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Summary

This thesis describes a theoretical study and an industrial application in the area of for-
mal systems development, verification and formal testing using the specification language
CSP-CASL. The latter is a comprehensive specification language which allows to describe
systems in a combined algebraic / process algebraic notation. To this end it integrates the
process algebra CSP and the algebraic specification language CASL.

In this thesis we propose various formal development notions for CSP-CASL capable of
capturing informal vertical and horizontal software development which we typically find
in industrial applications. We provide proof techniques for such development notions and
verification methodologies to prove interesting properties of reactive systems.

We also propose a theoretical framework for formal testing from CSP-CASL specifications.
Here, we present a conformance relation between a physical system and a CSP-CASL spec-
ification. In particular we study the relationship between CSP-CASL development notions
and the implemented system.

The proposed theoretical notions of formal system development, property verification and
formal testing for CSP-CASL, have been successfully applied to two industrial application:
an electronic payment system called EP2 and the starting system of the BR725 ROLLS-
ROYCE jet engine control software.
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T HIS thesis describes a theoretical and industrial application in the area of formal
systems development, verification and formal testing using the specification lan-
guage CSP-CASL.

CSP-CASL [Rog06] integrates specification of data and processes in order to describe in
an expressive way reactive systems. Typically, process algebra have paid little atten-
tion to modelling data, whereas algebraic specification languages have not directly sup-
ported the modeling of concurrent process behavior. CSP-CASL integrates the process
algebra CSP [Hoa85, Ros98, AJS05, Hoa06] with the algebraic specification CASL [Mos04,
ABK+02]. The general idea is to describe reactive systems in the form of processes based
on CSP operators, where the communications of these processes are the values of data
types, which are loosely specified in CASL.

This chapter provides an introduction to the main body of this thesis. We first give a gen-
eral introduction to the notions of formal vertical and horizontal development as well as
the notion of formal testing. We then present the main contribution of this thesis. Finally,
we conclude this chapter by giving the outline of the thesis and the list of articles in which
parts of this work have been published.

1.1 Formal software development and testing

The theoretical aspect of this thesis is concerned with the notions of vertical and hori-
zontal development for CSP-CASL. Vertical development means to change the level of
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4 Chapter 1 Introduction

abstraction, i.e., from an abstract specification to a concrete specification. Horizontal de-
velopment means to enlarge the system with new feature – staying in the same level of
abstraction.

We study new development notions for CSP-CASL capable of capturing informal vertical
and horizontal software development which we typically find in industrial applications.
We provide proof techniques for such development notions and verification methodolo-
gies to prove interesting properties of reactive systems. We present also a theoretical
framework for formal testing from CSP-CASL specifications. Here, we provide a confor-
mance relation between a physical system and a CSP-CASL specification. In particular we
study the relation between CSP-CASL development notions and the implemented system.

In the next two subsections we give a brief introduction to the two main theoretical aspects
that this thesis is concerned with: property preserving system development and formal software
testing.

1.1.1 Property preserving system development

In a vertical development, a system is developed vertically in a step-by-step fashion. Such
an approach has been central to software engineering at least since Wirth’s seminal paper
on program development [Wir71] in 1971. Such a development starts with an abstract
specification, which defines the general setting, e.g., it might define the components and
interfaces involved in the system. In several design steps this abstract specification is
then further developed towards a design specification which can be implemented directly.
In each of these steps some design decisions are taken and implementation issues are
resolved. A design step can for instance refine the type system, or it might set up a basic
dialogue structure. It is essential, however, that these design steps preserve properties.
This idea is captured by the notion of refinement. Refinement is typically performed in
several steps, and at each step we verify that any behavior of the refined model is allowed
by the previous model, thus ensuring that the final detailed model is correct with respect
to the original system-level model. For a notion of refinement to be useful, it should reflect
the ways in which we might want to make concrete our abstract specification.

In the other development direction, horizontal system development, new functionality
or features are added to an existing system. For the corresponding software development
process, this means that the specification of an advanced product is developed by enhance-
ment and combination of basic specifications. Such a concept allows one to capture the
notion of software product lines.

