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ABSTRACT 

Multimodal interaction in everyday life seems so effortless. 
However, a closer look reveals that such interaction is indeed 
complex and comprises multiple levels of coordination, from 
high-level linguistic exchanges to low-level couplings of 
momentary bodily movements both within an agent and across 
multiple interacting agents. A better understanding of how these 
multimodal behaviors are coordinated can provide insightful 
principles to guide the development of intelligent multimodal 
interfaces. In light of this, we propose and implement a research 
framework in which human participants interact with a virtual 
agent in a virtual environment. Our platform allows the virtual 
agent to keep track of the user’s gaze and hand movements in real 
time, and adjust his own behaviors accordingly. An experiment is 
designed and conducted to investigate adaptive user behaviors in 
a human-agent joint attention task. Multimodal data streams are 
collected in the study including speech, eye gaze, hand and head 
movements from both the human user and the virtual agent, 
which are then analyzed to discover various behavioral patterns. 
Those patterns show that human participants are highly sensitive 
to momentary multimodal behaviors generated by the virtual 
agent and they rapidly adapt their behaviors accordingly. Our 
results suggest the importance of studying and understanding 
real-time adaptive behaviors in human-computer multimodal 
interactions. 

Categories and Subject Descriptors 
H.1.2 [User/Machine Systems]: Human factors and Human 
information processing 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Embodied agent, Virtual human, Multimodal interaction, 
Visualization. 

1. INTRODUCTION 
Human perceptual and cognitive systems are by nature 
multimodal. We make contact with the physical world through a 
vast array of sensory systems -- vision, audition, touch, smell, to 
name a few. Moreover, our sensorimotor experiences are closely 
coupled. What we will see next depends on how we currently 
shift our gaze (and position of the whole body) in the physical 

environment and what current actions we may take in this 
environment.  Meanwhile, what action we will take next also 
depends on what we see at the present moment, which provides 
sensory information for our motor control system. This 
multimodal perspective can also be easily extended into the case 
of human-human communication and social interaction. The body 
and its momentary actions are crucial to social collaboration by 
serving as outward signs, observable by social partners, and are 
tightly tied to our own internal cognitive state. 
How can we build an intelligent agent (a physical robot or a 
virtual avatar) that can interact with human users to emulate real-
time smooth fluidity of collaborative human behaviors as 
everyday conversation or joint action? This challenge requires 
intelligent agents to meet with the human user’s expectations and 
sensitivities to the real-time behaviors generated by virtual agents 
and perceive them in the similar way just as the user interacts 
with other humans. In light of this, the goal of the present study is 
to investigate how human participants adjust their multimodal 
behaviors in real time based on their perception of real-time 
behaviors from the other interacting agent. Toward this goal, we 
develop a multimodal human-avatar interaction platform and 
conduct an empirical study using this new platform to collect 
fine-grained multimodal behavioral data. Next we analyze such 
data to discover interesting patterns which can then be used to 
shed lights on fundamental principles in multimodal human-agent 
interactions. After reviewing related work, the present paper will 
first describe our multimodal interaction platform, followed by a 
description of our experimental design and setup. We will then 
present multimodal patterns discovered from human-avatar 
interaction and further discuss the insights gained from this 
multimodal data analysis that can be used to guide the design of 
better multimodal interfaces in human-computer interaction.  

2. Related Work 
A rich literature on multimodal human-computer interactions 
already exists, researchers and scientists have taken various 
approaches  including recording and analyzing user behaviors in 
different natural and semi-natural situations, and Wizard of Oz 
studies (see e.g., [1,2]). Lately there have been several systems 
that tried to improve the smoothness of human-computer 
interactions through predicting the right time for feedbacks. Ward 
and Tsukahara [5], describe a pause-duration model based on the 
best fit to speech acts. Gratch et al. [6] describe a recent 
experiment on multimodal, yet purely nonverbal agent feedback 
and its effects on the speaker; their work analyzes the speaker’s 
head moves and body postures captured through a camera, and 
implements a pitch cue algorithm to determine the right moment 
for giving feedbacks by head nods and gaze.   

