
1

Using Machine Learning for Estimating

the Defect Content After an Inspection
Frank Padberg

Fakultät für Informatik
Universität Karlsruhe
Am Fasanengarten 5

76131 Karlsruhe
Germany

padberg@ ira.uka.de

Thomas Ragg

quantiom bioinformatics GmbH
Ringstraße 61

76356 Weingarten
Germany

thomas.ragg@quantiom.de

Ralf Schoknecht

Fakultät für Informatik
Universität Karlsruhe
Am Fasanengarten 5

76131 Karlsruhe
Germany

schokn@ ira.uka.de

Abstract— We view the problem of estimating the de-
fect content of a document after an inspection as a ma-
chine learning problem: The goal is to learn from empirical
data the relationship between certain observable features
of an inspection (such as the total number of different de-
fects detected) and the number of defects actually contained
in the document. We show that some features can carry
significant non-linear information about the defect content.
Therefore, we use a non-linear regression technique, neural
networks, to solve the learning problem. To select the best
among all neural networks trained on a given dataset, one
usually reserves part of the dataset for later cross-validation;
in contrast, we use a technique which leaves the full dataset
for training. This is an advantage when the dataset is small.
We validate our approach on a known empirical inspection
dataset. For that benchmark, our novel approach clearly
outperforms both linear regression and the current stan-
dard methods in software engineering for estimating the de-
fect content, such as capture-recapture. The validation also
shows that our machine learning approach can be successful
even when the empirical inspection dataset is small.

Keywords— Defect Content Estimation, Software Inspec-
tions, Non-linear Regression, Neural Networks, Empirical
Methods.

I. Introduction

Software inspections are being applied with great success to
detect defects in different kinds of software documents such
as specifications, designs, test plans, or source code [10] .
In an inspection, several reviewers independently inspect
the same document. Afterwards, all defects detected by
the inspection team are collected. Some defects will be
detected by more than one reviewer; hence, the outcome of
an inspection is a zero-one matrix showing which reviewer
detected which defect.

Usually, not all the defects contained in a document are
detected during an inspection. After the inspection, man-
agement must decide whether to re-inspect the document
to find more defects or pass the document on to the next
development step. A common way to reach a decision is to
prescribe a certain level of defect-freeness of the document.
For example, management could demand that a document
be 95 percent defect-free before it is released. In reality, it
is unknown how many defects actually are contained in a
document. Therefore, it is an important problem in soft-

ware engineering practice to reliably estimate the number
of defects in a document from the outcome of an inspection.
In the example, if the defect content estimate indicates that
more than 5 percent of the defects are still hidden, addi-
tional quality assurance is required before the document
can be released.

The current standard techniques for estimating the de-
fect content after an inspection fall into two categories :
the capture-recapture methods [7], [8], [22] and the curve-
fitting methods [25] . We shall give a brief account of these
methods in section VI. The standard methods use the zero-
one matrix of the current inspection as the only input for
computing the estimate. Several studies show that the
capture-recapture and curve-fitting estimates are much too
unreliable to be used in practice [2], [4], [5], [22], [24] . The
methods show extreme outliers and a high variation in the
estimation error. A likely explanation is that the standard
methods do not take into account the experience made in
past inspections.

In this paper, we view defect content estimation for soft-
ware inspections as a machine learning problem : The goal
is to learn from empirical data collected in past inspections
the relationship between certain observable features of an
inspection and the true number of defects in the document
being inspected. A typical example of an observable feature
is the total number of different defects detected by the in-
spection team, which is a lower bound for the true number
of defects. With a machine learning approach, knowledge
gained in the past is exploited in the estimation process.

To solve our particular machine learning problem, we use
neural networks. Neural networks should be viewed as a
mature non-linear statistical regression technique which is
highly suitable for the given kind of estimation problem [3] .
Using neural network terminology, a regression function is
called a model, the input variables are called features, the
output variable is called the target, and a pair consisting of
a feature vector and the corresponding target value is called
a pattern. Some patterns are used for training, that is, for
iteratively computing (or learning) the regression function;
other patterns are used for testing the performance of the
regression function.

2

The regression function which has been learned from the
empirical data is useful only when it is good at predicting
the target value for previously unseen input. This property
is called generalization. Neural network techniques put a
strong emphasis on achieving generalization by focusing on
features which carry much information about the target,
avoiding complicated regression functions during training,
and evaluating the performance of the regression models
before putting them into use. As with any regression tech-
nique, there is no guarantee though that a neural network
will yield accurate predictions on new input; the best one
can do is to properly apply the techniques and validate the
models on empirical inspection datasets.

It seems to be a widespread belief that neural networks
are applicable only when a large dataset is available for
training. This is not the case [3] . Rather, it is essen-
tial that the number of features used as input to a neural
network stands in a reasonable relation to the size of the
database in order to avoid the empty space phenomenon.
The empty space phenomenon describes the situation that
the available training patterns are very sparse in input
space [3], [23] . The number of patterns required for train-
ing grows quickly with the number of input features. We
apply a known practical rule [23] to determine how many
input features should be used with a given dataset size,
see subsection IV.B. Clearly, the larger the dataset which
is available for training the more features, and hence, the
more information about the target can be used as input for
estimating.

Organizations differ in the way in which inspections are
carried out. Also, different reviewers have different skills
and experience. Such differences are implicitly reflected in
any empirical inspection dataset. To take such differences
into account, we do not present just one fixed estimation
model ; rather, we present a methodology which yields for
each empirical dataset a regression model which is adapted
to that dataset. We have already applied this method-
ology successfully in other application domains [17], [18] .
Our present paper shows how to apply the methodology
to the defect content estimation problem in the context
of software inspections. Besides neural networks, we use
other techniques from machine learning, including a gen-
erally applicable feature-selection scheme and a Bayesian
methods-based model selection technique. More specifi-
cally, our methodology has the following steps :
• Determine a set of candidate features.

