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Abstract

Vagueness and imprecision abound in multimedia infor-
mation processing and retrieval. In this paper, we present
an approach to fuzzy description logic programs under the
answer set semantics for the Semantic Web, which is an in-
tegration of description logics with nonmonotonic logic pro-
grams under the answer set semantics (with default nega-
tion in rule bodies) that also allows for representing and
reasoning with vagueness and imprecision. More con-
cretely, we define a canonical semantics of positive and
stratified fuzzy dl-programs in terms of a unique least model
and iterative least models, respectively. We then define
the answer set semantics of general fuzzy dl-programs,
and show in particular that all answer sets of a fuzzy dl-
program are minimal models, and that the answer set se-
mantics of positive and stratified fuzzy dl-programs coin-
cides with their canonical least model and iterative least
model semantics, respectively. Furthermore, we also pro-
vide a characterization of the canonical semantics of pos-
itive and stratified fuzzy dl-programs in terms of a fixpoint
and an iterative fixpoint semantics, respectively.

1. Introduction

TheSemantic Web[1, 6] aims at an extension of the cur-
rent World Wide Web by standards and technologies that
help machines to understand the information on the Web so
that they can support richer discovery, data integration, nav-
igation, and automation of tasks. The main ideas behind it
are to add a machine-readable meaning to Web pages, to
use ontologies for a precise definition of shared terms in
Web resources, to use KR technology for automated rea-
soning from Web resources, and to apply cooperative agent
technology for processing the information of the Web.
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The Semantic Web consists of several hierarchical lay-
ers, where theOntology layer, in form of the OWL Web
Ontology Language[32, 10] (recommended by the W3C),
is currently the highest layer of sufficient maturity. OWL
consists of three increasingly expressive sublanguages,
namelyOWL Lite, OWL DL, andOWL Full. OWL Lite and
OWL DL are essentially very expressive description logics
with an RDF syntax [10]. As shown in [8], ontology entail-
ment in OWL Lite (resp., OWL DL) reduces to knowledge
base (un)satisfiability in the description logicSHIF(D)
(resp.,SHOIN (D)). On top of the Ontology layer, the
Rules, Logic, andProof layersof the Semantic Web will
be developed next, which should offer sophisticated repre-
sentation and reasoning capabilities. As a first effort in this
direction,RuleML(Rule Markup Language) [2] is an XML-
based markup language for rules and rule-based systems,
whereas the OWL Rules Language [9] is a first proposal for
extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Se-
mantic Web is to integrate the Rules and the Ontology layer.
In particular, it is crucial to allow for building rules on top of
ontologies, that is, for rule-based systems that use vocabu-
lary from ontology knowledge bases. Another type of com-
bination is to build ontologies on top of rules, which means
that ontological definitions are supplemented by rules or
imported from rules. Towards this goal, the works [4, 5]
have proposeddescription logic programs(or simply dl-
programs), which are of the formKB =(L,P ), whereL
is a knowledge base in a description logic andP is a finite
set ofdescription logic rules(or simplydl-rules). Such dl-
rules are similar to usual rules in logic programs with nega-
tion as failure, but may also containqueries toL in their
bodies, which are given by special atoms (on which possi-
bly default negation may apply). Another important feature
of dl-rules is that queries toL also allow for specifying an
input from P , and thus for aflow of information fromP
to L, besides the flow of information fromL to P , given by
any query toL. Hence, description logic programs allow
for building rules on top of ontologies, but also (to some



extent) building ontologies on top of rules. In this way,
additional knowledge (gained in the program) can be sup-
plied toL before querying. The semantics of dl-programs
was defined in [4] and [5] as an extension of the answer
set semantics by Gelfond and Lifschitz [7] and the well-
founded semantics by Van Gelder, Ross, and Schlipf [31],
respectively, which are the two most widely used semantics
for nonmonotonic logic programs. The description logic
knowledge bases in dl-programs are specified in the well-
known description logicsSHIF(D) andSHOIN (D).

In [16, 17], towards sophisticated representation and rea-
soning techniques that also allow for modeling probabilis-
tic uncertainty in the Rules, Logic, and Proof layers of the
Semantic Web, we have presentedprobabilistic descrip-
tion logic programs(or simply probabilistic dl-programs),
which generalize dl-programs under the answer set and
well-founded semantics by probabilistic uncertainty. They
have been developed as a combination of dl-programs with
Poole’s independent choice logic (ICL) [22].