Other representative efforts include studying real-time behaviors 
in human-computer interaction to get insights into how to build 
better interfaces. In [7], an avatar generated reactive gaze 
behavior that is based on the user’s current state in an interview 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICMI-MLMI’10, November 8–12, 2010, Beijing, China. 
Copyright 2010 ACM 978-1-4503-0414-6/10/…$10.00. 
 



scenario. In [8], sequential probabilistic models were used to 
select multimodal features from a speaker (e.g. prosody, gaze and 
spoken words) to predict visual back-channel cues (e.g. head 
nods). [3] built an engagement estimation algorithm based on 
analyzing gaze transition patterns from users. [4] developed a 
real-time gaze model for embodied conversational agents that 
generated spontaneous gaze movements based on the agent’s 
internal state of cognitive processing. There has also been 
growing interest in more micro-analytic studies of real-time 
multimodal behavioral data in both human-human 
communication and human-agent interface (see, e.g., [14, 15]). 

All those studies point to a critical issue to design better agents 
that can interact with participants in human-like ways, that is, 
they need to not only generate appropriate behaviors but also 
execute those actions at the right moment and with the right 
timing. For example, head nodding at the right moment may 
reflect a listener’s understanding as a back-channel feedback 
signal. In contrast, nodding at the unexpected moment may cause 
the speaker’s confusion in reading/accessing the listener’s 
attentional state. Similarly, a nodding action with abnormal 
timing may cause interruptions in communication. Although there 
is no doubt about the importance of this direction, how to study 
real-time adaptive behaviors remains a challenge and there are 
few studies attempting to systematically address this topic. With 
the advances of modern multi-modal sensory equipment, 
interactive computer graphics and data mining techniques, we 
develop a highly integrated multimodal interaction platform that 
allows us to collect and analyze fine-grained real-time 
mulitmodal data in human-agent interactions. 

3. A Multimodal Experimental Platform 
Our proposed work is specifically concerned with systematically 
studying the exact timing of real-time interactions between 
humans and virtual agents. To achieve this goal, we implement a 
research framework for studying and evaluating different 
important aspects of multi-modal real-time interactions between 
humans and virtual agents, including establishment of joint 
attention via eye gaze coordination (an example application we 
will demonstrate by a pilot study described below), coupling of 
eye gaze, gestures, and utterances between virtual speaker and 
human listener in natural dialogues, and mechanisms for 
coordinating joint activities via verbal and nonverbal cues.  
 
Our approach for studying multimodal human-avatar interaction 
is well exemplified by Cassel’s Study-Model-Build-Test 
development cycle [9]. Specifically, we have three primary goals 
of building and using such a framework: 
1) to test and evaluate moment-by-moment interactive 

behavioral patterns in human-agent interaction;  
2) to develop, test and evaluate cognitive models that can 

emulate those patterns;  
3) to develop, test and design new human-agent multimodal 

interfaces which include the appearance of the virtual agent, 
the control strategy as well as real-time adaptive human-like 
behaviors.  

 
More importantly, we expect to use this platform to discover 
fundamental principles in human-agent interaction which can be 
easily extended to various scenarios in human-computer 
interactions. Therefore two critical requirements for our 
framework are that it be able to collect, in an unprecedented way, 
fine-grained multi-modal sensorimotor data that can be used for 

discovering coupled behavioral patterns embedded in multiple 
data streams from both the virtual agent and the human user, and 
that the virtual agent can monitor the user’s behaviors moment by 
moment, allowing the agent to infer the user’s cognitive state 
(e.g. engagement and intention) and react to it in real time.  
 
We are thus motivated to develop a framework which allows 
human participants to interact with a virtual agent in a virtual 
environment through multimodal interaction. There are three key 
components (as shown in Figure 1) in this research platform:  

• an virtual experimental environment;  
• a virtual agent control system; 
• multi-modal sensory equipment;  

 
In the following, we provide details of each of the three 
components. 

Figure 1: Overview of our research platform to investigate 
multimodal human-avatar interactions. A real person and a virtual 
human interact with each other in a virtual environment. We control 
the actions of the virtual person and measure the behavioral 
responses of a real person. A critical component in the current setup 
is that the virtual agent can perceive the human user’s behaviors in 
real time and generate spontaneous responsive actions accordingly.  
 
