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Abstract
In this paper, the relationship between microstructural properties of steels
and the material parameters in the Preisach model and in the Jiles–Atherton
(JA) model is discussed, in the instance where both models describe
quasi-static hysteretic magnetic behaviour. It is shown how the material
parameters in both hysteresis models should be modified to reflect their
dependence on dislocation density and grain size. The dependence of the
Preisach material parameters on these microstructural features is identified
starting from hysteresis loops calculated by the microstructurally dependent
modified JA model. For the Preisach model, a Lorentzian distribution
function is used for the distribution function. This makes it possible to
compare predictions here to results of an earlier paper in which the
Lorentzian distribution was used for Preisach fits to experimental data for
steels of different grain sizes. Also, in a different earlier paper, it was shown
how the Lorentzian distribution can be formulated so that it connects with
salient features of the JA model. The procedure in this paper enables one to
examine and predict microstructural variations of Preisach parameters in
steels not only for the case of grain size variation but also for the case of
variation in dislocation density.

1. Introduction

In steels, properties like magnetization curves, coercive field,
permeability and loss are principally determined by the
microstructure. The microstructure affects magnetization
processes, like domain wall pinning and domain wall motion,
which are responsible for hysteretic behaviour. Two important
features of the microstructure are: average diameter of the
grains φ and dislocation densities ζd. Grain boundaries present
an obstacle to domain wall motion and act as pinning centres.
Consequently, when the grain size decreases, the pinning of
domain walls due to grain boundaries increases. Moreover,
when the dislocation density increases, dislocations begin to
get entangled, forming strong pinning centres for domain
walls, and so impeding wall motion.

This paper discusses the relation between the microstruc-
tural features φ and ζd and the material parameters in the Jiles–
Atherton (JA) model [1, 2] and the Preisach model [3–5]. The
material-dependent parameters of the JA model were modified
to study variation of magnetic properties with grain size and
dislocation density [6]. In [7], the effect of the average grain
size φ and crystallographic texture on the distribution function

(PDF) in the Preisach model was identified by a large number
of measurements. Here, we interrelate the results of [6, 7].
For this, the magnetization loops from the microstructurally
dependent JA model are used to identify the microstructure
dependence of the material parameters of the Preisach model
via the fitting of Preisach loops to the JA loops. Indeed, the JA
loops show distinct changes due to changing microstructural
features and those same tendencies must, therefore, appear in
the Preisach magnetization loops, generated from a systematic
sampling of the internal loops from the JA model. Finally,
microstructure dependence must also appear in the Preisach
material parameters used in generating the fitted Preisach
loops. Various connections between the Preisach model and
the JA model are discussed in the literature [8–10] and we shall
return to such papers in our discussion later.

2. Hysteresis models

2.1. JA model

In the JA model [1, 2], the total magnetization M is the sum
of a reversible (Mrev) and an irreversible (Mirr) component.
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These components are given by

Mrev = cj(Man − Mirr), (1)

Mirr = Man − kjδ

µ0

dMirr

dHe
. (2)

Here, Man is the anhysteretic magnetization, given as

Man(He) = MsjL

(
He

aj

)
, (3)

where the function L(x) = coth x − 1/x is the so-called
Langevin function, and where He is the effective magnetic
field inside the material, i.e.

He = H + αjMan. (4)

Msj, cj, aj kj and αj are all parameters of the material. The
number δ, taking the value +1 or −1, depending on whether H

is increasing or decreasing, corresponds mathematically with
the hysteresis. Equation (2) is actually a differential equation.
A more transparent form of equation (2) is given by [1, 2]

dMirr

dH
= Man − Mirr

(kjδ/µ0) + αj(Man − Mirr).
(5)

We expect that microstructure will affect all the parameters
subscripted by j, although some more than others. In particular,
grain size and dislocation density have important effects on the
domain wall pinning parameter kj and the effective field scaling
parameter aj, which is a function of the domain density.

2.2. Preisach model

The Preisach model, initially introduced by Preisach [3], is
another accurate method of describing the scalar hysteresis
effects in magnetic materials. According to Preisach’s
approach, the hysteresis model gives as response the
magnetization M as a function of the applied magnetic field
H and its history Hlast. It rests upon the idea of a material
structure containing an infinite set of magnetic dipoles. Each
dipole has a rectangular nonsymmetric hysteresis loop defined
by two characteristic parameters, which are denoted by αp and
βp (βp � αp). In the Preisach model, the state φp of the dipole
at time point t only may take the value +1 or −1. Explicitly,

φp(t) =




+1, in case H(t) > αp or
(βp < H(t) < αp and Hlast > αp),

−1, in case H(t) < βp or
(βp < H(t) < αp and Hlast < βp).

