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ABSTRACT
We investigate the convergence of the price of anarchy after
a limited number of moves in the classical multicast commu-
nication game when the underlying communication networks
is directed. Namely, a subset of nodes of the network are
interested in receiving the transmission from a given source
node and can share the cost of the used links according to
fixed cost sharing methods. At each step, a single receiver
is allowed to modify its communication strategy, that is to
select a communication path from the source, and assuming
a selfish or rational behavior, it will make a best response
move, that is it will select a solution yielding the minimum
possible payment or shared cost. We determine lower and
upper bounds on the price of anarchy, that is the highest
possible ratio among the overall cost of the links used by
the receivers and the minimum possible cost realizing the
required communications, after a limited number of moves
under the fundamental Shapley cost sharing method. In
particular, assuming that the initial set of connecting paths
can be arbitrary, we show an O(r

√
r) upper bound on the

price of anarchy after 2 rounds, during each of which all the
receivers move exactly once, and a matching lower bound,
that we also extend to Ω(r k

√
r) for any number k ≥ 2 rounds,

where r is the number of receivers. Similarly, exactly match-
ing upper and lower bounds equal to r are determined for
any number of rounds when starting from the empty state
in which no path has been selected. Analogous results are
obtained also with respect to other three natural cost shar-
ing methods considered in the literature, that is the egali-
tarian, path-proportional and egalitarian-path proportional
ones. Most results are also extended to the undirected case
in which the communication links are bidirectional.
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1. INTRODUCTION
Multicast primitives in interconnection networks achieve a

significant traffic reduction with respect to standard routing
protocols, as the source sends the same message to all the
receivers and this is replicated only at the branch points,
where a copy is sent over each down-stream link. Appli-
cations that take advantage of such a feature include the
IP protocol, videoconferencing, corporate communications,
distance learning, distribution of software, stock quotes, and
news [9]. As the bandwidth used by a transmission is not
attributable to a single receiver, a natural arising issue is
that of finding a way to distribute the cost among all the
receivers in some fashion. However, in large-scale scenarios,
such as the Internet, there is no authority able to enforce
a centralized traffic management. In such situations, game
theory and especially the concepts of Nash equilibria [28]
are a suitable framework. If we allow as strategies for each
receiver t ∈ R the set Pt of the paths from s to t (briefly,
(s, t)-paths), a multicast solution is obtained as the out-
come of a |R|-player game in which receivers (players) can
sequentially modify their strategy by selfishly choosing a dif-
ferent (s, t)-path with the aim of minimizing their payment.
Such a payment is expressed in terms of a publicly known
cost sharing method, which specifies how to share the overall
cost of the transmission among the receivers belonging to R.
Namely, a solution is a path system P containing an (s, t)-
path for every receiver t ∈ R, and the global cost cost(P) to
be shared among all the receivers according to a cost sharing
method is obtained by summing up the cost of all the links
belonging to P . A path system P is a Nash equilibrium if
no player has an incentive to secede in favor of a different
solution.

The main algorithmic issues coming from this model in-
clude: proving the existence of a Nash equilibrium1, proving
the convergence to a Nash equilibrium from any initial con-
figuration of the players’ strategies, estimating the conver-
gence time (i.e. the number of moves necessary to reach
an equilibrium starting from an arbitrary configuration),

1Indeed, Nash proved that a randomized equilibrium always
exists, while we are interested in pure Nash equilibria.
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finding Nash equilibria having particular properties (for in-
stance, the one minimizing the global cost or the maximum
shared cost), and measuring the price of anarchy [23] and
price of stability [1], corresponding respectively to the worst
and the best case cost ratios between a Nash equilibrium
and the optimal social solution.

Several games [3, 4, 12, 13, 17, 24, 25, 31, 32, 34] have
been shown to possess pure Nash equilibria or to converge
to a pure Nash equilibrium independently from their start-
ing state, and their price of anarchy or stability has been
evaluated. An interesting work estimating the convergence
time to Nash equilibria is [11] and in [8] finding Nash equi-
libria having particular properties has been shown to be NP-
complete.

Often Nash equilibria may not exist or it may be hard
to compute or the time for convergence to Nash equilibria
may be extremely long, even if the players always choose a
best response move, i.e. a move providing them the small-
est possible shared cost. Thus, recent research effort [26]
concentrated in the evaluation of the speed of convergence
(or non-convergence) to an equilibrium in terms of covering
walks, where a covering walk consists of a sequence of best
response moves of the receivers, with each receiver appear-
ing at least once in each walk. As a special case, a 1-round
walk is defined as a covering walk such that each receiver
plays exactly one best response move and a k-round walk
with k ≥ 1 as the concatenation of k 1-round walks. An
important issue raised by the authors is then that of eval-
uating the loss of social performance in selfish evolutions
with a (polinomially) bounded number of walks, not neces-
sary terminating in a Nash equilibrium.

More precisely, Mirrokni and Vetta [26] addressed the
convergence to approximate solutions in basic-utility and
valid-utility games. They proved that starting from any
state, one-round of selfish behavior of players converges to
a 1/3-approximate solution in basic-utility games and 1/2r-
approximate solution in valid-utility games, where r is the
number of players. Goemans, Mirrokni and Vetta [18] stud-
ied a new equilibrium concept (i.e. sink equilibria) inspired
from convergence on best-response walks and proved a fast
convergence to approximate solutions on best response walks
in (weighted) congestion games. Other related papers stud-
ied the convergence for different classes of games such as
load balancing games [11], market sharing games [19], and
potential and cut games [7].