3.1 The Virtual Experimental Environment 
This virtual environment consists of a virtual living room with 
everyday furniture, e.g. chairs and tables. This virtual scene is 
rendered on a computer screen with a virtual agent standing 
behind a table so that she can have a face-to-face interaction with 
the human user. There are a set of virtual objects on the table in 
the virtual living room that both the virtual agent and the human 
user can move and manipulate. The virtual human’s manual 
actions toward those virtual objects are implemented through VR 
techniques and the real person’s actions on the virtual objects are 
performed through a touch-screen which is covered on the 
computer monitor. There are several joint tasks that can be 
carried out in this virtual environment. For example, the real 
person can be a language teacher while the virtual agent can be a 
language learner. Thus, the communication task is for the real 
person to attract the virtual agent’s attention and then teach the 
agent object names so the virtual agent can learn the human 
language through social interaction. For another example, the 
virtual agent and the real user can collaborate on putting pieces 
together in a jigsaw puzzle game. In this collaborative task, they 
can use speech and gesture to communicate and refer to pieces 
that the other agent can easily reach. 



3.2 The Virtual Agent 
3.2.1Buidling Human-like Virtual Agent 
In our implementation, we use Boston Dynamics DI-Guy libraries 
to animate virtual agents that can be created and readily 
programmed to generate realistic human-like behaviors in the 
virtual world, including gazing and pointing at an object or a 
person in a specific 3D location, walking to a 3D location, and 
moving lips to synchronize with speech while speaking. In 
addition, the virtual human can generate 7 different kinds of 
facial expression, such as smile, trust, sad, mad and distrust. All 
these combine to result in smooth behaviors being generated 
automatically. A critical component in the virtual human is to 
perceive the human user’s behavior in real time and react 
appropriately within the right time span. As shown in Figure 1, 
this human-like skill is implemented by a combined mechanism 
including real-time eye tracking and motion tracking on the 
human side, real-time data transfer in the platform and real-time 
action control on the virtual human’s side. 

3.2.2 Generation of Virtual Agent’s Multimodal 
behaviors 
Our basic implementation of the virtual agent’s eye gaze uses a 
stochastic model, as illustrated in Figure 3. Transitions between 
virtual agent’s “Looking-At” state and “Looking-Away” state are 
triggered by real-time behaviors from the participant as the 
agent’s control system can access those data in real-time 
interaction. Figure 2 shows four examples of the virtual agent’s 
behaviors:  a) The avatar shares visual attention with the user; b) 
The avatar is looking at an object that the real person is not 
attending; c) The avatar is looking at somewhere randomly in the 
3D virtual environment; and d) The avatar is looking at the real 
person’s face.  

 

 
Figure 2: Eye gaze behaviors for virtual agents in our experimental 
design. The arrows point to the object that a human participant is 
attending. The virtual agent can access this information in real time 
by monitoring both the human’s actions on the touch-screen panel 
and the human’s eye gaze. With such momentary information, the 
virtual agent may decide to generate four different behaviors: a) join 
attention: attending to the same object that the human participant 
attends; 2) not join attention: the virtual agent looks at one of the 
other objects that the real person is NOT attending; 3) disengaged: 
the virtual agent just randomly looks around; and 4) face-to-face: the 
virtual agents looks at the face of the real person.  

3.3 Multi-modal Sensory Equipment 
During human-avatar interaction, our platform collects fine-
grained behavioral data from both the virtual agent and the human 
user (see Figure 3). On the human side, a Tobii 1750 eye tracker 
is used to monitor the user’s eye movements at the frequency of 
50Hz. The user’s manual actions on virtual objects through the 
touch-screen are also recorded with timing information on a 
dedicated computer. Meanwhile, the system also records the 
user’s speech in the interaction. More recently, we added a video 
camera pointing to the face of the user and a faceAPI package 
from SeeingMachine (www.seeingmachine.com) is deployed and 
integrated into the whole system to record 38 3D face landmarks 
plus head rotation and orientation at the frequency of 15HZ.  
 
On the virtual human side, our VR program not only renders a 
virtual scene with a virtual agent but also records gaze and 
manual actions generated by the virtual agent and his facial 
expressions (30 FPS). In addition, we also keep track of the 
locations of objects on the computer screen. As a result, we 
gather multimodal multi-stream temporal data streams from 
human-avatar interactions. All of the data streams are 
synchronized via system-wide timestamps. 
 