(6)

Here Hlast is the last extreme value of the magnetic field kept
in memory outsite the interval (βp, αp) and which physically
is remembered in the domain structure of the material. In the
moving Preisach model [11], the applied magnetic field H in
(6) is replaced by the effective field He(t) = H(t) + cM(t).
Here, the effective field He(t) is assumed to be equal to the
effective field in the JA model; thus c = αj.

The density of the dipoles is represented by the Preisach
distribution function P(αp, βp), (PDF), characterizing the
material. The resulting magnetization M of the entire material
is obtained from the accumulated magnetization of all the

dipoles. In the moving Preisach model, the magnetization is
then given by

M(He(t), He,past(t)) = 1

2

∫ +∞

−∞
dαp

∫ αp

−∞
dβpP(αp, βp)

×φp(αp, βp, He(t), He,past(t)). (7)

In order to quantify how the PDF changes due to a variation
of grain size or of dislocation density, a Lorentzian PDF is
considered [12]:

P(αp, βp) = k1p

(1 + ((αp − ap)/bp)2)(1 + ((βp + ap)/bp)2)

+δαpβp

(
k2p

1 + (αp/cp)2

)
, αp � βp, (8)

with δαpβp denoting the Kronecker delta. It was proved in [12]
that the Lorentzian distribution formulated in this way is a
suitable distribution function to describe the experimentally
obtained magnetization loops of steels. In particular, the
physical information contained in the longer tail of the
Lorentzian distribution enables a better fit to experimentally
obtained hysteresis data than would be enabled for other types
of distributions, e.g. the Gaussian distribution. Indeed, such
a Lorentzian distribution was used, for example in fitting
Preisach loops to experimental hysteresis curves for steels
of different grain sizes [7]. Finally, in [8], it is shown how
the above-formulated Lorentzian distribution can be related
to important features of the JA model, and for this reason, is
an appropriate choice of distribution function to be used in
connection with relating the Preisach model to the JA model,
despite the fact that another distribution function has also been
used [9, 10] in connecting with other features. More than one
distribution function might be expected to be available for
relating the two models because the fit between the JA model
and the Preisach model cannot be exact when considering the
major cycle as well as symmetric internal loops as we did in
the paper.

3. Influence of microstructure on material
parameters

In order to see how the material parameters of the JA model (i.e.
Msj, aj, αj, kj and cj) and those of the Preisach model (i.e. ap,
bp, cp, k1p and k2p) are related and how they are influenced by
microstructural features (like average grain size and dislocation
density), a set of numerical experiments was performed.

In [6], it was observed that a modification of the grain size
or of the dislocation density corresponds to a variation of the
JA material parameters kj and aj according to

kj = kj0

(
G1 +

G2

φ

) √
ζd, (9a)

aj = aj0

(
G1 +

G2

φ

) √
ζd. (9b)

The remaining parameters in the JA model are independent of φ

and ζd. The reason for the formulation of kj as in equation (9a)
is that parameter kj is a measure of the width of the hysteresis
and is proportional therefore to the coercivity Hc [2], and the
consensus of prior experimental work [6, 13–16] is that the
coercivity predominantly has the dependence on grain size and
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dislocation density exhibited in equation (9a). The reason
that parameter aj has the dependence in equation (9b) is that
the parameter aj is known to be proportional to the domain
density in the demagnetized state [2] and the domain density in
the demagnetized state should be proportional to the pinning
site density, which, in turn, is proportional to kj. Note that
experimental fitting is what drives the dependences used for kj

and aj. Thus, hysteresis curves computed from the JA model
should reflect these experimental dependences.

For a set of values of the grain size φ and of the
dislocation density ζd, the magnetization major cycle as well
as symmetric internal magnetization loops are calculated using
the microstructurally dependent modified JA model. Next, the
five material parameters in the Preisach model, defined in (8),
i.e. ap, bp, cp, k1p and k2p, are fitted in such a way that a good
agreement between the Preisach loops and the original JA loops
was obtained, for various values of φ and ζd.