Today, very few software systems are developed from scratch; most systems are derived
by extending or enhancing previous versions. Thus, traditional engineering approaches,
in which a complete system is derived from a given set of informal or formal specifications,
are only partially adequate. This holds in particular for software product lines, where a set
of similar products is targeted. The CMU SEI defines a software product line to be a “set
of software-intensive systems that share a common, managed set of features satisfying the



1.1 Formal software development and testing 5

specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way” [CMU]. Thus, the individual products in a
product line have a similar “look-and-feel”, however, they differ in that one product may
offer more functionality than the other one. In a product line, there are low-end products
with a basic set of features, specialized products for particular markets, and high-end
products which combine many features.

1.1.2 Formal software testing

Dijkstra observed that a major limitation of software testing is that it can only show the
presence of faults, and not their absence [DDH72]. Despite this obvious limitation, soft-
ware testing is recognized as a necessary means of system verification. Even when other
program verification techniques such as static analyses and formal proofs are employed,
testing is still considered necessary to complement such techniques, and to build greater
confidence in the system being developed. In “Testing: A Roadmap” [Har00], M.J. Har-
rold points out that software quality will become the main criteria for success in the soft-
ware industry. She refers to software testing as the critical element in software quality.

It is well accepted that formal specifications can be useful for software testing. M-C Gaudel,
in the article “Testing can be formal too” [Gau95], gives a first formal treatment of testing.
For other pioneering papers survey we refer to [BGM91, BCFG86, Bri88, Cho78, GMH81,
LY94]. On the other side Brinksma in [Bri99] illustrates an overview that formal testing can
be successfully applied to industrial applications.

Systematic testing is the most important quality assurance method in software and sys-
tems design. Testing can be done at all stages during the design, e.g., on unit-, integration-
and system level. System tests often are conceived as black-box-tests, where the inner
structure of the system is hidden from the observer’s view. In contrast to formal verifica-
tion, black-box-testing is concerned with all parts of a computational system – software,
middleware and hardware. The ‘black box’ view abstracts from the actual implementa-
tion details and considers the observable behaviour of the system only. The main purpose
of testing is: on one side to determine that the system under test (SUT) conforms to the
specified intended behaviour; and on the other side to determine whether or not the SUT
contains errors, where an error is a deviation of the actual behaviour from the intended
behaviour of the SUT. If in a systematic test no errors are found, this can increase the
confidence that the system is apt for its intended use.

The computational behaviour of a system can be denoted in a formal way, e.g., as a set
of sequences of input/output events which occur at a certain point of control and obser-
vation (PCO). Such sequences are called traces of the SUT. Testing then becomes the task
of comparing specified and traceable behaviour of a computational system, i.e., checking
whether all intended behaviour is realised by traces, no unintended behaviour can be ob-
served, and other behaviour is neither forced on the system nor inhibited.
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1.2 Project aims and contributions of this thesis

The aims set at the beginning of this Ph.D project can be summarized as follows:

• To define and investigate formal development notions that are capable of mirroring
typical informal development relations as are present in industrial application.

• To provide tool support for analysing CSP-CASL specifications, e.g., to prove dead-
lock freedom, as well as for verifying the formal development relations between
them.

• To set up a testing approach that relates the formal specifications in CSP-CASL with
real world systems.

The main contributions of this thesis are summarised in the following three subsections.

1.2.1 Property preserving development notions for CSP-CASL

We have developed two directions of development notions for CSP-CASL capable of mir-
roring typical vertical and horizontal developments.

For the vertical development, we propose refinement notions based on model class in-
clusion with arbitrary change of signature. Our notions of refinement for CSP-CASL are
based on refinements developed in the context of the single languages CSP and CASL. In
the context of algebraic specification, e.g., [EK99] provides an excellent survey on differ-
ent approaches. For CSP, each of its semantical models comes with a refinement notion
of its own. There are for instance traces refinement, failure/divergences refinement, and
stable failures refinement [Ros98]. For system development one is often interested in liberal
notions of refinements, which allow substantial changes in the design. For system verifica-
tion, however, it is important that refinement steps preserve properties. The latter concept
allows one to verify properties already on abstract specifications – which in general are
less complex than the more concrete ones. The properties, however, are preserved over
the design steps. These two purposes motivate our study of various refinement notions.