4. Experiment 
The overall goal of this research platform is to build a better 
human-agent communication system and understand multimodal 
agent-agent interaction. Joint visual attention has been well 
documented as an important indicator in smooth human-human 
communication. In light of this, our first study focuses on joint 
attention between a human user and a virtual agent. More 
specifically, given the real-time control mechanism implemented 
in our platform, we ask how a human agent reacts to different 
situations wherein the virtual agent may or may not pay attention 
to and follow the human agent’s visual attention. In practice, we 

Figure 3: Multimodal Data Recording. Top: A real person and a 
virtual human are engaged in a joint task with a set of virtual 
objects in a virtual environment. The platform tracks the user’s 
gaze and hand movements in real time and feed the information to 
the virtual agent’s action control system to establish real-time 
perception-action loops with real and virtual agents. Bottom: 
multiple data streams are recorded from human-avatar interactions 
which are used to discover fine-grained behavioral patterns and 
infer more principles. 

http://www.seeingmachine.com/�


employed a word learning task where the human participants 
were asked to teach the agent the names of a set of objects. We 
selected this task for five reasons: (1) it has an explicit goal that 
allows participants to naturally engage with the agent in 
interactions while being constrained enough to make real-time 
processing on the agent’s actions feasible, which in turn allows 
for adaptive agent behavior; (2) it has been used successfully in a 
variety of developmental studies investigating multi-modal 
human-human interactions (e.g., between parents and their 
children [10]); (3) it allows us to investigate the fine-grained 
temporal patterns and relationships between human eye gaze and 
human speech as part of the larger joint attention processes; (4) 
beyond modeling human interactions, the task itself has its own 
merits as it can help shed light on how agents might acquire new 
knowledge through human-agent social interaction [11];  and (5) 
it can ultimately be used to develop cognitive models of temporal 
interaction patterns that in an unprecedented way capture the time 
course of human-human interactions (cp. to [3]). 
The experimental paradigm is noteworthy in that it is: 
• Multimodal: Participants and the agent interact through 

speech and visual cues (including perceivable information 
from vision, speech, and eye gaze). 

• Interactive and adaptive: The agent can follow what the 
human is visually attending to (based on real-time tracking of 
human eye gaze) and thus provide visual feedback to human 
subjects who can (and will) adjust their behavior in response 
to the agent’s response. 

• Real-time: The agent’s actions are generated in real time as 
participants switch their visual attention moment by moment. 

• Naturalistic: There are no constraints on what participants 
should or should not do or say in the task. 

 
Table 1: Five experimental conditions with different engagement 

levels and attentional states. 

condition description 
90%  90% of time engaging +10% on one of 

the other objects 
50%/random 50% engaging + 50% on random 

locations 
50%/object 50% engaging + 50% on one of the other 

objects 
10%/random 10% engaging + 90% on random 

locations 
10%/object 10% engaging + 90% on one of the other 

objects 
 
In the present experiment, we manipulated three engaged levels 
of the virtual agent: 90%, 50% or 10% engaged. As we described 
earlier, if the agent is engaged in the interaction, she will show 
her interests toward the object that the human participant is 
manually holding and manipulating. In the 90% engaged 
condition, the agent is engaged  90% of time. Similarly, the agent 

is engaged 50% or 10% of time respectively in the other two 
conditions. In those two less engaged conditions, at those 
moments that the agent is not engaged, we designed two sub-
conditions, in the 50%/object condition, the agent showed her 
interest to one of the other objects that the real participant was not 
attending. In the 50%/random condition, the agent randomly 
looked at some spatial location without paying attention to any of 
the three objects on the table. Table 1 summarizes 5 experimental 
conditions.  
 
Will participants in the less engaged conditions pay overall more 
attention to the virtual agent compared with when they are in the 
90% condition? Moreover, in addition to a comparison of overall 
eye movement patterns in those five conditions, the more 
interesting research question is in what ways the behaviors of the 
participants may differ in those conditions at a fine-grained level. 
For example, subjects might spend more time attending to the 
virtual agent with longer eye fixations in the less engaged 
conditions. They also might spend more time in attracting the 
agent’s attention before naming objects, and therefore, generate 
fewer naming utterances. Alternatively, they might more 
frequently monitor the agent’s attention with shorter eye fixations 
and generate more naming utterances in order to attract the 
agent’s attention through the auditory channel. Furthermore, open 
questions can be asked about the details of eye fixations in 
conjunction with naming events: will subjects look more at the 
agent or more at the named object? Will their eye movement 
patterns change over the course of naming speech production? 
Moreover, a direction comparison between the random and object 
conditions with the same level of engagement (either 50% or 
10%) would inform us to what degree participants will be 
sensitive to where the virtual agent attend when the agent is not 
engaged; and how the factor of the overall level of engagement 
and the factor of where to look when not engaged may interact.  
To answer those questions, we collected and analyzed fine-
grained multimodal behavioral data that would allow us to 
discover the time course of sensorimotor patterns. 

