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Abstract The Semantic Web consists of several hierarchical lay-
ers, where theéOntology layer in form of the OWL Web
Vagueness and imprecision abound in multimedia infor- Ontology Languag¢32, 10] (recommended by the W3C),
mation processing and retrieval. In this paper, we present is currently the highest layer of sufficient maturity. OWL
an approach to fuzzy description logic programs under the consists of three increasingly expressive sublanguages,
answer set semantics for the Semantic Web, which is an innamelyOWL Lite OWL DL, andOWL Full. OWL Lite and
tegration of description logics with nonmonotonic logiopr ~ OWL DL are essentially very expressive description logics
grams under the answer set semantics (with default nega-with an RDF syntax [10]. As shown in [8], ontology entail-
tion in rule bodies) that also allows for representing and ment in OWL Lite (resp., OWL DL) reduces to knowledge
reasoning with vagueness and imprecision. More con- base (un)satisfiability in the description logik#{ZF (D)
cretely, we define a canonical semantics of positive and(resp.,SHOZN (D)). On top of the Ontology layer, the
stratified fuzzy dl-programs in terms of a unique least model Rules Logic, and Proof layersof the Semantic Web will
and iterative least models, respectively. We then definebe developed next, which should offer sophisticated repre-
the answer set semantics of general fuzzy dl-programs,sentation and reasoning capabilities. As a first effort is th
and show in particular that all answer sets of a fuzzy dI- direction,RuleML(Rule Markup Language) [2] is an XML-
program are minimal models, and that the answer set se-based markup language for rules and rule-based systems,
mantics of positive and stratified fuzzy dl-programs coin- whereas the OWL Rules Language [9] is a first proposal for
cides with their canonical least model and iterative least extending OWL by Horn clause rules.
model semantics, respectively. Furthermore, we also pro- A key requirement of the layered architecture of the Se-
vide a characterization of the canonical semantics of pos- mantic Web is to integrate the Rules and the Ontology layer.
itive and stratified fuzzy dl-programs in terms of a fixpoint In particular, itis crucial to allow for building rules onpgf
and an iterative fixpoint semantics, respectively. ontologies, that is, for rule-based systems that use vecabu
lary from ontology knowledge bases. Another type of com-
bination is to build ontologies on top of rules, which means
that ontological definitions are supplemented by rules or
imported from rules. Towards this goal, the works [4, 5]
have proposedlescription logic programgor simply dl-
TheSemantic Wefd, 6] aims at an extension of thg cur- prograllomsl? which arepof the ?om?KBg: (Lsf P), wr?eyreL
rent World Wide Web by standards and technologies thatiS a knowledge base in a description logic ahds a finite

help machines to understand the information on the Web sog, ofdescription logic rulegor simplydi-rules). Such dl-

f[hat_they can support_rlcher discovery, datg Integratiel; N e are similar to usual rules in logic programs with nega-
igation, and automation of tasks. The main ideas behind ition as failure. but may also contaipueries toL in their

are to add a machine-readable meaning to Web pages, 19, qjes which are given by special atoms (on which possi-

use ontologies for a precise definition of shared terms in bly default negation may apply). Another important feature
Web resources, to use KR technology for automated rea-qf 4| 1jes is that queries té also allow for specifying an

soning from Web resources, a_nd to aPP'y cooperative agenﬁnput from P, and thus for dlow of information fromP
technology for processing the information of the Web. to L, besides the flow of information froth to P, given by

*Alternate address: Institutif Informationssysteme, TU Wien, Favo- @y query toL. Hence, description.mgic programs allow
ritenstr. 9-11, A-1040 Wien, Austria; lukasiewicz@kr.iew.ac.at. for building rules on top of ontologies, but also (to some