In this paper, we continue this line of research towards
more sophisticated representation and reasoning techniques
for the Semantic Web. Here, we presentfuzzy descrip-
tion logic programs(or simplyfuzzy dl-programs) under the
answer set semantics, which generalize dl-programs under
the answer set semantics by fuzzy imprecision and vague-
ness. Even though there has been previous work on positive
fuzzy description logic programs by Straccia [28, 29], to
our knowledge, this is the first approach to fuzzy descrip-
tion logic programs with default negation in rule bodies.
Furthermore, differently from Straccia, we also allow for
a flow of information from the logic program component to
the description logic component of a fuzzy dl-program.

The main contributions of this paper are as follows:

• We introduce a simple fuzzy extension ofSHIF(D)
andSHOIN (D), which allows for fuzzy concept and
fuzzy role assertions, and which is intuitively based on
a mapping to several layers of ordinary concepts and
roles inSHIF(D) resp.SHOIN (D).

• We introduce fuzzy dl-programs, which properly gen-
eralize dl-programs in [4] (where rule bodies may con-
tain default-negated atoms) by fuzzy vagueness and
imprecision. We define a natural semantics of positive
and stratified fuzzy dl-programs in terms of a unique
least model and iterative least models, respectively.

• We then define the answer set semantics of general
fuzzy dl-programs. We also show that all answer sets
of a fuzzy dl-program are minimal models, and that the
answer set semantics of positive and stratified fuzzy
dl-programs coincides with their canonical least model
and iterative least model semantics, respectively.

• We also provide a characterization of the canonical se-
mantics of positive and stratified fuzzy dl-programs in
terms of a fixpoint and an iterative fixpoint semantics.

The rest of this paper is organized as follows. In Sec-
tion 2, we recall the description logicsSHIF(D) and
SHOIN (D). In Section 3, we define our fuzzy exten-
sion ofSHIF(D) andSHOIN (D). Section 4 introduces
fuzzy dl-programs, and defines the canonical semantics of
positive and stratified fuzzy dl-programs, as well as the an-
swer set semantics of general fuzzy dl-programs. In Sec-
tion 5, we characterize the canonical models of positive and
stratified fuzzy dl-programs in terms of a fixpoint and an it-
erative fixpoint semantics. Section 6 summarizes our main
results and gives an outlook on future research.

2 SHIF(D) and SHOIN (D)

In this section, we recall the expressive description logics
SHIF(D) andSHOIN (D), which stand behind the web
ontology languages OWL Lite and OWL DL, respectively.
See especially [8] for further details. Intuitively, descrip-
tion logics model a domain of interest in terms of concepts
and roles, which represent classes of individuals and bi-
nary relations between classes of individuals, respectively.
A description logic knowledge base encodes in particular
subset relationships between classes of individuals, subset
relationships between binary relations between classes, the
membership of individuals to classes, and the membership
of pairs of individuals to binary relations between classes.

2.1 Syntax

We first describe the syntax ofSHOIN (D). We as-
sume a set ofelementary datatypesand a set ofdata val-
ues. A datatypeis either an elementary datatype or a set
of data values (calleddatatype oneOf). A datatype theory
D= (∆D, ·D) consists of adatatype(or concrete) domain
∆D and a mapping·D that associates with every elementary
datatype a subset of∆D and with every data value an ele-
ment of∆D. The mapping·D is extended to all datatypes
by {v1, . . .}

D = {vD

1 , . . .}. Let A, RA, RD, and I be
nonempty finite and pairwise disjoint sets ofatomic con-
cepts, abstract roles, datatype(or concrete) roles, and in-
dividuals, respectively. We denote byR−

A the set of in-
versesR− of all abstract rolesR∈RA.

A role is an element ofRA ∪R−

A ∪RD. Conceptsare
inductively defined as follows. EveryC ∈A is a concept,
and ifo1, . . . , on ∈ I, then{o1, . . . , on} is a concept (called
oneOf). If C, C1, andC2 are concepts and ifR∈RA ∪R−

A,
then also(C1⊓C2), (C1⊔C2), and¬C are concepts (called
conjunction, disjunction, and negation, respectively), as
well as∃R.C, ∀R.C,≥nR, and≤nR (calledexists, value,



atleast, andatmost restriction, respectively) for an integer
n≥ 0. If D is a datatype andU ∈RD, then∃U.D, ∀U.D,
≥nU , and≤nU are concepts (calleddatatype exists, value,
atleast, and atmost restriction, respectively) for an inte-
ger n≥ 0. We write⊤ and⊥ to abbreviateC ⊔ ¬C and
C⊓¬C, respectively, and we eliminate parentheses as usual.

