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Abstract

The aim of this work is to show the feasibility of the primitives of the identity based cryptosystems for applications in Smart-Cards.
Several observations are applied to easily choose many supersingular elliptic curves over a prime field Fp; p > 3; p � 3 mod 4, in such a
way that the size of the torsion subgroup, the curve order and the finite field characteristic are of minimal Hamming weight. We modify
the Chudnovsky elliptic curve point representation to settle a dedicated coordinate system for pairings and to minimize the number of
operations in the finite field. The encouraging timing results obtained for ST22 Smart-Card architecture show the feasibility of pairing
primitives for embedded devices.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the early 90s, pairings were used to show that some
classes of elliptic curves were unsafe for cryptographic pur-
poses because by using the Weil pairing (as shown by
Menezes et al. (1993)) or the Tate pairing (as shown by
Frey et al. (1999)), one can reduce the discrete logarithm
problem on these elliptic curves to the discrete logarithm
problem in a finite field. In 2000, Joux’s tripartite Diffie–
Hellman key agreement protocol gave a positive usage of
the pairings (Joux, 2000). This use of the pairings has
inspired much research to find novel cryptographic proto-
cols and to improve the existing ones. There is now a wide
range of public key primitives that rely on the use of pair-
ing functions. The most significant outcome of using pair-
ings is pairing-based identity-based cryptography. The
concept of identity-based cryptography is due to Shamir
(1984), where a public key is derived from publicly identi-
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fiable information such as an e-mail address, and the corre-
sponding private key is created by binding the identity with
a trusted authority’s master secret key. This idea avoids the
reliance on certificates to validate the authenticity of a pub-
lic key and, in some situations, simplifies the infrastructure
of a public key system. Shamir proposed an identity-based
signature scheme, but left building identity-based encryp-
tion as an open problem. A number of solutions for imple-
menting this idea were presented almost 20 years later by
Boneh and Franklin (2001), Cocks (2001) and Sakai et al.
(2000). Apart from the Cocks scheme, both the Boneh–
Franklin scheme and the Sakai et al. scheme are using pair-
ings. In addition, there are many other cryptographic pro-
tocols benefiting from using pairings, including a variety of
signature schemes, e.g. short signatures (Boneh et al.,
2001), blind signatures, ring signatures (Zhang and Kim,
2002), group signatures (Boneh et al., 2004) and so on; a
variety of key-establishment schemes, e.g., identity-based
key agreement, authenticated tripartite key agreement,
etc.; many other applications, such as signcryption, iden-
tity-based signcryption, authentication and identification.
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A survey of pairing-based cryptographic protocols can be
found in Dutta et al. (2004), while for further deepening
and latest developments the reader is pointed to Interna-
tional Association for Cryptologic Research (2007), Bar-
reto (2007).

One of the most demanding benefits of modern Smart-
Cards is the ability to support cryptographic protocols.
Smart-Cards are portable computing devices which are
leaving their past role as mere carriers of confidential infor-
mation to become more and more sophisticated embedded
platforms. By implementing identity-based features on a
Smart-Card, it is possible to envision practical and cost-
effective online and off-line secure business/commercial
communication solutions in various areas which could
embrace the wireless management of secure documents,
personal-authorization tokens, electronics and mobile
commerce. The pairing-based paradigm, as mentioned
above, enables to turn a simple, fully recognized identity
or role into a public/private key pair. Such possibility
allows for one of the communication parties, e.g. the recei-
ver, to dynamically change the link between the identity
and the role of the user without impacting the other party,
e.g. the sender (Mont et al., 2003).

The core of any practical identity based scheme is based
on the implementation of a pairing function. At the current
state of the art, the Tate pairing is considered the most con-
venient pairing function in terms of computational cost. As
the security standards for public key cryptosystems will
increase, the task to choose the most performing pairing
algorithm with security equivalent to 128-, 192-, or 256-
bit AES keys, become more tricky. Koblitz and Menezes
(2005) point out how the implementation advantages in
adopting an elliptic curve with embedding degree k = 2
defined over a prime field, will fall back on the Tate
Pairing algorithm until its equivalent security turn to be
from 80-bit to 192-bit; afterwards it will get on to the
implementation of Weil pairing for higher security
requirements.

