
Logic-based Model-Level Software Development
with F-OML

Mira Balaban
Ben-Gurion University, Israel

mira@cs.bgu.ac.il

Michael Kifer?

Stony Brook University, USA
kifer@cs.sunysb.edu

Abstract. Models are at the heart of the emerging Model-driven En-
gineering (MDE) approach in which software is developed by repeated
transformations of models. Intensive efforts in the modeling community
in the past two decades have produced an impressive variety of tool sup-
port for models. Nonetheless, models are still not widely used throughout
the software evolution life cycle and, in many cases, they are neglected in
later stages of software development. To make models more useful, one
needs a powerful model-level IDE that supports a wide range of object
modeling tasks. Such IDEs must have a consistent formal foundation.
This paper introduces F-OML, a language intended as an expressive, ex-
ecutable formal basis for model-level IDEs. F-OML supports a wide va-
riety of model-level activities, such as extending UML diagrams, defining
design patterns, reasoning about UML diagrams, testing UML diagrams,
specification of Domain Specific Modeling Languages, and meta-modeling.
F-OML is a semantic layer on top of an elegant logic programming lan-
guage of guarded path expressions, called PathLP. We believe that a
combination of current object technology with F-OML as an underlying
language can lay the basis for a powerful model-level IDE.

1 Introduction

Models are at the heart of the emerging Model-driven Engineering (MDE) ap-
proach in which software is developed by repeated transformations of models.
The MDE approach is motivated by the understanding that the growing com-
plexity of software requires multiple levels of abstraction that programming lan-
guages do not usually support [1].

Intensive efforts in the modeling community in the last two decades have
produced an impressive variety of tool support for models. Nevertheless, models
are still not widely used throughout the software evolution life cycle and, in many
cases, they are neglected in later stages of software development. Moreover, users
neglect specification of essential constraints, since they are not supported by the
software tools that implement the models. To make models more useful, one
needs a powerful model-level IDE that supports a wide range of object modeling
tasks. Such IDEs must have a consistent formal foundation.

This paper1 introduces F-OML, a language intended as an expressive, ex-
ecutable formal basis for model-level IDEs. F-OML can support a wide vari-
ety of model-level activities, such as extending UML diagrams, defining design

? Supported in part by the NSF grant 0964196.
1 A preliminary overview on this work appeared in [2].

patterns, reasoning about UML diagrams, testing UML diagrams, specification
of Domain Specific Modeling Languages (DSMLs), and meta-modeling. F-OML
provides a formal API for object modeling, supported by a well-defined seman-
tics and a provably correct execution methods. The visual models (e.g., UML)
provide concrete syntax on top of the language abstract syntax.

F-OML is a semantic layer on top of an elegant formal language of guarded
path expressions, called PathLP, which is used to define objects and their types.
PathLP is a logic programming language, inspired by F-logic [3]. It supports
path expressions, rules, constraints, and queries, and can be easily implemented
in a tabling Prolog engine, such as XSB. PathLP has three distinctive features
that make it a particularly powerful tool for object modeling: (1) polymorphism
of language expressions and of class hierarchies; (2) multilevel object modeling;
(3) executable model instantiation. F-OML consists of the two first-class object
concepts of Class and Property, and a library of parameterized constructors
and features. The paper defines PathLP and F-OML, and illustrates them with
examples of various model-level tasks.

Section 2 describes F-OML by example, and Section 3 formally introduces
the PathLP language. The F-OML layer is described in Section 4, and its usage
is demonstrated in Section 5. Section 6 briefly describes related work and Section
7 concludes the paper.

2 F-OML by Example

2.1 PathLP Introduction

PathLP consists of path expressions, facts, rules, queries and constraints.
Path expressions: The key syntactic element of PathLP, which generalizes
path expressions in traditional object-oriented languages is path expression. They
extend a similar notion in XSQL [4], an F-logic [3] based language for querying
object-oriented databases, in the direction of the more general path expressions
in the F-logic systems [5]. PathLP also generalizes many aspects of XPath.

The building blocks of path expressions are terms, guards, cardinalities, and
two operators: “.” and “!”. Terms are constructed from constant symbols and
variables (which are denoted by symbols prefixed with “?”). Guards are path ex-
pressions written within square brackets. Examples of PathLP path expressions
are shown in Table 1. In these path expressions, Mary, spouse, ageAt(2010),
and ?C are terms, [?S] and [Person] are guards, and {0..1} is a cardinality.
?C:Student and ?C.ageAt(2010)<20 are query formulas.

Intuitively, the “.” operator provides navigation along value paths. Therefore,
in a path expression n.e1.ek (ignoring guards), we refer to n as a node and
to the ei-s as edges. The “.“ in n.e yields a “value” that results from navigation
along an “edge” e whose origin is n. There can be multiple such edges as, for
example, in John.childOf.