4.1 Participants 
25 undergraduate students at Indiana University participated in 
the study (2 of them were excluded due to technical problems 
with their eye tracking). 

4.2 Procedure 
As shown in Figure 3, participants were asked to sit in front of a 
Tobii eye tracking monitor and the experiment started with eye 
gaze calibration in which they were asked to sequentially look at 
5 calibration points displayed on the screen. Next, the 
experimenter calibrated the eye tracker using the Tobii eye-
tracker software. A logictech webcam with a microphone was 
attached on the computer monitor, pointing to the participant, to 
record the subject’s speech and as well as capture the 
participant’s face image. 



There were three trials in each condition and in total 15 trials for 
all of the five experimental conditions for each subject to 
participate. The order of those trials was randomized. Within each 
trial, participants saw three virtual objects on a virtual table and 
were instructed to teach a virtual agent those object names. 
Subjects were allowed to use their hands to move, point and 
manipulate those virtual objects on the 2D computer screen 
through a touch panel to attract the agent’s attention, and then 
teach the agent however they wanted and were encouraged to be 
creative. The subject was allowed one minute to teach the agent 
the names of the three objects in a trial. The participant could 
switch from the current trial to the next one by pressing the 
spacebar if s/he thought that the virtual agent already learned all 
of the three object names. Otherwise, after the minute was up, the 
program automatically switched to the next trial. There was no 
difference across five conditions in terms of the amount of time 
participant spent in each trial (Mean of the condition with 
maximal length = 59.58 seconds, mean of the condition with 
minimal length =58.10 seconds).  

5. Data and Data Processing 
Figure 3 illustrates multimodal data collected from human-agent 
interaction that will be used in our data analyses. In the following, 
we briefly overviewed data processing of raw multimodal data. 
a) Visual data: Since the interaction environment was rendered 
using computer graphics techniques. We recorded detailed 
information such as the location of each of three objects, the 
location of the virtual agent, on the computer screen.  
b)  Gaze data: For both eye gaze data from the human user and 
the virtual agent, we computed eye fixations using a velocity-
based method to convert continuous eye movement data into a set 
of fixation events (see details in [8]) . For each fixation, we 
superimposed (x,y) coordinates of eye gaze onto the screen image 
sequence to identify the corresponding Region-of-Interest (ROIs) 
moment by moment. 
c)  Speech: We implemented an endpoint detection algorithm 
based on speech silence to segment a speech stream into several 
spoken utterances, each of which may contain one or multiple 
spoken words. We then transcribed speech into text. The final 
result is a temporal stream of utterances, each of which is coded 
with onset and offset timestamps and a sequence of spoken words 
in the utterance. 

d) Hand action data: The human user’s  hand actions on objects 
through the touch screen were analyzed in two different ways. 
First, we extracted a speed profile of manual actions. Second, we 
categorized the actions on objects into slow vs. fast movement 
events. Slow movement events are defined as the human 
participant moved the objects slowly and within a small area on 
the screen (< 5 pixels/second). The fast movement events are 
characteristic of a fast moving from one location to another 
distant location (>200 pixels/second).  
As the results of data processing, we derived multiple time series 
from multimodal data, including where human participants gaze 
at moment by moment, where the virtual gazes at, what actions 
participants generate, what they say and so on. In the following 
subsections, we first report analyses of eye movement data from 
participants and then report analyses of their speech and hand 
movements. Finally, we integrated data streams from different 
modalities, gaze data, hand movements and speech, and from 
both the human participant and the virtual agent, and extracted 
dynamic time-course patterns around those naming moments. All 
of the following statistics and analyses were based on the whole 
dataset of 23 subjects and across five experimental conditions, 
containing about 690,000 images, 1,242,000 gaze data points, 
10,156 human eye fixations, 2,536 naming events, and 6,500 
hand actions.   
 