1. Introduction




extent) building ontologies on top of rules. In this way, e We also provide a characterization of the canonical se-
additional knowledge (gained in the program) can be sup- mantics of positive and stratified fuzzy dl-programs in
plied to L before querying. The semantics of dl-programs terms of a fixpoint and an iterative fixpoint semantics.
was defined in [4] and [5] as an extension of the answer _ ) )

set semantics by Gelfond and Lifschitz [7] and the well- The rest of this paper is organized as follows. In Sec-
founded semantics by Van Gelder, Ross, and Schlipf [31], ion 2, we recall the description logicSHZ7(D) and
respectively, which are the two most widely used semanticsSHOZN (D). In Section 3, we define our fuzzy exten-
for nonmonotonic logic programs. The description logic Sion ofSHIF (D) andSHOZN (D). Section 4 introduces
knowledge bases in di-programs are specified in the We"_fuzz_y dl-program_s: and defines the canonical semantics of
known description logic§ HZF(D) andSHOZN (D). positive and stratified fuzzy dl-programs, as well as the an-

In[16, 17], towards sophisticated representation and rea-SWer set semantics of general fgzzy dl-programs. . !n Sec-
soning techniques that also allow for modeling probabilis- tion 5, we characterize the canonical models of positive and

tic uncertainty in the Rules, Logic, and Proof layers of the stratified fuzzy dl-programs in terms of a fixpoint and an it-

Semantic Web, we have presentembbabilistic descrip- erative fixpoint semantics. Section 6 summarizes our main
tion logic programs(or simply probabilistic dl-program results and gives an outlook on future research.

which generalize dl-programs under the answer set and

well-founded semantics by probabilistic uncertainty. fhe 2 SHZF (D) and SHOZIN (D)

have been developed as a combination of dI-programs with

Poole’s independent choice logic (ICL) [22]. In this section, we recall the expressive description lsgic

In this paper, we continue this line of research towards SHZ.F(D) andSHOZN (D), which stand behind the web
more sophisticated representation and reasoning tea®iqu ontology languages OWL Lite and OWL DL, respectively.
for the Semantic Web. Here, we presdutzy descrip-  See especially [8] for further details. Intuitively, deiper
tion logic programgor simplyfuzzy dl-programgsunder the  tion logics model a domain of interest in terms of concepts
answer set semanticwhich generalize dl-programs under and roles, which represent classes of individuals and bi-
the answer set semantics by fuzzy imprecision and vaguenary relations between classes of individuals, respdgtive
ness. Even though there has been previous work on positiveA description logic knowledge base encodes in particular
fuzzy description logic programs by Straccia [28, 29], to subset relationships between classes of individuals,esubs
our knowledge, this is the first approach to fuzzy descrip- relationships between binary relations between claskes, t
tion logic programs with default negation in rule bodies. membership of individuals to classes, and the membership
Furthermore, differently from Straccia, we also allow for of pairs of individuals to binary relations between classes
a flow of information from the logic program component to
the description logic component of a fuzzy dl-program. 2.1 Syntax

The main contributions of this paper are as follows:

We first describe the syntax #FHOZIN (D). We as-

e We introduce a simple fuzzy extension&HZ7 (D) sume a set otlementary datatypesnd a set ofiata val-
andSHOZN (D), which allows for fuzzy conceptand  yes A datatypeis either an elementary datatype or a set
fuzzy role assertions, and which is intuitively based on of gata values (calledatatype oneOf A datatype theory
a mapping to several layers of ordinary concepts andy — (AP, .D) consists of alatatype(or concret¢ domain
roles inSHZF (D) resp.SHOZN (D). AP and a mappingP that associates with every elementary

datatype a subset dfP and with every data value an ele-

¢ We introduce fuzzy dl-programs, which properly gen- ment of AP. The mapping® is extended to all datatypes
eralize dl-programs in [4] (where rule bodies may con- py {v;,...}P ={vP,...}. Let A, R4, Rp, andI be
tain default-negated atoms) by fuzzy vagueness andnonempty finite and pairwise disjoint sets atbmic con-
imprecision. We define a natural semantics of positive cepts abstract roles datatype(or concretg roles, andin-
and stratified fuzzy dl-programs in terms of a unique dividuals respectively. We denote bR, the set of in-

least model and iterative least models, respectively.  versesk— of all abstract roleR € R 4.