At the start of the fitting procedure—for a fixed value
of φ and ζd—a five-dimensional mathematical subspace with
coordinate axes ap, bp, cp, k1p and k2p is defined by choosing
in a proper way an upper and lower limit for each material
parameter in the Preisach model. In order to obtain numerically
the set of value for ap, bp, cp, k1p and k2p corresponding to the
best fit, we discretize the whole five-dimensional subspace by
defining a regular grid of discrete points. The set of values
for the five Preisach parameters which give the best agreement
between the Preisach magnetization loops and the JA loops
is obtained using a least-squares method. This least-squares
method minimizes

∑
i (MPreis(Hi)−MJiles(Hi))

2 and takes into
account all discrete points of the regular grid defined in the
whole five-dimensional subspace. MPreis(Hi) is obtained from
(7) and (8) while MJiles(Hi) is calculated using (1)–(5). Hi ,
i = 1, 2, 3, . . . , Nk , are the discrete values for the magnetic
fields considered in the major cycle and the symmetric internal
magnetization loops during the fitting process. In doing the
fitting, we tested several discretization meshlengths in order to
assure that large changes in the fitted Preisach parameters did
not occur in going from one meshlength to another.

Figure 1 depicts the correspondence between the JA
magnetization loops and the Preisach magnetization loops for
different excitation levels for φ and ζd equal to 8 µm and
5×1010 m−2, respectively (major cycle and symmetric internal
magnetization loops). The points shown are for the original
JA loops, and the curves shown are for the Preisach loops.
A good correspondence between the two models is obtained
also with respect to coercive field Hc, differential permeability
µHc at coercive field Hc, remanent induction Br, hysteresis
loss Wh, and other specific material properties that are usually
considered when studying the influence of microstructure. By
incorporating variation of grain size and dislocation density
into the systematic behaviour of the JA loops, we are able
to develop information about the effect of microstructure on
the systematic behaviour of the Preisach loops, and thus we
can obtain information about how the Preisach parameters are
affected by microstructural change.

Two cases were considered: first, variation of the grain
size with constant dislocation density and, second, variation
of dislocation density with constant average grain size. In
this way, the influence of both microstructural properties may
be separated. In both cases, the JA parameters were chosen

as follows: Msj = 1.585 × 106 A m−1, αj = 0.844 × 10−5,
cj = 0.25, G1 = 0.2236 × 10−5 m, G2 = 4.472 × 10−11 m2,
kj0 = 1200 A m−1, aj0 = 1100 A m−1. The JA parameters kj0

and aj0 were chosen so as to let kj and aj vary over a range
which realistically corresponds to fits to known steels [2, 17].
The values for G1 and G2 are the same values as used in [6].
The parameters Msj, αj and cj were chosen similarly to what
was used in earlier papers [2, 17].

First, the grain size was varied from 8 to 40 µm while
the dislocation density remained ζd = 5 × 1010 m−2. The
variation of the magnetization loops due to the variation of
grain size, as well as the correspondence between the JA loops
and the Preisach loops, are illustrated in figure 2. In order

Figure 1. Correspondence between the JA magnetization loops and
the Preisach magnetization loops for different field excitation levels
when fitting the Preisach material parameters starting from the
magnetization loops calculated by the microstructurally dependent
modified JA model.

Figure 2. Variation of the magnetization loops with the grain size φ.
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Figure 3. Normalized ap, bp and k1p as functions of the inverse
grain size. Note that the normalized ap and bp are identical and that
k1p is almost independent of grain size.

not to overload the figure, we deleted the internal loops.
The minor deviation between the two models arises from the
specific shape of the Lorentzian PDF and from the fact that
the Preisach model is a dipole model, which leads to specific
magnetization curves that cannot be precisely the same as those
from the JA model. Figure 3 gives the normalized variation
of the Preisach parameters ap, bp and k1p (normalized with
respect to their maximum). The parameter cp remains constant
(cp = 12.88) when varying the grain size. The parameter k2p

is slightly increasing from 0.100 08 to 0.120 07 when the grain
size increased from 8 to 40 µm.

Next, the dislocation density ζd was varied in the range
(3–36) × 1010 m−2, while the grain size φ was fixed at
20 µm. Again, the JA magnetization loops were calculated
by considering equations (9a) and (9b). The parameters in
the Lorentzian PDF (see equation (8)) were identified in order
to obtain the best fit between the JA loops and the Preisach
magnetization loops according to the procedure described
above. Figure 4 depicts the variation of the magnetization
loops due to the variation of the dislocation density ζd and
confirms the correspondence between the JA loops and the
Preisach magnetization loops. Figure 5 gives the normalized
variation of the Preisach parameters ap, bp, k1p and k2p

(again normalized with respect to their maximum). The
parameter cp remained constant (cp = 12.88) as before, when
varying the dislocation density.