We also develop proof support for the proposed development notions of CSP-CASL. For
the refinement notion, we decompose a CSP-CASL refinement into a refinement over CSP

and a refinement over CASL alone. We show how to use existing tools to discharge the
arising proof obligations. Reactive systems often exhibit the undesirable behaviour of
deadlock or divergence (livelock), which both result in lack of progress in the system.
Here, we develop proof techniques based on refinement for proving deadlock freeness
and divergence freeness.

For the horizontal development, we have developed a notion of enhancement for CSP-
CASL. In a horizontal development new functionality or features are added to an exist-
ing system. For the corresponding software development process, this means that the
specification of an advanced product is developed by enhancement, which allows for the
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combination of basic specifications. Such concept allows to capture the notion of software
product lines. Here, we have identified some enhancement patterns that are capable of
capturing some basic horizontal development step. Using such patterns we prove an en-
hancement relation between CSP-CASL specifications.

1.2.2 Testing theory for CSP-CASL

We propose a theory for the evaluation of test cases with respect to the specification lan-
guage CSP-CASL. In a formal systems development process, an abstract specification can
be refined to a concrete implementation, where all design decisions have been fixed and
which has a deterministic behaviour. In our approach, we can build test suites for any
level of abstraction in this process. It is possible that test cases are constructed either from
the specification or independently from it. Therefore, it is possible to structure a test suite
according to the features of the system under test (SUT). Each test case checks the correct
implementation of a certain feature according to a particular specification. The specifica-
tion determines the alphabet of the test suite, and the expected result of each test case. The
expected result is coded in a colouring scheme of test cases. If a test case is constructed
which checks for the presence of a required feature (according to the specification), we de-
fine its colour to be green. If a test case checks for the absence of some unwanted behaviour,
we say that it has the colour red. If the specification does neither require nor disallow the
behaviour tested by the test case, i.e., if an SUT may or may not implement this behaviour,
the colour of the test case is defined to be yellow. During the execution of a test on a partic-
ular SUT, the verdict is determined by comparing the colour of the test case with the actual
behaviour. A test fails, if the colour of the test case is green but the SUT does not exhibit
this behaviour, or if the colour is red but the behaviour can be observed in the SUT. The
execution of a yellow test case yields an inconclusive verdict. Otherwise, the test passes.

Moreover, we develop a theoretical framework to relate the evaluation of test cases with
the notion of vertical and horizontal development in CSP-CASL. In particular for the ver-
tical development we show that test cases developed for abstract specification preserve
their colour under a well-defined refinement notion. This approach ensures that test cases
which are designed at an early stage can be used without modification for the test of a
later development step.

As for horizontal development, we show that test cases developed for a basic specifica-
tion preserve their colour after the enhancement step. In a horizontal development, the
advanced product incorporates features from more basic versions. Even if all features of
the basic products have been thoroughly tested, it is necessary to validate that these fea-
tures still work correctly in the enhanced version. Usually the design and testing of the
basic version is completed before the advanced version is begun; in this case, for all basic
features elaborate test cases are available. Our approach allows to re-use the test cases of
the basic specification in a test suite for the enhanced specification.
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1.2.3 Industrial applications

The presented theoretical framework have been successfully applied to two ‘real’ world
systems. Those are:

Electronic payment system EP2. The EP2 system is an electronic payment system and it
stands for ‘EFT/POS 2000’, short for ‘Electronic Fund Transfer/Point Of Service
2000’. This is a joint project established by a number of (mainly Swiss) financial insti-
tutes and companies in order to define EFT/POS infrastructure for credit, debit, and
electronic purse terminals in Switzerland (www.eftpos2000.ch). The system con-
sists of seven autonomous entities: CardHolder, Point of Service, Attendant, POS
Management, Acquirer, Service Center and Card. These components are centered
around an EP2 Terminal. The EP2 specification consists of twelve documents, each
of which describe the different components or some aspect common to the compo-
nents. The way that the specifications are written is typical of a number of similar
industrial application. CSP-CASL is able to match such a document structure by a
library of specifications, where the informal design steps of the EP2 specification
are mirrored in terms of a formal refinement relation defined in the previous sec-
tions. A first modeling approach of the different levels of EP2 in CSP-CASL has
been described in [GRS05]. Here, we have extended the modeling in more detail by
carrying out the specification of the various EP2 components at different levels of ab-
straction. We have systematically proven the refinement steps of the various level of
specification using CSP-CASL-PROVER [OIR09]. Moreover, we have proven that the
interaction of the EP2 components is deadlock free. Again this is done systematically
using CSP-CASL-PROVER.