6. Results 
6.1 Analyses of Gaze data 
As shown in Figure 4 (left), participants spent less time on the 
virtual agent’s face when the agent was 90% engaged in the 
interaction. In contrast, they spent much more time when the 
agent is not engaged, suggesting that they kept track of the 
agent’s attention and noticed that the agent was not quite engaged 
in both 50% and 10% conditions. Interestingly, there is no 
difference between 50% and 10% conditions, suggesting that as 
far as the agent demonstrated distracting behaviors, participants 
were sensitive to that but meanwhile they would spend a certain 
proportion of their attention on the agent’s face – the amount of 
time that is probably enough for them to continuously monitor the 
agent’s attention. Thus, there was no need to spend more time 
even the agent was in the 10% conditions. Interestingly, with the 
same level of engagement, random looks from the agent appeared 
to be more distracting and made participants look more at the 

Figure 4: Gaze patterns on the virtual agent’s face. Across the five conditions, human participants gazed at the face of the virtual agent to 
monitor the agent’s visual attention. They did so more frequently when the agent was less engaged in the interaction. Three measures of the 
total proportion of looking time, the number of looks, and the average fixation time reveal different strategies that human participants applied 
in different situations.   



agent’s face (22% in the 50%/random condition and 20% in the 
10%/random condition) compared with looking at the other object 
(13% in the 50%/object condition and 15% in the 10%/object 
condition). This result revealed that participants not only noticed 
when the agent was not paying attention but also in what ways 
they were not attending -- whether the agent was looking away or 
attending to other objects on the table, which again demonstrates 
the participant’s sensitivities to the agent’s behaviors. Next, we 
measured both the number of looks (Figure 4 middle) and the 
average fixation time (Figure 4 right). Participants generated 
fewer but longer fixations in the 90% condition. Instead, in all of 
the other four conditions, they produced significantly more looks 
on the virtual agent’s face and each gaze fixation is relatively 
shorter. This result suggests a strategy of frequently checking the 
agent’s face to continuously monitor the agent’s attentional state.  
Table 2: A comparison of gaze data across 5 conditions when 

the virtual attend is attending or not attending 

total 
looking 90% 

50%/ 
random 

50%/  
object 

10% 
random 

10%/  
object 

attending 0.05 0.06 0.06 0.07 0.05 
not 
attending  0.17 0.21 0.19 0.21 0.19 

Further, for each experimental condition, we extracted those 
moments that the virtual agent was attending to the object that the 
human participant manipulated through the touch-screen panel 
and those moments that the virtual agent was not attending to 
what the real user attended to. As shown in Table 2, the 
proportions of looking time across those conditions show a 
significant difference between those two kinds of moments within 
each condition, and meanwhile there was no difference across 
conditions. Thus, across the five conditions, participants produced 
similar gaze patterns on the agent’s face at those moments that 
the agent was attending and as well as those moments that the 
virtual agent was not attending. The overall engagement level of 
the agent didn’t influence the participant’s gaze behavior, but 
instead, their gaze behavior was determined by moment-by-
moment attentional state of the virtual agent.  
Overall, the present results derived from human gaze suggest that 
humans were sensitive to the differences in the agent’s behaviors 

in the 5 experimental conditions, and they therefore adjusted their 
behaviors accordingly.  Moreover, their gaze behavior was mostly 
influenced by the momentary attentional state of the virtual agent 
but not by the overall engagement level of the agent over time.  

6.2 Analyses of Hand Actions 
In the experiment, human participants actively hold, point and 
move virtual objects to attract the virtual agent’s attention 
through the touch-screen panel. On average, they generated 
approximately 12 distinct actions per trial (M90% =12.21; 
M50%/random=13.21; M50%/object=12.37; M10%/random=12.30; 
M10%/object=13.26) with no significant difference across five 
experimental conditions. And they switched to another object 
about 4-5 times within a trial (M90% =4.51; M50%/random=4.03; 
M50%/object=4.54; M10%/random=4.59; M10%/object=4.68) with similar 
average durations of individual actions (M90% =4.12sec; 
M50%/random=3.72sec; M50%/object=3.76sec; M10%/random=3.95sec; 
M10%/object=3.92). All this suggests similar hand actions across 
five experimental conditions. However, a closer look of their 
hand actions also reveals different action types that they 
conducted. We computed the proportion of time with rapid and 
fast hand actions on objects and found that in the 3 less engaged 
conditions (50%/random, 10%/random,10%/objects), participants 
spend more time on those rapid actions by moving objects 
dramatically from one location to another location 
(M50%/random=15.18%; M10%/random=17.30%; M10%/object=16.54%) 
compared with the other two more engaged conditions (M90% 
=10.31%; M50%/object=9.91%). Interestingly, with the same 50% 
engaged level, the virtual agent’s random looking made 
participants generate more dramatic hand actions on objects with 
the attempt to attract the virtual agent’s attention. This again 
indicated that human participants were not only sensitive to at 
what moments the virtual agent was attending or not attending, 
but also where the virtual agent was attending.  