Taking into account the results given in figures 3 and 5,
one may rewrite the parameters ap and bp, which define the
position of the peak and the shape of the peak of the PDF in
the Preisach model, as a function of φ and ζd:

ap = ap0

(
G1 +

G2

φ

) √
ζd (10)

and

bp = bp0

(
G1 +

G2

φ

) √
ζd. (11)

Notice the correspondence with equations (9a) and (9b).

Figure 4. Variation of the magnetization loops with the dislocation
density ζd.

Figure 5. Normalized ap, bp, k1p and k2p as functions of the square
root of the dislocation density at a constant grain size. The
normalized values for ap and bp are identical.

The results of equations (10) and (11) should also be
compared to results for which the PDF parameters were
obtained directly from experimental hysteresis loops for
specimens having varying grain size [7]. The result of
equation (10) for ap is consistent with previous work in which
ap was found to vary as A1 + A2/φ. Parameters cp and k2p

were previously found to be independent of grain size [7], just
as in this paper. On the other hand, in the previous work [7],
parameters bp and k1p were found to be independent of grain
size, whereas here only k1p appears to show approximately
such behaviour. However, this can be clarified as follows.

In the previous study, materials were considered for which
the ap values (position of peak, see figure 1 in [7]) are always
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larger than the bp values (shape of peak, see figure 2 in [7]),
while in this paper, ap < bp (see the normalizing constants
for ap (1.4) and bp (18.7) in figure 2). The consequences
are: (1) when ap > bp, we have more or less a symmetric
distribution along the line αp = −βp in the Preisach plane;
(2) when ap < bp, we have an asymmetric distribution along
the line αp = −βp as the PDF is only defined for αp > βp.
Therefore, the law, according to which bp is varying as a
function of grain size, may be completely different for the two
cases just mentioned (symmetric or asymmetric distribution).
The law for bp (see (11)), which we obtained here, i.e. linear
with respect to the inverse of the grain size, is in accordance
with the observations in [10], where a distribution function was
used for which the authors enforced the peak to be positioned
in the origin of the Preisach plane, i.e. ap = 0 (asymmetric
distribution). Notice that [10] also proposes the JA parameter
kj to vary with φ according to kj = kj0 (G1 + G2/φ), as in
equation (9a). However, in that paper, equation (9b) for aj is
not derived and no dislocation density effects are discussed.

4. Physical interpretation

One may come to the following observations.

(a) The second term on the right-hand side of equation (8),
which is proportional to δαpβp , introduces a reversible
behaviour. Since cp and k2p are reversible parameters,
they do not change with grain size because they are lattice
dependent (the lattice does not change with grain size).

(b) On the contrary, k2p exhibits a dependence on the
dislocation density. If k2p is a lattice-dependent parameter,
then the presence of dislocations must tend to destroy the
lattice symmetry and thus reduce the relative contribution
of the reversible part. Consequently, k2p should decrease.
This decrease in k2p is observed.

(c) In figure 5, k1p does not show the same apparent oscillatory
relationship with the dislocation density as with the grain
size. In fact, there is a monotonic increase of k1p

with dislocation density, which is in agreement with
the decreasing behaviour of k2p. The lattice-dependent
contribution to magnetization (proportional to k2p) is
decreasing, while the microstructurally driven irreversible
part (proportional to k1p) is increasing due to increasing
dislocation density.

5. Conclusions

In order to have a good agreement between the two models
(Preisach and JA) and experimental data, it is sufficient to have
simultaneously the following.

(a) The parameters kj and aj, which in the JA model define
the pinning effects and the anhysteretic curve respectively,
must vary both linearly with 1/φ and must both be
proportional to

√
ζd. The remaining parameters Msj, cj

and αj must remain constant.
(b) The parameters ap and bp, which define position and shape

of the peak in the PDF, vary also linearly with 1/φ and are

also both proportional to
√

ζd. The parameter cp may
not depend on grain size and dislocation density. The
parameters k1p and k2p are not strongly influenced by φ;
they are, respectively, increasing and decreasing functions
of the dislocation density.
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