A role is an element oR4 UR, URp. Conceptsare

e We then define the answer set semantics of generalinductively defined as follows. Every € A is a concept,
fuzzy dl-programs. We also show that all answer sets and ifoq, ..., 0, €I, then{oy,...,0,} is a concept (called
of a fuzzy dI-program are minimal models, and that the oneOj. If C, Cy, andC; are conceptsandf c R4 UR,
answer set semantics of positive and stratified fuzzy then alsqC,MC5), (C;1UC5), and—C are concepts (called
dl-programs coincides with their canonical least model conjunction disjunction and negation respectively), as
and iterative least model semantics, respectively. well as3R.C, VR.C, >nR, and<nR (calledexists valug



atleast andatmost restriction respectively) for an integer
n>0. If D is a datatype an& € Rp, then3U.D, VU.D,
>nU, and<nU are concepts (calledhtatype existsralug
atleast and atmost restriction respectively) for an inte-
gern>0. We write T and L to abbreviateC' U =C and
Cr-C, respectively, and we eliminate parentheses as usual

An axiomis an expression of one of the following forms:
(1) C C D (calledconcept inclusion axiojnwhereC andD
are concepts; (2R C S (calledrole inclusion axiony where
eitherR,Se€ R4 or R, S € Rp; (3) Trans(R) (calledtran-
sitivity axion), where R€ R 4; (4) C(a) (called concept
assertion, whereC' is a concept and. €I; (5) R(a,b)
(resp., U(a,v)) (called role assertio), where ReR 4
(resp.,U e Rp) anda,bel (resp.,acI andv is a data
value); and (6)a =0 (resp.,a #b) (called equality (resp.,
inequality) axion), wherea, b€ 1. A knowledge basé is
a finite set of axioms. For decidability, number restriction
in L are restricted to simple abstract roles R 4 [11].

The syntax of SHZF(D) is as the above syntax of
SHOIN (D), but without the oneOf constructor and with
theatleastandatmostconstructors limited t6 and1.

Example 2.1 An online store (such asmazon.comay

2.2 Semantics

An interpretationZ = (AZ, -7) with respect to a datatype
theoryD = (AP, .P) consists of a nonemptgbstrac) do-
main A” disjoint from AP, and a mapping’ that assigns
to each atomic concepit € A a subset ofAZ, to each indi-
vidualo € T an element ofAZ, to each abstract rolg € R 4
a subset oAZ x AZ, and to each datatype rolec Rp a
subset ofAZ x AP). The mapping? is extended to all

concepts and roles as usual [8].

The satisfactionof a description logic axion¥ in the
interpretationZ = (A%, -Z) with respect taD = (AP, .D),
denotedZ = F, is defined as follows: (1Y =CLC D iff
CTc DT, 2)I=RCS iff RTCST; (3) I = Trans(R)
ifft R? is transitive; (4)Z}=C(a) iff o €C%; (5)
Tk R(a,b) iff (aZ,0%)eR%; (6) IEU(a,v) iff
(a,vP)e UL, (1) I =a=0biff a? =b7;and (8)Z =a#b
iff aZ #b”. The interpretatiorf satisfieshe axiomF, or
T is amodelof F, iff 7 |= F. The interpretatio satisfies
a knowledge basé, or Z is amodelof L, denoted? = L,
iff Z = F forall F e L. We say thatL is satisfiable(resp.,
unsatisfiablg iff L has a (resp., no) model. An axiom
is alogical consequencef L, denotedL = F, iff every
model of L satisfiesF'. A negated axiom-F' is alogical

use a description logic knowledge base to classify and charconsequencef L, denotedL = —F, iff every model of L

acterize its products. For example, suppose that (1) text-

does not satisfy.

books are books, (2) personal computers and laptops are

mutually exclusive electronic products, (3) books and-elec
tronic products are mutually exclusive products, (4) ofgiec

3 FuzzySHIF (D) and SHOZIN (D)

on offer are products, (5) every product has at least one re-

lated product, (6) only products are related to each other,
(7) tb_ai andtb_Ip are textbooks, (8) which are related to
each other, (9pc_.ibm andpc_hp are personal computers,
(10) which are related to each other, and (iih andhp

are providers fopc_ibm andpc_hp, respectively. These re-
lationships are expressed by the following descriptioticlog
knowledge basé;:

(1) Textbook= Book

(2) PCL LaptopC Electronics PC C —Laptop
(3) Booku ElectronicsC Product BookC —Electronics
(4) Offer C Product

(5) ProductC > 1related

(6) > 1relatedll > 1related” C Product

(7) Textbooktb_ai); Textbooktb_Ip);

(8) related'tb_ai, tb_Ip);

(9) PC(pc.ibm); PC(pc_hp);

(10) related pc_ibm, pc_hp);

(11) providegibm, pc_ibm); provideghp, pc_hp).