In the following of the paper we discuss and evaluate a
software implementation of the Tate pairing based on
supersingular elliptic curves defined over Fp to be used in
a specialized software library module for the proprietary
32-bit Smart-Card platform ST22 by STMicroelectronics.
The encouraging timing results allow to assert the feasibil-
ity of pairing-based primitives also on embedded devices,
despite their high computational complexity. The most
recent timing results reported from the literature favorably
compares with our implementation, as well.

The rest of the paper is organized as follows: Section 2
gives the picture of the necessary mathematical preliminar-
ies that one needs to fully understand the subsequent sec-
tions. Section 3 tackles the topic of efficient
implementation and describes the methodology followed
to implement the BKLS algorithm, while Section 4 reports
the timing results obtained w.r.t. the target platform and
compare with other related works on pairing SW imple-
mentation for constrained architectures. Finally, Section
5 points out the concluding remarks about the discussed
work.
2. Preliminaries on pairings

The milestone for all the practical deployments of iden-
tity-based protocols is the existence of bilinear maps called
pairings, which are mathematically defined in terms of the
elliptic curves algebra with coefficients in a finite field.
However, from a functional point of view the necessity of
such a function could be best addressed considering the
problem of assigning a secret between two interlocutors
to establish a confidential communication over an insecure
channel. The Diffie–Hellman protocol represents the best
known solution to such a problem and uses the arithmetic
in the multiplicative subgroups of finite fields. An alterna-
tive scenario involves a centralized entity that defines a
secret and associates to each user a token built as the out-
put of a known one-way function. Such a function com-
bines the centralized secret and the user’s public
identification. The possibility to establish a common secret
exclusively shared by any pair of users is only guaranteed if
there is a black box able to securely blend the tokens of the
two users to produce another one-way output value. This
additional value should be a function of the centralized
secret (which remains always unknown and un-computable
to all users) and of the two users’ identifications.

To be just a little more accurate, a pairing can be seen as
a bi-variate function:

e : G1 � G1 ! G2

where G1 and G2 are finite cyclic groups with an additive
and multiplicative law of composition, respectively, and
of the same order.

The main property that should be satisfied by the above
map is a peculiar multiplicative law, called bilinearity, with
the characteristics to be: efficiently computable, distributive
to the sum of G1 and with a computationally hard
discrete logarithm problem both in G1 and in G2.
Let P,Q,P1,P2,Q1,Q2 2 G1 then e(P1 + P2,q) = e(P1,
Q)e(P2,Q), e(P,Q1 + Q2) = e(P,Q1)e(P,Q2) in such a
way, given an integer r, the iterated sum rP in G1 is trans-
lated as e(rP,Q) = e(P, rQ) = e(P,Q)r.

Practical cryptosystems use pairings to map the discrete
logarithm problem (DLP) from the abelian groups of an
elliptic curve G1 to the multiplicative subgroup G2 of some
extension of the finite field on which the elliptic curve is
defined.

Let E be an elliptic curve over a finite field Fq and r an
integer co-prime with the field characteristic and such that
rj#EðFqÞ, and consider the minimum field extension Fqk

such that rjqk � 1. Therefore, such field include the multi-
plicative subgroup of r-th roots of unity. Therefore assume
G2 ¼ lr ¼ fu 2 Fqk : ur ¼ 1g.

Assume G1 to be the group of the r-torsion points of the
curve, i.e. G1 ¼ EðFqÞ½r� ¼ fP 2 E : ½r�P ¼ Og. As long as
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r-q � 1, the group E[r] is completely included in EðFqk Þ if
and only if rjqk � 1 (Balasubramanian and Koblitz, 1998).

In order to efficiently evaluate the pairing, the embed-
ding degree k should be sufficiently large without compro-
mising effective implementation. There is a trade-off
between the efficient computation of the pairing and the
guarantee of the hardness of the DLP in Fqk (k large). In
Balasubramanian and Koblitz (1998) it is shown that a ran-
domly selected elliptic curve is not suitable for pairings-
based cryptography because of the large value of the
embedding degree k (k > log(q)). On the other side, there
is a number of algorithms to find out pairing-friendly
curves (k not too large) (Barreto et al., 2002b; Galbraith
et al., 2004; Scott and Barreto, 2006).

The Tate pairing is well-defined, non-degenerate, bilin-
ear pairing assuming the above stated groups G1, G2. A
restricted version of the pairing which retains all of these
properties and is usefully employed for cryptographic
applications is subsequently described.