The intuition behind the operator “!” is similar to “.”, but “!” yields a type of
an edge, rather than its value. For instance, Person!spouse denotes the possible
types of a spouse edge of a person, Person!spouse[Person] checks that Person
is one of these types (implying that so are also all of its super types), and

Expression Informal meaning

Mary.spouse.ageAt(2010) the age at 2010 of the spouse of Mary

?C.student[?S].name given a binding c for the variable ?C, binds ?S to an
object who is a student of C, and returns its name

John.childWith(Mary)[?C].name,

?C:Student, ?C.ageAt(2010)<20

the name of a child of John and Mary, who is a stu-
dent, whose age in 2010 is less than 20

Person!spouse[Person]{0..1} restricts the type of the spouse property of Person
to be Person, and to have cardinality 0..1

Table 1. Examples of path expressions

Student!thesis[Document]!length[NaturalNumber] checks that the type of
a Student thesis is Document, and the type of the length edge from Document

is NaturalNumber. Type path expressions can also have constrained cardinalities
of the form {low..high}, which specify the minimum and maximum cardinality
for member nodes (precise definition in Section 3). Altogether, the semantic
domain of PathLP can be viewed as directed value graphs and directed type
graphs sharing the same set of nodes.

Guards play the role of selectors. They are usually variables or constants.
For instance, John.childOf[?X].name binds the variable ?X to the object that
represents one of John’s children, and denotes the value of the edge labeled name

of that object. Similarly, John.childOf[Mary].height checks that Mary is one
of the children of John and denotes her height. Guards can be followed by query
formulas that act like tests on the intermediate values of path expressions. For in-
stance, John.childOf[?X].name, ?X:Student, ?X.ageAt(2009)<10, binds ?X

to an object that represents one of Johns children who is a student and is under
10 years old, and denotes the name of that child.

Facts, rules, queries, and constraints: Facts specify assertions, rules specify
implications, and constraints restrict the legal states, by specifying forbidden
states. Queries trigger reasoning.
Fact examples:

1. John.spouse[Mary]. John.childOf[Bob]. John.childOf[Bill].

John has a spouse Mary, and children Bob and Bill (and possibly others).
2. Inclusion and membership assertions: Nodes are related by two relations “::”

and “:” that have properties of set inclusion and membership, respectively.
Bob:CS_committee. CS_committee::Academic_committee.

Academic_committee:Committee. Committee::Group.

The intuition behind these facts is
Bob ∈ CS committee ⊆ Academic committee ∈ Committee ⊆ Group.

3. A type assertion: Person!spouse[Person]{0..1}.
Person is one of the types of the spouse edge of Person, and its cardinality
constraint is {0..1}.

Rule and constraint examples:

1. ?S.studentOf[?Prof] :- ?S:Student, ?S.takes.teaches[?Prof].

A rule stating that if ?S is a member of the Student node and ?S takes a
course taught by ?Prof then ?Prof is a value of a studentOf edge from ?S.

2. ?A:advisor :- ?T:Thesis, ?T.author.advisor[?A].read[?T],?A:Professor.

This rule states that ?A is an advisor if ?A has read a thesis ?T of an author
that ?A advises.

3. !- ?P:Professor, not ?P.degree[PhD].

A constraint that forbids states where a professor ?P has no PhD degree.

2.2 Introduction to F-OML

F-OML uses PathLP for formulating the two fundamental object oriented con-
cepts of Class and Property. This approach is close to meta-modeling semantics
[6], since the two model levels are expressed in PathLP, which defines the abstract
syntax and semantics of models. F-OML specifications are executable since they
are expressed in PathLP. The library of constructors and properties is a major
source of expressivity for F-OML.

The following examples use model-level constructors for expressing class in-
variants and for generalizing a concrete invariant into an invariant pattern. We
use UML class diagrams for visualizing (as concrete syntax) F-OML expressions
that specify classes, properties and cardinality constraints.

Example 1. Figure 1 describes a User-Table class diagram. A table has a single
user as its owner, and a user might own multiple tables. The tableDependency

association is not constrained by multiplicity constraints.

Fig. 1. User-Table ownership Class Diagram

Assume that the model requires the constraint: “Tables with a common owner
are directly or indirectly linked via the tableDependency association.” In order
to express this constraint there is a need to relate a table to all of its indi-
rect parent tables and all of its indirect child tables. The property constructor
closure is used to define the new parameterized properties closure(parent)

and closure(child) that provide the necessary mappings. The or-constructor
defines a parameterized property which is the union mapping of its arguments.
Therefore, the property or(closure(parent),closure(child)) maps a ta-
ble to all of its direct and indirect parent and child tables. The required constraint
is captured by a rule stating that a table ?s is a direct or indirect parent or child
table of a table ?t if ?t and ?s have the same user owner:

?t.or(closure(parent),closure(child))[?s] :-

?t:Table,?s:Table,?t.owner=?s.owner.