Even though the literature contains several previous ap-
proaches to fuzzy description logics [33, 30, 24, 25], only
recently fuzzy description logics for the Semantic Web have
been explored. In particular, recent work by Straccia in-
troduces a fuzzy description logic with concrete domains
(with reasoning techniques based on a mixture of comple-
tion rules and bounded mixed integer programming) [26] as
well as a fuzzy extension FHOZN (D) (without reason-
ing machinery) [27]. Closely related to the latter is the kvor
by Stoilos et al. [23], which combines the description logic
SHIN with fuzzy set theory for the Semantic Web.

For our combination of fuzzy description logics with
fuzzy description logic programs under the answer set se-
mantics, we use a simple fuzzy extensionS#ZF (D)
andSHOZN (D), which allows only for fuzzy concept and
fuzzy role assertions, and which is intuitively based on a
mapping to several layers of ordinary concepts and roles
in SHZF (D) resp.SHOZN (D). As an important advan-
tage, reasoning in this fuzzy extension can immediately be
reduced to reasoning iISHZF (D) resp. SHOZN (D),
and thus directly be implemented on top of standard tech-
nology for reasoning iISHZF (D) resp.SHOZN (D).



3.1. Syntax

We assume a set ¢futh valuesTV ={2, 1 . 2}
A fuzzy concept assertidmas the formC'(a) > v, where
C is a concept iINSHZF(D) resp.SHOZIN (D), a€l,
and ve TV. Similarly, a fuzzy role assertiorhas the
form R(a, b) > v (resp.U(a, s) > v), whereR € R 4 (resp.,
UeRp), a,bel (resp.,acl, ands is a data value),
andv e TV. Informally, C(a) > v (resp.,R(a,b) >v and
U(a, s) >v) encodes that the truth value 6f(a) (resp.,
R(a,b) and Uf(a,s)) is at leastv. A fuzzy description
logic knowledge bas&B = (L, F') consists of an ordi-
nary description logic knowledge bageand a finite set of
fuzzy concept and fuzzy role assertiafis

Example 3.1 A simple fuzzy description logic knowledge
baseKB = (L, F') is given byL as in Example 2.1 anf =
{Inexpensivgpc.ibm) > 0.6, Inexpensivépc_hp) > 0.9}.

duce the syntax of fuzzy dI-programs, and we finally define
the semantics of positive, stratified, and general fuzzy dl-
programs in terms of a least model semantics, an iterative
least model semantics, and the answer set semantics.

4.1. Combination Strategies

We assume a set @futh valuesTV = {%, %, N L
We assume a set ofiegation and conjunction strate-
gies which are functionso: TV — TV and®: TV x
TV — TV. Forve TV, we call© v the negationof v.

For vy,v, € TV, we callv; ® vy the conjunctionof v,
andwv,. As usual, we assume that the negation and con-
junction strategies have some natural algebraic progertie
In particular, we assume that every negation strategg
antitonic (that is, v; < wvs implies & v, > S v;) and satis-
fies the properties thad0=1 ands 1=0. Furthermore,

Here, I encodes the different degrees of membership of we assume that every conjunction strategyis commu-

PCs by IBM and HP to the fuzzy conceptexpensive.

3.2. Semantics

We define the semantics of fuzzy description logic

tative (that is, v; ® vo =vy ® wv1), associative(that is,
(v1 ®v2) ®u3 =1v1 ® (V2 ®v3)), monotonidqthat is,v; < v}
and vy <o} implies v; ® ve <0} ® v}), and satisfies the
properties that ® 1 =v andv ® 0=0.

knowledge bases by a mapping to ordinary description logic Example 4.1 An example of a negation strategy is given by

knowledge bases isHZF (D) resp. SHOZN (D). For
ve TV, av-layer of an ordinary description logic knowl-
edge basd,, denotedL?, is obtained fromL by replacing
every concep€ and roleR (resp.,UU) by C” andR" (resp.,
U?). Theordinary equivalento a finite set of fuzzy con-
cept and fuzzy role assertiorts, denotedF™, is obtained
from F by replacing every’(a) > v (resp.,R(a, b) > v and
U(a,s)>v) by C¥(a) (resp.,R"(a,b) andU"(a, s)). The
ordinary equivalento a fuzzy description logic knowledge
baseKB = (L, F'), denotedK B*, is defined as

UUETV,'U>O LYUF* U

{A"CAY |AcA,ve TV, v>2/n,v =v—1/n} U
{R'CR” |ReRA,ve TV,v>2/n,v' =v—1/n} U
{UPCUY |UeRp,ve TV, v>2/n,v' =v—1/n}.