The mathematical Tate pairing is defined in terms of
rational functions over points of an elliptic curves evalu-
ated in a divisor (Blake et al., 2006; Silverman, 1994).

The definition of divisor can be stated as a finite formal
sum of elliptic curve points, i.e.

D ¼
X
P2E

miðP iÞ where mi > 0

The divisor associated to a rational function defined over
the points of an elliptic curve is defined as the formal
sum of its zeros (positive sign) and poles (negative signs)
counted with their multiplicity. More definition and math-
ematical details about rational functions defined on elliptic
curves and divisor theory can be found in Blake et al.
(2006), Silverman (1994).

A divisor D is named principal if there exists a rational
function f 2 FqðEÞ such that D = div(f); besides a divisor
D ¼

P
P2EmiðP iÞ is principal if and only if

P
imi ¼ 0 andP

P i2D½mi�P ¼ O (Silverman, 1994) (The point at infinity O
is the neutral element of curve additive group of points).

To evaluate a rational function f 2 FqðEÞ in a divisor
D ¼

P
P2EmiðP iÞ it is necessary to introduce the following

definition: f ðDÞ ¼
Q

P i2Ef ðP Þmi . The only restriction is that
D and the divisor of f do not share any common points.

Let P 2 EðFqÞ½r�, then rðP Þ � rðOÞ is a principal divisor.
So there is a rational function fP 2 Fqk ðEÞ with
divðfP Þ ¼ rðP Þ � rðOÞ. Let Q 2 EðFqk Þ½r� be a point with
coordinates in Fqk and consider the divisor DQ 2 Div0(E)
such that DQ � ðQÞ � ðOÞ with disjoint support from that
of fP.

The reduced Tate pairing definition can be stated as
follows:

e : EðFqÞ½r� � EðFqk Þ½r� ! lr;

eðP ;QÞ ¼ fP ðDQÞðq
k�1Þ=r

An effective algorithm for computing a rational function fP

used in the previous definition was conceived by Miller
(1986). The algorithm implements a double-and-add strat-
egy with some extra computation due to the construction
and evaluation of the rational function fP by means
of the equations of straight lines (e.g. gU ;V ðQÞ ¼
yV �yU
xV �xU

ðxQ � xUÞ þ yU � yQ, U ; V ;Q 2 EðFqÞ).
Let fi,P be a function such that divðfi;P Þ ¼

ð½i�P Þ � iðP Þ þ ði� 1ÞðOÞ. Starting from f1,P = 1, the algo-
rithm uses an addition chain for [r]P to compute the value
fr,P(Q) = fP(Q) (Miller, 1986).

Much research effort has been aimed to the optimization
of the algorithm for pairing computation on supersingular

curves (Barreto et al., 2002a; Galbraith et al., 2002), spe-
cializing algorithmic variants depending on the algebraic
properties of finite fields with different characteristic
(Duursma and Lee, 2003; Barreto et al., 2004).

An elliptic curve is said to be supersingular if it does not
have any points with order that is a multiple of the finite
field characteristic. Moreover such curves have the prop-
erty to exhibit an embedding degree k which is always less
than 6.

In the current paper we restrict ourselves to discussion
of these curves defined over finite fields with prime charac-
teristic EðFpÞ.

One of the most important properties of such curves is
the existence of a distortion map / : EðFqÞ ! EðFqk Þ (Ver-
heul, 2001). A distortion map is used to map an r-torsion
point from a base field to an r-torsion point in an extension
field. In such a way the definition of the Tate pairing can be
modified as follows, including the optimizations high-
lighted in Barreto et al. (2002a):

eðP ;QÞ ¼ fP ð/ðQÞÞðq
k�1Þ=r

The previous formula always lead to a well-defined,
non-degenerate pairing definition e(P,/(Q)), where
eðP ;/ðQÞÞ 6¼ 18P ;Q;2 EðFpÞ½r�. The coordinates of both
P and Q are elements of the base field; therefore P and /
(Q) results to be linearly independent.
3. Computing the tate pairing

In this work, we will describe an implementation of Tate
pairing for supersingular curves defined over prime order
finite field Fp. Because of the prime characteristic p the fol-
lowing description will be based on the so-called BKLS
algorithm (Barreto et al., 2002a).