An axiomis an expression of one of the following forms:
(1)C ⊑D (calledconcept inclusion axiom), whereC andD
are concepts; (2)R⊑S (calledrole inclusion axiom), where
eitherR,S ∈RA or R,S ∈RD; (3) Trans(R) (calledtran-
sitivity axiom), whereR∈RA; (4) C(a) (called concept
assertion), whereC is a concept anda∈ I; (5) R(a, b)
(resp., U(a, v)) (called role assertion), where R∈RA

(resp.,U ∈RD) and a, b∈ I (resp.,a∈ I and v is a data
value); and (6)a= b (resp.,a 6= b) (calledequality (resp.,
inequality) axiom), wherea, b∈ I. A knowledge baseL is
a finite set of axioms. For decidability, number restrictions
in L are restricted to simple abstract rolesR∈RA [11].

The syntax ofSHIF(D) is as the above syntax of
SHOIN (D), but without the oneOf constructor and with
theatleastandatmostconstructors limited to0 and1.

Example 2.1 An online store (such asamazon.com) may
use a description logic knowledge base to classify and char-
acterize its products. For example, suppose that (1) text-
books are books, (2) personal computers and laptops are
mutually exclusive electronic products, (3) books and elec-
tronic products are mutually exclusive products, (4) objects
on offer are products, (5) every product has at least one re-
lated product, (6) only products are related to each other,
(7) tb ai and tb lp are textbooks, (8) which are related to
each other, (9)pc ibm andpc hp are personal computers,
(10) which are related to each other, and (11)ibm andhp
are providers forpc ibm andpc hp, respectively. These re-
lationships are expressed by the following description logic
knowledge baseL1:

(1) Textbook⊑ Book;
(2) PC⊔ Laptop⊑ Electronics; PC⊑ ¬Laptop;
(3) Book⊔ Electronics⊑ Product; Book⊑¬Electronics;
(4) Offer⊑ Product;
(5) Product⊑ ≥ 1 related;
(6) ≥ 1 related⊔ ≥ 1 related− ⊑ Product;
(7) Textbook(tb ai); Textbook(tb lp);
(8) related(tb ai, tb lp);
(9) PC(pc ibm); PC(pc hp);
(10) related(pc ibm, pc hp);
(11)provides(ibm, pc ibm); provides(hp, pc hp).

2.2 Semantics

An interpretationI = (∆I , ·I) with respect to a datatype
theoryD= (∆D, ·D) consists of a nonempty (abstract) do-
main∆I disjoint from∆D, and a mapping·I that assigns
to each atomic conceptC ∈A a subset of∆I , to each indi-
vidualo∈ I an element of∆I , to each abstract roleR∈RA

a subset of∆I ×∆I , and to each datatype roleU ∈RD a
subset of∆I ×∆D). The mapping·I is extended to all
concepts and roles as usual [8].

The satisfactionof a description logic axiomF in the
interpretationI =(∆I , ·I) with respect toD= (∆D, ·D),
denotedI |=F , is defined as follows: (1)I |=C ⊑D iff
CI ⊆DI ; (2) I |= R⊑S iff RI ⊆SI ; (3) I |=Trans(R)
iff RI is transitive; (4) I |= C(a) iff aI ∈CI ; (5)
I |=R(a, b) iff (aI , bI)∈RI ; (6) I |=U(a, v) iff
(aI , vD)∈UI ; (7) I |= a= b iff aI = bI ; and (8)I |= a 6= b
iff aI 6= bI . The interpretationI satisfiesthe axiomF , or
I is amodelof F , iff I |=F . The interpretationI satisfies
a knowledge baseL, or I is amodelof L, denotedI |=L,
iff I |=F for all F ∈L. We say thatL is satisfiable(resp.,
unsatisfiable) iff L has a (resp., no) model. An axiomF
is a logical consequenceof L, denotedL |= F , iff every
model ofL satisfiesF . A negated axiom¬F is a logical
consequenceof L, denotedL |=¬F , iff every model ofL
does not satisfyF .

3 FuzzySHIF(D) and SHOIN (D)

Even though the literature contains several previous ap-
proaches to fuzzy description logics [33, 30, 24, 25], only
recently fuzzy description logics for the Semantic Web have
been explored. In particular, recent work by Straccia in-
troduces a fuzzy description logic with concrete domains
(with reasoning techniques based on a mixture of comple-
tion rules and bounded mixed integer programming) [26] as
well as a fuzzy extension ofSHOIN (D) (without reason-
ing machinery) [27]. Closely related to the latter is the work
by Stoilos et al. [23], which combines the description logic
SHIN with fuzzy set theory for the Semantic Web.