A fuzzy description logic knowledge baséB = (L, F)
is satisfiabldff its ordinary equivalent is satisfiable. We say
that F amongC(a) > v, R(a,b) >v, andU(a,s) >v is a
logical consequencef KB, denotedKB |= F, iff C*(a),
R(a,b), and U"(a,s), respectively, are logical conse-
guences ok B*. We say that-F is alogical consequence
of KB, denotedKB |=—-F, iff -C"(a), ~R"(a,b), and
-U"(a, s), respectively, are logical consequenceaf*.

4. Fuzzy Description Logic Programs

©wv =1 — v, while two examples of conjunction strategies
are given by, ® vy = min(v1, v2) andv; ® ve =y - va.

4.2. Syntax of Fuzzy DL-Programs

We assume a function-free first-order vocabukaryith
nonempty finite sets of constant and predicate symbols, and
a setX of variables. Atermis a constant symbol frond
or a variable fromX. If p is a predicate symbol of arity
k>0 from ® andt,, ..., t; are terms, thep(ty, ..., tx) IS
anatom A literal is an atoma or a default-negated atom
not a. A normal fuzzy rule- has the form

a Q0 by A, ba A@y " N@y_4 bk/\®k

@)

n0t9k+1 bk-‘rl /\®k+1 A, Notg,, b > v,

wherem >k >0, a,bg11,-..,by, are atomshy, ..., by are
either atoms or truth values frofiV, ®q, ..., @m,_1 are
conjunction strategiesy11, - . -, O, are negation strate-
gies, andv € TV. Observe here thdlt, ..., b, may also
be truth values fromT'V, which will be very useful in
the definition of the Gelfond-Lifschitz transformation for
the answer set semantics. We refemtas theheadof r,
denotedH (r), while the conjunctionb; Ag, ... Ag, _,
noto,, bm is thebodyof r. We denote byB(r) the set of
body literalsB™ (r) U B~ (r), whereB¥ (r) = {b1, ..., by}
andB~(r) ={bk+1,--.,bm}. A normal fuzzy progranP

In this section, we introduce fuzzy dl-programs. We first is a finite set of normal fuzzy rules. We say tliais positive
define negation and conjunction strategies. We then intro-iff no rule in P contains default-negated atoms.



Informally, a fuzzy dl-program consists of a fuzzy de-
scription logic knowledge bask and a generalized normal
fuzzy programP, which may contain queries fo. In such a
query, it is asked whether a certain description logic axiom
or its negation logically follows fronl. or not. Formally,
adl-queryQ(t) is either

(@) of the formC'(¢), whereC'is a concept andis a term;
or

(b) of the form R(¢1,t2), where R is a role andtq,
t, are terms.

A dl-atomhas the formDL[S; W py, ..., Sm W pm; Q)(t),
where eachf; is a concept or rolep; is a unary resp. bi-
nary predicate symbof)(t) is a dl-query, andn > 0. We
call p1,...,p, its input predicate symbalsintuitively, &
increasesS; by the extension op;. A fuzzy dl-ruler is of
the form (1), where any; in the body ofr may be a dI-
atom. Afuzzy dl-programK B = (L, P) consists of a fuzzy
description logic knowledge badeand a finite set of dl-
rules P. We sayKB = (L, P) is positiveiff P is positive.
Ground termsatoms literals, etc., are defined as usual. The
Herbrand basef P, denotedHB p, is the set of all ground
atoms with standard predicate symbols that occup iand
constant symbols i®@. We denote byround(P) the set of
all ground instances of fuzzy dl-rules inrelative toHB p.