The zero-one matrix of an inspection is not suitable
as input for the estimation. The matrix is too large,
and its dimensions vary from inspection to inspection.
Thus, one must compute features (such as the total
number of different defects detected in the inspection)
from the zero-one matrix, see subsection II.C. Recall
that the true number of defects in a document is not a
feature, but the target.

• Select an appropriate subset of the features.
How many of the candidate features should finally be
selected as input to the neural networks depends on the
size of the database, see the discussion above. The se-

lected features should carry as much information about
the inspection process as possible. We rank the candi-
date features using a general scheme which computes
the mutual information between the features and the
target, see subsection IV.A. As opposed to other tech-
niques such as linear correlation analysis, mutual in-
formation can detect non-linear dependencies between
the features and the target. After having ranked the
features, we select the most promising features as in-
put. Note that the result of feature selection depends
on the dataset.

• Train different neural networks on the dataset.
Training a neural network is a non-linear optimization
process which aims at fitting the regression function to
the training data. Because of the non-linearity, train-
ing bears the risk of getting caught in a local optimum
of the error function which is far from being a global
optimum. Thus, we train many different networks with
randomly chosen weight initializations. In addition, we
train networks with different topologies (different num-
bers of hidden units) to allow for varying degrees of
non-linearity of the learned function. To avoid over-
fitting, we use an error function with a regularization
term, see subsection IV.B. Overfitting means to mem-
orize the training data by learning a highly complicated
function which almost perfectly fits the data but which
does not recognize the underlying process. Overfitting
usually leads to poor generalization. Regularization
during training penalizes complicated functions.

• Select the best neural network.
One way to select the best from all the trained net-
works is to evaluate the predictive performance of each
network on an independent validation dataset (cross-
validation). In order to get a validation dataset, one
must split the given dataset into two parts, one of which
is exclusively reserved for cross-validation. We use a
different, Bayesian methods-based approach to model
selection which leaves the whole dataset for training.
We select the best model based on the model evidence
of each network, see subsection IV.D. The model evi-
dence is known to be well-correlated with the general-
ization ability as long as the network size is reasonable
compared to the size of the dataset [3] . Having the full
dataset available for training is a great advantage when
the dataset is small, as is often the case with inspection
data.

We validate our machine learning approach by applying
a jackknife to a well-known empirical inspection dataset,
see section V. That dataset serves as a standard bench-
mark for defect content estimation techniques in software
inspections since the true number of defects in each doc-
ument is known exactly. Our approach achieves a mean
of absolute relative errors (jackknife error) of 5 percent
on this dataset; in addition, no outlier estimates occur.
Compared against the curve-fitting method DPM [25] and
the capture-recapture method Mt (MLE) [8] , our machine
learning approach achieves an improvement by a factor of 7
and 4, respectively, and clearly outperforms the standard

3

methods on this dataset.
Prior to applying neural network techniques, we check

how good a linear model would fit our empirical dataset,
see section III. In general, one should spend the effort of
using advanced non-linear statistical estimation techniques
only if there is substantial evidence in the data that the
process sampled has a significant non-linear component.
For our validation dataset, we show in subsection IV.B
that some features carry significant non-linear information
about the defect content, which strengthens the case for
the application of non-linear regression techniques. Inter-
estingly, linear regression already yields a significant im-
provement over the standard estimates for our validation
dataset, see Table VII in section VI. Exploiting the non-
linear dependencies in our dataset between some features
and the defect content with neural networks yields a further
improvement by a factor of 2 over linear regression, with
respect to both the mean and the max relative error.

The application of neural networks to estimating the
defect content after software inspections is novel, although
neural networks have previously been applied to problems
in software reliability, see for example [11], [14] . Closest
to our current work are Khoshgoftaar and Szabo [12], [13] ,
but the way in which they use neural network techniques
is improper (this is also true for other papers, for example
[11]). To estimate the number of defects in already coded
software modules, Khoshgoftaar and Szabo use 10 different
static source code metrics as input features. Even after
having reduced the number of features to 6 by principal
component analysis, which is a linear technique, their train-
ing dataset is too small to avoid overfitting a non-linear
model. When training their networks they start with 12
hidden units and keep adding hidden units and layers until
the network achieves a prescribed error bound on the train-
ing data, which occurs not until the network has 24 hidden
units. No regularization or model selection techniques are
used. Using too many hidden units and layers again leads
to overfitting. As a result, the generalization power of the
networks generated by Khoshgoftaar and Szabo is much
too low for software engineering practice.

The machine learning approach taken in this paper im-
proves upon of the interval estimate method developed by
one of the authors [16] . The interval estimate method also
uses data from past inspections, but largely differs from
neural network-based regression in the way in which the
input is processed and the estimates are computed. In
particular, the interval estimate method yields an interval
estimate, that is, a whole range of values which is likely to
contain the true value of the number of defects. From the
interval estimate, a point estimate can be derived. Each
interval estimate comes with a confidence level which in-
dicates whether the estimate should be considered reliable
or not. When performing a jackknife on the validation
dataset, the interval estimate in some cases must be dis-
carded due to a low confidence level, see section VI. The
main advantage of the machine learning approach as com-
pared to the interval estimate method is that it provides a
good estimate for each datapoint in the validation dataset.

This paper is a largely revised and expanded version of
a paper which we have presented at a machine learning
conference [19] .

II. Empirical Data

A. Data Collection

Our machine learning approach requires a database with
empirical data about past inspections. For each inspection
in the database, we need to know the zero-one matrix of
the inspection and the true number num of defects in the
inspected document. Entry aj, k in the zero-one matrix
is equal to one if reviewer j detected defect k, and zero
otherwise. The zero-one matrix is compiled at the end of
an inspection.

The true number of defects in a document is hardly ever
known exactly, but can be approximated by adding up
all defects which were detected in the document after the
inspection, that is, during later development phases and
maintenance. This gives a lower bound for the true number
of defects which is sufficient for practical purposes; defects
which are not detected even during deployment of the soft-
ware are not relevant for its operational profile. In order to
be able to compute these approximate defect counts, the
software organization must run a defect tracking system
which allows to trace each defect back to the documents
where the defect was introduced.