For our combination of fuzzy description logics with
fuzzy description logic programs under the answer set se-
mantics, we use a simple fuzzy extension ofSHIF(D)
andSHOIN (D), which allows only for fuzzy concept and
fuzzy role assertions, and which is intuitively based on a
mapping to several layers of ordinary concepts and roles
in SHIF(D) resp.SHOIN (D). As an important advan-
tage, reasoning in this fuzzy extension can immediately be
reduced to reasoning inSHIF(D) resp.SHOIN (D),
and thus directly be implemented on top of standard tech-
nology for reasoning inSHIF(D) resp.SHOIN (D).



3.1. Syntax

We assume a set oftruth valuesTV = { 0

n
, 1

n
, . . . , n

n
}.

A fuzzy concept assertionhas the formC(a)≥ v, where
C is a concept inSHIF(D) resp.SHOIN (D), a∈ I,
and v ∈TV . Similarly, a fuzzy role assertionhas the
formR(a, b)≥ v (resp.,U(a, s)≥ v), whereR∈RA (resp.,
U ∈RD), a, b∈ I (resp., a∈ I, and s is a data value),
andv ∈TV . Informally, C(a)≥ v (resp.,R(a, b)≥ v and
U(a, s)≥ v) encodes that the truth value ofC(a) (resp.,
R(a, b) and U(a, s)) is at leastv. A fuzzy description
logic knowledge baseKB = (L,F ) consists of an ordi-
nary description logic knowledge baseL and a finite set of
fuzzy concept and fuzzy role assertionsF .

Example 3.1 A simple fuzzy description logic knowledge
baseKB = (L,F ) is given byL as in Example 2.1 andF =
{Inexpensive(pc ibm) ≥ 0.6, Inexpensive(pc hp) ≥ 0.9}.
Here, F encodes the different degrees of membership of
PCs by IBM and HP to the fuzzy conceptInexpensive.

3.2. Semantics

We define the semantics of fuzzy description logic
knowledge bases by a mapping to ordinary description logic
knowledge bases inSHIF(D) resp.SHOIN (D). For
v ∈TV , a v-layer of an ordinary description logic knowl-
edge baseL, denotedLv, is obtained fromL by replacing
every conceptC and roleR (resp.,U ) by Cv andRv (resp.,
Uv). Theordinary equivalentto a finite set of fuzzy con-
cept and fuzzy role assertionsF , denotedF ⋆, is obtained
from F by replacing everyC(a)≥ v (resp.,R(a, b)≥ v and
U(a, s)≥ v) by Cv(a) (resp.,Rv(a, b) andUv(a, s)). The
ordinary equivalentto a fuzzy description logic knowledge
baseKB = (L,F ), denotedKB⋆, is defined as

⋃
v∈TV , v>0

Lv ∪F ⋆ ∪

{Av ⊑Av′

|A∈A, v ∈TV , v > 2/n, v′ = v−1/n} ∪

{Rv ⊑Rv′

|R∈RA, v ∈TV , v > 2/n, v′ = v−1/n} ∪

{Uv ⊑Uv′

|U ∈RD, v ∈TV , v > 2/n, v′ = v−1/n} .

A fuzzy description logic knowledge baseKB =(L,F )
is satisfiableiff its ordinary equivalent is satisfiable. We say
that F amongC(a)≥ v, R(a, b)≥ v, andU(a, s)≥ v is a
logical consequenceof KB , denotedKB |=F , iff Cv(a),
Rv(a, b), and Uv(a, s), respectively, are logical conse-
quences ofKB⋆. We say that¬F is a logical consequence
of KB , denotedKB |=¬F , iff ¬Cv(a), ¬Rv(a, b), and
¬Uv(a, s), respectively, are logical consequences ofKB⋆.

4. Fuzzy Description Logic Programs

In this section, we introduce fuzzy dl-programs. We first
define negation and conjunction strategies. We then intro-

duce the syntax of fuzzy dl-programs, and we finally define
the semantics of positive, stratified, and general fuzzy dl-
programs in terms of a least model semantics, an iterative
least model semantics, and the answer set semantics.

4.1. Combination Strategies

We assume a set oftruth valuesTV = { 0

n
, 1

n
, . . . , n

n
}.

We assume a set ofnegation and conjunction strate-
gies, which are functions⊖ : TV →TV and⊗ : TV ×
TV →TV . For v ∈TV , we call⊖ v the negationof v.
For v1, v2 ∈TV , we call v1 ⊗ v2 the conjunctionof v1

and v2. As usual, we assume that the negation and con-
junction strategies have some natural algebraic properties.
In particular, we assume that every negation strategy⊖ is
antitonic (that is, v1≤ v2 implies⊖ v1≥⊖ v2) and satis-
fies the properties that⊖ 0= 1 and⊖ 1= 0. Furthermore,
we assume that every conjunction strategy⊗ is commu-
tative (that is, v1 ⊗ v2 = v2 ⊗ v1), associative(that is,
(v1⊗v2)⊗v3 = v1⊗(v2⊗v3)), monotonic(that is,v1≤ v′

1

and v2≤ v′
2 implies v1 ⊗ v2≤ v′

1 ⊗ v′
2), and satisfies the

properties thatv ⊗ 1= v andv ⊗ 0= 0.