Most recent developments centered on the derivation of
an alternative pairing definition for non-supersingular
curves an known as Ate pairing (Hess et al., 2006), is not
considered.

One of the prevalent reasons because of our choice
about supersingular curve is for the convenient way to
choose the parameters for computing the BKLS algorithm.
We envisioned an easy procedure to compute a large num-
ber of values for the characteristic p, the group order r and
the final exponent with the aim to trade off the best combi-
nation derivable from the applied optimizations.
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When working in characteristic p, there are two possible
choices for the equation of the corresponding elliptic curves:

E1 : y2 ¼ x3 þ x over Fp; p � 3 mod 4;

/ðx; yÞ ¼ ð�x; iyÞ where i2 � �1

E2 : y2 ¼ x3 þ a over Fp; p � 2 mod 3;

/ðx; yÞ ¼ ðnx; yÞ where n3 ¼ 1

Most of the optimizations given below only work for curve
E1 – consequently we will not consider curve E2 any fur-
ther. For such finite fields the pairing function for points
P,Q 2 E(Fp)[r] assumes the value erðP ;/ðQÞÞ 2 Fp2 . Having
p � 3 mod 4, the arithmetic of the quadratic extension
field Fp2 is most efficiently managed in polynomial
base: Fp2 � FpðaÞ ¼ fa1aþ a0; ai 2 Fp; a ¼

ffiffiffiffiffiffiffi
�1
p

g � Fp½x�=
ðx2 þ 1Þ. The adaption of BKLS algorithm to the current
case study results in Algorithm 1.
Table 1
Cost of group operations over EðFpÞ in different coordinate systems.
(I = inversion, M = multiplication, S = squaring)

Coordinates Representation Doubling Addition

Affine (X;Y) I + 2M + 2S I + 2M + S
Homogeneous (X;Y;Z) 7M + 5S 12M + 2S
Jacobian (X;Y;Z;Z2) 4M + 6S 12M + 4S
Chudnovsky (X;Y;Z;Z2;Z3) 5M + 6S 11M + 3S

Algorithm 1 BKLS Algorithm (Barreto et al., 2002a)

Require t¼dlog2ðrÞe; r¼ðrt�1; . . . ;r0Þ2;P ;Q2EðFpÞ½r�
Ensure eðP ;QÞ ¼ fP ð/ðQÞÞ

p2�1
r 2 F�p2

1: f 1
2: V P

3: for i t � 2 down to 1 do
4: f f2 Æ gV,V(/(Q))
5: V 2V

6: if ri==1 then

7: f f Æ gV,P(/(Q))
8: V V + P

9: end if

10: f f2 Æ gV,V(/(Q))
11: end for
12: f  f

p2�1
r

The use of a distortion map makes it possible to avoid
the evaluations of the denominators provided in the Miller
Algorithm, because their values exponentiate to the unity
after the final exponentiation. Besides, making use of the
same argument, in the last iteration (i = 0) of the algorithm
the evaluation of gV,P(/(Q)) is avoided because V þ P ¼ O.

3.1. Parameters generation

The choice to select a supersingular elliptic curve allows
to work out an efficient procedure to select a large set of
parameters to further speed up the implementation of Algo-
rithm 1. The selected elliptic curve have an almost prime
order: #E = p + 1 = rc, where the prime r is the order of
the torsion group over the elliptic curve, while the co-factor
integer c appears in the final exponentiation since the fol-
lowing equality holds: p2�1

r ¼ ðp � 1Þc. The expression of
#E explicitly reveals the influence of such value on the finite
field arithmetic optimizations, and on the operations
involved in the computation of the final exponentiation.

To guarantee a security level comparable to 1024-bit
RSA it should be assured that r P 2160 and p P 2512 hold,
assuming that the DLP over F p2 is as hard as that over an
Fp field of double bit size. Having p � 3 mod 4
(#E � 0 mod 4), it is required that the cofactor be a multi-
ple of 4.

The efficiency of Miller Algorithm depends on the ham-
ming weight of the prime r. Thus, it is desirable that r is a
prime with low hamming weight-ideally, 3. Besides, also
the final exponentiation would benefit of a low hamming
weight for the cofactor c. On the other hand having the
characteristic p with a low hamming weight permits the
modular arithmetic to be optimized.