6.3 Analyses of Temporal Dynamics of 
Multimodal Data  
We focused on the moments right before and after the human 
participant was holding an object to measure the time-course of 
eye movement as a way to integrate gaze and hand data. The 
approach is based on what has been used in psycholinguistic 
studies to capture temporal profiles across a related class of 

Figure 5: The proportion of time that participants were looking at the target object(green), the agent’s face(red) and the other two objects 
(blue). We selected three representative conditions, 90%(left), 50%/random(middle) when the virtual agent was attending to the target object 
held by participants, 50%/random(right) when the virtual agent was not attending to the target object.  



events [12] (in our case, the relevant class of events is an object 
holding event). Such profiles enable one to discern potentially 
important temporal moments within a trajectory and compare 
temporal trends across trajectories. Figure 5 shows the average 
proportion of time across all the hand holding instances (which 
can be viewed a probability profile) that participants looked at the 
agent’s face (red), the target object (green), and the other two 
objects (blue). Each trajectory in a plot shows the probability that 
participants looked at one of three identities 5 sec before and after 
the holding moment. The left plot is from the 90% condition and 
the other two are from the 50%/random condition in which the 
virtual might or might not attend to the target object held by 
participants. Accordingly, we zoomed into that condition and 
divided all of the holding instances in that condition into two 
groups based on whether the virtual agent was attending (middle) 
to or not attending (right) to the target object There were several 
interesting patterns: 1) participants increased their looking time 
on the target object and this looking behavior reached the peak 
before the holding action, suggesting a coordination of eye and 
hand movements to guide the reaching action.  2) At 
approximately the same moment with the decrease of looking at 
the target object, there was an increase of looking at the agent’s 
face in all of three plots indicating that humans checked whether 
the agent will be attending to that target object; 3) When the 
virtual agent was attending, the plot from the 90% condition (left) 
looks very similar with the one from the 50%/random condition 
(middle) ; 4) however, when the virtual agent was not attending 
(right), participants spent much more time on monitoring the 
agent’s attention while holding the target object. Those patterns 
illustrate dynamical behaviors of participants in real-time 
interaction.  Most interestingly, the difference between their eye 
and hand coordination when the virtual agent was attending vs. 
not attending in the 50%/random condition supported the same 
conclusion from previous data analyses (e.g. Table 2), that is, 
participants dynamically adjust their behaviors based on their 
perception of real-time behaviors of the virtual agent but not on 
the overall engagement level of the agent.  

 

Figure 6: The proportion of time that participants were looking at the 
target object(green), the agent’s face(red) and the other two 
objects(blue). We selected two representative conditions, 90%(left) 
and 10%(right).   

 

6.4 Analyses of Temporal Dynamics of 
Naming events 
Since the experiment was designed to be a language learning task 
and participants were instructed to act as a teacher to teach a 
virtual agent object names, we next focus on naming utterances in 
speech when they mentioned object names. Across five 
conditions, participants mentioned those object names almost 
equally frequently within  a learning trial (M90% =9.31; 
M50%/random=10.32; M50%/object=8.68; M10%/random=9.25; 
M10%/object=10.15). Thus, there is no significant difference in their 
speech naming acts alone. Next, we correlated those speech acts 
with the virtual agent’s attentional state and found that the 
approximately same number of naming events was distributed 
differently across experimental conditions. For example, more 
naming acts were generated when the virtual agent was looking 
straight toward participants. participants in both the 10%/random 
(36% of naming events) and 10%/object (33% of naming events) 
conditions, compared with the other three more engaged 
condtions (M=26%). Since the virtual agent was most often not 
paying attention to the target object, participants in those 
conditions might realize that and therefore created more naming 
events at the moments that the virtual agent gazed at themselves 
by treating those moments as better learning moments compared 
with the moments that the agent just either randomly looked 
around or looked at one of the other objects.  
 