Example 4.1 An example of a negation strategy is given by
⊖ v = 1− v, while two examples of conjunction strategies
are given byv1 ⊗ v2 = min(v1, v2) andv1 ⊗ v2 = v1 · v2.

4.2. Syntax of Fuzzy DL-Programs

We assume a function-free first-order vocabularyΦ with
nonempty finite sets of constant and predicate symbols, and
a setX of variables. Aterm is a constant symbol fromΦ
or a variable fromX . If p is a predicate symbol of arity
k≥ 0 from Φ andt1, . . ., tk are terms, thenp(t1, . . ., tk) is
an atom. A literal is an atoma or a default-negated atom
not a. A normal fuzzy ruler has the form

a←⊗0
b1 ∧⊗1

b2 ∧⊗2
· · · ∧⊗k−1

bk∧⊗k

not⊖k+1
bk+1 ∧⊗k+1

· · · ∧⊗m−1
not⊖m

bm ≥ v,
(1)

wherem≥ k≥ 0, a, bk+1, . . . , bm are atoms,b1, . . . , bk are
either atoms or truth values fromTV , ⊗0, . . . ,⊗m−1 are
conjunction strategies,⊖k+1, . . . ,⊖m are negation strate-
gies, andv ∈TV . Observe here thatb1, . . . , bk may also
be truth values fromTV , which will be very useful in
the definition of the Gelfond-Lifschitz transformation for
the answer set semantics. We refer toa as theheadof r,
denotedH(r), while the conjunctionb1 ∧⊗1

. . . ∧⊗m−1

not⊖m
bm is thebodyof r. We denote byB(r) the set of

body literalsB+(r)∪B−(r), whereB+(r)= {b1, . . . , bk}
andB−(r)= {bk+1, . . . , bm}. A normal fuzzy programP
is a finite set of normal fuzzy rules. We say thatP is positive
iff no rule in P contains default-negated atoms.



Informally, a fuzzy dl-program consists of a fuzzy de-
scription logic knowledge baseL and a generalized normal
fuzzy programP , which may contain queries toL. In such a
query, it is asked whether a certain description logic axiom
or its negation logically follows fromL or not. Formally,
adl-queryQ(t) is either

(a) of the formC(t), whereC is a concept andt is a term;
or

(b) of the form R(t1, t2), where R is a role andt1,
t2 are terms.

A dl-atomhas the formDL[S1 ⊎ p1, . . . , Sm ⊎ pm; Q](t),
where eachSi is a concept or role,pi is a unary resp. bi-
nary predicate symbol,Q(t) is a dl-query, andm≥ 0. We
call p1, . . . , pm its input predicate symbols. Intuitively, ⊎
increasesSi by the extension ofpi. A fuzzy dl-ruler is of
the form (1), where anybi in the body ofr may be a dl-
atom. Afuzzy dl-programKB =(L, P ) consists of a fuzzy
description logic knowledge baseL and a finite set of dl-
rulesP . We sayKB = (L, P ) is positiveiff P is positive.
Ground terms, atoms, literals, etc., are defined as usual. The
Herbrand baseof P , denotedHBP , is the set of all ground
atoms with standard predicate symbols that occur inP and
constant symbols inΦ. We denote byground(P ) the set of
all ground instances of fuzzy dl-rules inP relative toHBP .

Example 4.2 In the running example, the following fuzzy
dl-rules encode PCs that are not in the description logic
knowledge base and say which of them are brand-new. Fur-
thermore, they express that (i) electronic products that are
not brand-new are on offer with degree of truth1, (ii) a cus-
tomer who needs a product on offer buys this product with
degree of truth0.7, and (iii) a customer who needs an inex-
pensive product buys this product with degree of truth0.3:

pc(pc 1) ≥ 1; pc(pc 2) ≥ 1; pc(pc 3) ≥ 1;

brand new(pc 1) ≥ 1; brand new(pc 2) ≥ 1;

offer(X)←⊗ DL[PC ⊎ pc;Electronics](X)∧⊗
not⊖ brand new(X) ≥ 1;

buy(C,X)←⊗ needs(C,X) ∧⊗ offer(X) ≥ 0.7;

buy(C,X)←⊗ needs(C,X)∧⊗
DL[Inexpensive](X) ≥ 0.3.

