECODING in time f(w)n®,
oreover, we believe that the techniques developed {i,q o . is a constant independentefand f(-) is an arbitrary

tbhe proof of dNtP—cr?mprrt]e?edsst of '.M M UMmEDl'S.;TANC'f CI?n function. Many NP-complete problems are fixed-parameter-
€ now used to show that determining XIMUMUETS o ctable. For example, BRTEX COVER, a well-known NP-

state-complexity of a code, namedy .. = max; s;, iS also :
. [Anax e complete problem [20, p. 53] which asks whether a graph
NP-complete. Indeed, Jain, avidoiu, and Vazirani [22] have G on n vertices has a vertex cover of size at mastcan

recently employed the results of Section Il of this papel o k1.2 .
. . . e solved in timeO(kn + (4/3)*k*). Loosely speaking, the
to prove that computing,,.. is NP-hard for linear codes parametrized complexity hierarchy

of characteristic2, namely codes over GR™) wherem is

variable. This result is similar in spirit to our Theorem 3, FPT=W[0] C W[1]C W[2] C ---

and the argument used by JainaMloiu, and Vazirani [22] is

essentially a variation of Lemma 1. We point out, howeveintroduced by Downey and Fellows [14], [15] distinguishes

that the problem is still open for binary codes. between those problems that are fixed-parameter-tractable and
As a third example, we mention the problem of findinghose that are not. The result of [16] implies that bounded-

the largest subcode with a prescribed contraction index [3djstance decoding of linear codes is hard in the following

Namely, given ak x n generator matrix for a binary linearsense: if a polynomial-time algorithm for this purpose ex-

codeC and a positive integek, we wish to find the largest ists then the parametrized complexity hierarchy collapses

subcodeC’ C C which has a generator matrix with at moswith W[1] = FPT. Nevertheless, the question whether the

A+ dim C’ distinct columns. This problem is of importanceBOUNDED-DISTANCE DECODING problem, as defined above, is

in soft-decision and majority-logic decoding (see [37] for aMP-hard is still open.

extensive treatment), and it is possible to show that it is NP-The second problem we would like to mention is that

hard using a transformation from IMMuMm DISTANCE. The of finding the shortest vector (in the Euclidean norm) in a

proof of this is a bit tedious, and we omit the details. sublattice ofZ™. The overall status of computational problems
Finally, we would like to mention two important problemdor lattices is remarkably similar to the situation with linear

in coding theory, for which we do not have a polynomiatodes. Peter van Emde Boas [35] proved in 1980 that finding

E=n'j2< 4n?
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the nearest vector (which is equivalent to maximume-likelihood
decoding) in a sublattice @&" is NP-hard, and conjectured that(1°]
finding the shortest vector should be hard as well. Formallpg;
van Emde Boas conjectured that the following problem:

Problem: SHORTEST VECTOR
Instance: A basiswy,ve,---,v, € Z" for a lattice A, and
an integerw > 0, [13]
Question: Is there a nonzero vectar in A, such that [14]
z]* < w?
is NP-complete. Despite a considerable amount of work, tig;
proof of this conjecture remains elusive. Arora, Babai, Stern,
and Sweedyk [5] classify this as a “major open problem.[‘16
Moreover, this conjecture becomes particularly significant in
view of the celebrated result of Ajtai [1], who showed howl7]
to efficiently generatéard instance®f certain computational
problems related to integer lattices. Moreover, Ajtai [2] hags]
recently proved that theHORTEST VECTOR problem is hard
for NP under randomized reductions. This comes very cIo%]
to proving the conjecture of [35].

Intuitively, finding the shortest vector in a lattice should bé&?0l
at least as “difficult” as finding the minimum-weight vector;
in a binary linear code. Thus it is reasonable to suggest that
there should be a polynomial transformation fromnkium 22]
DISTANCE to the $1ORTESTVECTOR Specifically, we pose the
following problem: given a binary linear codg construct,
in polynomial time, a latticeA C Z™ so that the minimum [23]
distance ofC can be determined from the minimum normyy)
of A. In view of our main result, solving this problem would

[12]

amount to proving that iBRTESTVECTOR is NP-complete.  [2°]
[26]
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