B. Validation Dataset

To validate the machine learning approach, we shall use a
known empirical inspection dataset. This dataset consists
of 16 inspections which were conducted during two con-
trolled experiments in 1994 and 1995 [1] . For each inspec-
tion in the dataset, we know the zero-one matrix as well as
the true number of defects contained in the inspected doc-
ument. The true number of defects is known because the
experiments seeded typical defects into documents which
were considered defect-free otherwise, see [1] .

The inspected documents were specifications of different
sizes. Two documents came from NASA and were labelled
NASA-A and NASA-B. Two documents were generic and
were labelled PG and ATM. The number of reviewers in
the inspections varied between six and eight; in most in-
spections, there were six reviewers. The inspections were
conducted using two different reading techniques, namely,
perspective-based reading and ad-hoc reading. The review-
ers were software professionals from the NASA Software
Engineering Laboratory. For later use, Table I labels the
16 inspections of the sample dataset.

C. Features

Given an inspection, we compute the following candidate
features from its zero-one matrix :
• the total number tdd of different defects detected by

the inspection team;
• the minimum, maximum, and average number min,

max, ave of defects detected by a single reviewer;

4

• the standard deviation std for the number of defects
detected by a single reviewer.

These five features are natural statistical measures for
the overall efficiency of an inspection, for the performance
of the individual reviewers during the inspection, and for
the variation in the performance of the reviewers. Our
candidate features do not depend on the size of the zero-
one matrix, nor on the number of reviewers, and hence can
be used for a variety of different inspections.

For example, the six reviewers in one particular inspec-
tion of the sample dataset detected 9, 7, 6, 13, 9, and 6
defects, respectively. Some defects were detected by more
than one reviewer. The total number of different defects
detected by the team was 23; the overlap between the re-
viewers was read off the zero-one matrix. The outcome of
the inspection yields the following values of the candidate
features: tdd = 23, min = 6, max = 13, ave = 8.3,
and std = 2.4.

Clearly, one can think of computing other features from
the zero-one matrix instead of the five statistical measures
we have chosen. For example, our candidate features re-
semble the input data for the capture-recapture methods
more closely than the input data for the curve-fitting meth-
ods. Choosing ”good” candidate features is not a mathe-
matical problem; whether the choice of candidate features
is good or not must be judged in the aftermath by looking
at the predictive performance of the resulting estimation
models.

III. Linear Models

A. Correlation Analysis

We have determined a set of five candidate features as
potential input variables for the defect content estimation
problem, see section II. As we have already discussed in
the introduction (see generalization and empty space phe-
nomenon), it may have a negative impact on the accuracy
of the predictions of a regression model to take all available
features as input. This is true also for linear models. In
general, adding an input variable which carries much noise
or contains outliers can distort the linear regression curve
and lead to a worsened prediction of the output. When the
number of input variables is large compared to the num-
ber of given ”training” datapoints, linear regression tends
to have a small approximation error on these datapoints;
yet, a good approximation of the training datapoints does
not automatically lead to a good prediction of the output
for previously unseen input. In other words, the general-
ization ability of a linear model might become worse as the
number of input variables increases.

The objective of feature selection is to reduce the set
of input variables to a “good” subset which contains only
variables with much predictive power with regard to the
output. For linear models, we use correlation analysis to
select a suitable subset of the input variables for the regres-
sion. If two input variables are strongly correlated, one of
them can be omitted because the prediction of the out-
put does not improve much when having both variables as

input. Thus, we are looking for input variables that are
strongly correlated with the output but weakly correlated
among each other.

Table II shows the correlation matrix for our empirical
dataset. The coefficients in the second last column show
the correlation of the input variables with the output.

For each input variable, we perform a two-sided Pearson
test to check whether the variable is correlated with the
output or not (null hypothesis). The last column in Table
II shows the p-values for the tests.

To rank the input variables we proceed as follows. As the
first step, we omit all input variables for which the Pear-
son test yields a p-value of more than 10 percent. Thus,
we omit std and max because there is not enough evidence
that these variables are linearly correlated with the output.
In the correlation matrix, the corresponding columns and
rows are deleted. As the second step, among the remaining
input variables we search for that pair of variables which
has the largest correlation coefficient. In our example, the
two most strongly correlated input variables are tdd and
min (0.838). From that pair of variables, we eliminate the
variable which has the smaller correlation with the output.
In our case, min has a smaller correlation with num (0.683)
than tdd (0.839). Thus, min is eliminated from the input
vector. In the correlation matrix, the column and row cor-
responding to min are deleted. This elimination procedure
is repeated until only one input variable is left. The order
in which the variables have been eliminated gives a ranking.
For our dataset, the ranking is

std < max < min < ave < tdd .

B. Evaluation

Starting with the vector (min, max, tdd, ave, std), the
elimination procedure yields a sequence of input vectors of
decreasing dimension. To each input vector corresponds a
linear regression model. To asses the quality of these linear
models, we perform a jackknife validation on our dataset
for each input vector. Suppose for a moment that the input
vector has been fixed. One by one, we omit one inspection
from the dataset and use the remaining 15 inspections to
compute the linear regression for the given input vector.
Afterwards, we use the linear model to estimate the in-
spection which was left out, and compute the relative es-
timation error. Table III shows for each input vector the
mean of the absolute relative estimation errors (jackknife
error).

The most important input variable tdd alone yields a
model with a mean estimation error of about 19 percent.
Adding the variable ave to the input vector considerably
decreases the estimation error of the linear model to about
11 percent. As can be seen from Table VII in section VI,
this particular linear model already largely improves upon
the standard estimates for our validation dataset. To get
some visual impression for the quality of the linear regres-
sion based on the features tdd and ave, Figure 1 shows the
regression plane corresponding to the full dataset (all 16
datapoints). The datapoints are shown as solid dots.