For the testing part, we evaluate test cases using CSP-CASL-PROVER. Moreover, we
present a testing framework for a EP2 payment terminal. Such testing framework,
tests the EP2 payment terminal in a hardware-in-the-loop testing fashion.

ROLLS-ROYCE jet engine Here, we apply the theory of testing from CSP-CASL to the
starting system of the jet engine ROLLS-ROYCE BR725 control software. The BR725
is a newly designed jet engine for ultra-long-range and high-speed business jets. It
is part of the BR700 family. We model the starting system in CSP and validate our
model using the CSP simulator PROBE [Ltd03]. We then evaluate the test suites
against the formal model. Such evaluation is done using the model checker
FDR2 [Ltd06]. We execute our test suite in an in-the-loop setting on the so-called
“rig”.

1.3 Synopsis

The rest of the thesis is organized as follows. Chapters 2 to 5 describe the background
material of this thesis.

www.eftpos2000.ch
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• Chapter 2 and 3 introduces the specification languages CSP and CASL respectively.
Here, we outline their key features and present different notions of refinement for
both languages. Both languages are the key ingredient of the specification language
we will concentrate on in this thesis.

• Chapter 4 describes the combination of CSP and CASL to form the specification lan-
guage named CSP-CASL.

• Chapter 5 contains references to approaches which define the context of this thesis
and provides short characterisations of the cited work. Here, we give an overview
of different approaches and formalisms which combines data and process specifi-
cations, as well as notions of system developments. We also give an overview of
related approaches in the area of specification based testing.

Chapters 6 to 8 describe the theoretical framework of property preserving development
notions for CSP-CASL.

• Chapter 6 presents a theory of CSP-CASL refinement and CSP-CASL enhancement.

• Chapter 7 illustrates proof support for CSP-CASL refinement and CSP-CASL enhance-
ment.

• Chapter 8 describes how we can verify interesting properties using the newly intro-
duced refinement notion for CSP-CASL, namely analysis of deadlock and livelock
freedom.

Chapter 9 introduces the theoretical framework of testing from CSP-CASL specifications.

• Section 9.1 illustrates the challenges for CSP-CASL based testing and reasonable ex-
pectations for specification based testing.

• Section 9.2 describes the notion of a CSP-CASL test process and the expected result
of a CSP-CASL test process with respect to a CSP-CASL specification.

• Section 9.4 describes how we execute test cases on the SUT as well as the derivation
of test verdicts.

• Section 10.1 illustrates the relation between CSP-CASL refinement and test evalua-
tion.

• Section 10.2 illustrates the relation between the CSP-CASL enhancement and test
evaluation. In particular we illustrate the notion of test case reuse in the setting of
software product lines.

Chapters 11 and 12 present two industrial applications of the theoretical framework pre-
sented in the previous chapters.

• Chapter 11 introduces an electronic payment system called EP2. Here, we illustrate
the modeling of EP2 in CSP-CASL; we prove the refinement of the different level of
abstraction. We analyze EP2 for deadlock and livelock freedom. We also present the
tool TEV– a testing framework for EP2.
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• Chapter 12 describes the work done by the author during a two months internship
at ROLLS-ROYCE part of the BR725 system verification team. The work concentrates
on the specification-based testing in the context of control software for the jet engine
ROLLS-ROYCE BR725.

Finally, in Chapter 13 we summarize the overall contribution of this work and conclude
the thesis by considering possible future work.

1.4 Publications

Some parts of this thesis have been published in the following articles:

1. Temesghen Kahsai, Greg Holland, Markus Roggenbach, and Bernd-Holger Schlin-
gloff.
TOWARDS FORMAL TESTING OF JET ENGINE ROLLS-ROYCE BR725. In Proceedings
of the 18th International Conference on Concurrency, Specification and Programming,
pp. 217-229, 2009.