Example 4.2 In the running example, the following fuzzy

dl-rules encode PCs that are not in the description logic
knowledge base and say which of them are brand-new. Fur

thermore, they express that (i) electronic products that ar
not brand-new are on offer with degree of tritHii) a cus-
tomer who needs a product on offer buys this product with
degree of truth).7, and (iii) a customer who needs an inex-
pensive product buys this product with degree of ttuth

pe(pel) > 1; pe(pe2) > 1; pe(pe3) > 1;
brand_new(pc-1) > 1; brand_new(pc2) > 1;
offer(X) «—g DL[PC W pc; Electronics|(X)A\g
notg brand_new(X) > 1;
buy(C, X) g needs(C, X) Ag offer(X) > 0.7;
buy(C, X) g needs(C, X)Ag
D L[Inexpensive](X) > 0.3.

4.3 Models of Fuzzy DL-Programs

We first define Herbrand interpretations and the truth of
fuzzy dl-programs in Herbrand interpretations. In the se-
quel, letKB = (L, P) be a fuzzy dl-program.

TheHerbrand basef P, denotedHB p, is the set of all

to P is a mappingl: HBp — TV. We write HBp to de-
note the interpretatiohsuch that/ (a) =1 foralla € HBp.
For interpretationd and.J, we write I C J iff 1(a) < J(a)
for all a € HB p, and we define théntersectionof I and
J, denotedl N J, by (I NJ)(a) = min(I(a), J(a)) for all
a€ HBp. The truth value ot € HB p under L, denoted
I1(a), is defined ad(a). The truth value of a ground dI-
atoma=DL[S1 W p1,...,Sm W pn;Q](c) underL, de-
notedIy (a), is defined as the maximal truth values TV
such thatL U |J"; A;(I) = Q(c) > v, where

o Ai(I) ={Si(e) = I(pi(e)) [ I(pi(e)) >0}
We say thatl is amodelof a ground fuzzy dl-rule- of the
form (1) underL, denoted =y, r, iff

Ir(a) > v ®o I (b1) @1 IL(b2) ®2 -+ @p—1 I1(bi) Ok
Okt1 L (bk+1) kg1 - Qm—1 Ol (bm),

and of a fuzzy dl-progrankB = (L, P) denoted! = KB,
iff 1=y rforallre ground(P).

4.4 Positive Fuzzy DL-Programs

We now define positive fuzzy dl-programs, which are in-
formally fuzzy dl-programs without default negation. We
show that they have a unique least model, which defines
their canonical semantics. Formally, a fuzzy dI-program
KB = (L, P) is positiveiff P is “not"-free.

For ordinary positive programs, as well as positive dI-
programsK B, the intersection of two models &fB is also
a model ofKB. The following theorem shows that a similar

result holds for positive fuzzy dI-programé&s.

Theorem 4.3 Let KB = (L, P) be a positive fuzzy dl-pro-
gram. If the interpretationsl,, I, C HBp are models
of KB, thenI =1, NI is also a model oK B.

Proof. We have to show thaf is a model of every
r € ground(P) under L. Consider anyr € ground(P).
Sincel; (j€{1,2}) is a model of KB, and thus of ev-
ery r € ground(P) underL, the truth value of’s head un-
derl; andL is at least the truth value efs body under!;
and L. Sincer contains no default-negated atoms, every
conjunction strategy in is monotonic, and C I;, the truth
value ofr’s body undetl; (5 € {1,2}) andL is at least the
truth value ofr’s body underl and L. Hence, the truth
value ofr’s head unde¥; (j € {1,2}) andL, and thus also
underl and[, is at least the truth value ofs body under?
andL. Thatis,I is a model ofr underL. O

As an immediate corollary of this result, every posi-
tive fuzzy dl-programKB has a unique least model, de-
notedM kg, which is contained in every model &B.

Corollary 4.4 Let KB = (L, P) be a positive fuzzy dI-pro-

ground atoms with a standard predicate symbol that occursgram. Then, a unique modéC HB p of KB exists such

in P and constant symbols ib. Aninterpretation! relative

that ICJ for all modelsJCHB p of KB.