Example 2. Suppose that the above constraint is identified by domain experts
as a typical ownership situation that can serve as a reference model. They define
the following design pattern: A single owner of multiple objects of the same
class requires mutual relationships between its owned objects. A solution is to
instantiate the reference model given by the class diagram pattern in Figure 2
and the associated constraint pattern.

Fig. 2. Single ownership Class Diagram pattern

?o1.or(closure(?parent),closure(?child))[?o2] :-

?o1:?Owned,?o2:?Owned,?o1.?owner=?o2.?owner.

Instantiation is performed by replacing class and property variables (?Owned
and ?owner) with concrete classes and properties (Table and owner) in Figure 1.

The reference model formulation exploits the expression polymorphism and
the multi-level features of PathLP. Due to the executable nature of PathLP at the
foundation, we can further manipulate the reference model and its instantiation.

3 PathLP — The Underlying Logic of F-OML

3.1 Syntax

The alphabet of the PathLP language includes countably many constant sym-
bols, (e.g., Foo 123) and variables (designated with the “?” prefix, e.g., ?x), plus
the auxiliary symbols “!”, “:”, “::”, “[”, “]”, “(”, “)”, “:-”, “>”, “=”, and so on.

A term is defined recursively as either a variable, a constant, or an expression
of the form c(t1, ..., tn), where c is a constant and t1, ..., tn, n ≥ 0, are terms.
The latter kind of a term is called a compound term .

Path expressions: The following BNF productions define path expressions
where Var, Term, NonNegInt denote variables, terms, and non-negative integers.

PathExpr := ObjectPathExpr | TypePathExpr

ObjectPathExpr := (Expr ’.’)* Expr

TypePathExpr := (Expr ’!’)+ Expr [’{’ Cardinality ’}’]

Expr := GuardedExpr | UnguardedExpr

UnguardedExpr := Term

GuardedExpr := UnguardedExpr ’[’ Guard ’]’

Guard := UnguardedPathExpr (’,’ UnguardedPathExpr)*

Cardinality := (Var|NonNegInt) ’..’ (Var|NonNegInt|’*’)

where UnguardedPathExpr is a PathExpr ending with UnguardedExpr (it is
not defined explicitly to simplify the presentation).

PathLP expressions resemble those of XPath.2 Examples include John.spouse,
Person!name[String], and Person!spouse[Person]{0..1}. The last two of
these are guarded path expressions. The definition of query formulas, below,
uses GuardedPathExpr as a syntactic category for guarded path expressions.

Queries and constraints: PathLP uses query formulas as selectors in path
expressions and as bodies of PathLP inference rules and constraints.
2 Apart from the differences in the underlying models, PathLP variables turn it more

expressive than XPath. Although PathLP expressions have no descendant-or-self
wildcards of XPath, these can be defined recursively by rules.

Query := ’?-’ QueryFormula ’.’

Constraint := ’!-’ QueryFormula ’.’

QueryFormula := ElementaryFormula

| ’not’ QueryFormula | ’(’ QueryFormula ’)’

| (QueryFormula (’and’|’or’) QueryFormula)

ElementaryFormula := Membership|Subset|GuardedPathExpr|Comparison

Membership := Term ’:’ Term

Subset := Term ’::’ Term

Comparison := Term Op Term

Op := ’=’ | ’!=’ | ’>’ | ’<’ | ’>=’ | ’=<’

The and connective in query formulas can be replaced by a comma.

Facts and Rules: We introduce a new syntactic category Consequent, that
represents formulas that are allowed as facts or rule consequences. Such for-
mulas are considerably simpler than query formulas and even than elementary
formulas – the usual restriction in logic programming languages. Consequents
are ElementaryFormulas that are subject to the following restrictions:

– Comparison formulas can be only of the form Term = Term. That is, we are
not allowed to infer facts like a > b.

– Path expressions can have only one operator “.” or “!” and only terms as
guards. That is, they can take one of the following forms: Term.Term[Term],
Term!Term[Term], or Term!Term[Term]{Cardinality}.

These restrictions make PathLP reducible to Logic Programming and provide a
way for an efficient implementation. Finally, the definition of facts and rules:

Fact := Consequent ’.’

Rule := Consequent ’:-’ QueryFormula ’.’

PathLP has three language features that make it a powerful foundation for
supporting object modeling:

1. Polymorphism: PathLP has two forms of polymorphism: expression poly-
morphism, which enables the specification of patterns and reference models
as in or(closure(?parent),closure(?child))[?o2] – see Example 2, and
the standard class hierarchy polymorphism of object-oriented modeling.

2. Multi-level object modeling: This feature enables full meta-modeling,
defining the abstract syntax on the meta-model level, and the semantics on
the model level, as in:
intersection(?C1,?C2):Class :- ?C1:Class, ?C2:Class.

?o:intersection(?C1,?C2) :- ?o:?C1, ?o:?C2.