5

TABLE I

Sample inspection dataset.

inspection document num

A1 ATM 30

A2 ATM 30

A3 ATM 30

A4 ATM 30

B1 PG 28

B2 PG 28

B3 PG 28

B4 PG 28

inspection document num

C1 NASA-A 18

C2 NASA-A 18

C3 NASA-A 15

C4 NASA-A 15

D1 NASA-B 15

D2 NASA-B 15

D3 NASA-B 15

D4 NASA-B 15

TABLE II

Correlation matrix.

min max tdd ave std num p-value
min 1.000 0.703 0.838 0.824 0.248 0.683 0.4%
max – 1.000 0.759 0.956 0.842 0.384 14.2%
tdd – – 1.000 0.832 0.426 0.839 0.005%
ave – – – 1.000 0.701 0.464 7.0%
std – – – – 1.000 0.034 90.0%

TABLE III

Linear estimation errors.

input vector jackknife error approximation error

min, max, tdd, ave, std 12.1% 7.6%

min, max, tdd, ave 10.1% 7.6%

min, tdd, ave 10.7% 7.8%

tdd, ave 10.8% 10.1%

tdd 18.9% 15.8%

5
10

15
20

25
30

tdd

0
2

4
6

8
10

ave

15

20

25

30

target

Fig. 1. Linear regression plane.

Table III also shows the approximation error (training
error) for each of the linear models derived from the corre-
lation ranking. The approximation error is obtained by us-
ing all 16 datapoints when computing the linear regression
model for a given input vector. With increasing size of the
input vector the approximation error decreases, because
there are more degrees of freedom to fit the linear model
to the data. However, using more than two input variables
does not significantly improve the jackknife error, which
is a measure for the generalization ability of the model. It
follows that the two-dimensional vector (tdd, ave) is most
appropriate as input when performing linear regression on
this dataset.

IV. Non-Linear Models

In this section, we describe one by one the techniques
needed for neural network-based non-linear regression.
Subsection A shows how a neural network works as a non-
linear function approximator. Subsection B explains our
general feature selection scheme based on mutual informa-
tion. Subsection C describes regularization as a means to
avoid overfitting a network during training. Subsection D
provides details about the training procedure, including
weight optimization with gradient descent and Bayesian
methods-based learning of the regularization parameters.
Subsection E explains how to use the model evidence in-
stead of cross-validation for selecting the neural network
which is finally used for estimating. The exposition in this
section follows the description of our methodology given in
the introduction.

A. Function Approximation

To approximate a non-linear process, a general function
approximator – such as a neural network – is required. A
neural network is built from neurons and connections be-
tween the neurons as illustrated in Figure 2. The connec-
tion between the neurons sj and si carries the weight wji.
Each neuron computes the weighted sum over its inputs
and applies an activation function fact to the result:

si = fact

(∑
j

wji · sj

)
.

When solving regression problems with neural networks,
the activation function usually is the logistic function

fact (x) =
1

1 + e−x

for the hidden neurons and the identity function for the
output neurons. Thus, the function of interest is approxi-
mated by squasing and stretching logistic functions which
are then combined linearly by the output neuron. Figure 3
shows how a neural network with two hidden neurons and
one output neuron approximates data which was generated
from a polynomial. The two logistic functions correspond-
ing to the hidden neurons are shown on the bottom.

6

B. Feature Ranking

To avoid the empty space phenomenon discussed in the
introduction, the number of input features must be adapted
to the number of training patterns available. Table IV is
taken from [23] and specifies how many samples are re-
quired for estimating the value at the origin of the stan-
dard multivariate normal density of a particular dimension
such that the relative mean squared error is less than ten
percent.

One can consider the table as a practical rule for how
many input features should be used for a given set of train-
ing patterns. The required number of training patterns
quickly increases with the number of input features. For
example, the training dataset used in [13] has size 99; thus,
only three or four input features should have been used in-
stead of six.

The empirical dataset that we shall use for validation
has size 16, see subsection II.B. According to Table IV,
we may use only 2 features as input to our networks. To
select the two most promising features from our set of five
candidates tdd, min, max, ave, and std, it does not make
much sense to use the ranking obtained from the correla-
tion analysis in section III, because correlation analysis is
a linear technique, and we aim at computing non-linear
regression functions. We use a feature selection procedure
which is based on the concept of mutual information. The
mutual information MI (X ; T) of two random vectors X
and T is defined using the entropy H as

MI (X ; T) = H (T) − H(T | X)

=
∫ ∫

p (x, t) · log
p (x, t)

p (x) p (t)
.

The mutual information measures the degree of stochas-
tic dependence between two random vectors X and T [6] .
If the mutual information value is high, X carries much in-
formation about T . To compute the joint density p (x, t)
and the marginal densities p (x) and p (t) from the em-
pirical data, we use Epanechnikov kernel estimators [18],
[23] . Kernel estimation is a non-parametric technique for
computing a probability density from sample data which
improves upon using a histogram.

As the first step in the feature selection procedure, that
feature F is selected from the set of candidate features
which has maximal mutual information MI (F ; num) with
the target, the defect content num. For our dataset, the
feature tdd (the total number of different defects detected
by the inspection team) is selected since it carries the most
information about the defect content among the five can-
didate features.

In each subsequent step, that one from the remaining fea-
tures is selected which maximizes the mutual information
with the target when added to the already selected features.
For example, in order to maximize MI ((tdd , F); num) in
the second step of the selection procedure, the feature std

(the standard deviation for the number of defects detected
by a single reviewer during the inspection) is selected. Con-
tinuing this way, the features are ranked by the amount of
information which they add about the target. For our val-
idation dataset, the final ranking is

tdd > std > max > min > ave .

As input to the neural networks, we use the two features
which rank highest, tdd and std .

The feature ranking based on mutual information differs
from the ranking based on linear correlation analysis. In
particular, the feature std ranked last in the linear case
but ranks second with mutual information. The opposite
is true for the feature ave. Although there is only a weak
linear correlation between std and num, mutual informa-
tion clearly indicates that std carries significant information
about num. Consequently, the information carried by std
about the defect content must be mainly non-linear. An
opposite statement applies to the feature ave. Therefore,
mutual information provides strong evidence that using a
non-linear regression function instead of a linear one might
considerably improve the predictive performance of the re-
gression model.

