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Estimating the Kinematics and Structure of a Rigid 
Object from a Sequence of Monocular Images 

Ted J. Broida, Member, IEEE, and Rama Chellappa, Senior Member, IEEE 

Abstract- The problem considered here involves the use of 
a sequence of noisy monocular images of a three-dimensional 
(3-D) moving object to estimate both its structure and kinematics. 
The object is assumed to be rigid, and its motion is assumed 
to be “smooth.” A set of object match points is assumed to be 
available, consisting of fixed features on the object, the image 
plane coordinates of which have been extracted from successive 
images in the sequence. Structure is defined as the 3-D positions 
of these object feature points, relative to each other. Rotational 
motion occurs about the origin of an object-centered coordinate 
system, while translational motion is that of the origin of this 
coordinate system. 

In previous work [SI-[8] we have developed a model based 
approach for motion/structure estimation using a long sequence 
of monocular images. This approach provides a great deal of flexi- 
bility, by allowing the use of arbitrarily many image frames and 
feature points, and each model can easily be modified or extended 
for different problems. Our earlier work involved assumptions 
about object structure and/or motion, were primarily tested on 
simulated imagery, and did not address the issue of uniqueness 
of the model parameters. 

In this paper, which is a continuation of the research started 
in [q, results of an experiment with real imagery are presented, 
involving estimation of 28 unknown translational, rotational, and 
structural parameters, based on 12 images with 7 feature points. 
Uniqueness results are summarized for the case of purely trans- 
lational motion. A test based on a singular value decomposition 
is described that determines whether or not noise-free data from 
an image sequence uniquely determines the elements of any given 
parameter vector, and empirical support of this test is given. 

Index Terms- Image sequence analysis, motion analysis, 3-D 
motion estimation, uniqueness. 

I. INTRODUC~ION 

HE problem of estimating various 3-D parameters from T a time sequence of 2-D projections (images) has been 
the focus of a significant amount of research during the past 
decade. This problem occurs in a wide variety of situations, 
which range from estimating rigid object structure and motion 
(e.g., [lo], [22], [32]), to self-motion estimation and navigation 
(e.g., [9], [27]), to tracking certain 3-D parameters of “point” 
objects (e.g., [28]), and to many others. In all cases, there 
is either an implicit or explicit use of various models for 
structure, motion, and imaging, the parameters of which are 
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to be estimated, whether they are translational or rotational 
increments, rates, feature positions, etc. Most of the advan- 
tages of model-based methods discussed in [9] (for recursive 
estimation of self-motion) apply to model-based batch and 
hybrid batch/recursive estimation procedures. There are sev- 
eral aspects of this modeling that are of particular relevance 
in distinguishing among the various research endeavors: the 
number and type of the unknown parameters; the amount and 
type of data to be used; and the suitability of the model for 
its intended purpose. 

The number of unknown parameters (the number of “de- 
grees of freedom”) is directly related to estimation perfor- 
mance and data requirements. If many parameters are un- 
known, as is the case with the research presented in this 
paper, the estimation process can be delicate and difficult, and 
batch methods may be required to extract as much information 
as possible from the data. If fewer parameters are involved, 
such as in [13] and (271, the estimation process is more 
robust, as evidenced by the successful use of real- or near- 
real time recursive techniques in these three cases. Similarly, 
the additional information contained in stereo imagery allows 
the use of simpler models and solutions as in [17]; a robust 
linear solution for monocular vision has proved more elusive. 
For example, an approximate linear method for monocular 
vision discussed in [34] is used to generate initial guesses for a 
nonlinear least squares objective function similar to ours, with 
the intent being to reduce the number of unknown parameters 
in the iterative optimization. However, this method is tested 
only on very large objects for simulated imagery and fixed 
scenes (self-motion) for real imagery (both having very low 
noise levels as quantified by the measure discussed below), 
and appears to be limited to motion with small rotation. 

Since the problem is nonlinear (central projection imaging 
and rotational motion), the particular values of the unknown 
parameters are also important. Pure translational motion and 
object (or scene) structure are more easily estimated than 
rotational motion, and the presence of significant rotational 
motion can lead to estimation problems, especially with regard 
to convergence, due to qualitative changes in the objective 
function (creation of multiple local minima). Also, self-motion 
estimation is more robust than object motion estimation, to 
the extent that self-motion estimation involves a very large 
“object” (a fixed scene). The use of long sequences (more 
than four or five images) gives a substantial improvement in 
achievable estimation accuracy, and accuracy improves as the 
object image gets larger. Since these theoretical lower bounds 
on variances of estimate [8] are independent of any particular 
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estimation algorithm, and reflect the information content of the 
data, they apply to any estimation method using point features 
with similar parameterization. 

Model selection is essentially the process of choosing a 
suitable coordinate system or parameterization with which 
to describe the quantities of interest. The choice of a suit- 
able model can facilitate the estimation process, particularly 
in nonlinear problems. For example, a common model for 
monocular vision (e.g., [39], and most of the “two-view’’ 
solutions) assumes that the axis of “object” rotation passes 
through the origin of the camera coordinate system. The 
use of this model in an external object situation complicates 
the propagation of object motion in time, so that longer 
sequences of images cannot be easily used to reduce the 
effects of noise. More flexible models that represent rotational 
motion about an object-centered axis are used in [13], [26], 
[35]. The models used in [13], [26] are quite similar to 
those used in our research, but differ in certain ways: [13] 
assumes known structure, and [26] uses specific models for 
different situations (e.g., number of feature points, number of 
image frames). In [35], this rotational modeling is addressed 
by combining multiple solutions of the two-view problem 
using a local conservation of angular momentum (LCAM) 
model. However, the experiments reported there involve stereo 
imagery only. The smoothing of successive solutions to the 
two-view problem to deal with noise in monocular imaging 
was found to be inadequate in [37], as a result of the instability 
of the underlying two-view solutions. 

Two measurement models are commonly used. “Feature- 
based” methods rely on the extraction of a set of discrete object 
features, such as points, lines, and patches of shadow, located 
in successive images in a sequence, the image coordinates 
of which are used as data to estimate object motion. An 
alternative is the use of “optical flow” methods to represent 
motion in the image plane as sampled, continuous velocity 
fields [3], [14]. Work such as [l] ,  [14]-[16], [19], [30] 
demonstrates the usefulness of the optical flow approach, both 
in terms of the “low-level’’ problems of motion recognition 
and segmentation of scenes into their moving and stationary 
components, and in terms of estimating rigid object motion 
and structure. A comparison is given in [2]. It appears that 
both techniques have their uses, and will eventually be unified 
into a more general vision system. The research reported in 
this paper is based on the use of discrete features. 

In forming estimates from image sequences, either batch 
or recursive solution methods can be used. A batch method 
repeatedly processes the available data, and iteratively adjusts 
parameter estimates until a minimum of an objective function 
(such as the sum of the squares of the errors, which is the 
least squares criterion) is reached. A recursive method starts 
with an initial guess, and refines this guess by considering new 
data sets (images) one at a time. 

The present paper extends the research discussed in [6]-[SI, 
which has been concerned with the simultaneous estimation 
of object structure and motion, when both the rotational 
and translational motion can be significant. In [7], a one 
dimensional (1-D) image of a two-dimensional object (2-D) 
undergoing 2-D motion was examined, to explore the prop- 

erties of central projection imaging and the viability of the 
object/motion modeling approach. Some knowledge of object 
structure was assumed, and a recursive solution method was 
used on simulated data. The results presented there were 
extended to a 2-D image of a 3-D object, undergoing 3-D 
motion, and the various models were more fully developed. 
The accuracy of this model-based approach was addressed 
in [SI, and the performance of the batch algorithm was 
compared with theoretical limits (CramCr-Rao lower bounds) 
for various numbers of image frames and feature points, 
based on simulated data. In [6], a nonlinear extension of the 
Kalman filter (iterated extended Kalman filter) was shown 
to be effective for recursive estimation of 3-D motion and 
structure parameters based on both simulated and real 2- 
D imagery. A batch algorithm was used for initializing the 
recursive procedure-the batch approach was shown to be 
more stable in the presence of inaccurate initial guesses and 
high noise levels. 

The present paper represents a continuation of the research 
started in [7] by evaluating the performance of a batch 
algorithm applied to all the data from two sequences of real 
imagery. Although the batch approach is computationally more 
expensive than the recursive approach, it is both more accurate 
and more stable. In addition, the issue of the uniqueness 
of the estimates for the model-based approach is addressed 
theoretically (for translational motion) and with a numerical 
test based on the singular value decomposition (for motion 
involving rotation). 