4.3 Models of Fuzzy DL-Programs

We first define Herbrand interpretations and the truth of
fuzzy dl-programs in Herbrand interpretations. In the se-
quel, letKB =(L, P ) be a fuzzy dl-program.

TheHerbrand baseof P , denotedHBP , is the set of all
ground atoms with a standard predicate symbol that occurs
in P and constant symbols inΦ. An interpretationI relative

to P is a mappingI : HBP →TV . We writeHBP to de-
note the interpretationI such thatI(a)= 1 for all a∈HBP .
For interpretationsI andJ , we writeI ⊆J iff I(a)≤ J(a)
for all a∈HBP , and we define theintersectionof I and
J , denotedI ∩ J , by (I ∩ J)(a)= min(I(a), J(a)) for all
a∈HBP . The truth value ofa∈HBP underL, denoted
IL(a), is defined asI(a). The truth value of a ground dl-
atoma=DL[S1 ⊎ p1, . . . , Sm ⊎ pm;Q](c) underL, de-
notedIL(a), is defined as the maximal truth valuev ∈TV

such thatL∪
⋃m

i=1
Ai(I) |= Q(c)≥ v, where

• Ai(I) = {Si(e)≥ I(pi(e)) | I(pi(e))> 0}.

We say thatI is amodelof a ground fuzzy dl-ruler of the
form (1) underL, denotedI |=L r, iff

IL(a) ≥ v ⊗0 IL(b1)⊗1 IL(b2)⊗2 · · · ⊗k−1 IL(bk) ⊗k

⊖k+1 IL(bk+1)⊗k+1 · · · ⊗m−1 ⊖mIL(bm),

and of a fuzzy dl-programKB =(L,P ) denotedI |= KB ,
iff I |=L r for all r∈ ground(P ).

4.4 Positive Fuzzy DL-Programs

We now define positive fuzzy dl-programs, which are in-
formally fuzzy dl-programs without default negation. We
show that they have a unique least model, which defines
their canonical semantics. Formally, a fuzzy dl-program
KB = (L,P ) is positiveiff P is “not”-free.

For ordinary positive programs, as well as positive dl-
programsKB , the intersection of two models ofKB is also
a model ofKB . The following theorem shows that a similar
result holds for positive fuzzy dl-programsKB .

Theorem 4.3 Let KB =(L,P ) be a positive fuzzy dl-pro-
gram. If the interpretationsI1, I2⊆HBP are models
of KB , thenI = I1 ∩ I2 is also a model ofKB .

Proof. We have to show thatI is a model of every
r∈ ground(P ) under L. Consider anyr∈ ground(P ).
Since Ij (j ∈{1, 2}) is a model ofKB , and thus of ev-
ery r∈ ground(P ) underL, the truth value ofr’s head un-
derIj andL is at least the truth value ofr’s body underIj

andL. Sincer contains no default-negated atoms, every
conjunction strategy inr is monotonic, andI ⊆ Ij , the truth
value ofr’s body underIj (j ∈{1, 2}) andL is at least the
truth value ofr’s body underI and L. Hence, the truth
value ofr’s head underIj (j ∈{1, 2}) andL, and thus also
underI andL, is at least the truth value ofr’s body underI
andL. That is,I is a model ofr underL. 2

As an immediate corollary of this result, every posi-
tive fuzzy dl-programKB has a unique least model, de-
notedMKB , which is contained in every model ofKB .

Corollary 4.4 LetKB = (L,P ) be a positive fuzzy dl-pro-
gram. Then, a unique modelI⊆HBP of KB exists such
that I⊆J for all modelsJ⊆HBP of KB .



4.5 Stratified Fuzzy DL-Programs

We next define stratified fuzzy dl-programs, which are
informally composed of hierarchic layers of positive fuzzy
dl-programs that are linked via default negation. Like for or-
dinary stratified programs, as well as stratified dl-programs,
a minimal model can be defined by a number of iterative
least models, which naturally describes the semantics of
stratified fuzzy dl-programs.

For any fuzzy dl-programKB = (L,P ), let DLP denote
the set of all ground dl-atoms that occur inground(P ). An
input atomof a∈DLP is a ground atom with an input pred-
icate ofa and constant symbols inΦ.