C. Regularization

The function from the input features to the target which
was learned from the empirical data by the neural networks
should generalize to new input. Empirical data usually
is noisy, that is, the data shows small random deviations
from the underlying process. Similar to linear regression,
approximating the target as good as possible on the train-
ing data (for example, by minimizing the mean squared
error on the training data) does not automatically lead to
good generalization. Figure 4 illustrates the noisy data
problem for the polynomial from Figure 3 with Gaussian
noise added to the original data. When trying to minimize
the training error by using a network with many hidden
neurons, overfitting occurs: the output function almost
perfectly matches the training data but is very complicated,
resulting in a poor approximation of the underlying smooth
polynomial.

In order to achieve good generalization, it is crucial to
balance the training error against the model complexity
[3] . Thus, we train the neural networks to minimize the
regularized error

E = β · ED + α · ER .

The term ED is the mean squared error on the training
data. The factors α and β are additional model parame-
ters, see the next subsection. The regularization term ER

measures the model complexity, taking into account the
weights wk in the network. We choose the weight-decay
1
2 ·∑ wk

2 as the regularization term. The weight decay
penalizes large weights and (indirectly) large numbers of
hidden units. Large weights still are possible, but there
must be considerable evidence in the data for such weights
to occur in the network after training.

7

w w

2x1x

y

13
w

14

45
w

35
w

w
24

23

0

00

Fig. 2. Architecture of a neural network.

0

1

2

3

4

5

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1ta
rg

et

ou
tp

ut
 o

f h
id

de
n

ne
ur

on
s

input

training data
hidden neuron 1
hidden neuron 2
network output

Fig. 3. Estimating a non-linear function.

TABLE IV

Features vs. training patterns.

features patterns

1 4

2 19

3 67

4 223

5 768

6 2790

0

1

2

3

4

5

6

-1.5 -1 -0.5 0 0.5 1 1.5

ta
rg

et

input

training data
network with 40 hidden neurons

underlying process

Fig. 4. Overfitting to noisy data.

D. Bayesian Learning

Training a network aims at adjusting the weights wk of
the network in such a way that the regularized error E is
minimized (non-linear optimization). When the parame-
ters α and β are fixed, we optimize the weights using the
fast gradient descent algorithm Rprop [20] . The gradient
of the error E with respect to the weights is computed by
backpropagation [21] .

Instead of using up part of our empirical dataset for
determining α and β before training a network, which
is the standard approach, we apply Bayesian techniques
to determine the weights wk and the parameters α and
β simultaneously during training [15], [18] . The Bayesian
approach leaves the whole dataset for training. The idea
is to maximize during training the posterior probability
P (α, β | D) of α and β given the training data D .
The posterior probability is computed from the so-called
evidence P (D | α, β) for α and β and from prior as-
sumptions about their joint density p (α, β) by using
Bayes’ rule:

P (α, β | D) =
P (D | α, β) · p (α, β)

p (D)
.

Maximization of the posterior probability can be trans-
formed into an update rule for α and β, see [18] for the
technical details.

We finally get the following iterative procedure for train-
ing a network: We randomly choose α and β and optimize
the weights using gradient descent. Afterwards, we update
α and β using the update rule. Then, we again optimize
the weights, now using the updated values for α and β in
the error function. We keep alternating between optimiz-
ing the weights and updating α and β until a prescribed
number of training cycles (epochs) has been reached.

Figure 5 shows a sample error curve (learning curve) for
one neural network during training. When optimizing the
network weights the training error goes down quickly. Each
time α and β are updated the training error increases, but
the overall trend is for the training error to decrease.

E. Model Evidence

To try out different degrees of non-linearity for the re-
gression function, we systematically vary the number h of
hidden units in the neural networks from 1 to 10. Since
our empirical dataset is small, we put all hidden units in
a single layer, restricting the regression models to mod-
erate non-linearity. For each network topology, that is,
for each number h of hidden units, we train 50 networks
with random weight initializations. Each of these networks
is trained using the alternating procedure described in the
previous subsection to optimize its weights and determine
the model parameters α and β.

After training, we have a pool of 500 networks (50
networks for each of the 10 topologies) which fit the train-
ing data. To choose the network which is best suited for
estimating the defect content, one usually must reserve part

8

of the empirical dataset for cross-validation before training
begins, using only the other part of the dataset for training.
Again, we use a Bayesian approach instead which leaves the
whole dataset for training.

For each of the trained networks, we compute its model
evidence P (D | α, β , h, w1 , w2 . . .). The model evi-
dence is known to be in good correlation with the gener-
alization error as long as the number of hidden units is
reasonable compared to the size of the dataset [3] . Instead
of choosing the network with the best evidence from all 500
trained networks, we first choose the topology which has
the best average evidence. From the 50 networks with the
best-on-average topology we then select the network with
the best evidence as the final model. Practical experience
shows that first choosing a good topology is more robust
and can be expected to yield better generalization than
immediately choosing the network with the best evidence.

Table V shows our model selection procedure for an ex-
ample. The second datapoint has been left out from our
dataset as the test pattern

and the remaining 15 datapoints were used for train-
ing. For 1 to 5 hidden units, the correlation between (the
logarithm of) the mean evidence and the test error of the
corresponding 50 networks is strongly negative, whereas for
larger networks the correlation is positive (or absent). Al-
though the test error does not change much as the number
of hidden units increases, the correlation clearly indicates
that one should better select a network with a small num-
ber of hidden units. Since the networks with two hidden
units show the best average evidence, the selection proce-
dure chooses the best model with two hidden units as the
final model.