4.5 Stratified Fuzzy DL-Programs

We next define stratified fuzzy dI-programs, which are
informally composed of hierarchic layers of positive fuzzy
di-programs that are linked via default negation. Like fier o
dinary stratified programs, as well as stratified dl-proggam
a minimal model can be defined by a humber of iterative

obtained fromground(P) by replacing all default-negated
atomsnot g a by the truth values; I, (a).

Observe thatL, P{) has no default-negated atoms any-
more. Hence(L, P}) is a positive fuzzy dI-program, and
by Corollary 4.4, has a least model.

Definition 1 Let KB = (L, P) be a fuzzy dl-program. An

least models, which naturally describes the semantics ofanswer setof KB is an interpretation/ C HBp such

stratified fuzzy dl-programs.

For any fuzzy dI-progrankB = (L, P), let DLp denote
the set of all ground dl-atoms that occurground(P). An
input atomof a € DLp is a ground atom with an input pred-
icate ofa and constant symbols ib.

A stratification of KB = (L, P) (with respect taDLp) is
amapping\: HBp U DLp —{0,1, ..., k} such that

(i) MH(r))> X a) (resp.,A\(H (7)) > \(a)) for eachr €
ground(P) anda € BT (r) (resp.,a € B~(r)), and

(i) A(a)> A(d’) for each input atona’ of eacha € DLp,

wherek > 0 is thelengthof A. Fori € {0, ..., k}, let

KB; = (L,P;)=(L,{r € ground(P) | \(H(r)) =i}),
and letHBp, (resp.,HB%,) be the set of alt € HB p such
that(a) =1 (resp.,A\(a) <1).

A fuzzy dl-programKB = (L, P) is stratifiediff it has a
stratification\ of some lengthk > 0. We define its iterative
least models\f; C HBp with i € {0, ..., k} as follows:

(i) My is the least model oK By;

(i) if ¢>0, then); is the least model oK B; such that
M;|HBY, | = M;_1|HBp, .

Then, Mgp denotesM,;. Observe thatMgg is well-

defined, since it does not depend on a particular stratifica-

tion X\ (cf. Corollary 4.8). The following theorem shows
that M kg is in fact a minimal model oKB.

Theorem 4.5 Let KB=(L, P) be a stratified fuzzy dI-
program. ThenM kg is a minimal model oK B.

Proof (sketch). The statement can be proved by induction
along a stratification oKB. O

4.6 General Fuzzy DL-Programs

We now define thanswer set semantics general fuzzy
di-programsKB, which is reduced to the least model se-
mantics of positive fuzzy dl-programs. We use a general-
ized transformation that removes all default-negated atom
In the sequel, leKB = (L, P) be a fuzzy dl-program.

Thefuzzy di-transfornof P relative toL and an interpre-
tation/ C HB p, denotedP;, is the set of all fuzzy dl-rules

that[ is the least model ofL, Py).

The following result shows that, as desired, answer sets
of a fuzzy dl-progrank B are also minimal models of B.

Theorem 4.6 Let KB be a fuzzy dl-program, and |&t be
an answer set oKB. Then,M is a minimal model oK B.

Proof. Let I be an answer set &kB = (L, P). Sincel

is the least model of, P}), it is immediate thaf is also

a model of KB. We now show that is also a minimal
model of KB. Towards a contradiction, suppose that there
exists a model/ of KB such that/ C 1. Then, since ev-
ery conjunction strategyp in KB is monotonic, and every
negation strategy> is antitonic, it follows thatJ is also

a model of(L, Pf), which contradictd being a minimal
model of (L, P}). Thus,I is a minimal model ok B. O

The next theorem shows that positive and stratified fuzzy
di-programs have at most one answer set, which coincides
with the canonical minimal modél/ k5.

Theorem 4.7 Let KB be a(a) positive(resp.,(b) stratified
fuzzy dl-program. Then\/ kg is the only answer set G B.

Proof. (&) An answer set ofKB is an interpretation
ICHBp such thatl is the least model ofL, P{). As KB
is a positive dl-programP/ coincides withground(P).
Hence,l C HBp is an answer set & B iff ] = Mgkp.