2. Temesghen Kahsai and Markus Roggenbach.
PROPERTY PRESERVING REFINEMENT NOTIONS FOR CSP-CASL. In Recent Trends in
Algebraic Development Techniques, LNCS 5486, pp. 206-220, 2009.

3. Temesghen Kahsai, Markus Roggenbach, and Bernd-Holger Schlingloff.
SPECIFICATION-BASED TESTING FOR SOFTWARE PRODUCT LINES. In Software Engi-
neering and Formal Methods 2008, IEEE Computer Society, pp. 149-159, 2008.

4. Temesghen Kahsai, Markus Roggenbach, and Bernd-Holger Schlingloff.
SPECIFICATION-BASED TESTING FOR REFINEMENT. In Software Engineering and For-
mal Methods 2007, IEEE Computer Society, pp. 237-247, 2007.

My main contribution to these papers are respectively:

1. The work described in this paper is the result of my two months internship at ROLLS-
ROYCE. I have done most of the specifications (M. Roggenbach helped in the spec-
ification of one activity diagram - Section 3.2). I have done all the proofs of test
case evaluation and the execution of test cases in the rig (Section 4). Overall, I have
written most of the paper.

2. I wrote the whole introduction section and most of the other sections. Specifically
I have done most of the technical proofs: proof of the decomposition theorem (The-
orem 1), proof of deadlock analysis (Lemma 1 and Theorem 2, 3), proof of livelock
analysis (Lemma 2 and Theorem 4, 5). I wrote the whole section on EP2 (Section 4);
here, I have done all the proofs of refinement, deadlock and livelock freedom.

3. I contribute to the CSP-CASL specification of the remote control unit product line
(Section 3). I wrote the detailed proofs of Lemma 3.1, 3.3 and Theorem 3.5, 4.1. I
have done the detailed proofs of refinement and enhancement of the remote control
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unit. I contributed in proving the colour of the test cases and implemented the SUT
as well as the implementation of the testing environment for the remote control unit
(Section 5).

4. I contributed to the technical proof of well-behaved development notion of data
and process refinement (Section 5.2). I wrote the whole section on specification, im-
plementation and testing of the binary calculator example, as well as the colouring
proof of the various test cases (Section 6).

This thesis contains more results than the one published in the aforementioned papers.
For each paper we indicate the extra results included in this thesis.

1. Nothing more added. (See Chapter 12).

2. The following are new results which are reported in Chapters 6, 7, 8, 11:

• New definition of refinement with arbitrary change of signature in the traces,
stable failure and failures/divergences CSP models (c.f. Lemma 6.1.3, 6.1.4,
6.1.5, 6.1.6, Theorem 6.1.8 and Definition 6.1.9).

• Proof of that process and data refinement with change of signature are special
cases of CSP-CASL refinement (c.f. Definition 6.1.10, 6.1.11 and Lemma 6.1.12).

• Decomposition theorem with change of signature (c.f. Theorem 7.1.1).

• Deadlock analysis with change of signature (c.f. Theorem 8.1.2).

• Livelock analysis with change of signature (c.f. Theorem 8.2.2).

3. Nothing more added. (See Chapters 6, 7 and Sections 10.2, 10.3.).

4. The following are new results which are reported in Chapter 9 and Section 10.1:

• Detailed proof of the syntactic characterization for the traces condition (c.f. The-
orem 9.3.1).

• New syntactic characterization for the failures condition (c.f. Definition 9.3.2,
Theorem 9.3.3, Corollary 9.3.4, Corollary 9.3.5).

• Complete syntactic characterization to prove green, red and yellow test cases.

• Testing with new refinement notion based on arbitrary change of signature (c.f.
Theorem 10.1.1, Theorem 10.1.2).