V. Validation

To validate our machine learning approach, we apply a
jackknife to the empirical dataset described in section II.
Recall that the true number of defects for each inspected
document in this dataset is exactly known since the defects
had been seeded into the documents. One by one, we leave
out an inspection from the dataset as the test pattern and
use the remaining 15 inspections as the training patterns.
For each of the 16 datasets constructed this way, the train-
ing and model selection procedure described in the previous
section yields a neural network (with the features tdd and
std as input) which is used to estimate the test pattern.

The estimation results for the 16 test patterns are given
in Table VI. The table also shows the number of different
defects detected during the inspection (which is a lower
bound for the true number of defects). Our machine learn-
ing approach achieves a mean of absolute relative errors
(jackknife error) of only 5.3 percent. In particular, no out-
lier estimates occur. The individual estimates show that on
this dataset our novel approach provides a highly reliable
estimator for the defect content.

To get some visual impression how the non-linear regres-
sion functions learned by the neural networks look like,
Figure 6 shows the regression surface corresponding to the
“best” neural network with two hidden units when using

the full dataset (all 16 datapoints) for training. The regres-
sion surface closely approximates the datapoints, which are
shown as solid dots. The approximation is better than for
the linear regression plane shown in Figure 1. As a conse-
quence, our machine learning approach outperforms linear
regression on the sample dataset with respect to both the
mean and the max relative error.

The feature tdd is important input for the estimation
because it gives a lower bound for the number of defects
in the document. Yet, two rather different inspections can
lead to the same total number of different defects detected.
For example, in one particular inspection some reviewers
might detect a large number of defects while others detect
only a few defects; in some other inspection, each reviewer
might detect about the same number of defects. The fea-
ture std distinguishes between two such cases, thus being
an important supplement to the feature tdd. For the sam-
ple dataset, a large value for std at the bottom level of the
surface in Figure 6 indicates that tdd is close to the true
number of defects in the document; a small value for std
indicates that tdd is significantly off. Note that the sepa-
ration of dots in Figure 6 into a ”bottom level” and a ”top
level” is special for this dataset.

Using more than two features for the regression decreases
the performance of the models significantly. In Figure 7,
the number of features increases from 1 to 5 according to
the ranking computed in subsection IV.B. For each set
of features and each of the 16 jackknife datasets, we re-
peat the training and model selection procedure to get one
neural network. Figure 7 shows for each set of features
the model evidence and test error averaged over the corre-
sponding 16 networks. The average model evidence is high-
est when only two features are used, namely, tdd and std .
The jackknife error is minimal with these two input fea-
tures. This result experimentally justifies having selected
just two input features as was suggested by the practical
rule given in subsection IV.B.

VI. Comparison

In this section, we compare our machine learning ap-
proach with other methods for estimating the defect
content: the capture-recapture method Mt (MLE), the de-
tection profile method DPM, and the interval estimate
method IEM. Table VII shows for each method discussed
in this paper the individual estimates and the estimation
errors for the 16 inspections (test patterns) from the em-
pirical dataset described in section II. The table also shows
the maximum and mean absolute relative estimation error
for each method.

A. Capture-Recapture Methods

Capture-recapture methods use stochastic models which
were developed in biology to estimate the size of an an-
imal population based on repeated captures of animals.
When applying capture-recapture to software inspections,
the animals are replaced by defects and each capture is
replaced by the inspection performed by one of the review-
ers. For the comparison, we use the method Mt (MLE)

9

α ,0 0 β
α ,1 1β

α ,2 β2error

epochs

w (0)

w

(1)w
(2)

Fig. 5. Iterative training procedure.

TABLE VI

Learning estimates for the 16 test patterns.

inspection tdd num estimate error

A1 23 30 29 -3%

A2 20 30 29 -3%

A3 24 30 29 -3%

A4 22 30 29 -3%

B1 20 28 29 4%

B2 17 28 29 4%

B3 24 28 29 4%

B4 21 28 24 -14%

C1 10 18 15 -17%

C2 6 18 15 -17%

C3 15 15 17 13%

C4 15 15 15 0

D1 6 15 15 0

D2 9 15 15 0

D3 14 15 15 0

D4 13 15 15 0

51015202530

 tdd

0
1

2
3

4
5

std

15

20

25

30

target

Fig. 6. Learned non-linear regression surface.

[8]. Other capture-recapture methods show a similar per-
formance [5] .

The method Mt (MLE) uses only the zero-one matrix of
the inspection to be estimated as input, but no data about
past inspections. From the zero-one matrix, the total num-
ber of different defects detected during the inspection is
computed, as well as the number of defects detected by
each individual reviewer. The probabilistic model under-
lying Mt (MLE) assumes that defects are probabilistically
identical, but different reviewers may have different prob-
abilities of detecting defects. The probabilistic model is
parameterized by the unknown true number N of defects
contained in the document. From the observed input data,
a maximum likelihood estimate for N is computed.

Table VII shows that the capture-recapture estimates
have a strong tendency to underestimate the true number
of defects in the document. The estimation error has a
high variation. The mean of the absolute relative errors
is 23.7 percent. In Figure 8, the true number of defects
in each document is shown as a solid dot, our correspond-
ing machine learning estimate as a hollow dot, and the
capture-recapture estimate as a small cross. The capture-
recapture method is clearly outperformed by our machine
learning approach on this dataset.

B. Detection Profile Method

The detection profile method DPM is a curve-fitting
method [25] . Like the capture-recapture methods, DPM
uses only the zero-one matrix of the inspection to be esti-
mated as input, but no data about past inspections. From
the zero-one matrix, for each defect j the number nj of
reviewers who have detected that particular defect is com-
puted. The numbers nj are sorted according to their size;
then, an exponential curve is fitted through the sorted
datapoints using linear regression on the log values. The
estimate is the x-value of the intersection point of the ex-
ponential curve with the horizontal line y = 0.5.

Table VII shows that the estimation error for the de-
tection profile method has an extremely high variation.
The mean of the absolute relative errors is equal to 35.8
percent. The curve-fitting method DPM is clearly outper-
formed by our machine learning approach on this dataset.