The first rule specifies the class constructor intersection on the meta-
model level, and the second rule partially specifies its semantics, on the
model level. Section 4 provides further explanations.

3. Executable language: PathLP is an executable standalone language (un-
like OCL). It supports model instantiation (i.e., population of objects and
links) which enables testing and querying on various modeling levels.

3.2 Semantics

The semantic domain of PathLP is a set of entities, over which various structures
(value graphs, type graphs, membership and inclusion relations, and cardinality
constraints) are defined. The domain does not differentiate entities by their role:
node, edge, or type: the same entity can play different roles depending on the
syntactic context. Formally, up to an isomorphism, the domain is a set of all
ground (i.e., variable-free) terms, which includes the values of standard data
types (strings, numbers, etc.).

A PathLP interpretation , I, is a tuple of the form 〈U, IC , IV , IF , Ival, Itype,
Imin, Imax,∈I , ≺I〉, where U is the domain, IC is a mapping from constant
symbols to U ; IV is a variable assignment mapping, which is a total function
V ars −→ U ; IF is a function U −→ (∪∞n=0U −→ U), which associated to every
element in U a polyadic function ∪∞n=1U −→ U ; and Ival, Itype are both ternary
relations over U . Imin, Imax : U × U −→ (Integers ∪ {∗}) are mappings such
that 0 ≤ Imin(x, y) ≤ Imax(x, y) for all x, y ∈ U . ∈I and ≺I are binary re-
lations over U : ∈I represents the membership relation , and ≺I is a partial
order that represents the subset relation .

The mapping Ival determines the values of edges. A triple (n, e, v) ∈ Ival
defines v as the value of the edge e of node n. For a given node n and edge e,
there can be multiple such triples, since the value graph structure allows multiple
edges with the same label for a node. The mapping Itype determines the types
of edge values. A triple (n, e, t) ∈ Itype defines t as the type of the edge e of node
n. Typing should satisfy closure properties with respect to the subset relation,
and well-typing properties with respect to the value mapping.

Closure properties:
– Upward-closure: if (n, e, t) ∈ Itype and t ≺I t

′ then also (n, e, t′) ∈ Itype
(if e has type t then every supertype of t is also a type of e).

– Inheritance: if n ≺I n
′ and (n′, e, t) ∈ Itype then (n, e, t) ∈ Itype (if e has

type t for a node n′ then it has type t for every subset-related node of
n′; i.e., e is inherited).

Well-typed interpretations: Well-typed interpretations, first introduced in [3],
enforce well-typing of edge values of member nodes. Well typing has two
aspects: A typing restriction for each value, and obeying the cardinality re-
strictions. Namely, for every value-triple (n, e, v) ∈ Ival, there is a type-triple
(n′, e, t) ∈ Itype such that
– n ∈I n′ and v ∈I t
– Imin(n′, e) ≤ cardinality({v | (n, e, v) ∈ Ival}) ≤ Imax(n′, e)

The membership and subset relations are required to satisfy these properties:
n ∈I n′ and n′ ≺I n

′′ imply n ∈I n′′. This implies that the set of all the members
of n′ is a subset of the set of the members of n′′. Note that the opposite does
not have to hold.

The meaning of PathLP constructs:
Given an interpretation I, we define the notion of satisfaction by interpretation
for PathLP query formulas, facts, rules, and constraints. We first define the de-
notation mapping associated with I. The purpose of that mapping is to interpret

path expressions as subsets of the domain of I. It is common to use the same
symbol I both for the interpretation and for its associated denotation mapping.
The definitions of the denotation mapping and of satisfaction are inductive on
the structure of the formulas and are mutually dependent.
Denotation of path expressions:

– Constant : If c is a constant then I(c) = {IC(c)}.
– Variable: If ?x is variable then I(?x) = {IV (?x)}.
– Unguarded expression: If τ is a compound term c(t1, ..., tn) (an unguarded

expression) with zero or more arguments then:
I(τ) = {IF (IC(c))(t′1, ..., t

′
n)}, where t′i ∈ I(ti) for i = 1, ..., n.

The previous three cases form the basis for the inductive definition of I(τ),
where τ is a path expression. The inductive part of the definition now follows.

– Unguarded object path expression: If τ is objpathexp.expr, where obj-
pathexp is an object path expression and expr is a term then:

I(τ) = {v | ∃n ∈ I(objectpathexp), ∃e ∈ I(expr), such that (n, e, v) ∈ Ival}.
Note that I(τ) can be empty.