A stratification ofKB =(L,P ) (with respect toDLP ) is
a mappingλ :HBP ∪DLP→{0, 1, . . . , k} such that

(i) λ(H(r))≥λ(a) (resp.,λ(H(r))> λ(a)) for eachr ∈
ground(P ) anda ∈ B+(r) (resp.,a ∈ B−(r)), and

(ii) λ(a)≥λ(a′) for each input atoma′ of eacha ∈ DLP ,

wherek≥ 0 is thelengthof λ. For i∈{0, . . . , k}, let

KB i = (L,Pi)= (L, {r∈ ground(P ) | λ(H(r)) = i}),

and letHBPi
(resp.,HB⋆

Pi
) be the set of alla∈HBP such

thatλ(a)= i (resp.,λ(a)≤ i).
A fuzzy dl-programKB =(L,P ) is stratifiediff it has a

stratificationλ of some lengthk≥ 0. We define its iterative
least modelsMi⊆HBP with i∈{0, . . . , k} as follows:

(i) M0 is the least model ofKB0;

(ii) if i> 0, thenMi is the least model ofKB i such that
Mi|HB⋆

Pi−1
= Mi−1|HB⋆

Pi−1
.

Then, MKB denotesMk. Observe thatMKB is well-
defined, since it does not depend on a particular stratifica-
tion λ (cf. Corollary 4.8). The following theorem shows
thatMKB is in fact a minimal model ofKB .

Theorem 4.5 Let KB =(L, P ) be a stratified fuzzy dl-
program. Then,MKB is a minimal model ofKB .

Proof (sketch). The statement can be proved by induction
along a stratification ofKB . 2

4.6 General Fuzzy DL-Programs

We now define theanswer set semanticsof general fuzzy
dl-programsKB , which is reduced to the least model se-
mantics of positive fuzzy dl-programs. We use a general-
ized transformation that removes all default-negated atoms.
In the sequel, letKB = (L,P ) be a fuzzy dl-program.

Thefuzzy dl-transformof P relative toL and an interpre-
tationI ⊆HBP , denotedP I

L, is the set of all fuzzy dl-rules

obtained fromground(P ) by replacing all default-negated
atomsnot⊖j

a by the truth value⊖j IL(a).
Observe that(L,P I

L) has no default-negated atoms any-
more. Hence,(L,P I

L) is a positive fuzzy dl-program, and
by Corollary 4.4, has a least model.

Definition 1 Let KB =(L, P ) be a fuzzy dl-program. An
answer setof KB is an interpretationI ⊆HBP such
thatI is the least model of(L,P I

L).

The following result shows that, as desired, answer sets
of a fuzzy dl-programKB are also minimal models ofKB .

Theorem 4.6 LetKB be a fuzzy dl-program, and letM be
an answer set ofKB . Then,M is a minimal model ofKB .

Proof. Let I be an answer set ofKB = (L, P ). SinceI
is the least model of(L,P I

L), it is immediate thatI is also
a model ofKB . We now show thatI is also a minimal
model ofKB . Towards a contradiction, suppose that there
exists a modelJ of KB such thatJ ⊆ I. Then, since ev-
ery conjunction strategy⊗ in KB is monotonic, and every
negation strategy⊖ is antitonic, it follows thatJ is also
a model of(L,P I

L), which contradictsI being a minimal
model of(L,P I

L). Thus,I is a minimal model ofKB . 2

The next theorem shows that positive and stratified fuzzy
dl-programs have at most one answer set, which coincides
with the canonical minimal modelMKB .

Theorem 4.7 LetKB be a(a) positive(resp.,(b) stratified)
fuzzy dl-program. Then,MKB is the only answer set ofKB .

Proof. (a) An answer set ofKB is an interpretation
I⊆HBP such thatI is the least model of(L,P I

L). As KB

is a positive dl-program,P I
L coincides withground(P ).

Hence,I ⊆HBP is an answer set ofKB iff I = MKB .

(b) Letλ be a stratification ofKB of lengthk≥ 0. Suppose
thatI ⊆HBP is an answer set ofKB . That is,I is the least
model of(L,P I

L). Hence,

• I|HB⋆
P0

is the least of all modelsJ ⊆HB
⋆
P0

of
(L,P0

I
L);

• if i> 0, then I|HB⋆
Pi

is the least among all models
J ⊆HB

⋆
Pi

of (L,Pi
I
L) with J |HB⋆

Pi−1
= I|HB⋆

Pi−1
.

It thus follows that:

• I|HB⋆
P0

is the least of all modelsJ ⊆HB
⋆
P0

of KB0;

• if i> 0, then I|HB⋆
Pi

is the least among all models
J ⊆HB

⋆
Pi

of KB i with J |HB⋆
Pi−1

= I|HB⋆
Pi−1

.