11. MODELS 

The models used in this research are based on several as- 
sumptions. First, it is assumed that object motion is “smooth” 
in an inertial coordinate system. The constraint imposed on the 
motion is that some finite time derivative (say, the 72th) of the 
variation in each kinematic attribute is constant, and that higher 
order derivatives are zero. Secondly, it is assumed that object 
motion can be decomposed into rotation about a point termed 
the center of rotation, and translation of that center of rotation. 
In the case of constant angular velocity rotation, the center of 
rotation is a point on the axis of rotation, while if higher order 
rotation is present, the center of rotation is the point remaining 
stationary in the object with respect to rotational motion. Fig. 
1 illustrates the basic models for motion, structure, and the 
observation of the object. 

A. Imaging Model 

A central projection imaging model is used, defined by 

h : S H P  (1) 

where 

s = (i) E S = { ( s , y , ~ ) ~  E R3, s.t. z > 0} (2) 

is a spatial point coordinate, and 

P = (;) E P = { ( X , Y ) T  c R2 s.t. - 
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Fig. 1. Fundamental model for object motion and imaging. 

is an image plane point coordinate. The space P is nominally a 
finite rectangle, corresponding to the image plane of a camera; 
however, this fact is incidental and is not further discussed. 
Then, 

map spatial coordinates to noisy image coordinates, where the 
camera focal length f is set to unity without loss of generality 
for synthetic imagery. When real imagery is involved, the focal 
length must be measured or estimated, as will be discussed in 
Section IV. The terms nx and ny are the image plane noise 
components, discussed below. Thus, the measurement model 
for a single point s = (x, y, zlT is 

P =  ($) = (:\:)+ (z) = h [ s ]  + n. (5) 

B. Noise Model 

The measured image coordinates of the feature points are 
assumed to consist of the image coordinates of the true 
feature positions corrupted by additive independent zero mean 
Gaussian noise. The measure of noise power used here is a 
percentage of the object image size, where this size is taken 
as the projection in the image plane of the largest chord of 
the object in 3-D. The usual measure of noise in this type 
of problem is a percentage of image size; however, the effect 
of a given noise level of this type depends on object size, since 
estimation involving a small object image will clearly suffer 
more than that involving a larger object image for a given 
image plane noise level. As a result, the noise level increases 
when an object recedes from the camera, and decreases as it 
approaches the camera. 

A different source of error is the incorrect labeling of a 
feature point, such as when two closely spaced features are 
erroneously switched. The impact of such an event would 

vary, depending on noise level, number of points, number 
of frames, distance between feature points, etc. This type of 
error has received considerable attention in surveillance and 
tracking situations involving multiple moving objects, such as 
[4]. The effects of such errors are very difficult to quantify, and 
tend to be chaotic in nature, a single error often leading to an 
avalanche of additional errors. However, it has been observed 
that the chaotic effects tend to slowly disappear after a while, 
provided that the measurement accuracy, intervals, and point 
spacings are adequate to avoid frequent events of this type. 

C. Object and Motion Model 

An object-centered coordinate system is defined. The origin 
of this object-centered coordinate system is not observed, in 
general. Object structure is then defined as the coordinates 
of the object feature points in the object-centered coordinate 
frame. These positions are constant in time due to the rigidity 
assumption. Object translational kinematics are defined to be 
the position and motion of the origin of the object-centered 
coordinate frame with respect to the camera-centered (inertial) 
coordinate frame. Object rotational kinematics are defined to 
be the object angular position and motion about the origin of 
the object-centered frame. Object structure and translational 
kinematics can only be known to within a global scale factor, 
unless absolute apriori data is available about the object 
and/or its translational kinematics. Object rotational kinematics 
are not subject to this scale factor. The scale factor comes 
about because, as can be seen in the mapping h defined in 
(5), any constant multiple of all spatial coordinates (z, y ,  
results in the same image. 

The following model results: Let si0 = (xz, yi, zi)T be the 
object-centered coordinates of feature point z. Let s ~ ( g ,  t )  = 
( x ~ ( g ,  t ) ,  y ~ ( g ,  t ) ,  z ~ ( g ,  t ) )T  be the camera-centered (iner- 
tial) coordinates of the origin of the translating object reference 
frame (not observed directly). The vector 14 contains the model 
parameters. Let R(g, t )  be the 3 x 3 coordinate transformation 
matrix that rotates the object coordinate system from its 
orientation at time t o  (aligned with the camera coordinate 
axes) to its orientation at time t .  Let s i (g , t )  be the spatial, 
camera-centered coordinates of feature point i at time t ,  with 
parameter vector g. 

The object motion model is then given by 

or, at time of the lcth image, t k ,  as 

At time t k  the image plane measurements of the match 
points are, from (5) ,  
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which can be written as 

where i = l , . . . , M ,  for M object match points, and k = 
1, . . . , N ,  for N image frames. 

1) Translational Motion Model: Since the spatial coordinates 
of the origin of the object-centered reference frame, S R ( ~ L ,  t ) ,  
can be written in terms of an arbitrary number of nonzero 
derivatives, a variety of modeling options are available. As- 
suming it can be accurately modeled by a constant nth 
derivative, 

For example, if the translational motion has constant velocity 
(the case examined in detail in this research), 

sR(% t )  = sR(% t o )  + (t - tO)gR(& t o )  

= (ii) + ( t -  t o )  (H) = (%:;). 
z R ( G ,  tk) 

(11) 

Thus, the translational motion during the observation period 
is modeled by a finite number (3n) of parameters, which are 
simply the nonzero derivatives at a single point in time ( t o ) .  

2) Rotational Motion Model: Quaternions, described for ex- 
ample in [11]-[13], [20], [36], can be used to propagate 
the rotation matrix R(g,t)  in time, with the rotation of the 
object coordinate frame represented by the object rotation rates 
about inertial (z, y, z )  axes at the reference time t o  as g, = 
(wz, wy, w , ) ~  . At this reference time, the object centered axes 
are aligned with the inertial axes, so an equivalent statement 
is that the angular motion occurs on an axis (possibly time- 
varying) through the origin of the object centered frame, 
measured about axes parallel to the inertial (camera centered) 
axes. With this approach, the rotation matrix R(G, t )  can 
be written in terms of the unit quaternion q ( t )  = (q l ( t ) ,  
q2(t), q3(t), q4(t))T = .(U, t)as discussed in [12], [2O], [36]. 
Suppressing the time dependency of the quaternion elements, 

T 

(I? - d - 43” + q2 
2(q1q2 - q3q4) 

2(q1q2 + q3q4) 
-q; + 42” - 43” + d R(14, t )  = 

2(qlq3 + 9294) -2(q1q4 - q2q3) 

2(4243 + q 1 p )  . (12) ) 
2(qlq3 - q2q4) 

( 
- 47 - 42” + q3 + q: 

The rotational portion of the motion and object model can 
then be written 

= R(tk)siO = R[q(tk)]  
Rx(% 2, t k )  

Rz(% 2,  t k )  

The unit quaternion 9 = ( q l ,  q2, q3, q4)T is related to “stan- 
dard” expressions of the angular relation between coordinate 
systems by 

nl sin %/2 

- = (t ) = ( n 3  n2 sin sin 9/2)  912 (14) 

q4 cos %/2 

where ( n l r n 2 , n 3 )  are the direction cosines of an axis of 
rotation, and 9 is the angle about that axis that describes the 
rotation of the object coordinate system from its initial orien- 
tation to its orientation at time t. In general, n1 ,  n2 ,  n3 ,  and 
9 all change with time. It is termed a unit quaternion because 
141 = 1. The quaternion q propagates in time according to the 
differential equation [121, [36] 

where 

The solution to (15) when g is constant is simply 

- q( t )  = exp[(t - to)fllg(to). (17) 

It might also be noted that the matrix 2 iR/ (g (  is unitary, where 
i = fl. As a result, the power series expansion for the 
matrix exponential can be reduced to [33] 

2 
- q( t>  = [cos(lwlt/2)14 + - I4 s i n ( l w ~ t ~ ~ ] g ( t o )  (18) 

which can be further reduced by assuming, without loss of 
generality, that the coordinate systems are aligned at to ,  so 
that - q ( t 0 )  = ( O , O , O ,  l)T, and 

[compare to (14)]. This solution is valid only when w is 
constant, as it is for the test cases presented in this paper. 
When w(t)  evolves in time according to a constant rate of 
precession, the quaternion can also be written in closed form 
[38]. The resulting closed form expression for the quaternion 
as a function of time is given in [38, Appendix A], when g 
moves with constant precession. 