The previous considerations lead to perform a search
procedure that fixes a low hamming weight prime r of
about 160 bits and then repeatedly tries low Hamming
weight values c of about 352 bits, with c � 4 mod 8, until
a prime p = rc � 1 is found; consequently it will have a
low Hamming weight. Such procedure allows us to quickly
find a large number of parameters with a sufficiently small
Hamming weight (in less than a few seconds). The Ham-
ming weight of a typical tuple computed as above is
hw(l,c,u,p) = (3, 3,9,10).
3.2. Eliminating the hidden inversions

Looking in more detail at the computations within
BKLS algorithm – namely, point addition, point doubling
and the computation of the straight lines function gV,P and
gV,V – there are several recognizable field inversions. In
software implementations the cost ratio of modular inver-
sion versus modular multiplication typically ranges from
9 to 30 (Cohen et al., 1998); hence, it is necessary to com-
pute as few as possible inversions and, at the same time,
jointly optimize the entire block of operations executed in
the body loop of the algorithm.

The points of an elliptic curve can be represented by a
number of different coordinate systems. For each of them,
the cost of the group operations depends on the type and
the number of involved field operations, as shown in
Table 1.

The Jacobian coordinates offer a faster doubling but a
slower addition than the homogeneous ones, while the
Chudnovsky formulas (Chudnovsky and Chudnovsky,
1986) differ from the Jacobian ones only for the internal
representation of the point, and reduce the computation
time of an addition but slightly increase the doubling time.

As in the BKLS algorithm the selected order r has a low
Hamming weight, in order to minimize the number of
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operations in the base field we set up a specific coordinate
system for the pairing computation, based on a modified
version of the Chudnovsky coordinates (X;Y;Z;W;V),
where W = Z2 and V = X �WX/(Q) = X + WXQ.

The adoption of such a hybrid coordinate system leads
to express the group law formulas similar to the Jacobian
ones, assuring the fastest doubling. We used Affine or Jaco-
bian coordinates for the points P,Q or the temporary point
V, respectively, maximizing the number of shared interme-
diate operations.

Given P = (xP,yP,1,1,xP + xQ), V = (x1,y1,z1,w1,v1),
2V = (x2,y2,z2,w2,v2) and V + P = (x3,y3,z3,w3,v3), the
explicit formulas are shown in Tables 2 and 3. The compu-
tational cost falls to 10 multiplications plus 9 squarings in
Fp for the doubling step of the BKLS algorithm, and to 15
multiplications plus 3 squarings for the addition step. The
BKLS algorithm executes only hw(r) � 2 addition steps
and d log2re doubling steps, thus the cost of the entire com-
putation is substantially equal to that of the executed dou-
bling steps, plus the cost of the final exponentiation.

3.3. Implementation of finite field arithmetic

The execution of BKLS algorithm requires both calcula-
tions in Fp, and in Fp2 for the evaluation of formulas shown
Table 2
Doubling formulas with modified Chudnovsky coordinates

t1 ¼ 3x2
1 þ w2

1

t2 ¼ 2y2
1

t3 = 2x1t2

t4 ¼ 2t2
2

x2 ¼ t2
1 � 2t3

y2 = t1(t3 � x2) � t4

z2 = 2y1z1

w2 ¼ z2
2

v2 = x2 + w2xQ

gV,V(/(Q)) = �v1t1 + t2+i(�z2w1yQ)

Table 3
Addition formulas with modified Chudnovsky coordinates

t1 = w1xP

t2 = x1 � t1

t3 ¼ t2
2

t4 = w1z1yP

t5 = y1 � t4

t6 = (x1 + t1)t3

t7 = y1 + t4

t8 = t6 � 2x3

x3 ¼ t2
5 � t6

2y3 = t5t8 � t2t3t7

z3 = z1t2

w3 ¼ z2
3

v3 = x3 + w3xQ

gV,P(/(Q)) = z3yP � t5(xQ + xP)+i(�z3yQ)
in the previous section and for the complete computation
of the pairing value (Algorithm 1 – lines 4,10,12),
respectively.

Multiplications and squarings in Fp2 are computed using
the well known Karatsuba tricks, both at the cost of three
multiplications and squarings in the base field Fp, respec-
tively. Moreover, also the final exponentiation can be
expressed in terms of operations in the base field. Having

f
p2�1

r ¼ f ðp�1Þc, with f ¼ aþ ib 2 Fp2 , the following easy
derivation is possible

f ðp�1Þc ¼ a� ib
aþ ib

� �c

¼
a2 � b2 þ i ða� bÞ2 � ða2 þ b2Þ

� �
a2 þ b2

0
@

1
A

revealing a total cost of 3 squares, one inversion and two
multiplications in the base field. The only expensive item
remains the final exponentiation by c to be executed in
the arithmetic of Fp2 .