Further, we extracted probabilistic profiles of participants’ gaze 
ROIs right before and after naming utterances start. Figure 6 
shows those trajectories with a temporal window of 5 seconds 
before the onset of the naming utterance and 5 seconds after the 
onset of that naming utterance. In the 90% condition (left), 
participants paid more attention to an object around the moments 
they uttered the name of the object. This particular gaze pattern 
between target and other objects is in line with the results from 
psycholinguistic studies on the coupling between speech and gaze 
[13]. In the 10% condition, participants looked more at the virtual 
agent (red) which is expected as they wanted to maintain and 
monitor join attention in face-to-face interaction. Surprisingly, the 
rest of their attention was more or less equally distributed 
between target and other objects. This suggests that participants 
perceived the agent’s random behaviors and attempted to adjust 
their own behaviors. By doing so, they failed to demonstrate 
typical behaviors that are well-documented in psycholinguistic 
studies on speech and simultaneous eye gaze. This is of 
importance for human-computer interactions and requires further 
investigation as current multimodal interfaces are likely to violate 
subtle temporal patterns and thus the time course of attention that 
humans expect. This finding also serves as justification for 
pursuing a temporally fine-grained multi-modal analysis of 
human joint attention processes in human-computer interactions.  

7. Conclusion and Future Work 
In multimodal human-avatar interaction, dependencies and 
interaction patterns between two interacting agents are bi-
directional, i.e., the human user shapes the experiences and 
behaviors of the virtual agent through his own bodily actions and 
sensory-motor experiences, and the virtual agent likewise directly 
influences the sensorimotor experiences and actions of the human 
user. To understand the nature and fundamental principles in such 
multimodal interaction, we developed a real-time multimodal 
human-agent interaction system allowing us to collect and 



analyze fine-grained behavioral data. Using this research 
platform, we discovered the following major findings from the 
joint attention experiment described earlier: 1) Human 
participants are sensitive to the virtual agent’s behaviors and use 
them to infer the virtual agent’s attentional state; 2) Accordingly, 
they adjust their own behaviors in various ways (e.g. more 
frequent looks on the virtual agent’s face and more dramatic hand 
actions on objects).  Importantly, in such multimodal interactions, 
their adaptive behaviors are not reflected by what they say, but 
instead they naturally generate more subtle non-verbal bodily 
cues to adjust their coordination with the virtual agent; 3) Their 
adaptive behaviors are not based on the overall engagement level 
of the virtual agent but momentary real-time behaviors of the 
virtual agent; 4) Time-course analyses of their eye movement 
patterns reveal momentary dynamic changes of their adaptive 
behaviors produced by real-time perception-action interactions 
between participants and the virtual agent. In summary, their 
behaviors seem to be composed of coordinated adjustments that 
happen on time scales of fractions of seconds and that are highly 
sensitive to the task context and to changing circumstances. All 
this suggests the importance of understanding real-time 
multimodal interaction in order to create smooth human-computer 
coordination and build better multimodal interfaces. Indeed, the 
experiment and the results reported here are the first steps toward 
this goal using the multimodal human-agent interaction platform 
we developed, among many other potential studies. For example, 
another application of this framework is to determine the timing 
of back-channel feedback (from eye gaze, to gestures, to body 
postures, to verbal acknowledgments), which is critical for 
establishing common ground in conversations. This could include 
questions about how head movements, gestures and bodily 
postures are related to natural language comprehension, as well as 
general questions about the functional role of non-linguistic 
aspects of communication contributing to natural language 
understanding. Thus, with this real-time interactive system, we 
can collect multimodal behavioral data in different contexts, 
allowing us to systematically study the time-course of multimodal 
behaviors. The results from such research will provide insightful 
principles to guide the design of human-computer interaction. 
Moreover, those fine-grained patterns and behaviors can also be 
directly implemented in an intelligent virtual agent who will 
demonstrate human-like sensitivities to various non-verbal bodily 
cues in natural interactions. 
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