Moreover the thesis contains some results which are not published yet. Those are related
to the specification, verification and testing of the industrial case study EP2.
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Communicating Sequential Processes
(CSP)

Contents
2.1 CSP – fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 CSP – denotational semantic model . . . . . . . . . . . . . . . . . . . 20

T HE process algebra CSP [Hoa85, Ros98, AJS05, Hoa06] – Communicating Sequential
Processes – is a well established and widely used formalism. In CSP-CASL it is
deployed for the description of the reactive/process part. In this chapter we in-

troduce the language and give an overview of its key features, syntax and semantics. We
present the different denotational models of CSP, namely the traces model, stable-failure
model and failures/divergences model. Each of these semantical model comes with a refine-
ment notion. We also discuss how each semantical model are deployed for the verification
of some interesting properties of concurrent systems.

2.1 CSP – fundamental concepts

Process algebras have proved to be a valuable mathematical tool to reason about the be-
haviour of concurrent and communicating systems. The process algebra CSP is one of a
number of formalisms for modelling and verifying concurrent reactive systems, i.e., systems
are described in terms of interactions with other systems in a concurrent way.

CSP is one of the three process algebras which have historically dominated the field; the
others are CCS (Calculus of Communicating Systems) [Mil89] and ACP (Algebra of Commu-
nicating Processes) [BW90]. Some recent developments of particular interest includes: π-
calculus [Mil99] which introduces the notion of process mobility; spi-calculus [AG97] a
variant of the π-calculus that includes cryptographic features to reason about security pro-
tocols; ambient-calculus [CG98], which introduces the notion of explicit locations.

15
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CSP has been deployed successfully in the industrial context, often applied in areas as
varied as distributed databases [Ros98], parallel algorithms [IRG05], train control systems
[BS99], fault-tolerant systems [BKS97], and analysis of security protocols [RSG+01].

The basic units of abstraction in CSP are processes, the set of communication events or alphabet
of communication and a logic on the alphabet. Here, processes are named entities which
live in some environment. Communications are instantaneous, atomic synchronisations
between processes, and usually carry some semantic content, for instance a value which
could be regarded as a ‘message’. Another assumption about communication events is
that an event occurs only when all its participants are ready to execute it. Communication
names may be prefixed, this is represented by the use of channels. For example, the event
button.1 conceptually represents communication of the value ‘1’ over the channel button.
Here, we are just communicating the value button.1 which intuitively could mean the
pressing of a button that transmits the value ‘1’. Semantically however, channels are just
syntactic sugar – very useful one. A set of communications is called an alphabet; A refers
to the ‘total’ alphabet of communications over which a system of processes is defined. We
will devote much discussion to the alphabet of communication in Chapter 4, where we
introduce CSP-CASL.

A process equation binds a process to a name, which may be referenced by other processes.
Such names may be parameterised; a parameterised process represents a family of pro-
cesses, one for each possible combination of parameter values. In the next sub-section
we describe the syntax of CSP process operators.

2.1.1 CSP – Syntax

Figure 2.1 illustrates the basic CSP processes P. It involves elements a ∈ A as communica-
tions, subsets X, Y ⊆ A as synchronization sets in parallel operators or for hiding certain
communications, uses binary relations R ⊆ A × A in order to describe renaming, and
allows non-further specified formulae ϕ in its conditional.

Let us discuss some of the operators reported in Figure 2.1.

Primitive processes The process SKIP represents successful termination: it never communi-
cates anything in the alphabet, however signals successful termination. Conversely,
STOP represents deadlock: it represents a process which has entered a state in which
is not able to communicate. We also have DIV, representing divergence, which also
is in a state of perpetual non-communication; however the reason for doing so is
different from STOP. The process DIV represents livelock: it is engaging in an infi-
nite sequence of internal, non-observable actions. We will discuss more about such
process in the coming sections.

Action prefix: The process P = a → SKIP, offers the communication a and then behaves
like SKIP, hence it terminates successfully.



2.1 CSP – fundamental concepts 17

P ::= STOP %% deadlock process
| SKIP %% terminating process
| DIV %% divergence process
| a → P %% action prefix
| ?x : X → P %% prefix choice
| P o

9 P %% sequential composition
| P 2 P %% external choice
| P u P) %% internal choice
| P |[ X ]|P %% generalized parallel
| P |[ X |Y ]| P %% alphabetized parallel
| P || P %% synchronous parallel
| P ||| P %% interleaving
| P \ X %% hiding
| P[[R]] %% relational renaming
| if ϕ then P else P %% conditional

a ∈ A and X, Y ⊆ A and R ⊆ A×A
ϕ : formulae.