The initial quaternion q ( t 0 )  can be written as above since 
there is no requirement for any particular initial orientation 
of the object centered coordinate system, with respect to the 
inertial coordinate system. The first parameters of interest 
are the changes in this relationship, as a function of time, 
which are the angular rates. The remaining unknown pa- 
rameters, the coordinates of the feature points in the object 
centered reference frame, are important only in their relation- 
ship to each other, so the initial orientation of the object 
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centered coordinate system is in this sense also arbitrary. 
The above choice simply aligns the object centered system 
so that the x- and y-axes of the object-centered coordinate 
system are parallel to the X- and Y-axes of the image plane 
at time t o  (which are also parallel to the inertial coordinate 
axes). 

In general, the image of the match points at time t k  can be 
written, from (9) as 

When motion is more general than constant velocity, the 
translational component is straightforward, giving terms like 
XR + x t k  + 2( t i / 2 ) ,  to the desired order. The rotational 
component is slightly more involved; however, as shown, there 
are closed form expressions for rotation involving constant 
angular velocity, and for rotations in which the axis of rotation 
changes at a constant precessional rate. Higher order rotation 
becomes more laborious, if it should be necessary, requiring 
numerical integration of (15), and the use of a Taylor series 
expansion of g( t )  to compute the values of w x ( t ) ,  w y ( t ) ,  and 
w Z ( t )  to be used in the matrix C2(gt). The ordinary differential 
equation of (15) is well behaved, and in [36] an incremental 
approximation is discussed, that avoids the need for numerical 
integration. At each iteration of the attitude state equations, 
an average value of g(t)  over the interval is used in (18), to 
give an approximate closed form single-step predictor. This 
amounts to a “zero-order’’ approximation, or a first order 
Euler quadrature formula with only a single step. Thus, the 
propagation of the state equations when the rotational motion 
is not constant velocity or constant precession is not overly 
difficult. 

When the models discussed above are applied to the mon- 
ocular vision problem, there is an unknown scale factor applied 
to all translational and structural states, as discussed above. In 
the research reported here, this has been taken into account 
by normalizing all affected states by the parameter ZR. Al- 
though any translational or structural parameter would suffice 
(i, xl, etc.), this choice is appealing in that the normalized 
coordinates of the origin of the object-centered frame xR/zR 
and YR/ZR are the actual image plane coordinates of these 
points (not directly observed in general). This gives rise to 
a normalized parameter vector g,  which will be used in the 
following discussions. That is, 

where 

The parameter vector g has dimension 3M + 3n + 3m + 
2 .  When rotational motion has constant velocity, there is 
a floating degree of freedom with regard to the inertial 
coordinates of the center of rotation: one coordinate of one 
feature point is then selected to fully define the origin of the 
object-centered coordinate system along the axis of rotation. 
This reduces the dimensionality of the parameter vector to 
3M + 3n + 3m + 1. In a similar way, the complete absence 
of rotation not only eliminates the rotational states, but leaves 
the origin of the object centered coordinate system completely 
undefined. Then, one of the feature points can be selected 
as the origin, with the elimination of additional unknown 
parameters as discussed in [ 5 ] .  

In [29], [33], a geometric approach has been suggested for 
the structure from motion problem, under the assumptions 
of rigidity, constant velocity translation and constant angular 
velocity rotation for the orthographic projection case. Or- 
thographic projection [33] enables more complicated rotation 
models to be considered. These methods are applicable to one 
of the real image sequences (bottle sequence) considered in 
this paper. But in general perspective model based motion 
analysis is much more general and harder than the one based 
on orthographic projection. 

111. FORMULATION FOR BATCH SOLUTION 

We present a batch approach for the estimation of the model 
parameters, when both the translation and rotational motion are 
of constant velocity. As discussed above, the parameters XR, 
y ~ ,  and ZR are defined to be the spatial coordinates of the 
origin of the object-centered coordinate system at time t o ,  the 
parameters x, $, and i are the translational rates, and x;, y;, 
and Z; are the coordinates of the object feature point i in the 
object-centered coordinate system. However, there is no way 
to distinguish a large, distant object, moving quickly, from a 
small, nearby object, moving proportionately more slowly, in 
the absence of apriori information about the true value of 
one of these parameters. This scale factor has been taken into 
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account by dividing each of these parameters by Z R ,  which is 
equivalent to setting Z R  = 1, as discussed in Section 11. 

Thus, if both the translational and rotational rates are 
constant during the image sequence, the vector U of unknown 
parameters is 

- 

It should be noted that the z-component of the first feature 
point is not included. This results from the fact that the origin 
of the object centered coordinate system is constrained by 
constant velocity rotation only to lie on an axis (the axis of 
rotation): the position of the origin along this axis is arbitrary. 
Thus, it is convenient simply to assign one coordinate of any 
feature point to an arbitrary value: in this case Z1/ZR = 0 
was used. As long as the axis of rotation is not parallel or 
almost parallel to the x-y plane, this approach works. In cases 
where this is not appropriate, setting the x- and y-component 
to a fixed value would be better. For generality, a strategy of 
constraining the origin to lie in a plane orthogonal to the axis of 
rotation would be better, by including a constraint that forces 

as part of the objective function. The need to artificially 
constrain the origin of the object centered system also arises 
when motion is purely translational: in that case, the origin 
is entirely arbitrary, since all points move in 3-D along 
parallel translational velocity vectors. Then, a single point is 
arbitrarily picked as the origin, and all three components are 
removed from the parameter vector. If angular acceleration 
is of significant magnitude, only a single point (instead of 
an axis) remains invariant to rotational motion, which would 
eliminate the need for such a constraint. Such an implicit 
definition of the origin of this coordinate system occurs under 
the assumption stated above, namely that the axes of rotational 
acceleration and velocity intersect. 

As discussed in Section 11, the individual components of 
si (%,tk)  of (6) are (setting t o  = 0), 

The terms R x ( U , i 7 t k ) ,  etc., refer to the 2-, y-, and z- 
components of the camera (inertial) coordinates of the ith 
match point, which are expressed in the rotated (object- 
centered) coordinate system as (Xi /ZRl  y i / z R ,  z ~ / z R ) .  The 
rotation matrix R(g,  t k )  of (12) is a function of '1L6, u7, 
U8 ( w x 7 w y , w z ) ,  and t k .  For example, denoting the T S  

component of R(g, t )  as R,,, 

when the time argument of q ( t )  has been suppressed. The 
1 in the z-component of s;(&tk) is written as ZR/ZR, in an 
analogous manner to the terms u1 = XR/ZR and uz = YR/ZR,  

as discussed above. All components of the object structure and 
translational kinematics are then homogeneous in 1 /ZR,  which 
accounts for the global scale factor. 

Next, the components of (9) are written as 

and 

Then, if the noise terms nx(tk) and n y ( t k )  are assumed to 
be independent, identically distributed (IID), N(0, g 2 ) ,  

This leads to the conditional density of the measurements 
given U, sio, and t k ,  

(34) 

Since the noise is assumed uncorrelated in time, and indepen- 
dent from feature point to feature point, the conditional den- 
sity of the data 2 = { X i k , Y , k , i  = l , . . . ,M; lc  = l , . . . ,N}  
given g is the product 

N M  
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Then, the maximum likelihood (ML) estimate 4 of a is 
found by maximizing the log-likelihood of (35), which reduces 
to minimizing the summed squared residuals with respect to 
U, 

N M  

G(a)  = { ( X d t k )  - hx[si(artk)1)2 
k=l i=l 

A variety of nonlinear search algorithms were tried, in- 
cluding the method of Steepest Descent, Powell’s Sum of 
Squares, the Davidon-Fletcher-Powell method [24], and all 
of the routines in the IMSL package. Of these, the Conjugate 
Gradient descent technique from the IMSL package gave by 
far the best performance. The IMSL implementation of the 
Conjugate Gradient algorithm is based on a study by Powell 
in [21]. Explicit computation of the gradient is required, but 
no second derivatives are calculated. The Conjugate Gradient, 
as its name implies, is based on searching along a sequence 
of mutually orthogonal directions. The main feature of this 
implementation is that a method of periodic restarts of the 
search sequence is proposed, using as an additional term a 
partial single step in the direction of steepest descent. By using 
an adaptive test, based on the event of gzgrc+l/llgk+ll12 > e, 
for some constant c, the restart is applied so as to avoid 
certain difficulties and to exploit any underlying quadratic 
or symmetric structure to accelerate convergence. Essentially, 
the test examines the degree of orthogonality present in two 
consecutive search directions. This technique has been used 
for all the results generated in this paper. 