(b) Let A be a stratification ok B of lengthk > 0. Suppose
that! C HBp is an answer set & B. Thatis,I is the least
model of (L, P}). Hence,

e I|HB}, is the least of all models] C HB}, of
(L7 Poi).

e if >0, thenI|HB%, is the least among all models
J C HB}, of (L, P;}) with J|HB}, _ =1I|HB},

i—1"

It thus follows that:
o I|HB%, is the least of all models C HB, of KBy;

e if i>0, thenI|HBY, is the least among all models
J C HB}, of KB, with J|HB}, =I|HB}, .

Hence, KB is consistent, and = M gpg. Since the above
line of argumentation also holds in the converse direciton,



follows that/ C HB p is an answer set B iff KB is con-
sistentand = Mkp. O

Theorem 5.3 Let KB = (L, P) be a fuzzy dl-program with
stratification of lengthk > 0. LetM; C HBp,i<€{-1,0,

Since the answer sets of a stratified fuzzy di-pro- - -k} bedefinedby/_, =0, andM; = Ty} (M;—,) for

gram KB are independent of the stratificatiarof KB, we
thus obtain thaf\/ x5 is independent ok.

Corollary 4.8 Let KB be a stratified fuzzy dl-program.
Then,Mkp does not depend on the stratification/oB.

5 Fixpoint Semantics

i >0, wheren; >0 such thatlj; (M;_1)=Tjs"" (M;—1).
Then,Mk =Mgkg.

6. Summary and Outlook

We have first defined a simple fuzzy extension of the de-

scription logicsSHZF (D) and SHOIN (D). We have

In this section, we give fixpoint characterizations for the then presented fuzzy dl-programs. We have defined the an-
answer set of positive and stratified fuzzy dI-programs, and swer set semantics of general fuzzy dI-programs, and shown
we show how to compute it by finite fixpoint iterations. that it coincides with the canonical semantics of positive

The answer set of an ordinary positive resp. stratified and stratified fuzzy dl-programs, which is given by a unique
normal logic programkKB, as well as of a positive resp. least model and an iterative least model semantics, respec-
stratified dI-programKB has a well-known fixpoint char-  tively. We have also given a characterization of the canoni-
acterization in terms of an immediate consequence opera-<al semantics of positive and stratified fuzzy dl-programs i
tor Tk, which generalizes to fuzzy dl-programs. This can terms of a fixpoint and an iterative fixpoint semantics.
be exploited for a bottom-up computation of the answer set  An interesting topic for future research is to analyze the
of a positive resp. stratified fuzzy dl-program. computational complexity of this approach. It appears that

For a fuzzy dl-prograniB = (L, P), we define the op-  fuzzy dl-programs under the answer set semantics have the
eratorTkp on the subsets afIBp as follows. For every  same complexity characterization as non-fuzzy dl-program
ICHBp andac HBp, let Tkp(I)(a) be defined as the under the answer set semantics [4], when unary number
maximum ofv subject tor € ground(P), H(r)=a, and encoding for truth values is used. Furthermore, it would
v being the truth value of's body underl and L. Note that be interesting to provide an implementation for fuzzy dI-
if there is no such rule, thenTxp (I)(a) =0. programs under the answer set semantics, which seems to

The following lemma shows that, B is positive, be possible by a reduction to dl-programs under the an-
then Tk is monotonic, which follows from the fact that swer set semantics (along the lines already described Jn [15
each conjunction strategy ground(P) is monotonic. for many-valued disjunctive logics programs). Finally; an
other topic for future research is to integrate more expres-

Lemma 5.1 For any positive fuzzy dl-prograrkB = (L, ) e -
sive fuzzy description logics into fuzzy dl-programs.

P), the operatofl'xp is monotoniqthatis,/ CI' C HBp
impIiesTKB (I) CTkp (I/))

Proof. Let I CI'C HBp. Consider any- € ground(P).
Then, since every conjunction strategyn r is monotonic,
it follows that the truth value of's body underl’ and L
is at least the truth value ofs body under/ and L. This
shows thafl 'k g (I) CTkg (I/) O

Since every monotonic operator has a least fixpoint, also
Txp has one, denotebip(Txp). Moreover,lfp(Tkp) can
be computed by finite fixpoint iteration (given finiteness
of TV, P, and the number of constant symbolsiij

For everyl C HBp, we defineTi;(I) = I, if i = 0,
andTip(I) = Tkp(Tipy (1)), if i > 0.
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