On the basis of the description depicted so far, the
implementation of BKLS algorithm requires only one
other modular inversion for the computation of the final
exponentiation. Hence, efficiency is not an issue and a tra-
ditional extended GCD algorithm (Menezes et al., 1996)
can be used.

Modular multiplication was implemented using a multi-

ply-&-reduce strategy with the reduction algorithm custom-
ized according to the selected modulus p.

The multiplication between two multi-precision num-
bers has been developed using a hybrid strategy that com-
bines both the row-wise and column-wise multiplication
techniques (Gura et al., 2004), taking advantage of a vector
multiplication primitive that multiplies two words of the
multiplicand by the entire multiplier. The partial products
are reordered and accumulated to give the final result using
the minimum number of registers and memory accesses.

As far as modular reduction is concerned, sophisticated
techniques, like the Karatsuba algorithm (Karatsuba and
Ofman, 1962) and the Montgomery reduction (Montgom-
ery, 1985) have proven do not add any benefit, because of
the not so large size of the operands currently used for pub-
lic-key cryptosystems (512–2048-bit). The access to a fast
native instruction for 32 · 32-bit multiplication with a full
64-bit result has revealed fundamental to adopt the multi-
ply-&-reduce strategy as the best solution.

Since, all arithmetic is being performed mod p, the used
modular reduction algorithm must be efficient. Tradition-
ally, implementers of elliptic curve cryptography have used
Solinas primes (Solinas, 1999) for the modular arithmetic
of a prime order finite field. These lead to particularly effi-
cient reduction algorithms. For the derivation discussed in
the current paper, such an option is not available as the
prime p had to satisfy other criteria. However, advantage
of the fact that p has a low (�10) hamming weight can
be taken.



Table 4
Execution time of cryptographic primitives on the ST22 Smart-Card @
33 MHz

Primitive Time [ms]

Pairing 500
Inversion in Fp 50
Final exponentiation in Fp2 202
Tate pairing 752
1024-RSA decryption 242
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The special form of the modulus, allows to customize
the classical division algorithm to perform a fast quotient
estimation. In such a way the reduction can be imple-
mented without multiplications or divisions.

For example, assume to use the following parameters,
with a processor word length of w = 32 bits:

r ¼ 1þ 217 þ 2159

c ¼ 22 þ 2191 þ 2352

p ¼ 1þ 21 þ 219 þ 2161 þ 2191 þ 2208 þ 2350 þ 2352 þ 2369

þ 2511

when it comes to multiply two reduced values
z ¼ xy 2 Fp ðp2 < 21023Þ, working a word at a time, as in
the traditional shift and subtraction algorithm, allows to
use only (dlog2(p)e/w)2 single precision multiplications to
perform the entire modular multi-precision multiplication.
The implemented reduction strategy is described by Algo-
rithm 2.

Algorithm 2 Customized Reduction Algorithm
Require w = 32, b = 2w, m = dlog2(p)e/w,z =
(z2m�1, . . . ,m0)2, p = (pm�1, . . . , p0)2 with
pm�1 = 0x8000000
Ensure the residue �z ¼ ðzm�1; . . . ; z0Þ2
1: i 2m � 1 down to m do

2: if zi==0x8000000 then

3: q b � 1
4: else
5: q b(zib + zi�1)/231c
6: end if

7: z z � qpbi�m

8: if z < 0 then

9: z z + pbi�m

10: end if

11:end for
1 Proprietary Instruction Set Architecture details are not publicly
available.
The only expensive operation in Algorithm 2 is
z z � qpbi�m, where the modulus is expressed as
p ¼ 2a1 þ 2a2 þ . . .þ 2an , b = 232, and q is a one word long
variable. Having fixed the value of p, a procedure can be
hard coded to perform this reduction step without the need
for multiplication:

z z� ðq� a1 þ 32ði� mÞÞ � ða2 þ 32ði� mÞÞ � . . .

� ðan þ 32ði� mÞÞ

An algorithm for the automatic generation of the entire
multiplication code is also quite simply to envision.