Related Work.
The multicast cost sharing problem has been largely inves-

tigated in the literature [2, 15, 16, 22, 29, 30]. Recent papers
considered a model of game-theoretical network design [1,
5, 6, 14] initially proposed and studied by Anshelevich et
al. [1], where selfish players select paths in a network so as
to minimize their payment, which is prescribed by Shapley
cost shares [33]. Namely, if all the players are identical, the
cost share incurred by a player for a link in its path is the
fixed cost of the link divided by the number of players us-
ing it. As remarked in [1], the resulting game belongs to
the widely investigated class of congestion games [20, 25,
27, 31, 35], first defined by Rosenthal [31], that the author
by means of potential function arguments showed to always
possess pure Nash equilibria.

Anshelevich et al. [1] also proved that the price stability is
O(log r), where r is the number of players, both for directed

and undirected networks, and provided a matching lower
bound for directed networks. For undirected networks no
non-trivial lower bound is known.

In [6] the weighted version of the game was analyzed, in
which each player ti has a weight wi ≥ 1 and its cost share of
the link is wi times the link cost, divided by the total weight
of the players using the link. They proved that in directed
networks a pure-strategy Nash equilibrium does not always
exist, and gave various results concerning α-approximate
Nash equilibria, that is states in which no player can de-
crease is payment by more than an α multiplicative factor.

In [5] the authors considered undirected networks and
proved that finding a Nash equilibrium that minimizes the
potential function is NP-hard. They also focused on the
price of anarchy of Nash equilibria resulting from best-
response walks from the empty initial state, that is with
players joining the game sequentially. For a game with r
players, they established an upper bound of O(

√
r log2 r) on

the price of anarchy, and a lower bound of Ω(log r/ log log r).
Such an equilibrium is reached after a 1-round walk and thus
provides an Ω(log r/ log log r) lower bound on the price of
anarchy reached after any k-round walk with k ≥ 1. For
1-round walks, a slightly better upper bound of O(

√
r log r)

was proven, while an increased Ω(log r) lower bound comes
directly from a construction given in [21], even if the
achieved path system after the walk is not an equilibrium.

Finally, in [14] different reasonable cost sharing methods
in undirected networks were considered including the Shap-
ley and egalitarian ones, and their performances have been
investigates versus two possible global criteria: the overall
cost of the used links and the maximum shared cost of the
receivers. Among the various results, the methods achiev-
ing a price of anarchy comparable to the one at equilibrium
already after one round have been determined by providing
corresponding upper and lower bounds after 1-round walks.
In particular, a price of anarchy of Θ(r2) has been proved
for 1-round walks under the Shapley method, that can be
directly extended also to directed networks.

Other results explicitly taking into account the speed of
convergence of the price of anarchy after a fixed number
of rounds concerned basic valid-utility games [26], poten-
tial games [7], load balancing games [11], market sharing
games [19], and potential and cut games [7].

To the best of our knowledge, no result explicitly con-
cerned the determination of the price of anarchy after any
fixed number of rounds k > 1, and for any k ≥ 1 when
the underlying communication network is directed, even if
for k = 1 the undirected results in [14] can be extended
directly.

Our Contribution.
In this paper we first consider the multicast game in di-

rected networks induced by the Shapley Value cost sharing
method [33], which equally distributes the cost of each link
among all the down-stream receivers.

More precisely, we evaluate the price of anarchy after a
limited number of best response moves, that is after k-round
walks for fixed values of k ≥ 1. Namely, assuming that the
initial set of connecting paths can be arbitrary, we show
an O(r

√
r) upper bound for 2-round walks, and a match-

ing lower bound that we also extend to Ω(r k
√

r) for k-round
walks with k ≥ 2. Similarly, exactly matching upper and
lower bounds equal to r are determined for any number of
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rounds when starting from the empty state in which no com-
munication path has been selected.

We then prove similar results also for three other natu-
ral cost sharing methods proposed in the literature, which
distribute the cost as follows: (i) in an egalitarian way, that
is by equally distributing the overall cost among all the re-
ceivers; (ii) in a path-proportional way, that is by distributing
the cost of each link among its down-streaming receivers pro-
portionally to the overall cost their chosen path requires; (iii)
in an egalitarian-path-proportional way, that is by distribut-
ing the overall transmission cost among all the receivers pro-
portionally to the cost of their chosen path.

Finally, many results for all the four cost sharing meth-
ods are also extended to the undirected case in which the
communication links are bidirectional.

The paper is organized as follows. In the next section we
present some basic definitions and notation. In Section 3
we present our results on the Shapley cost sharing method
and in Section 4 on the three remaining ones. In Section 5
we extend our results to undirected netwoks and finally, in
Section 6, we give some conclusive remarks and discuss some
open questions.

Due to space limitations, all the figures are in the ap-
pendix.