– Guarded object path expression: If τ is ungobjpathexp[grd], where ungobj-
pathexp is an unguarded object path expression and grd is a guard of the
form ungpathexp1, ..., ungpathexpn then:
I(τ) = I(ungobjpathexp) ∩ I(ungpathexp1) ∩ · · · ∩ I(ungpathexpn)

– Type path expression:
• Unguarded without cardinality constraint: If τ is tpathexp!expr, where

tpathexp is a type path expression and expr is an expression then:

I(τ) = {v | ∃n ∈ I(tpathexp), ∃e ∈ I(expr), such that (n, e, v) ∈ Itype}.
• Unguarded with cardinality constraint : If τ is tpathexp!expr{lo..hi}, where

tpathexp is a type path expression and expr is an expression then:

I(τ) = {v | ∃n ∈ I(tpathexp), ∃e ∈ I(expr), such that
(n, e, v) ∈ Itype and Imin(n, e) = I(lo), Imax(n, e) = I(hi)}.

• Guarded : Similarly to guarded object path expressions.

Built-in size terms: PathLP assigns special meaning to the properties size()
and size(prop), used for counting the number of objects in a class and the range
size of a property. Thus, the denotation of these properties must satisfy:

– size(): (n, I(size()), N) ∈ Ival, where n ∈ U and N ≥ 0 is an integer, if
and only if the set {v | v ∈I n} is finite and has cardinality N .

– size(e): (n, I(size(e)), N) ∈ Ival, where n ∈ U and N ≥ 0 is an integer,
if and only if the set {v | (n, e, v) ∈ Ival} is finite and has cardinality N .

Satisfaction by interpretations:

1. Elementary formulas:
– Membership: I |= t : s, where t, s are terms, if and only if I(t) ∈I I(s).
– Subset : I |= t :: s, where t, s are terms, if and only if I(t) ≺I I(s).
– Guarded path expression with and without cardinality constraints: I |= p,

where p is a guarded path expression, if and only if I(p) is non-empty.

– Comparison formulas: I |= (t = s), where t, s are terms, iff I(t) = I(s).
Likewise, I |= t < s, iff I(t) < I(s). The definition of satisfaction for
the remaining comparisons is similar.

2. Query formulas:

– And : I |= t and s iff I |= t and I |= s.

– Or : I |= t or s iff either I |= t or I |= s.

– Not : I |= not t iff it is not the case that I |= t.

3. Rules and facts: I |= (t :- s) if and only if either I |= t or I 6|= s. This
also covers the case of satisfaction for PathLP facts, since we can view any
fact t as a rule of the form t :- true.

4. Constraints: I |= (!- queryformula) iff I 6|= queryformula.

A PathLP interpretation that satisfies the facts, rules, and constraints of a
PathLP specification is a model of that specification. As usual in logic pro-
gramming, we focus on canonical models. Without negation (not), there is a
unique least model, which is the canonical model. With negation, the semantics
is defined using so-called well-founded models [7]. A PathLP specification is sat-
isfiable if it has a canonical model. An answer to a query ?- queryformula is
the set of all instantiations of queryformula satisfied by the canonical model.

With no negation, PathLP reduces to classical logic analogously to the re-
duction of F-logic to classical logic [3] and is semi-decidable. With negation,
it reduces to logic programs with the well-founded semantics and can be imple-
mented on top of a tabling deductive engine, like XSB, similarly to the FLORA-2
implementation of F-logic [5]. Without function symbols, PathLP is decidable
and has polynomial data complexity even with negation.

4 F-OML – The Semantic Layer over PathLP

F-OML uses PathLP to define axioms for two basic notions of object modeling,
classes, and properties, along with their interrelationships. Class characterizes
objects that function as collections of objects. Property defines objects that
function as mappings among classes. The definition covers three modeling levels:
the Meta Model level (OMG’s M2 level) that specifies the abstract syntax of F-
OML models, and Model and Data levels (OMG’s M1 and M0 levels), that
specify the semantics of F-OML specifications.

F-OML syntax: Figure 3 presents the meta-model of F-OML notions.

Fig. 3. Meta-model of F-OML

This meta-model is defined by the following PathLP specification:

1. F-OML classes, i.e., members of Class, have multiple properties which are
members of Property: Class!property[Property].

2. F-OML properties, i.e., members of Property, have a unique source class,
target class, and minimum and maximum multiplicities:
Property!source[Class]{1..1}. Property!target[Class]{1..1}.
Property!min[Min mult]{1..1}. Property!max[Max mult]{1..1}.

3. Class-Property inter-relationships: Property is a member of Class, and
the source of a property is a class with that property:
Property:Class.

?C.property[?p] :- ?p:Property,?p.?ST[?C],(?ST=source or ?ST=target).

?p.source[?C] :- ?C:Class, ?S.property[?p].

4. Class and Property properties are not defined on other objects:
!- ?C.property[?p], not ?C:Class.

!- ?p.target[?C], not?p:Property.

Similarly for other Property properties.

An F-OML specification is a collection of class and property facts:

1. Class definitions: {ti : Class}i=1...n, where t1, . . . , tn are ground (i.e., variable-
free) terms. These are the classes of the model.

2. Property definition: {〈pi.source[tj], pi.target[tk], pi.min[ni], pi.max[xi]〉}i=1...m,
where p1 . . . pm are all different ground terms; tj , tk are classes of the model;
and ni ≤ xi are natural numbers, where xi can also be ∗. The pis are the
properties of the model.