Hence,KB is consistent, andI = MKB . Since the above
line of argumentation also holds in the converse direction,it



follows thatI ⊆HBP is an answer set ofKB iff KB is con-
sistent andI = MKB . 2

Since the answer sets of a stratified fuzzy dl-pro-
gramKB are independent of the stratificationλ of KB , we
thus obtain thatMKB is independent ofλ.

Corollary 4.8 Let KB be a stratified fuzzy dl-program.
Then,MKB does not depend on the stratification ofKB .

5 Fixpoint Semantics

In this section, we give fixpoint characterizations for the
answer set of positive and stratified fuzzy dl-programs, and
we show how to compute it by finite fixpoint iterations.

The answer set of an ordinary positive resp. stratified
normal logic programKB , as well as of a positive resp.
stratified dl-programKB has a well-known fixpoint char-
acterization in terms of an immediate consequence opera-
tor TKB , which generalizes to fuzzy dl-programs. This can
be exploited for a bottom-up computation of the answer set
of a positive resp. stratified fuzzy dl-program.

For a fuzzy dl-programKB =(L,P ), we define the op-
eratorTKB on the subsets ofHBP as follows. For every
I ⊆HBP anda∈HBP , let TKB (I)(a) be defined as the
maximum ofv subject tor∈ ground(P ), H(r)= a, and
v being the truth value ofr’s body underI andL. Note that
if there is no such ruler, thenTKB (I)(a)= 0.

The following lemma shows that, ifKB is positive,
thenTKB is monotonic, which follows from the fact that
each conjunction strategy inground(P ) is monotonic.

Lemma 5.1 For any positive fuzzy dl-programKB = (L,
P ), the operatorTKB is monotonic(that is,I ⊆ I ′⊆HBP

impliesTKB (I)⊆TKB (I ′)).

Proof. Let I ⊆ I ′⊆HBP . Consider anyr∈ ground(P ).
Then, since every conjunction strategy⊗ in r is monotonic,
it follows that the truth value ofr’s body underI ′ andL
is at least the truth value ofr’s body underI andL. This
shows thatTKB (I)⊆TKB (I ′). 2

Since every monotonic operator has a least fixpoint, also
TKB has one, denotedlfp(TKB ). Moreover,lfp(TKB ) can
be computed by finite fixpoint iteration (given finiteness
of TV , P , and the number of constant symbols inΦ).

For everyI ⊆HBP , we defineT i
KB

(I) = I, if i = 0,
andT i

KB
(I) = TKB (T i−1

KB
(I)), if i > 0.

Theorem 5.2 For every positive dl-programKB = (L,P ),
it holds thatlfp(TKB ) = MKB . Furthermore,

lfp(TKB )=
⋃n

i=0
T i
KB

(∅)= Tn
KB

(∅), for somen≥ 0.

We finally describe a fixpoint iteration for stratified dl-
programs. Using Theorem 5.2, we can characterize the
strong answer setMKB of a stratified dl-programKB as
follows. Let T̂ i

KB
(I) = T i

KB
(I) ∪ I, for all i ≥ 0.

Theorem 5.3 LetKB =(L,P ) be a fuzzy dl-program with
stratificationλ of lengthk≥ 0. LetMi⊆HBP , i∈{−1, 0,

. . . , k}, be defined byM−1 = ∅, andMi = T̂ni

KBi
(Mi−1) for

i≥ 0, whereni≥ 0 such thatT̂ni

KBi
(Mi−1)=T̂ni+1

KBi
(Mi−1).

Then,Mk = MKB .

6. Summary and Outlook

We have first defined a simple fuzzy extension of the de-
scription logicsSHIF(D) andSHOIN (D). We have
then presented fuzzy dl-programs. We have defined the an-
swer set semantics of general fuzzy dl-programs, and shown
that it coincides with the canonical semantics of positive
and stratified fuzzy dl-programs, which is given by a unique
least model and an iterative least model semantics, respec-
tively. We have also given a characterization of the canoni-
cal semantics of positive and stratified fuzzy dl-programs in
terms of a fixpoint and an iterative fixpoint semantics.

An interesting topic for future research is to analyze the
computational complexity of this approach. It appears that
fuzzy dl-programs under the answer set semantics have the
same complexity characterization as non-fuzzy dl-programs
under the answer set semantics [4], when unary number
encoding for truth values is used. Furthermore, it would
be interesting to provide an implementation for fuzzy dl-
programs under the answer set semantics, which seems to
be possible by a reduction to dl-programs under the an-
swer set semantics (along the lines already described in [15]
for many-valued disjunctive logics programs). Finally, an-
other topic for future research is to integrate more expres-
sive fuzzy description logics into fuzzy dl-programs.
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