2. MODEL
We model our communication network as a directed graph

G(V, E, c) in which V = {v1, v2, . . . , vn} is a set of intercom-
municating nodes, E ⊆ V ×V is a set of m links between the
nodes and c : E �→ R

+ is a function associating to each link
(vi, vj) a transmission cost, that is the cost for exchanging
messages between nodes vi and vj . Given a subset of links
F ⊆ E, we denote by c(F ) the sum of the costs of the links
in F , i.e., c(F ) =

∑
e∈F c(e). For the sake of simplicity we

identify any path p in G with the set of its traversed links,
with c(p) =

∑
e∈p c(e) being its cost.

We consider the scenario where there is a special node s ∈
V called source, and a set of r nodes R = {t1, t2, . . . , tr} ⊆
V − {s} called receivers (also called terminals or players)
representing the set of users interested in receiving the trans-
mission from the source s. The goal of each receiver is to
choose the path from the source that, given the choices of
the other receivers, minimizes its payment, determined ac-
cording to a particular cost sharing method.

More formally, we refer to the set of all the possible
paths from the source to ti as the strategy set of a receiver
ti, denoted by Pi, and to the path pi ∈ Pi chosen by ti

as the strategy of ti. We denote by mi a path of mini-
mum cost in Pi, that is such that c(mi) = minp∈Pi c(p),
and with m∗ a path of maximum minimum cost, i.e., hav-
ing c(m∗) = maxti∈R c(mi). At any time the combina-
tion of all the receivers’ strategies yields a path system
P = (p1, p2, . . . , pr) ∈ S , where S is the set of all the
possible path systems, i.e., S = P1 × P2 × . . . × P2. We let
P⊕p′

i = (p1, . . . , pi−1, p
′
i, pi+1, . . . , pr), that is, the path sys-

tem obtained from P if receiver i changes its strategy from
pi to p′

i, and denote by cost(P) the overall transmission cost
of the path system P , which is obtained by summing up the
cost of all the links belonging to P , i.e., cost(P) = c(F ),
where F =

⋃r
i=1 pi.

Given a path system P , the payment attributed to ti is
determined according to a given cost sharing method, that

is a function M which distributes among all the receivers
the total cost cost(P) in such a way that

∑
ti∈R M(P , i) =

cost(P), where M(P , i) is the payment of the receiver ti.
We consider the following four natural cost sharing meth-

ods:

• M1 (Shapley [33]) equally distributes the cost of each
link among all the receivers using it, i.e., M1(P , i) =∑

e∈pi
Me

1(P , i), where Me
1(P , i) is the payment of

terminal ti for the link e, defined as Me
1(P , i) = c(e)

ne(P)
,

with ne(P) = |{ti ∈ R | e ∈ pi}| being the number of
receivers using link e for their transmission.

• M2 (egalitarian [10]) equally distributes the overall
cost cost(P) among all the receivers, i.e., M2(P , i) =
cost(P)

|R| .

• M3 (path-proportional) distributes the cost of each
link among all the receivers using it proportionally
to the cost of their chosen path, i.e., M3(P , i) =∑

e∈pi
Me

3(P , i), where Me
3(P , i) is the payment of

terminal ti for the link e, defined as Me
3(P , i) =

c(e) c(pi)∑
i′:e∈p

i′
c(pi′ )

.

• M4 (egalitarian-path-proportional) distributes the
overall cost cost(P) among all the receivers proportion-
ally to the cost of their chosen path, i.e., M4(P , i) =

cost(P) c(pi)∑
t
i′ ∈R c(pi′ )

.

A Nash equilibrium is a path system such that no re-
ceiver can reduce its payment by changing its strategy given
the strategies of the other receivers. More formally, a Nash
equilibrium is a path system P = (p1, p2, . . . , pr) such that
∀ti ∈ R and path p′

i ∈ Pi, it holds M(P , i) ≤ M(P ⊕ p′
i, i).

Denoting with N the set of all the possible Nash equilib-
ria, the price of anarchy (PoA) is defined as the worst
case ratio among the Nash versus optimal performance,

i.e., PoA(G, R,M) =
maxP∈N cost(P)

OPT (G,R)
, where OPT (G, R) =

minP∈S cost(P).
In the following, when clear from the context, we will

denote PoA(G, R,M) and OPT (G, R) simply as PoA and
OPT , respectively.

We assume that the acting receiver always chooses the
strategy that minimizes its payment, given the strategy of
the other receivers, or in other words that the strategy of
the current receiver is a best response move to the other
receivers’ strategies. When the receiver cannot (strictly)
decrease its payment seceding in favor of better path, it is
assumed that it plays a best response move consisting in
maintaining its current strategy.

In order to model the selfish behavior of the receivers, let
us introduce the notion of state graph.

Definition 1. A state graph G(M) is a directed graph hav-
ing a node for any possible path system P = (p1, p2, . . . , pr)
(also called state) and an arc (P ,P ′) with label i, where
P ′ = P ⊕ p′

i and p′
i ∈ Pi, iff both these conditions are met

: (i) M(P ′, i) ≤ M(P ⊕ p′′
i , i) for every p′′

i ∈ Pi; (ii) if
P �= P ′, M(P ′, i) < M(P , i).