3. Additional constraints: PathLP specification imposing inter-relationships among
the classes or the properties.

An atomic F-OML specification is one whose classes and properties are constants.
A non-atomic F-OML specification might have classes such as intersection(User,
Guest) or properties such as inverse(owner). Example 3 presents a (non-
atomic) F-OML specification that describes the class diagram in Figure 1.
Example 3. An F-OML specification for Figure 1.
User:Class. Table:Class. owned=inverse(owner). parent=inverse(child).

owner.source[User]. owner.target[Table]. owner.min[1]. owner.max[1]

owned.source[Table]. owned.target[User]. owned.min[1]. owned.max[1]

parent.source[Table]. parent.target[Table]. parent.min[0]. parent.max[∗].
child.source[Table]. child.target[Table]. child.min[0]. child.max[∗].
An F-OML pattern is an F-OML specification with non-ground classes or
properties. F-OML patterns function as reference models for typical problems.
F-OML semantics: An F-OML state is a PathLP canonical model that sat-
isfies axioms that define the intended meaning of F-OML classes and properties:

1. Semantics of properties of classes:
?C!?p[?T]{?low .. ?hi} :-

?p:Property,?p.source[?C],?p.target[?T],?p.min[?low],?p.max[?hi].

2. Classes must not have undeclared properties:
!- ?C:Class, ?C!?p[?T]{?low .. ?hi},

not(?p:Property, ?p.source[?C], ?p.target[?T],

?p.min[?low], ?p.max[?hi]).

3. Members of classes can have only the properties declared for their classes:
!- ?o:?C, ?C:Class, ?o.?p[?v], not ?C!?p[?x].

The set of members of a class C in an F-OML state I is the set of objects
that relate to it under the membership relation: {e|e ∈I I(C)}. Due to space
limitations we omit the notions of satisfiability and finite-satisfiability in F-OML.

F-OML specifications and class diagrams: An atomic F-OML specifica-
tion is equivalent to a class diagram that has the same classes, properties, and
multiplicity constraints. A non-atomic F-OML specification can enforce inter-
relationships among classes or properties, as in GuestUser:Class; GuestUser

= difference(User, RegisteredUser). Such inter-relationships are inexpress-
ible by class diagrams.

The correspondence between F-OML specifications and class diagrams has
several important consequences. First, F-OML specifications can be visualized
by class diagrams. Second, F-OML state can be used for formulating and im-
plementing object modeling tasks. Third, results on satisfiability [8] and finite
satisfiability [9] can be used for static analysis.

Parameterized construction and characterization
F-OML provides specification for a wide variety of library constructors and pred-
icates that enable definition of non-atomic F-OML specifications and F-OML
patterns. Due to space restrictions, we present just a few, and provide only
object-level axioms, and omit meta-level characterization.
1. Class construction using Set operations:

?o:intersection(?C1,?C2):- ?o:?C1, ?o:?C2.
2. Finite class construction: Defined by the classOf class constructor, e.g.,

Color = ClassOf([red, blue, yellow]).
?o:ClassOf(?List) :- ?List.members[?o].

!- ?o:ClassOf(?List), not ?List.members[?o].
3. Property construction using logic-based constructors:

Property disjunction: ?o.or(?p1,?p2)[?v] :- ?o.?p1[?v] or ?o.?p2[?v].
4. Property inversion: ?o1.inverse(?p)[?o2] :- ?o2.?p[?o1].
5. Property composition:

Binary : ?o.compose(?p1,?p2)[?v] :- ?o.?p1.?p2[?v].
N-ary : ?o.path([?p])[?v] :- ?o.?p[?v].

?o.path([?p|?path])[?v] :- ?o.?p.path(?path)[?v].

where [?p|?path] is Prolog List notation
Transitive closure: ?o.closure(?p)[?v] :- ?o.?p[?v].

?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v].

F-OML provides a variety of library definitions that characterize classes and
properties e.g., injective, surjective, bijective [10], acyclic and unary properties,
a subproperty relation, and disjoint and singleton classes. For example,

1. Injective properties:
?p.kind[injective]:-?p:Property,inverse(?p).min[0],inverse(?p).max[1].

Assuming that the Property class has a kind property.
2. The subproperty relation: All p-mappings are also q-mappings:

?s.?q[?t]:- ?p:Property, ?q:Property, ?p.subproperty[?q], ?s.?p[?t].
3. An acyclic property : !- ?p:Property,?p.circularity[false],?o.closure(?p)[?o].

4. Disjoint classes:
!- ?C1:Class, ?C2:Class, ?C1!=?C2, ?C1.disjointfrom[?C2], ?o:?C1, ?o:?C2.

5 Using F-OML

This section illustrates various uses of F-OML for modeling objects.