Recently, [31] an algorithm based on the Levenberg- 
Marquardt method has been suggested for minimizing (34). 
It is claimed that this algorithm converges faster than the 
conjugate gradient descent algorithm. 

Iv.  EXPERIMENTAL RESULTS FROM REAL IMAGERY 

The results of the batch algorithm discussed in Section 111, 
as applied to real imagery, are summarized. The images used 
here were made with a standard 35 mm camera, set on a 
tripod for stability. Images were made one at a time, and 
the object was moved between images. Enlargements were 
made of the 35 mm negatives, and image plane coordinates 
were measured with a ruler, directly from the prints. The 
image plane coordinates must be measured with respect to 
an orthogonal coordinate system, however. To do this, two 
fixed reference points were located in the image sequence, 
that appear in every image. The distances from each reference 
point to each feature point were measured, and a simple 
trigonometric relation was applied to transform the data into 
coordinates along the baseline (the line connecting the two 
reference points) and perpendicular to this baseline. This data 
was input to a computer, and estimates were formed using 
the batch estimation model discussed in Section 111, using the 
IMSL Conjugate Gradient routine. 

The focal length f relates the actual image dimensions to 
both the estimates and ground truth. The distance ZR is used 
to account for the floating scale factor that arises in monocular 

imagery using the central projection model. This distance can 
be estimated only when information about ground truth is 
available, as it is in the test cases presented in this section. 

When working with real images, the camera focal length 
is not simply the focal length of the camera, but instead is 
the “effective” focal length of the entire imaging system. If 
measurements are made in pixels from a digitized image with 
a track-ball, the resolution of the image is part of the imaging 
system. If, as in this work, the measurements are made with 
a ruler on a print, the degree of enlargement is part of the 
imaging system. As a result, it is necessary to perform a 
calibration step, to determine the effective focal length of the 
imaging system. 

Consider the following (simplified) objective function, 
where the sequences {xn}, {vn} ,  and { z n }  indicate the time 
evolution of the inertial coordinates of a set of feature points, 

The summation is over all feature points ( M )  and images 
( N ) .  The sequences { X n }  and {Y,} are given as data; 
parameters that minimize G are desired, that are related to 
the sequences {x,}, {yn}, and { z n }  according to the models 
presented earlier. The approach used here was to estimate f 
as a parameter, along with the other unknown terms in U. The 
derivative of G with respect to f is 

which is appended to the gradient vector discussed in Sec- 
tion 111. Since the Conjugate Gradient (CG) algorithm con- 
verges faster if the states to be estimated are of approximately 
the same magnitude [24], a parameter a f ’  was used instead, 
resulting in an additional coefficient of a multiplying the 
summation. When a = 10 was used, the CG routine required 
approximately 4000 iterations in the Bottle experiment, with f 
initialized at about 0.92 inches, as opposed to about 5500 with 
cy = 1, and f ’  initialized at 9.2 inches. The initial estimate 
of 9.2 inches resulted from a simple scaling of the distance 
between two feature points from th! sequence. Both iterations 
converged to the same estimate, f = af’ = 14.767 inches. 
The “correct” answer is unknown. In addition, the parameter 
estimates & were identical in both cases (to at least 5 decimal 
digits), and further were identical to the results given by the 
CG routine when f was given as an input parameter, although 
many fewer iterations were required in the latter case. 

The parameter estimation procedure does not appear to be 
highly sensitive to the choice of f: when estimates were made 
with the guess of 9.2 inches, they were slightly poorer for 
some parameters (translation rates) but slightly better in others 
(rotation rates). In general, as the estimate of f is reduced, the 
translational and structure state estimates tend to get larger, so 
as to better fit the data. The rotational estimates stay more or 
less constant. The CG routine converges for fixed values of f 
as small as 4.6 inches, which was the lowest tried, although 
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the large biases in the state estimates prevent the objective 
function from getting very small. 

In the Car experiment, the guess for CY f’ was 12  inches, and 
the estimate was 23.5 inches; the search was terminated when 
the maximum number of iterations (4000) were achieved. Out 
of curiosity, 20 000 iterations were allowed, with the result 
that search did not converge: instead, the estimate for f 
grew slowly but steadily, while the objective function was 
gradually reduced. The estimate of the translational motion in 
depth (orthogonal to the image piane) is approximately the 
same with f = 23.5 and with f = 45.2, while the esti- 
mates of the other translational components are scaled by a 
factor of about 2. The estimates of the z-components of the 
structure states also remain about the same, while the other 
components of these states are scaled by a factor of about 
two. It appears that allowing f to vary as a parameter results 
in an ambiguity in terms of object distortion in this case, in 
that the components of states orthogonal to the image plane 
remain constant, while those parallel to this plane change, 
while still remaining consistent with the data, as reflected in 
the objective function. The same effect has been observed 
in experiments involving pure translation, when the motion 
is confined to the z-direction. That such an ambiguity exists 
in the Car experiment and certain types of pure translation, 
but does not exist in the Bottle experiment, implies that the 
particular object structure and motion are involved. Thus, it 
appears that an examination of camera calibration techniques 
is required, to resolve the issue of focal length estimation and 
explain the phenomena observed here. 

The second issue is the relationship between the estimates 
and ground truth. These are related by the global scale factor, 
taken here to be ZR. Having established the correspondences 
and processed the data, the results are estimates of normalized 
states, which are related to the ground truth by the factor 
ZR. In order to compute ZR, the 3-D normalized distance 
between each pair of feature points is computed; the ground 
truth distance between each pair of feature points is measured 
directly. By dividing the ground truth distances by the normal- 
ized estimates, an estimate is obtained of ZR. Discarding the 
largest and smallest estimates, an average of the remaining 
scale factors is computed, which is used to reconstruct the 
translational motion estimates and object feature coordinates. 
In the Bottle experiment, for example, the estimate of ZR 
is 49.8”, and if the minimum and maximum are discarded, 
the sample standard deviation of this estimate is about 1.3”. 
In the Car experiment, the estimate of ZR is 94.4“, with a 
standard deviation of 41”, reflecting the higher noise level 
and poorer observability in the latter experiment. The use of 
different estimates for the imaging system focal length results 
in different estimates for ZR; the estimates of translational 
motion parameter values seem to scale very closely with 
the choice of f, consistent with the increasetdecrease in the 
structure and translational motion state estimates. 

A. Summary 

The results of both experiments involving real imagery 
compare well to the ground truth. The data derived from the 
Car imagery is of significantly lower quality than that of the 

Bottle imagery, with a noise level of about 3% compared 
with about 0.45%, based on “measurement” noise hn of 
0.09 inches versus 0.02 inches, and object image sizes of 
3 inches versus 4.5 inches. The “measurement” noise level is 
estimated from the summed squared residuals, and includes 
the effects of mismodeling and distortion as well as actual 
errors in the measured distances. The Car sequence involves 
more mismodeling than does the Bottle, and the focal length 
estimation is qualitatively different, since it diverges in the Car 
experiment, but converges nicely in the Bottle experiment. 

The structure errors are larger for the Car than for the Bottle 
(errors up to 10 inches versus errors up to 0.6 inches). The 
rotational and translational motion estimates are surprisingly 
good in both experiments. The Bottle experiment resulted in 
errors of 5.4 degrees and 0.3 inches, while the Car experiment 
yielded total motion errors of 6.3 degrees total rotational and 
1.5 inches total translational motion. 

B. Rolling Bottle 

This experiment involved a standard 5 gallon water bottle, 
rolling across a garage floor. The bottle was “instrumented” by 
affixing adhesive circles at various points to serve as feature 
points: 12  images were made of 7 feature points. The bottle 
was rolled 1 inch along the floor between images, and thus 
traveled 11 inches in all. There was no assumption made 
about object transparency: in no case was a feature point 
observed through the bottle. However, there was no occlusion 
either. For simplicity, the total rotation was limited so that all 
features were observed in all images. This was done more for 
convenience than for any other reason; however, it limited the 
allowable total motion, since the rotation was limited. The total 
rotation was 2.05 radians, or about 117.7 degrees in all, which 
was slightly less than 11 degrees between each pair of images. 