Notice that the graph may contain loops and there is an
arc (P ,P ′) labeled i if and only if ti, starting from P , can
play a best response move resulting in the path system P ′.
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Any path in the state graph is called a best response walk.
Given a best response walk starting from an arbitrary state,
we are interested in the cost of the last state of the walk.
Notice that if we do not allow every player to make a best
response on a walk, then we cannot bound the cost of the
final state with respect to the optimal solution. This follows
from the fact that the actions of a single player may be very
important for producing solutions of high social value. Mo-
tivated by this simple observation, the following definitions
capture the intuitive notion of a fair sequence of moves [26]:

1-round walk: given an arbitrary ordering of all receivers
t1, t2, . . . , tr, it is a walk of length r in the state graph
in which the arcs are labelled in the order 1, 2, . . . , r.

k-round walk: a walk in the state graph that can be split
in k disjoint 1-round walks.

Extending the classical definition, we let PoAk(G, R,M)
or simply PoAk be the price of anarchy yielded by k-round
walks, that is the worst case ratio among a path system
corresponding to the last state of a k-round walk and OPT .

We will consider the following two scenarios:

1. all walks are assumed to start from an arbitrary initial
state;

2. all walks are assumed to start from the “empty” state
in which no receiver has still selected its communica-
tion path from the source; in order to include such a
situation in the above framework we include an addi-
tional special empty path ∅ in the strategies sets Pi,
assuming that the only possible best response moves
from ∅ are the ones selecting a path of minimum pay-
ment actually connecting the source to the receiver;
all the notation and definitions are trivially extended
accordingly; in order to distinguish from the previ-
ous case, the price of anarchy will be denoted as
PoA − Emptyk(G, R,M) or simply PoA − Emptyk.

3. RESULTS ON THE SHAPLEY METHOD
In this section we show our results concerning the Shap-

ley cost sharing method M1, which is the fundamental and
mostly considered one in the literature under this setting.
More precisely, we provide an upper for 2-round walk and a
matching lower bound that we extend also to k-round walks,
assuming that walks can start from arbitrary initial state.
We then provide exactly matching bounds on the price of
anarchy also when starting from the empty configuration.

Let us first consider the case of arbitrary initial states.
We consider only k-round walks for k ≥ 2, as for k = 1
matching lower and upper bounds proportional to r2 can be
inferred directly from the results in [14].

The following lemma will be useful in the sequel.

Lemma 1. Given any two sequences of k > 0 positive
real numbers a1, a2, . . . , ak and b1, b2, . . . , bk, the following
inequality holds:

k∑
i=1

ai

bi
≥
(∑k

i=1 ai

)2

∑k
i=1 aibi

.

Proof. The lemma follows by observing that

k∑
i=1

ai

bi

k∑
i=1

aibi =

k∑
i=1

ai
2 +

k∑
i=0

∑
j>i

aiaj

(
bi

bj
+

bj

bi

)
≥

≥
k∑

i=1

ai
2 + 2

k∑
i=0

∑
j>i

aiaj =

(
k∑

i=1

ai

)2

,

since ( a
b

+ b
a
) ≥ 2 for any pair of positive real numbers

a,b.

The following lemma states a general property of the path
systems obtained during a 1-round walk starting from an
arbitrary state. Informally, assuming the receivers listed in
order of move, that is that ti moves at the i-th step, denoted
as p̃r

i the set of new edges added by ti to the ones used by
t1, . . . , ti−1, if the cost of p̃r

i is high, then its edges must be
shared by many of the not yet moving receivers.

Lemma 2. Let W be a 1-round walk in G(M1) starting
from an arbitrary state P0 = (p0

1, p
0
2, . . . , p

0
r), and let pr

i be
the path chosen by the receiver ti in the intermediate state
Pi−1 = (pr

1, p
r
2, . . . , p

r
i−1, p

0
i , . . . , p

0
r) of W, resulting in the

state Pi = Pi−1 ⊕ pr
i . Then

∑
j>i c(p0

j ∩ p̃r
i ) ≥ (αi −

1)αic(m
∗), where p̃r

i =
⋃i

j=1 pr
j \⋃i−1

j=1 pr
j and αi =

c(p̃r
i )

c(m∗)
.

Proof. Since the acting receiver ti performs a best re-
sponse move, it chooses a path pr

i such that its payment is
less or equal than c(m∗), i.e., c(m∗) ≥ M1(Pi, i). By the
definition of M1 and since p̃r

i ⊆ pr
i , we get

c(m∗) ≥
∑
e∈pr

i

c(e)

ne(Pi)
≥
∑
e∈p̃r

i

c(e)

ne(Pi)
,

and by the definition of αi,

c(p̃r
i ) ≥ αi

∑
e∈p̃r

i

c(e)

ne(Pi)
.

By Lemma 1,
∑

e∈p̃r
i

c(e)

ne(Pi)
≥ c(p̃r

i )2∑
e∈p̃r

i
c(e)ne(Pi)

, so that by

exploiting the previous inequality,∑
e∈p̃r

i

c(e)ne(Pi) ≥ αic(p̃
r
i ) .