Figure 2.1: Syntax of basic CSP processes.

Let X be a set of communications, then ?x : X → P(x) is a process which will com-
municate any value x ∈ X and then behaves like P(x). Such operator allows a choice
of values to be communicated. We can use a ‘channeled’ version in the following
way: c?x → P(x), here we communicate c.x. In case we would like to send a value
over a channel, we write c!x → P(x) which is a syntactic sugar for c.x → P(x). Here,
the sending process is just the process of choosing which value is to be synchronized
on.

Sequential composition The process P o
9 Q is a process which behaves like P. Should P

terminates, it behaves like Q. It is very useful for composing named processes, hence
useful for modularity. For example:

P1 = a → SKIP
P2 = c → SKIP
Comp = P1 o

9 P2

The process Comp is equivalent to a → c → SKIP.

Choice operators External choice operator: The process P 2 Q offers the environment the
choice of the first communication of P and Q, and then behaves accordingly. For
example:

ExtC = a → SKIP 2 b → STOP

if the environment offers ‘a’, the process ExtC will communicate ‘a’ and then success-
fully terminate. Otherwise, if the environment offers ‘b’, ExtC will communicate ‘b’
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and then deadlock. If both sides offer the same communication, the choice of which
side is taken internally.

Internal choice operator: The process P u Q behaves either like P or like Q. Here, the
choice is made internally to the process; this means for the environment point of
view the choice is made in a nondeterministic way. For example:

IntC = a → SKIP u b → STOP

If the environment offers ‘a’, the process IntC may choose to communicate ’b’ and
then there is a deadlock between the environment and IntC. Only if the environment
offers both ‘a’ and ‘b’ the process IntC is obliged to communicate, because it must
choose one of the alternatives.

Parallel operators Generalized parallel: In the process P |[ X ]|Q, both P and Q synchronize
on all events in X, and for events outside X both processes proceed independently.
For example:

GenP1 = a → SKIP u c → SKIP
GenP = GenP1 |[ {b, c} ]|GenP1

The process GenP1 can choose internally whether to communicate ‘a’ or ‘c’; putting
two GenP1 in a generalized parallel, both processes must synchronize on everything
in {b, c}. If one of GenP1 chooses to communicate ‘c’, they must both do so. Clearly,
then GenP can deadlock, if one side offers ‘a’ and the other side offers ‘c’.

Alphabetized parallel: Let X and Y be sets of communications, then in the process
P |[ X |Y ]| Q, P is allowed to communicate in the set X, while Q communicates
in the set Y. However, they must agree on events in the intersection X ∩ Y. Thus,
P |[ X |Y ]| Q is equivalent to P |[ X ∩ Y ]|Q.

Synchronous parallel: The process P || Q behaves like P and Q in which every event
of P and Q are totally synchronized; that is, it only communicates events on which
they both agree. Thus, P || Q is equivalent to P |[A ]|Q (or P |[A |A ]| Q), where A
is the alphabet of communications.

Interleaving: The process P ||| Q is a process where P and Q run in parallel, indepen-
dent of one another; if the environment offers a communication which both P and Q
could engage in, exactly one does so, the choice being nondeterministic. Thus, we
have that P ||| Q is equivalent to P |[ {} ]|Q. For example:

IntP = a → b → SKIP ||| c → a → SKIP

The process IntP can initially engage in ‘a’ or ‘c’; supposing it engages in ‘a’, it may
still engage in ‘c’ subsequently: it presents a choice of ‘b’ and ‘a’. Otherwise, if it
initially engages in ‘c’, then it can subsequently only engage in ‘a’, but after that it
might offer ‘a’ and ‘b’, or ‘a’ and ‘c’, depending on the (internally) chosen ‘a’.

Hiding Let X be a set of communications then P \ X is a process which behaves like P
except that any event in X is not observable from outside P \ X.
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Renaming Let R ⊆ A × A be a relation over the alphabet of communication, then the
process P[[R]] behaves like the process P where all the events x of P are renamed in
y for (x, y) ∈ R. For example, let R = {(a, d), (b, j)} be a relation:

P1 = a → STOP 2 b → c → SKIP
Ren = P1[[R]]

The process Ren is equivalent to d → STOP 2 j → c → SKIP.