C. Interval Estimate Method

The interval estimate method IEM [16] uses the same
empirical database about past inspections as the machine
learning approach. Yet, the interval estimate method
largely differs from the machine learning approach in the
way in which the input data is processed and the estimates
are computed.

For each inspection in the database, the signature of the
inspection is computed from the zero-one matrix and the
corresponding true number of defects. The signature of
an inspection combines a measure for the overall efficiency
of the inspection (efficiency class) with a measure for the
variation among the inspection results of the individual re-
viewers (span). The signature carries information which

10

is similar to the features tdd and std used as input to the
neural networks. The computation of the signature also in-
volves an equivalence relation to bundle up the datapoints
and make it easier to compare different inspections. From
the signatures of the inspections in the empirical database
a probabilistic model for the outcome of an inspection is
constructed. Since by construction the signature of an in-
spection depends on the true number N of defects in the
corresponding document, the probabilistic model is param-
eterized by N, similar to the capture-recapture models.

Given the outcome of an inspection, a maximum likeli-
hood estimation for the defect content of the document is
performed. Since there is an equivalence relation involved
in computing signatures, the interval estimate method
yields a whole range of values which is likely to contain
the true value of the number of defects in the document
(interval estimate). From the interval estimate, various
point estimates can be derived. For example, the lower
boundary of the interval estimate can serve as a point esti-
mate. Each interval estimate comes with a confidence level
which indicates whether the estimate should be considered
reliable or not.

It can be necessary to subdivide the dataset according to,
for example, the document type, and use only the relevant
part of the dataset as input for constructing the probabilis-
tic model. The need to subdivide the dataset is indicated
by the confidence levels of the interval estimates when per-
forming a jackknife on the full dataset. There is no need
to subdivide the empirical dataset when using our machine
learning approach: The regression functions represented
by the neural networks automatically adapt to small and
inhomogeneous datasets.

When performing a jackknife on the empirical dataset
from section II, the confidence levels indicate that this
dataset must be split according to the document type
(generic versus NASA). The confidence levels also show
that the NASA half of the dataset is too inhomogeneous
to derive valid interval estimates, see [16] for the details.
Therefore, IEM provides estimates only for the inspections
A1 to B4. We take the lower boundary of an interval esti-
mate as the corresponding point estimate.

Table VII shows that the mean of the absolute rela-
tive errors for IEM is 6.6 percent for the inspections A1
to B4. The interval estimate method clearly outperforms
the capture-recapture and detection profile method on the
generic documents. The interval estimate method and our
machine learning approach have a similar performance for
the generic documents. The main difference is, though,
that our novel machine learning approach also provides re-
liable estimates for the NASA documents, for which the
interval estimate method does not provide estimates.

VII. Conclusions

In this paper, we have shown how machine learning can
be used to solve the defect content estimation problem for
software inspections. As opposed to the standard methods
for estimating the defect content, our novel approach not
only uses the zero-one matrix of an inspection, but also

an empirical database collected during past inspections as
input for computing the estimate.

Our approach identifies defect content estimation for
software inspections as a non-linear regression problem. A
major motivation for our approach was the discovery that
some features of an inspection can carry significant non-
linear information about the defect content of the inspected
document. Using this information can greatly improve the
accuracy of the estimates.

In order to exploit the non-linear information carried by
some features one must go beyond the scope of linear re-
gression. We have deliberately chosen one particular ma-
chine learning technique, neural networks, for solving the
regression problem. Neural networks are a mature tech-
nique that we are familiar with and that we have already
successfully applied elsewhere. Other non-linear regression
techniques might do as well, but this is subject to further
research.

Besides neural networks, we apply other techniques
from machine learning, including a general feature selec-
tion scheme based on mutual information and a Bayesian
methods-based model selection technique. The final regres-
sion model depends on the concrete dataset in two ways:
which features are selected as input depends on the data, as
well as which function is learned by the networks. Selecting
a promising set of features as input is important in order
to gain a strong predictive performance of the regression
model.

We have validated our machine learning approach for
estimating the defect content after an inspection using a
known empirical inspection dataset. The main advantages
of our machine learning approach which we have observed
on this dataset include:
• Our approach yielded much more accurate estimates

than the standard estimation methods such as capture-
recapture and detection profile.

• Our approach gave clear guidelines which information
about an inspection to select as input for estimating.

• Our approach detected and exploited non-linear rela-
tionships between the features of an inspection and the
defect content of the document.

• Our approach worked well with a small dataset, leaving
the whole dataset for training.

• Our approach automatically adapted to different doc-
ument types and sizes, reading techniques, and team
sizes, as represented in the dataset.

More validation is needed using other empirical datasets,
preferably industry-scale datasets. In order to compile such
a dataset, a defect tracking system must be in use to trace
each defect back to the documents where the defect was
introduced.

The estimated number of residual defects in code often is
used as a predictor for the future reliability of the software
in operation. This is problematic and has been critized, see
the overview article [9] . The difficulty is to predict which
defects are likely to lead to failures; experience suggests
that a small number of the defects leads to a large fraction
of the observed failures. Despite this problem, the defect

11

content estimate remains an important management tool
for making informed decisions about the next development
steps, especially for documents other than code.

The methodology we have described in this paper for
building defect content estimation models for software in-
spections can be deployed with little effort in a business
environment. The whole estimation process can run auto-
matically without constant interaction by a machine learn-
ing specialist. In particular, the neural network models can
automatically adapt to new empirical data.

VIII. Acknowledgements

We would like to thank Vic Basili and Forrest Shull from
the University of Maryland who generously provided the
zero-one matrices from their 1994 and 1995 inspection ex-
periments.

References

[1] Basili, Green, Laitenberger, Lanubile, Shull, Sorumgard, and
Zelkowitz. The empirical investigation of perspective-based read-
ing. Empirical Software Engineering, 1(2):133–164, 1996.

[2] Biffl and Grossmann. Evaluating the accuracy of defect estima-
tion models based on inspection data from two inspection cycles.
In Proceedings International Conference on Software Engineer-
ing ICSE, volume 23, pages 145–154, 2001.