Clearly, since every edge e ∈ p̃r
i is included in none of

the paths pr
1, . . . , p

r
i−1, the quantity ne(Pi) is the number

of receivers tj among ti+1, . . . , tr using e, that is such that
e ∈ p0

j , plus 1 (due to the fact that e ∈ p̃r
i ). Therefore,∑

e∈p̃r
i

c(e)ne(Pi) = c(p̃r
i ) +

∑
j>i c(p0

j ∩ p̃r
i ), so that

∑
j>i

c(p0
j ∩ p̃r

i ) ≥ (αi − 1)c(p̃r
i ) .

The lemma follows by observing that c(p̃r
i ) =

αic(m
∗).

Exploiting the above lemma, we now show that, if the
initial state of a 1-round walk is not completely arbitrary
but for instance yielded by a previous 1-round walk, then
the cost of the final path system can be suitably bounded.
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Lemma 3. Let W be a 1-round walk in G(M1) starting
from a state P0 = (p0

1, p
0
2, . . . , p

0
r) such that c(p0

i ) ≤ rc(m∗)
for every receiver ti. Moreover, let Pr = (pr

1, p
r
2, . . . , p

r
r) be

the last state in W. Then cost(Pr)
OPT

= O(r
√

r).

Proof. For every i, 1 ≤ i ≤ r, assuming that receivers
move according to the order t1 . . . , tr, let p̃r

i =
⋃i

j=1 pr
j \⋃i−1

j=1 pr
j and αi =

c(p̃r
i )

c(m∗)
. Then, since p̃r

1, . . . , p̃
r
r partition

the edges of Pr,

cost(Pr) =
r∑

i=1

c(p̃r
i ) = c(m∗)

r∑
i=1

αi . (1)

Moreover, as it can be immediately checked
∑r

i=1 c(p0
i ) ≥∑r

i=1

∑
j>i c(p0

j ∩ p̃r
i ), and since rc(m∗) ≥ c(p0

i ) for every

receiver ti, r2c(m∗) ≥∑r
i=1 c(p0

i ). Therefore, by Lemma 2,
it follows that

r2 ≥
r∑

i=1

(α2
i − αi) . (2)

Since
∑k

i=1 a2
i ≥ 1

k

(∑k
i=1 ai

)2

for any sequence of k > 0

real numbers a1, a2, . . . , ak, by exploiting inequality 2, r2 ≥
1
r

(∑r
i=1 αi

)2 −∑r
i=1 αi, from which it immediately follows

that

r∑
i=1

αi ≤ r
(√

(r + 1/4) + 1/2
)

. (3)

The lemma then follows from the inequalities 1 and 3 by
observing that c(m∗) ≤ OPT .

As a direct consequence of Lemma 3 the following theorem
holds.

Theorem 1. PoA2 = O(r
√

r).

Proof. The claim follows directly from Lemma 3 by
observing that after any 1-round walk the path system
P0 = (p0

1, p
0
2, . . . , p

0
r) from which the second 1-round walk

starts is such that c(p0
i ) ≤ rc(m∗) for every receiver ti. In

fact, p0
i has been chosen by ti during the first 1-round walk

and every path longer than rc(m∗) would result in a pay-
ment strictly greater than c(m∗), regardless of the partic-
ular state. Therefore, it is never chosen by a receiver, as
it can always select the strategy consisting of the minimum
cost connection, which requires a payment at most equal to
c(m∗).

We now prove a matching lower bound.

Theorem 2. PoA2 = Ω(r
√

r).

Proof. We build a network with an arbitrarily high num-
ber of receivers r in which there exists a 2-round walk leading
to a state of social cost Ω(r

√
r), while OPT = O(1).

Assuming that r = j2 for some integer j > 0 and that

ε is a suitably small number such that ε ≤
(
1 − i√

r

)
, the

network is constructed as follows (see Fig. 1). The source
node s is connected to one node u1 with a link of cost ε
and to

√
r − 1 other nodes u2, . . . , u√

r with links of costs 1.
Such nodes are said of the first level. Each ui, 1 ≤ i ≤ √

r, is

connected to one node ui,1 with a link of cost ε and to
√

r−1
other nodes ui,2, . . . , ui,

√
r with links of costs 2. Such nodes

are said of the second level. Every ui,j has a link of cost√
r + 1 − j toward receiver t(i−1)

√
r+j . In addition, arcs of

cost ε connect every receiver t(i−1)
√

r+j with j <
√

r to node

ui,j+1 and every ti
√

r with i <
√

r to ui+1,1. Finally, we add
two other nodes q1 and q2 connected in such a way that q1

has an incoming link of cost 4 from s and an outgoing link of
cost ε to each receiver, while q2 has an incoming link of cost ε
from s and an outgoing link of cost 4 to each receiver (again
see Fig. 1, where arcs without explicit costs are weighted ε).

It’s easy to see that the optimal solution is the path sys-
tem obtained when each receiver chooses the unique path
connecting s to it through node q1. Hence we obtain
OPT = 4 + rε.

Let us analyze the evolution of the game starting from
the configuration in which all the receivers t(i−1)

√
r+j are

reached from the source by means of the unique path going
through u1,1 (and passing through all the previous receivers
t(i′−1)

√
r+j′ with i′ ≤ i and j′ ≤ j). In this configuration

the links used for the transmission are (s, u1), (u1, u1,1) and
the ones between the second level and the receivers.