As mentioned, the estimate of ZR was 48.8 inches, with a 
standard deviation (trimmed data) of 1.3 inches. This distance 
was measured when the data were collected; however, the 
measurement (about 40”) differed from the above estimate. 

The image plane trajectories of the feature points are illus- 
trated in Fig. 2; the axes are measured in inches. It is easy to 
see that the features at the bottom of the figure, starting out at 
Xik x 1” to 2”, are nearly in contact with the ground during 
the first four or five images. If a feature point is on the edge 
of a rolling object, such that it contacts a surface periodically, 
the image plane motion has a cusp every time it touches the 
ground; in the case of a cylinder, the motion generated is a 
projection of a cycloid. This event contradicts the notion that 
“smooth motion in 3-D results in “smooth” motion in the 
image plane, an assumption made in [25], for example. It is 
true, however, that the motion in time of such a point is slowly 
changing, in that it decelerates and accelerates smoothly. 
Figs. 3 and 4 show four images from the Bottle sequence. 

Table I gives the normalized state estimates, as output by 
the CG algorithm, expressed in normalized units (consistent 
with the estimates). The state estimates are related to actual 
3-D coordinates by the factor ZR, except for the rotational 
rates which remain unchanged. 

The estimate of the total rotation of the bottle during the 
sequence is 2.150 radians, compared to a measured rotation 
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Fig. 2. Observed trajectories of feature points in image plane, Bottle. The 
darker rectangles indicate the initial feature point positions. 

Fig. 4. Frames 7 and 11 from the Bottle sequence of 12 frames. 

Fig. 3. Frames 1 and 4 from the Bottle sequence of 12 frames. 

of 2.055 radians, based on the circumference and distance 
rolled, so that the error is about 0.095 radians, or 5.4'. The 
measured circumference of the bottle, at the largest point, 
is 33.63 inches, and the bottle rolled 11 inches during the 
sequence. 

The total translation is estimated by computing the mag- 
nitude of the normalized translation rate, 0.200 units/second, 
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TABLE I 
STATE ESTIMATES FOR THE BOTTLE EXPERIMENT. TWELVE 

FRAMES WERE USED WITH SEVEN FEATURE POINTS IN EACH 
FRAME. ALL VALUES A R E  GIVEN IN NORMALIZED UNITS, 

EXCEFT THE ROTATION RATES, WHICH ARE IN RADIANS/SECOND. 

State Estimate State Estimate 

0.0627 
0.1083 
0.1997 

0.0033 
0.4788 
1.5196 
1.1325 
0.0424 

0.0155 

0.0217 

-0.0047 

-0.0859 

-0.0919 

-0.0583 

-0.0741 
0.0316 

-0.0759 
-0.0071 
-0.0603 

0.0173 

-0.0924 
-0.1048 

0.0253 

-0.0444 
0.1857 
0.0986 

-0.0109 

-0.0214 

times 1.1 seconds, yielding 0.220 units. The normalizing fac- 
tor ZR z 48.8", so the total distance estimate is 10.73 inches, 
as compared with an actual distance of 11 inches. 

The structural state estimates have standard deviations be- 
tween 0.12 and 0.28 inches, for each coordinate. The average 
error (averaged over all points) is 0.06 inches, with a standard 
deviation of 0.28 inches. It should be noted that these errors 
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ing the camera. Sixteen images were made, with eight feature 
points per frame. The feature points were again marked with 

TABLE I1 
3-D DISTANCES BETWEEN OBJECT FEATURE POINTS FOR THE BOTTLE 
EXPERIMENT. NORMALIZED ESTIMATES. TRUE DISTANCES (INCHES), 

SCALED ESTIMATES (INCHES), AND SCALE FACTORS. *INDICATES' 
SMALLEST AND LARGEST ESTIMATES, TRIMMED FROM DATA. 

adhesive dots, in order to facilitate the measurement process. 
The car was moved amroximately 3 inches between each .. 

True Scaled image, corresponding to a tire rotation of about 14.8 degrees. 
z i Estimate Distance Estimate i R  The direction of translational motion was towards the cam- 

era (motion in the negative z direction in inertial-camera 
*46.28 centered-coordinates), with a component to the right (positive 

1 4  0.1544 7.375 7.53 47,77 z direction). The camera was slightly higher than the tire, 
1 5  0.1216 5.813 5.93 47.80 which resulted in a small component of translation in the 

- 
1 2  0.0351 1.625 1.71 
1 3  0.1062 5.000 5.18 47.08 

48.01 negative y dimension. Obviously, the relationship between the 
2 3  0.0765 3.630 3.73 47.45 rotation and translation is the same here as it is in the Bottle 
2 4  0.1492 7.183 7.28 48.14 experiment, since both involve rolling motion. However, the 

1 6  0.1857 8.915 9.06 
1 7  0.3017 15.330 14.72 50.81 

2 5  
2 6  
2 7  
3 4  
3 5  
3 6  
3 7  
4 5  
4 6  
4 7  
5 6  
5 7  
6 7  

0.1400 
0.1734 
0.2942 
0.1150 
0.1584 
0.1219 
0.2687 
0.0987 
0.0583 
0.2519 
0.1458 
0.2810 
0.2092 

6.750 
8.368 

15.029 
5.438 
7.688 
5.970 

13.785 
4.875 
2.785 

12.679 
7.130 

14.342 
10.500 

6.83 
8.46 

14.35 
5.61 
7.73 
5.95 

13.11 
4.82 
2.85 

12.29 
7.11 

13.71 
10.21 

48.21 
48.26 
51.08 
47.29 
48.54 
48.97 

*51.30 
49.39 
47.77 
50.33 
48.90 
5 1.04 
50.19 

are highly correlated. Table I1 lists the true and estimated 
interpoint distances. 

Based on an objective function value of 0.0762 at the 
minimum, and given N = 12, M = 7, the image plane noise 
standard deviation is estimated to be about 0.021 inches. 
The sample variance of the residuals in the image plane 
is just the value of the objective function at the minimum 
divided by the number of residuals ( 2 N M ) ;  this is simply 
because the estimates are least squares. The maximum chord 
in 3-D of the object is about 15 inches, and multiplied by 
~ / Z R  M 0.302 (units of image plane inches to 3-D inches) 
gives approximately 4.54 inches in the image plane (a ruler 
gives 4.4 inches). The noise level, measured as a ratio of 
image plane noise level to maximum projected chord of the 
object, is 0.021/4.5 or about 0.45%, which is fairly low, but 
far from being noise-free. This is consistent with the accuracy 
of the parameter estimates. Approximately 1600 iterations of 
the Conjugate Gradient algorithm were required. 

The axis of rotation is actually perpendicular to the velocity 
vector d, since the bottle is rolling; the computed angle 
between the two vectors, based on state estimates, is only 
76 degrees, so there is some distortion in the estimates. The 
points p6 and p7 are located on a vector that is almost 
exactly parallel to the axis of rotation: the vector d67 connects 
them. The inner product of d67 and w, normalized by their 
magnitudes, yields -0.895, so the estimates of object structure 
and orientation of the axis of rotation are not truly parallel, but 
not too far off at -154 degrees. Similarly, d67 and d form an 
angle of 104 degrees, again slightly off a right angle. 

C. Car Sequence 

The second experiment using real imagery involves ran- 
domly selected points on the side of the tire of a car approach- 

experiments differ in several ways, as seen in the input data, 
plotted in Figs. 2 and 5. The object structure in the Bottle 
experiment involved feature points in a 3-D configuration; in 
this experiment, the points lie in a single plane, orthogonal to 
the axis of rotation, parallel to the direction of translation. 
The amount of motion is greater in this experiment, with 
a total translation of 45 inches, compared to 11 inches in 
the Bottle experiment, and a total rotation of 3.85 radians 
(about 220 degrees), compared to 117 degrees. As an aside, 
the estimates in the Car experiment are referenced to the end 
of the image sequence, while in the Bottle experiment the 
estimates were referenced to the beginning of the sequence; 
this issue is discussed in [5 ] .  