4. Smart-Card implementation

The SmartJ ST22 platform (STMicroelectronics, 2005a)
is a commercial multi-application Smart-Card that com-
bines execution of Java bytecodes directly translated into
native microcode instructions via a hardware decoder, with
a proprietary native RISC instruction set. The native RISC
mode copes with cryptographic and operating system sup-
port operations.

The processor core is a full 32-bit four-stage pipeline
RISC architecture, with 32-bit data paths and sixteen 32-
bit registers as well as a number of special-purpose registers
with various lengths. The core is complemented by on-chip
ROM, SRAM and up to 128K Bytes of EEPROM, as well
as a set of standard peripheral circuits and custom plug-in
circuits. A hardware memory protection unit provides
highly secure control over how a program can access vari-
ous regions of memory, while other built-in mechanisms
protect against external physical attacks.

Separate memory buses, one to the on-chip SRAM and
one to the ROM and EEPROM arrays, are provided. This
allows data and instruction accesses to be overlapped,
which provides faster execution since the great majority
of data accesses are typically to the stack in SRAM while
instructions are stored in ROM or EEPROM.

For implementing cryptographic algorithms, including
Public Key and Secret Key types, an embedded library of
specialized mathematical functions is provided. The discus-
sion developed throughout the current work has lead to the
upgrade of this software library.1

4.1. Timing result

The porting of Tate pairing algorithm has been devel-
oped entirely in software without using any dedicated hard-
ware but making use of the specific instruction set to
carefully implement the optimizations discussed in the pre-
vious sections.

In Table 4, the timing of the Tate pairing computation
for a finite field of size 	 2512 is compared with an opti-
mized implementation of the 1024-RSA decryption func-
tion (without CRT), specifically designed for the ST22
platform (STMicroelectronics, 2005a) that suppose the
same security level.

The execution time of the pairing primitives compared
with a 1024-RSA decryption is three times longer, but the
absolute value of 752 ms is still significant and totally
acceptable for real applications. We outline that the imple-
mentation of the Tate pairing over fields of characteristic
p > 3 shares with RSA the same low level arithmetic
instructions. Therefore the cryptographic functions of a



Table 5
Execution time comparison on different Smart-Card platform

Platform Pairing algorithm Time [ms]

Philips HiPerSmartTM BKLS 470 (@ 21 MHz)
290 estimated (@ 36 MHz)

Philips HiPerSmartTM Ate 590 (@ 21 MHz)
380 estimated (@ 36 MHz)

SmartJ ST22 BKLS 752 (@ 33 MHz)
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Smart-Card can be easily extended to include pairing-based
features.

Most recent related works about implementation of
pairings on constrained platforms can be found in Scott
et al. (2006), where Scott et al. report the timings relative
to various pairing algorithms on the Philips HiPerSmartTM

Smart-Card with a MIPS-32 processor (five stage pipeline
2KB instruction cache, 256KB flash memory, 16KB
DRAM). For the same security level considered in Table
4 the authors consider the Tate pairing on a non-supersin-
gular curve following the description of the BKLS algo-
rithm analyzed in Scott (2005) over Fp and the Ate
pairing on non-supersingular curve as discussed in Hess
et al. (2006) over Fp. The reported timings compares favor-
ably with the implementation described in the current
paper and are shown in Table 5.

Other previously reported implementations can be only
referred as an announcement by Gemplus (2005) which was
quite contemporary with the presentation of the results dis-
cussed in this paper at InfoSecurity 2005 Exhibition
(STMicroelectronics, 2005b).

5. Concluding remarks

The Tate pairing is one of the basic building blocks for
Pairing Encryption primitives. We have described a meth-
odology to choose the optimal configuration of the Tate
pairing parameters (p, l,c) using supersingular elliptic
curves over Fp. Besides, a customized hybrid coordinate
system for the elliptic curve points has been defined to
merge the double-and-add scheme with the computation
of the pairing value, minimizing the overall number of
operations in the ground field. To speed up modular reduc-
tion, we re-formulated the classical division algorithm to
obtain an effective implementation tailored for the specific
modulus, the size of the operands and the memory hierar-
chy with no data or instruction cache. The execution time
of the proposed implementation on the ST22 Smart-Card
proves that the computation of the Tate pairing primitive
in embedded devices achieves significant and acceptable
performances for real applications.
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