We assume that the receivers play in the order t1, t2, . . . , tr

during both the two rounds. Each receiver t(i−1)
√

r+j can
select a path from 3 possible sets:

- S1
i containing all the paths going through ui,1;

- S2
i containing all the paths going through some node

ui,j with 2 ≤ j ≤ √
r and not through ui,1;

- S3
i containing the paths going through q1 or q2.

Notice that the set S2
i is empty for receiver t(i−1)

√
r+1,

which is adjacent to ui,1.
Consider the point during the first 1-round walk in which

all the receivers t(i−1)
√

r+j must do a best-response move,
and assume that if i > 1 all the receivers t(i′−1)

√
r+j′ with

i′ < i have selected a communication path in S1
i′ .

Since all the receivers t(i′−1)
√

r+j′ with
i′ > i have not moved yet and thus are
using the initial path from u1,1, the path
〈s, ui, ui,1, t(i−1)

√
r+1, ui,2, t(i−1)

√
r+2, . . . , ui,j , t(i−1)

√
r+j〉

for receiver t(i−1)
√

r+j whose subpath
〈ui,1, t(i−1)

√
r+1, ui,2, t(i−1)

√
r+2, . . . , ui,j , t(i−1)

√
r+j〉 of

cost
(√

r(
√

r+1)
2

+ ε(
√

r − 1)
)

is used by all the
√

r(
√

r − i)

receivers t(i′−1)
√

r+j′ with i′ > i requires a payment less
than

(1 + ε) +

(√
r(
√

r + 1)

2
+ ε(

√
r − 1)

)
1√

r(
√

r − i)
<

<

√
r(
√

r + 1)

2(
√

r − i)
+ 2 < 3

as ε ≤
(
1 − i√

r

)
and i ≤

√
r−1
2

.

Since all the paths in S2
i and S3

i require a payment at
least equal to 3, t(i−1)

√
r+j and thus all the t(i−1)

√
r+j′ with

1 ≤ j′ ≤ √
r choose a path in S1

i .
Therefore, at the end of the 1-round walk all the receivers

t(i−1)
√

r+j with i ≤
√

r−1
2

have selected a path in S1
i .
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Assume that the remaining receivers t(i−1)
√

r+j with i >√
r−1
2

never choose a path stepping through q1 (the first
among them such that its best response moves include the
two equivalent paths stepping through q1 and q2, respec-
tively, will choose q2, and so the successive ones).

During the second 1-round walk, again consider the point

in which the receivers t(i−1)
√

r+j with some fixed i ≤
√

r−1
2

must do a best-response move, and assume that if i > 1 all
the receivers t(i′−1)

√
r+j′ with i′ < i have selected a commu-

nication path not in S3
i′ .

Since when a particular t(i−1)
√

r+j is moving all the
√

r−j
receivers t(i−1)

√
r+j′ with j′ > j have not moved yet and

thus are using the link (ui,j , t(i−1)
√

r+j) of cost
√

r + 1 − j,
the path 〈s, ui, ui,j , t(i−1)

√
r+j〉 requires a payment at most

1 + 2 +
√

r+1−j√
r+1−j

= 4, while every path in S3
i more than

4. Therefore, t(i−1)
√

r+j does not choose a path in S3
i , and

thus at the end of the second 1-round walk all the receivers
t(i−1)

√
r+j with i ≤

√
r−1
2

have selected a path in S1
i or S2

i .
Since each such a path contains link (ui,j , t(i−1)

√
r+j), the

final path system has cost at least
√

r−1
2

∑√
r

j=1(
√

r+1−j) =
√

r−1
2

√
r(

√
r+1)

2
= (r−1)

√
r

4
, hence the theorem.
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Figure 1: The directed lower bound network for 2-
round walks from arbitrary state under the Shapley
method.

The above lower bound can be extended to any number
k ≥ 2 of rounds.

Theorem 3. PoAk = Ω(r k
√

r) for every k ≥ 2.

Let us now focus on walks starting from the empty state.
Under such an assumption, the following theorem holds.

Theorem 4. PoA − Emptyk = r for every k ≥ 1.

Proof. Let us first show that PoA − Emptyk ≥ r. To
this aim, consider the network depicted in Figure 2, where ε
is a suitably small number. Starting from the empty state,
every receiver ti, 1 ≤ i ≤ r, chooses the path consisting of
the unique link connecting it to the source. Thus at the end
of the 1-round walk the final path system will cost r, while
the optimal solution is given by all the paths 〈s, q, ti〉, that
yield an overall cost equal to 1 + εr. The lower bound thus
follows from the arbitrariness of ε.

In order to show that PoA − Emptyk ≤ r, consider the

classical potential function Φ(P) =
∑

e∈E

∑ne(P)
i=1

c(e)
i

as-
sociated to every path system P . Then, since during the
first round every moving receiver ti chooses a strategy of
payment at most c(mi) ≤ OPT (the cost of a minimum
connecting path), that is it increases the potential function
at most of OPT , if P is the path system achieved at the
end of the round, it results Φ(P) ≤ r. The theorem fol-
lows by observing that the potential function can only de-
crease at every best response move after the first round,
so that every path system P ′ reached after P is such that
cost(P ′) ≤ Φ(P ′) ≤ Φ(P) ≤ r.