The object image size (size of the image of the tire) is about 
2 inches at the start of the sequence, and about 3 inches at the 
end; the object image size of the bottle was about 4.5 inches 
during the entire sequence. The measure of noise level used 
here is the estimated image plane noise en divided by the 
projection in the image plane of the largest chord of the object 
in 3-D. Thus, the noise level in the Car experiment is much 
higher than in the Bottle experiment: with a 3 inch image, with 
en M 0.089, the noise level is about 3% of the image size, or 
almost an order of magnitude greater than that of the Bottle 
experiment. This image plane noise CY is again computed from 
the summed squared residuals, since this is just the value of 
the objective function at the minimum. In this case, this value 
is 2.033; divided by 2NM this yields 0.089 inches, or almost 
a tenth of an inch. The actual measurement noise, which would 
result from errors in making the measurements, is estimated 
to be 0.03 to 0.04 inches. The remainder of the noise is due 
to modeling errors and distortion. 

Mismodeling is present in this case, in several ways. First, 
the motion of the object is assumed to be uniform from image 
to image. This is not the case. There is an additional image in 
this sequence, that occurs before the start of the 16 image se- 
quence, that was discarded. Using this additional image did not 
improve estimation accuracy; in fact, the estimated noise level 
increased from 0.089 to 0.099, since the motion in the addi- 
tional interframe interval differed significantly from the others. 
Thus, there is some nonuniformity in object motion between 
images. Secondly, the rotational motion is assumed to be con- 
stant velocity; however, the wheel was turned slightly during 
the sequence. Finally, the imaging system focal length could 
not be unambiguously determined in this case, as discussed 
above, and the estimates are potentially distorted as a result. 

. 
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Fig. 5 .  Observed trajectories of feature points in image plane. for Car 
imagery. The darker rectangles indicate the initial feature point positions. 

, .- 0 0  - 
- 1  0 7 0  

o 3  x 
Fig. 6. Reconstructed trajectories of feature points in image plane from 
estimated parameters, Car. The darker rectangles indicate the initial feature 
point positions. 

Figs. 5 and 6 show the measured and reconstructed image 
plane trajectories of the feature points. Four images taken 
from the Car sequence are in Figs. 7 and 8. Some of the 
unevenness of the original data can be seen by comparing 
the measurements at the cusps of the cycloids with the 
reconstructed trajectory data. The state estimates are given 
in Table 111. As expected, the dominant source of rotational 
motion is about the axis orthogonal to the image plane; 
however, the estimates of w, and wy are significant, amounting 
to about 45 and 16 degrees of motion, respectively, during the 
observation interval. This apparent motion is probably due in 
part to the distortion discussed above. 

An error of 0.05 in normalized coordinates is scaled to a 
5 inch error in the true object dimensions by 2~ = 94.4 inches, 
which accounts for most of the errors in the interpoint dis- 
tances shown in Table IV, since the estimate of ZR is about 
94.4 inches. The measured value of ZR in the original scene is 
about 108 inches, so the estimate of this quantity is better in 
the Car than in the Bottle (estimate of 49.8 inches, measure- 

Fig. 7. Frames 1 and 4 from the Car \equence of 16 frames 

ment of 40 inches). The feature points lie in a single plane: 
i t  is believed that this is a factor in the ambiguity regarding 
the focal length. 

The estimate of the translation rate corresponds to a transla- 
tional distance estimate of 43.5 inches during the observation 
interval, as compared with the measured value of 45.0 inches. 
The rotational motion estimate is also fairly accurate, with 
a prediction of 3.96 radians total rotation compared with a 
measurement of about 3.85 radians yielding an error of about 
6.3 degrees. 

There are large errors in structure estimation. In this case, 
the errors appear to be due in part to distortion, which affects 
the interpoint distances directly. As seen in Table IV, the error 
of the interpoint distances tends to be the least for points 
adjacent to each other (e.g., points 1 and 2, points 1 and 8) and 
greatest for points nearly opposite each other (e.g., points 1 
and 5, points 3 and 8). This consistent with a spatial distortion 
induced by an inaccurate focal length, since such a distortion 
would affect immediate neighbors the least. 

The distortion becomes more evident when the angles 
between the various vectors are computed. Clearly, the axis 
of rotation is perpendicular to the axis of translation, since the 
rotation of the tire is directly related to the direction of travel. 
However, the estimated angle between these axes is about 
150 degrees. When this issue is examined more closely, it is 
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Fig. 8 Frames 7 and 13 from the Car sequence of 16 frames 

TABLE 111 
STATE ESTIMATES FOR CAR EXPERIMENT. SIXTEEN FRAMtS 

WtRt USED WITH EIGHT FEATURE POlYTS IN EACH FRAME. 
ALL V A L U F S  ARE GIVEN IN NORMALIZED UNITS, EXCEPT 
TIIF ROTAlION RATES, WHICH ARE IN RADIANS/SECOND. 

State Estimate State Estimate 

0.2414 
0.0743 
0.2 179 

-0.0255 
-0 5746 

0.7806 
0.3681 
5.2097 
0.0485 
0.0297 
0.0546 
0.0199 
0.0005 
0.0400 

-0.0205 
-0.0568 

-0.0215 
-0.0576 
-0.1882 
-0.0743 
-0.0528 
-0.2618 
-0.0829 
-0.0307 
-0.2517 
-0.0774 
- 0.0027 
-0.21 15 

0.0045 
0.0571 

-0.0190 

found that the rotation axis is estimated to be about 10 degrees 
away from perpendicular to the image plane, while the axis of 
translation is estimated to be approximately 20 degrees away 
from perpendicular to the image plane, oriented in the opposite 

TABLE IV 
3-D DISTANCES BETWEEN OBJECT FEATURE POINTS. NORMALIZED ESTIMATES, 

TRUE DISTANCES (INCHES), SCALED ESTIMATES (INCHES), AND SCALE FACTORS. 
*IKDICATES SMALLEST AND LARGEST ESTIMATES, TRIMMED FROM DATA. 

I .I Estimate 
True 

Distance 
Scaled 

Estimate 
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direction (translation vector is out of image, rotation vector is here demonstrate the uniqueness of both the motion parameters 

1 2  0.0115 
1 3  0.0763 
1 4  0.2189 
1 5  0.3007 

1 7  0.2482 
1 8  0.0553 
2 3  0.07 16 
2 4  0.2177 
2 5  0.3012 
2 6  0.2916 
2 7  0.2507 
2 8  0.0654 
3 4  0.1497 
3 5  0.2369 
3 6  0.2306 
3 7  0.1950 
3 8  0.0933 
4 5  0.0908 

4 7  0.0818 
4 8  0.2060 
5 6  0.0258 
5 7  0.07 I 1 
5 8  0.2779 
6 7  0.0493 
6 8  0.2636 
7 8  0.2175 

1 6  0.2903 

4 6  0.0924 

1.94 
7.63 

14.19 
18.13 
17.50 
16.13 
8.44 
5.94 

13.06 
17.8 1 
17.75 
16.94 
10.25 
8.13 

14.88 
16.44 
17.38 
14.69 
8.25 

11.75 
15.06 
18.25 
5.00 
9.88 

18.38 
5.19 

15.50 
I I .88 

1.09 
7.20 

20.66 
28.38 
27.40 
23.42 

5.21 
6.76 

20.54 
28.42 
27.52 
23.66 

6.17 
14.13 
22.36 
21.76 
18.40 
8.81 
8.57 

16.44 
7.72 

19.44 
2.44 
6.71 

26.23 
4.65 

24.88 
20.53 

168.52 
100.00 
64.82 
60.28 
60.28 
64.97 

152.72 
82.96 
60.00 
59.14 
60.87 
67.56 

156.82 
54.28 
62.80 
71.28 
89.10 

157.41 
90.87 
71.28 

184.09 
88.59 

*193.72 
138.85 
66.12 

58.80 
*54.60 

105.22 

into image). The resulting error of 60 degrees seems large; 
however, the Bottle experiment had an error in this same 
angle of 14 degrees, despite much higher accuracy overall. 
It is interesting to attempt to estimate the angles visually, by 
studying the images themselves; the guesses tend to be quite 
different than the algorithm’s estimates, and the fact that the 
axis of rotation is perpendicular to the direction of translation 
is invoked almost immediately, information unavailable to the 
computer. 

v. UNIQUENESS OF MODEL PARAMETERS 

One of the important questions is to determine whether the 
motion as modeled in the present case, in a noise-free situation, 
using the central projection model, is uniquely determined 
from an image sequence. In the absence of apriori data 
about the object range, size or translational motion, there is an 
unknown global scale factor corresponding to the uncertainty 
in these attributes. The same data can be produced by a 
small object moving slowly at short range or a larger object, 
moving faster, at a longer range. As will be seen, this scale 
factor appears explicitly in the uniqueness proofs when the 
motion is pure translation. A second source of ambiguity can 
occur with respect to rotational motion. If the rotation of an 
object is observed at discrete intervals, rotation parameters 
that correspond to rates above the Nyquist sample rate are 
indistinguishable from the “correct” rotational parameters. 