[3] Bishop. Neural Networks for Pattern Recognition. Oxford Press,
1995.

[4] Briand, El-Emam, and Freimut. A comparison and integration
of capture-recapture models and the detection profile method.
In Proceedings International Symposium on Software Reliability
Engineering ISSRE, volume 9, pages 32–41, 1998.

[5] Briand, El-Emam, Freimut, and Laitenberger. A comprehensive
evaluation of capture-recapture models for estimating software
defect content. IEEE Transactions on Software Engineering,
26(6):518–540, 2000.

[6] Cover and Thomas. Elements of Information Theory. Wiley,
1991.

[7] Ebrahimi. On the statistical analysis of the number of errors
remaining in a software design document after inspection. IEEE
Transactions on Software Engineering, 23(8):529–532, 1997.

[8] Eick, Loader, Long, Votta, and Vander Wiel. Estimating soft-
ware fault content before coding. In Proceedings International
Conference on Software Engineering ICSE, volume 14, pages
59–65, 1992.

[9] Fenton and Neil. A critique of software defect prediction mod-
els. IEEE Transactions on Software Engineering, 25(5):675–689,
1999.

[10] Gilb and Graham. Software Inspection. Addison-Wesley, 1993.
[11] Karunanithi, Whitley, and Malaiya. Prediction of software reli-

ability using connectionist models. IEEE Transactions on Soft-
ware Engineering, 18(7):563–574, 1992.

[12] Khoshgoftaar, Pandya, and More. A neural network approach
for predicting software development faults. In Proceedings In-
ternational Symposium on Software Reliability Engineering IS-
SRE, volume 3, pages 83–89, 1992.

[13] Khoshgoftaar and Szabo. Using neural networks to predict soft-
ware faults during testing. IEEE Transactions on Reliability,
45(3):456–462, 1996.

[14] Lanubile and Visaggio. Evaluating predictive quality models
derived from software measures: Lessons learned. Journal of
Systems and Software, 38:225–234, 1997.

[15] MacKay. A practical bayesian framework for backpropagation
networks. Neural Computation, 4(3):448–472, 1992.

[16] Padberg. Empirical interval estimates for the defect content
after an inspection. In International Conference on Software
Engineering ICSE, volume 24, pages 58–68, 2002.

[17] Ragg. Bayesian learning and evolutionary parameter optimiza-
tion. In Proceedings KI 2001: Advances in Artifical Intelligence,
pages 48–62. Springer LNAI 2174, 2001.

[18] Ragg, Menzel, Baum, and Wigbers. Bayesian learning for sales
rate prediction for thousands of retailers. Neurocomputing,
43:127–144, 2002.

[19] Ragg, Padberg, and Schoknecht. Applying machine learning
to solve an estimation problem in software inspections. In Pro-
ceedings International Conference on Artificial Neural Networks
ICANN, pages 516–521. Springer LNCS 2415, 2002.

[20] Riedmiller. Supervised learning in multilayer perceptrons –
from backpropagation to adaptive learning techniques. Interna-
tional Journal of Computer Standards and Interfaces, 16:265–
278, 1994.

[21] Rumelhart, Hinton, and Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

[22] Runeson and Wohlin. An experimental evaluation of an
experience-based capture-recapture method in software code in-
spections. Empirical Software Engineering, 3(3):381–406, 1998.

[23] Silverman. Density Estimation for Statistics and Data Analysis.
Chapman and Hall, 1986.

[24] Vander Wiel and Votta. Assessing software designs using
capture-recapturemethods. IEEE Transactions on Software En-
gineering, 19(11):1045–1054, 1993.

[25] Wohlin and Runeson. Defect content estimations from review
data. In Proceedings International Conference on Software En-
gineering ICSE, volume 20, pages 400–409, 1998.

12

-30

-28

-26

-24

-22

-20

-18

-16

1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m
od

el
 e

vi
de

nc
e

re
la

tiv
e

er
ro

r

number of features

average evidence
min-max range for evidence
jackknife error

Fig. 7. Estimation with different feature vectors.

30

26

22

34

x

x

x x

x
x

x
x

18

14

10

6

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

x
x

x
x

x x
x

x

document

defects

Fig. 8. Capture-recapture method vs. learning.

13

TABLE V

Example for model selection.

hidden units 1 2 3 4 5 6 7 8 9 10

mean evidence -22.6 -22.5 -23.6 -24.0 -25.7 -34.3 -35.3 -40.2 -40.7 -40.8

best evidence -19.5 -20.0 -19.2 -19.3 -18.6 -18.5 -18.5 -19.9 -15.9 -16.3

best test error -3% -3% -3% -3% -3% -3% -7% -3% -3 % -7%

correlation -0.46 -0.86 -0.67 -0.89 -0.77 0.55 0.44 0.25 0.05 -0.02

TABLE VII

Estimates and relative estimation errors for the 16 test patterns using different estimation techniques.

pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 max mean

Mt (MLE) 24 22 25 23 22 21 24 21 11 6 15 15 8 10 14 13

error in % -20 -27 -17 -24 -22 -25 -14 -25 -39 -67 0 0 -47 -33 -7 -13 67% 23.7%

DPM 28 24 29 25 25 20 33 26 12 7 26 19 9 11 32 28

error in % -7 -20 -3 -17 -11 -29 18 -7 -34 -61 73 27 -40 -27 113 87 113% 35.8%

IEM 29 28 30 34 27 27 30 32 – – – – – – – –

error in % -3 -7 0 13 -4 -4 7 14 – – – – – – – – 14% 6.6%

linear 29 28 28 32 29 25 30 26 18 13 16 21 15 18 17 13

error in % -3 -7 -7 7 4 -11 7 -7 0 -28 7 40 0 20 13 -13 40% 10.8%

learning 29 29 29 29 29 29 29 24 15 15 17 15 15 15 15 15

error in % -3 -3 -3 -3 4 4 4 -14 -17 -17 13 0 0 0 0 0 17% 5.3%