�
q

�
s

t1 t2 tr

1 1 1

ε ε ε

1

Figure 2: The directed lower bound network from
the empty state for Shapley and the other methods.

4. RESULTS ON THE OTHER COST
SHARING METHODS

We now focus on the remaining cost sharing methods.
Let us first consider the case in which walks can start from

an arbitrary initial state.
For the egalitarian cost sharing method we first observe

that the price of anarchy is unbounded after any fixed num-
ber k ≥ 1 steps. In fact, for every h suitably large, there
exists a Nash equilibrium having price of anarchy at least
equal to h [14].

Unfortunately, the same negative result holds also for the
path-proportional method.

Theorem 5. PoAk(G, R,M3) ≥ h for every h > 0.

Proof. For every fixed k, we show that there exists a
network in which the cost of the path system obtained after
a k-round walk starting from an arbitrary initial state in
G(M3) is greater than h for every h > 0.

Consider the network depicted in Figure 3 with r = k + 1
receivers, where M is a suitably large number. Assuming
that the initial communication path of each ti, 1 ≤ i ≤ r, is
〈s, t1, . . . , ti〉 and that in every 1-round walk receivers move
according to the order t1, t2, . . . , tr, during the first 1-round
walk t1, . . . , tr−1 maintain the currently selected paths. In
fact, the payment of each receiver ti, 1 ≤ i ≤ r − 1, is

at most

(∑ i
j=1 M2j−1

)2

(∑
i
j=1 M2j−1

)
+M2i+1−1

= Θ( 1
M

) (the value that ti

would pay for his current path if shared only with ti+1),
which, for M suitably large, is strictly less than the one
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required by the only possible alternative path consisting of
the single link (s, ti). Only tr selects the single link path
(s, tr) of cost 1. In fact, in the initial communication path,
it would pay for the total cost of the link (tr, tr−1).

Continuing in this fashion, by completely analogous con-
siderations, it is easy to see that during the i-th 1-round
walk, t1, . . . , tr−i maintain their current path, tr−i+1 selects
the link (s, tr−i+1), and tr−i+2, . . . , tr maintain their single
link path from the source.

Therefore, at the end of the k-th 1-round walk all the re-
ceivers but t1 have changed the initial communication path
to the single link from the root of cost 1, while t1 still main-
tains the initial link (s, t1) of cost M , resulting in a path
system of total cost r − 1 + M . The optimal path system
is obtained by selecting the link (s, t1) of cost 1 also for t1
and has cost r. The theorem thus follows for M suitably
large.

� s
t1t2t3tr−1tr

MM3M7M2r−1
1

1

1

1

1

Figure 3: The directed path-proportional lower
bound network from arbitrary state.

Finally, for the egalitarian-path-proportional method, in
[14] it has been shown that the price of anarchy is O(r)
after every 1-round walk starting from an arbitrary initial
state, so the same holds after any k-round walk with k ≥ 1.
Such a result is asymptotically optimal, as there exist Nash
equilibria with price of anarchy r.

For all the above three cost sharing methods, the following
theorem holds for walks starting from the empty state.

Theorem 6. PoA−Emptyk(G, R,Mj) = Θ(r) for every
k ≥ 1, 2 ≤ j ≤ 4.

Proof. The lower bound proof exploits the same lower
bound network of Theorem 4 and is completely analogous.

In order to show that PoA − Emptyk(G, R,M2) = O(r)
and PoA−Emptyk(G, R,M3) = O(r), it suffices to observe
that at the every round the moving receivers can increase
the cost of the initial path system at most of rOPT . In fact,
every time a receiver ti moves, the set of new edges it adds to
the path system cannot cost more than c(mi) ≤ OPT (the
cost of a minimum connecting path), thus giving in total
an additional cost of at most rOPT for every single round.
For the egalitarian method a refined exactly matching up-
per bound PoA − Emptyk(G, R,M2) ≤ r directly follows
by observing that rOPT is an upper bound on the cost of
the path system achieved after the first round and that the
successive best response moves cannot increase the cost of
the induced path system.

Finally, for the egalitarian-path-proportional method, as
already mentioned above, from [14] it follows that the price
of anarchy is O(r) after any k-round walk with k ≥ 1 even
starting from an initial arbitrary state.

5. THE UNDIRECTED CASE
In this section we briefly discuss the extension of our result

to the case in which the underlying communication network
is undirected.

If we not claim it explicitly, all our results from arbi-
trary initial state can be extended to the undirected case,
with the exception of the lower bounds for the Shapley
method stated in Theorems 2 and 3. However, in this case
PoAk(G, R,M1) ≥ r for every k ≥ 1 directly follows by ob-
serving that the there exists a Nash equilibrium with price
of anarchy r.

On the contrary, many differences hold when starting
from empty state. In fact, in this case the determina-
tion of the price of anarchy for the Shapley method is an
important open question with a significant gap between
the known lower and the upper bound. More precisely, a
Ω(log r/ log log r) lower bound for any number of rounds
comes directly from the results in [5], where an equilib-
rium with such a price of anarchy is reached in one round.
In [5] also an upper bound for any number of rounds of
O(

√
r log2 r) has been proven. For 1-round walks, a slightly

better upper bound of O(
√

r log r) again has been shown
in [5], while an increased Ω(log r) lower bound comes di-
rectly from a construction given in [21].