When motion is purely translational, the theorems presented 
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and the structural parameters, for both constant velocity and 
constant acceleration. The proofs of these theorems can be 
found in [5]. 

The proof of uniqueness of both motion and structure, for 
general motion and unknown structure, is more difficult. One 
approach is the use of the implicit function theorem (IFT), 
which can be used to show local uniqueness. That is, given a 
set of motion and structure parameters, the IFT can be used to 
show that a given parameter vector is uniquely determined by 
noise-free data, provided that a derivative matrix is of full rank. 
The results presented here indicate that in the cases examined, 
the use of three or more images in sequence is required for 
the parameters to be unique. A numerical procedure (singular 
value decomposition) is used to compute the rank of the 
matrix in question. When the matrix is not of full rank, 
the parameters are not uniquely determined by the data: this 
condition is observed when only two images are used to 
estimate the parameters. However, this does not address the 
global uniqueness problem, and as mentioned above, solutions 
are generally not globally unique. Further, since a numerical 
technique is used to determine the rank of the matrix, the 
arguments presented here do not constitute a formal proof. 
The use of (1FT) and the singular value decomposition to 
examine local uniqueness are discussed below. 

A. Uniqueness for Pure Translation 

Theorem 1: When an object is undergoing constant velocity 
translation, and no rotation, the noise-free central projections 
(images) of its feature points uniquely determine the cor- 
responding motion and structure parameters, ' subject to the 
following conditions: 1) at least two feature points must not 
be parallel to the velocity vector, on a ray through the origin, 
2) the object must be observed in at least three image frames, 
3) the origin of the object coordinate system is not unique, 
but can be fixed by assigning an arbitrary feature point to 
be that origin, and 4) uniqueness is determined only up to a 
global scale factor p > 0, such that a parameter vector g is 
indistinguishable from the parameter vector Pg. 

The proof of this theorem is straightforward [5]. Thus, 
two points in three frames are required to uniquely determine 
motion and structure parameters, when the motion is constant 
velocity translation. The global scale factor is resolved if any 
information is known about the object dimensions, distance, 
or velocity. The structure parameters (coordinates of feature 
points in the object centered coordinate system) are unique 
in the sense that the vectors connecting the feature points are 
unique. Since the object coordinate system is not rotating, the 
choice of origin is arbitrary, and it suffices to use an arbitrary 
feature point as the origin. This feature point can be one of the 
two points required for uniqueness. The extension to constant 
acceleration is given in [5]. 

B. Uniqueness for General Motion 

Even if one is willing to accept local uniqueness results, 
the use of the implicit function theorem requires finding the 
rank of a large matrix, of dimension equal to the number of 
unknown parameters. The validity of these results thus depends 

on the assumption that the singular value decomposition 
(SVD) is a valid test for the rank of a matrix. As discussed in 
[18], the SVD can measure the "closeness" of a given matrix 
(represented to finite precision) to a singular matrix, in terms of 
the Frobenius norm, which for an n x m matrix A is given by 

IlAllF = \I."=. z=1 j = 1  (39) 

This approximate approach is used to argue that in certain 
cases, because a matrix is very nearly singular, the parameters 
are not uniquely determined by the data, while in other cases 
a matrix is ill-conditioned but nonsingular, and the parameters 
are uniquely determined by the data. 

The application of the implicit function theorem is that if f 
is a continuously differentiable mapping, f ( 2 ,  y)  = 0 can be 
solved uniquely for y in terms of x under certain conditions, 
as discussed by Rudin in [23]. Suppose x is a parameter 
vector, h(.)  is the measurement function, and y is a vector of 
image coordinates. If f (x .y )  = h(z )  - = 0 can be shown 
to uniquely determine x based on y, then the parameter vector 
x has been uniquely determined by the data y. The notation 
used here, as in Rudin, is that we write (x, y)  for the point 
(or vector) (21.. . . . z,, 1 ~ 1 % .  . . , y,) E Rn+,. That is, if 
a = ( a  l . . . . . a , )  E R" and b = (b l  . . . . ,  b,) E R", we 
write the vector (a, b) = ( a l ,  . . .  , a,,bl, . . .  , b,) E Rn+,. 
Then, the relevant theorem is the following. 

Implicit Function Theorem: Let f be a C'-mapping of an 
open set E c R"+, into R", such that f (a ,  b) = 0 for 
some point (al b) E E .  
Put A = f'(a, b) and assume that A,  (the derivative 
matrix of the vector-valued function f with respect to its 
first argument x E R") is invertible. 
Then there exist open sets U c Rn+, and W C R", 
with (a, b) E U and b E W, having the following 
property: 
To every y E W there corresponds a unique x such that 

f M Y ) . Y )  = 0. (Y E W)l (40) 

and g'(b) = - (Az) - lAY.  0 
As discussed previously, the mapping from parameter space 

to image coordinates in a noise-free case is given by 

where 

I' [sz (14, t k ) ]  
X R / ~ R  + t k Z / z R  + Rllx,o + R 1 2 y 1 0  + R132,o 

1 + t k Z / Z R + R 3 1 1 t 0  + R 3 2 Y t O  + R 3 3 Z z 0  

Y R / Z R  + t k Y / Z R  + R 2 1 X 1 0  + R 2 2 Y t o  + R 2 3 Z , 0  

1 + t k Z / Z R  + R 3 1 X t O  + R 3 2 Y z O  + R 3 3 Z t 0  

The substitutions X,O = x z / z ~ ,  yZo = Y ~ / Z R ,  and z,o = za/ 
Z R  have been made for brevity. 

Denote the parameter space g c R", (corresponding to 
the vector a), where n = 3M + 7 in the case of constant 
translational and rotational rates with unknown structure, with 
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M feature points. The set W contains the data, which are the 
images of the M feature points, observed during N points in 
time.Thus, h=(pi(tk),i=l,...,M;k=O,...,N-l}= 
{ X i k ,  &, = 1, e .  . , M ;  k = 0, . . . , N - l} E W ,  has dimen- 
sion m = 2NM.  This corresponds to the vector b in the 
statement of the theorem. 

Consider the mapping from parameter space to data space 
at t o ,  

(43) 

The mapping at times tl ,  t 2 ,  etc., are analogous. We can 
concatenate these vectors for N image times as 

(44) 

This gives a mapping from parameter space to observation 
space. Then, (2, h) E U c Rn+m corresponds to (a, b). The 
equation f(g, h) = 0 has elements h x [ s i ( u , t k ) ]  - X i k  and 
h y [ S i ( g ,  t k ) ]  - x k ,  giving 

= 0. 

(45) 
1 h X [ S M ( %  tiv-l)] - X M , N - 1  

h y [ ~ ~ ( ~ , t i v - - l ) l  - YM,N-I 2 N M x l  

Next, consider the linear transformation f’(g, h) = [A,11] ; 
this is simply the gradient of f with respect to the parameter 
vector I, as the left submatrix, and the m x m identity matrix 
as the right submatrix. A, is the Jacobian of the transformation 
from parameter space to image coordinates. It must be shown 
that A, has rank of n = 3M + 7, which is required for h to be 
invertible. Here, m = 2NM.  The IFT requires the number of 
rows of A, to equal the 3M + 7, so that the resulting linear 
transformation is consistent, and a solution exists. Since we 
assume that the data are generated by the model of the form 
presented here, and only the parameters are unknown, we are 
assured of a solution, and no existence proof is required for 
m > 3 M + 7 .  

The difficulty with this approach to showing uniqueness 
is that geometric constraints on the object structure and/or 

motion that insure full rank, hence uniqueness, are not easily 
obtained. Thus, we must rely on numerical methods to test for 
uniqueness, and must be satisfied at this point with evidence 
of uniqueness or nonuniqueness, as opposed to a proof. 