I. Static invariant language: Figure 4 presents a class diagram that models
User-Table access permissions in a database. A user that has an access permis-
sion to a table (its grantor), can grant access permission to another user (the
grantee). Assume that the following invariant requirements are given:

Fig. 4. User-Table permission Class Diagram

Requirement 1 The owner of a table is automatically granted an access per-
mission and is the grantor for that permission.

Requirement 2 A non-owner user cannot grant himself a permission to a table,
directly or indirectly.

These requirements cannot be captured by class diagram constraints, and require
a constraint language. In UML, this is provided by the Object Constraint Lan-
guage (OCL) [11]. The F-OML class invariants that capture these requirements
rely on the F-OML class diagram module (not presented in this paper) that
formulates class diagram constraints. For the association class constraint, the
class diagram module defines parametrized navigation properties to and from
an association class to its related classes. For Figure 4, the navigation prop-
erties from a Permission object to its associated User and Table objects are
grantee(Permission) and granted(Permission). Requirement 1 is captured
by a class diagram invariant that consists of 2 rules:

?t.grantee[?u] :- ?t:Table, ?t.owner[?u].

?p.grantor[?u] :- ?p:Permission, ?p.grantee(Permission)[?u],

?p.granted(Permission).owner[?u].

Requirement 2 is captured by the following rule and constraint:

?u.permissionGrantor(?t)[?v] :-

?u:User, ?u.Permission(grantee)[?p].granted(Permission)[?t],

?p.grantor[?v].

!- ?u:User,?t:Table,not ?u.owner[?t],?u.closure(permissionGrantor(?t))[?u].

The rule defines an auxiliary parametrized property permissionGrantor(?t)

that, for a table ?t, maps a grantee user ?u to the grantor of his/her permission
to ?t. The rule uses the inverse navigation property Permission(grantee) that
maps a User-object to the associated Permission-objects (this property is pro-
vided by the association class formulation in the F-OML class diagram module).
The guarded path expression ?u.Permission(grantee)[?p] selects a permis-
sion ?p for a user ?u and ?u.Permission(grantee)[?p].Table(Permission)[?t]

further selects the table ?t of that permission ?p. This constraint denies circular
access granting to prevent non-owners from granting mutual access permissions.

Fig. 5. Access permission Class Diagram pattern

The OCL formulation of requirement 2 is not straightforward. The rule can be
captured by a similar query. However, the acyclicity constraint requires compu-
tation of a closure, which is rather complex in OCL (due to the need to compute
navigation paths whose length cannot be bound a priori).

II. Design pattern formulation: F-OML provides natural support for for-
mulating design patterns, including specification of their semantics. We show a
design pattern generalization of the User-Table access permission model.
Access-permission-granting pattern:
Problem: An access policy of readers to objects allows: (1) owner access to the
owned object, (2) authorized readers granting access to object to other readers,
(3) disallows granting cycles.
Solution: (1) Instantiate the class diagram pattern (a visualization of an F-
OML pattern) in Figure 5. Instantiation means replacement of the class variables
?Reader, ?Object, ?Access and the property variables ?owner, ?owned,
?grantee, ?granted, ?grantor, ?permission by constants.
(2) Apply the same instantiation of Class and Property typed variables to the
following F-OML specification:

?r.accessGrantor(?o)[?q] :- ?r:?Reader,

?r.?Access(?grantee)[?a].?granted(?Access)[?o],?a.?grantor[?q].

!- ?r:?Reader, ?o:?Object, not ?r.?owner[?t],

?r.closure(?AccessGrantor(?o))[?r].

III. Meta-modeling: The PathLP features of polymorphic expressions and
multi-level specification enable full meta-modeling.
A key property:

!- ?C:Class, ?C.key[?p], ?p:Property, ?o1:?C, ?o2:?C,

?o1.?p[?val1], ?o2.?p[?val2], ?val1 != ?val2.

One can postulate that a property named ID is a key property as follows:
?C.key[?p] :- ?C:Class, ?C.property[?p].name[ID].

IV. Model query and reasoning: Model-level reasoning has an essential role
in the process of software development, explanation, understanding, and valida-
tion. F-OML supports such reasoning with PathLP queries and rules.
Class reachability : In Figure 4, find all classes accessible from User, and the
sequence of properties in the access path.

?C.path([?p])[?C1] :- ?C.property[?p].target[?C1].

?C.path([?p|?path])[?C1] :- ?C.property[?p].target.path(?path)[?C1].

The reachability query can be ?- User.path(?path)[?C]. The answer includes
?path=[owned,grantee,permission], ?C=Permission.

V. Model testing: Model testing involves checking mandatory and possible
characterizations of F-OML specifications (like object diagrams). Mandatory

properties should hold in every state, and can be tested by posting F-OML
queries. For example, in Figure 4, if class Table is restricted to be non-empty
then in every state there is a Permission object whose grantee is also the owner
of the table of the permission. This can be verified as follows:
?- ?p:Permission, ?p.grantee(Permission).owned[?T],

?p.granted(Permission)[?T].