Concerning the egalitarian method, PoA −
Empty1(G, R,M2) = Θ(log r) derives directly by ob-
serving that a 1-round walk starting from the empty state
can be seen as the execution of the greedy online Steiner
tree algorithm of [21], which has competitive ratio Θ(log r).

The path-proportional method seems also very difficult,
as it can be seen as a refinement of the Shapley one.
In particular, while again a Ω(log r) lower bound for 1-
round walks can be derived from the construction pro-
vided in [21], we can prove as in the directed case that
PoA − Emptyk(G, R,M3) = O(r).

Finally, for the egalitarian-path-proportional method,
while again PoA − Emptyk(G, R,M4) = O(r) for every
k ≥ 1 can be proven as in directed case, the following lower
bound holds.

Theorem 7. PoA − Empty1(G, R,M4) = Ω(r/ log r).

Proof. We show that there exists a network in which the
cost of the path system obtained after a 1-round walk start-
ing from the empty state is Ω(r), while OPT = O(log r).

To this aim consider the network depicted in Fig. 4 and
assume that receivers move according to the order t1, . . . , tr.
Moreover in such a network, since all the communication
paths for receiver t1 require the same payment equal to 1,
assume that t1 chooses the communication path consisting
of the single link (s, t1) of cost 1.

Then, receiver t2 selects the path consisting of the single
link (s, t2) of cost 1/2. In fact, this requires payment 1/2,
while the cheapest alternative possible path, that is the one
stepping through t1, has payment 9/10.

In general, assuming that all the previous receivers have
chosen as communication path the single link from the
source, also ti, 2 < i ≤ r, would choose link (s, ti). In
fact, denoted as Ci−1 = 1 + 1

2
+ . . . + (1 − 1

i−1
) the total

cost of the links chosen by receivers t1, . . . , ti−1, it requires

a payment equal to
(Ci−1+1− 1

i )(1− 1
i )

(Ci−1+1− 1
i )

= 1 − 1
i
, while the

cheapest alternative path, that is the one stepping through
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t1, has payment equal to
(Ci−1+ 1

i )(1+
1
i )

(Ci−1+1+ 1
i
)

, that as it can be

easily checked is strictly greater than 1 − 1
i

for every i ≥ 2.
The theorem then follows by observing that the final path

system will cost Cr = 1 + 1
2

+ . . . + (1 − 1
r
) ≥ r − ln(r) −

1, while the optimal path system would be induced by the
communication paths (s, t1) for t1 and 〈s, t1, ti〉 for every ti,
2 ≤ i ≤ r, whose total cost is 1 + 1

2
+ . . . + 1

r
≤ ln r + 1.

�s t11

t2

t3

tr

1/2 1/2

2/3 1/3

1 − 1/r 1/r

Figure 4: The undirected egalitarian-path-
proportional lower bound network from the empty
state.

6. CONCLUSION AND OPEN QUESTIONS
We have investigated the price of anarchy after a limited

number of steps reached according to four natural cost shar-
ing methods.

The rational of our investigation is that, starting from ar-
bitrary initial states, only the egalitarian-path-proportional
method is able to reach a price of anarchy comparable to
the one at equilibria after a 1-round walk, while for the
remaining methods either this is not possible even after k-
round walks for any fixed k ≥ 1 or the price of anarchy is
unbounded also at equilibrium.

Particularly interesting is the case in which walks start
from the empty state. In fact, the cost sharing methods
not having Nash equilibria or bounded price of anarchy at
equilibrium reach a price of anarchy proportional to r after
a single 1-round walk.

Many questions are left open.
First of all, there is the reduction of the gap between the

lower and upper bounds in many considered cases. In this
setting, for the Shapley method particularly relevant would
be the determination of matching bounds in the directed
case for k > 2 rounds. While the O(r

√
r) upper bound

holds also for every k > 2, we conjecture that a better bound
holds, but its determination appears untrivial. In fact, the
proof should deeply exploit the combinatorial structure of
the path systems reached after two rounds, as the constraint
on the cost of the connecting paths and of their induced path
system are not sufficient. This stems from the fact that
even at Nash equilibrium such paths can cost r times the
optimum social cost, while exploiting the fact that the path
system after the second round has a cost proportional to r

√
r

times the optimum cannot lead to better results. In fact, in

our Ω(r
√

r) lower bound on the price of anarchy after two
rounds, the second round started from a path system already
of cost proportional to r

√
r times the optimum, so in such a

case the second round has not asymptotically decreased the
path system cost. In the undirected case the closure of the
Ω(log r)÷O(

√
r log r) gap between the lower and the upper

bound after one round starting from the empty state is one
of the purposes of many researchers.

Moreover, with respect to the other cost sharing methods,
in the undirected case it would be worth to determine the
exact price of anarchy after k > 1 rounds starting from
the empty state for the egalitarian method and after k ≥ 1
rounds from empty state for the other ones.

Finally, another worth investigating issue would be that
of bounding the price of stability after any limited number
of rounds.
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