In [8], it is shown that the Fisher Information matrix J can 
be written as the sum of 2NM outer products of gradient 
vectors. This matrix can also be written as 

1 
J = -A~A, ,  

U,” 

of dimension n x n, where ui is the image plane noise vari- 
ance. If J is of rank n, then A, is of rank n, and conversely, 
assuming that m 2 n, and the parameters are uniquely 
determined by the IFT. This is intuitively reasonable, since 
J - l  produces lower bounds on estimation accuracy, so that if 
J is singular, the inverse is undefined (one or more parameters 
have “infinite” variance). 

Thus, the nonsingularity of J indicates that A, is of full 
rank, which implies that the parameter vector is uniquely 
determined. This is the reason for the restriction of these results 
to local uniqueness. However, the numerical rank of J is not 
equivalent to the true rank. In [MI, SVD is suggested for 
testing the rank of a matrix, since it is easy to check how 
“close” a diagonal matrix described by finite word length is to 
a truly singular matrix. The SVD produces a diagonal matrix 
of singular values, in order of descending magnitude, resulting 
in the decomposition of a real matrix A as 

V T J U = ( E  :), (47) 

where C is a diagonal T x T matrix of singular values (Ti, 

i = l , . . . , ~ ,  such that is; 2 uj, i < j <_ n, and where V 
and U are unitary matrices. Because of finite computer word- 
length, the elements of matrix J computed numerically will 
differ in general from those of the corresponding matrix J’ that 
would result if all computations were performed exactly (with 
infinite precision). This becomes particularly important in 
evaluating the rank of a matrix, since “random” roundoff errors 
perturb the computed singular values and blur the distinction 
between a truly singular matrix and a highly ill-conditioned 
(but nonsingular) matrix. The problem of estimating the rank 
of a matrix from computed singular values is addressed in [18], 
and the magnitudes of “spurious” computed singular values 
due to round-off errors are estimated. 

For our purposes, the precise values of C and T ,  the rank of 
J are not important beyond determining whether or not T < n 
and the bounds derived in [18] strongly support the conclusion 
(but do not constitute a proof) that J is truly singular for 
N = 2 and nonsingular for N > 2. That is, if the computed 
matrix J is taken as a noisy approximation of the exact matrix 
J‘, approximate bounds are derived in [18] on the magnitude 
of the smallest “significant” singular value UT,  consistent with 
the conclusion the J’ has rank T < n. 

The singular values of J have been computed for several 
cases, leading to three “types” of singular values. Four tables 
are presented, illustrating the various cases. First, Table V 
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TABLE V 
SINGULAR VALUES OF J = A: A,, /up,  TWENTY 
FRAMES A R E  USED WITH FOURFEATURE POINTS. 

TABLE VI11 
SINGULAR VALUES OF J CORRESPONDING TO AN ILL-CONDITIONED 

CASE. NINE FRAMES ARE USED WITH Two FEATURE POINTS. 

01 0.3322D + 08 uz 0.2610D + 08 ~3 0.9225D + 07 
U.I 0.5704D + 07 ~5 0.4300D + 07 06 0.3729D + 07 
U7 0.3373D + 07 b g  0.3223D + 07 U g  0.2463D + 07 
0 1 0  0.2214D + 07 U I I  0.1689D + 07 6 1 2  0.1343D + 07 
6 1 3  0.7801D + 06 0 1 4  0.3375D + 06 ~ 1 5  0.3242D + 05 
0 1 6  0.2131D + 05 U I ~  0.8025D + 04 ~ 1 s  0.5189D + 04 
619 0.1627D + 04 

TABLE VI 
SINGULAR VALUES OF J I N  A RANK-DEFICIENT CASE. 

Two FRAMES ARE USED WITH SEVEN FEATURE POINTS. 

0.1556D + 07 
0.3031D + 06 
0.2195D + 06 
0.1818D + 06 
0.1490D + 06 
0.3206D + 04 
0.1477D + 04 
0.1076D + 03 
0.6384D + 01 
0.14661) - 11 

0.1467D + 07 
0.2488D + 06 
0.2147D + 06 
0.1715D + 06 
0.14271) + 06 
0.3016D + 04 
0.1391D + 04 
0.1162D + 02 
0.64461) - 03 

0.3831D + 06 
0.2336D + 06 
0.1900D + 06 
0.1544D + 06 
0.3956D + 04 
0.1764D + 04 
0.8593D + 03 
0.8975D + 01 
0.3789D - 11 

TABLE VI1 
SINGULAR VALUES OF J FOR A VERY ILL-CONDITIONED 

CASE. FOUR FRAMES ARE USED WITH Two FEATURE POINTS. 

~1 0.1350D + 07 6 2  0.1220D + 07 03 0.4578D + 
U4 0.37461) + 06 U5 0.3420D + 05 U6 0.2966D + 
U7 0.1506D + 04 U8 0.2804D + 03 O g  0.1587D + 
610 0.7387D + 00 ~ 1 1  0.2322D + 00 012 0.15491) - 
U13 0.8885D - 03 

06 
04 
02 
01 

shows the singular values of ACAz/ui = J when four feature 
points are observed in twenty frames. This is a very well- 
conditioned case, with the ratio of largest to smallest singular 
value being about 2 x lo4. This is compared to the singular 
values in Table VI, with the ratio being about 1 x lola.  Ratios 
of this size are observed in all cases examined when only two 
images of data are used. The third case, tabulated in Table VII, 
has a ratio of 1 x lo9, while the final case, in Table VIII, has 
a ratio of 5 x lo6. The last two cases involve only two feature 
points, with 4 and 9 frames, respectively. Based on data of this 
type, for four cases, the conclusion is that r is chosen such 
that singular values on the order of 10-l’ or less should be 
equated to zero. This suggests that all the cases examined that 
involve the use of only two image frames are underdetermined, 
and thus nonunique. This conclusion is in agreement with the 
IMSL numerical checking, from which the Fisher Information 
matrices involving two frames consistently elicited warning 
messages concerning algorithmic singularity. The remaining 
situations, consistent with the invertibility of J, are of full 
rank, although sometimes ill-conditioned. 

As an aside, if one simply counts measurements and 
unknowns, it is required that 2NM 2 3M + 7. This means 
that with 2 points, the minimum number of frames result 
in a feasible solution is 4. Thus, the third case (very ill- 
conditioned) has relatively little information in the data. The 
ratio of the largest singular value to the smallest increases 
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01 0.3329D + 07 ~2 0.3090D + 07 ~3 0.1000D + 07 
~4 0.8225D + 06 05 0.4171D + 06 ~ + j  0.5193D + 05 
6 7  0.2979D + 05 U S  0.7518D + 04 ~g 0.5223D + 03 
0 1 0  0.1073D + 03 011 0.3049D + 02 ~ 1 2  0.7749D + 00 
~ 1 3  0.6654D + 00 

monotonically as the number of frames is increased, with the 
fourth case (9 frames) picked as a typical example. If the 
counting argument is applied to the use of 2 image frames, 
the fewest number of points admitting a solution is 7. In 
the cases considered, a maximum number of points is 10. In 
all the cases evaluated that involve translation, rotation, and 
unknown structure, the singular values associated with the use 
of only 2 frames consistently produce ratios on the order of 
lo1’: this is taken as evidence that with the parameterization 
used in this research, 2 frames are not sufficient to estimate 
the model parameters. Since there are a number of methods 
that provide exact solutions based on 2 frames of noise-free 
data, it seems likely that the model parameterization used here 
differs in terms of the minimal amount of data needed. 

VI. CONCLUSIONS 
The problem of estimating the structure and motion of a 

rigid body from a sequence of noisy monocular images is 
far from solved. The research reported here has addressed the 
issue of simultaneously estimating a large number of unknown 
parameters from a statistical, model based perspective, with no 
attempt made to form real-time estimates. The experimental 
and the uniqueness results presented here demonstrate the 
feasibility of this approach. The motivation for a nonreal-time 
batch solution is both as a theoretical tool and as a means 
of initializing the recursive algorithm [6]. This gives rise to a 
hybrid batch/recursive approach, [6] which differs from [9] in 
that our work addresses a small object (as opposed to a fixed 
scene) which leads to much noisier data in our work (by our 
measure of noise level), and simultaneous structure and motion 
estimation (as opposed to structure estimation first, followed 
by motion estimation). 
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