Negative examples, that present illegal instantiations, are also helpful in model
testing. A negative example can be tested by posing their negation as queries.

6 Related Work

The Object Constraint Language (OCL) [11] is the UML 2.0 language for spec-
ification of invariants, queries, and pre/post conditions on operations. It is not
a standalone language; its expressions must be associated with UML diagrams.
In general, the OCL handling of nested collections, unbounded data structures
and recursive constraints is quite cumbersome. For example, suppose that the
class Table in Figure 1 has two subclasses, SystemTable and UserTable, and
we wish to add the invariant: “A user cannot be an owner of a system table and
of a user table at the same time.” The OCL formulation is:

Context User

inv: self.owned->select(oclIsTypeOf(SystemTable))->

intersection(self.owned->select(oclIsTypeOf(UserTable)))->isEmpty()

For comparison, the F-OML 1-line formulation is:

!- ?u:User, ?u.owned[?st], ?st:SystemTable, ?u.owned[?ut], ?ut:UserTable.

F-OML has a number of advantages over OCL, including wider applicability,
simplicity, full support for meta-modeling, patterns, simple management of un-
bounded data structures and recursion, model querying, analysis, and testing.
The model analysis and the testing features rely on the status of F-OML as a
standalone executable language.

Alloy [12] has been used recently for analysis, validation, and testing of UML
models. Alloy is a standalone model checker, and it appears to support part of
the functionality of F-OML. Yet, as a modeling language it resides at a lower
level. Also, Alloy’s handling of recursion and unbounded data structures like
paths, cycles and tree is quite complex.

Another related work is that of [13], which extends the standard instance
diagram language to support positive or negative examples as well as invariants.
As illustrated earlier in the paper, F-OML provides an underlying logic support
for the language of mandatory, possible, and negative instance diagrams.

7 Conclusion and Future Work

We presented F-OML, an expressive, executable modeling language, that can
provide a formal basis for model-level IDEs. It is a semantic layer on top of
the PathLP path expression language. PathLP has three distinctive features:
(1) polymorphism of language expressions and of class hierarchies; (2) multilevel
object modeling; (3) executable semantics. F-OML supports the basic concepts

of Class and Property, and provides a library of constructors and features that
function like modeling patterns.

At present, an implementation of PathLP is underway. We have already
accomplished a major part of the Class diagram module. Once PathLP, F-
OML and the class diagram module are implemented, we plan to combine it with
a UML modeling tool (e.g., http://sourceforge.net/apps/trac/mide-bgu/
wiki). Then, we can experiment with F-OML as an underlying language for
the IDE, in combination with other IDE applications (http://www.cs.bgu.ac.
il/~modeling/?page_id=314). One specifically challenging goal is extending
F-OML to support dynamic models, such as statecharts or sequence diagrams.
Acknowledgments: We would like to thank Igal Khitron who implemented PathLP
and provided numerous suggestions for improvements. We also thank the referees
for the remarks that helped improve the presentation.

References

[1] France, R., Rumpe, B.: Model-driven development of complex software: A
research roadmap. In: Intl. Conf. on Software Engineering. (2007) 37–54

[2] Balaban, M., Kifer, M.: An overview of F-OML: An F-Logic based object
modeling language. Electronic Communications of the EASST 36 (2011)

[3] Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and
frame-based languages. Journal of ACM 42 (1995) 741–843

[4] Kifer, M., Kim, W., Sagiv, Y.: Querying object-oriented databases. In:
ACM SIGMOD Conf. on Management of Data, NY, ACM (1992) 393–402

[5] Kifer, M.: FLORA-2: An object-oriented knowledge base language. The
FLORA-2 Web Site (2007) http://flora.sourceforge.net.

[6] Lano, K.: UML 2 semantics and applications. Wiley Online Library (2009)
[7] Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general

logic programs. Journal of ACM 38 (1991) 620–650
[8] Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on UML class diagrams.

Artificial Intelligence 168 (2005) 70–118
[9] Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of

UML class diagrams with constrained generalization sets. In: The 3rd Eu-
ropean Conf. on Model-Driven Architecture. (2007) 17–31

[10] Wahler, M., Basin, D., D. Brucker, D., Koehler, K.: Efficient analysis of
pattern-based constraint specifications. Software and Systems Modeling 9
(2010) 225–255

[11] Object Management Group: UML 2.0 Object Constraint Language Speci-
fication. (2006)

[12] Jackson, D.: Alloy: A new technology for software modeling. In: TACAS ’02:
Proc. of the 8th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, Springer-Verlag (2002) 175–192

[13] Maoz, S., Ringert, J., Rumpe, B.: Modal Object Diagrams. In: Proc. 25th
Euro. Conf. on Object Oriented Programming (ECOOP’11). (2011)