CSP introduces recursion in the form of systems of process equations. Parameterised pro-
cesses are defined in terms of basic process expressions including also process names (see
Figure 2.1):

P ::= . . .
| PName
| PName(x1, . . . , xn)

Here x1, . . . , xn are variables over A. A CSP process equation is of the form:

CSP equation ::= PName = P
| PName(x1, . . . , xn) = P

Moreover in the CSP literature, two further processes are presented: RUN and CHAOS.

RUNX =?x : X → RUNX
CHAOSX = STOP u (?x : X → CHAOSX)

For a set of events X ∈ A, the process RUNX can always communicate any member of X
desired by the environment. The process CHAOSX can always choose to communicate or
reject any member of X.

Before illustrating the various semantical notion of CSP, in Figure 2.2 we report some
standard CSP notation that will be used in the upcoming sections. For a full glossary of
mathematical notation used in the context of CSP, the reader can refer to [Ros98].

x r y Difference (= {a ∈ x | a /∈ y}).
P(x) Power set (= {y | y ⊆ x}).
〈〉 Empty sequence

〈a1, . . . , an〉 The sequence containing a1, . . . , an in that order.
s a t Concatenation of two sequences .
]s Length of s.

s \ X Hiding all members of X deleted from s.
s � X Restriction s \ (ΣX r X).
s ≤ t prefix order (≡ ∃ u.s a u = t).

Figure 2.2: Standard CSP notation.
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2.2 CSP – denotational semantic model

CSP offers a number of approaches to semantics. A process written in CSP may be un-
derstood in terms of operational semantics (where the process is transformed to a labelled
transition system, with transitions representing communications); or in terms of algebraic
semantics (where properties of a process — such as equivalence to some other process
— may be deduced by syntactic transformations on the process text following a set of al-
gebraic laws); or in terms of denotational semantics (where the process corresponds to a
value in some mathematical model, typically a complete partial order or a complete metric
space). The latter is the dominant one, and of particular interest for our work. In the next
subsections we describe three denotational models.

2.2.1 Traces model – T

The traces model T , denotes a CSP process according to its traces, which are the set of
sequences of communications in which the process is willing to engage.

Let A∗X = A∗ ∪ {s a 〈X〉 | s ∈ A∗} be the alphabet of communications, where X /∈ A
represents the event of successful termination. Formally in the traces model each process
is identified by a set T ⊆ A∗X that satisfies the following healthiness conditions:

T1. T is nonempty; i.e., it always contains the empty trace 〈〉.

T2. T is prefix-closed; i.e., if s a t ∈ T then s ∈ T.

Given a CSP process P, the traces of P are denoted as traces(P). In Figure 2.3 we report the
semantic clauses of the basic processes in the traces model T .

STOP never communicates anything: its set of traces consists only of the empty trace 〈〉;
the traces of an action prefix process are the traces of the prefixed process P, each prefixed
with the event a first communicated and the empty trace added. In the clause of the prefix
choice ?x : X → P, which is the only way to introduce a variable x, every free occurrence
of x in the process P is syntactically substituted by a communication.

As an example let us consider the following processes:

P = a → b → STOP
R = a → b → SKIP |[ {a} ]| a → c → SKIP
Q = (a → SKIP) 2 (b → c → STOP)

Then, the trace set of P, R and Q are given by:

traces(P) = {〈〉, 〈a〉, 〈a, b〉}
traces(R) = {〈〉, 〈a〉, 〈a, b〉, 〈a, b, c〉, 〈a, c〉, 〈a, c, b〉, 〈a, b, c, X〉, 〈a, c, b, X〉}
traces(Q) = {〈〉, 〈a〉, 〈a, X〉, 〈b〉, 〈b, c〉}
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traces(STOP) = {〈〉}
traces(SKIP) = {〈〉, 〈X〉}
traces(DIV) = {〈〉}
traces(a → P) = {〈〉} ∪ {〈a〉a s | s ∈ traces(P)}
traces(?x : X → P) = {〈〉} ∪ {〈a〉a s | s ∈ traces(P[a/x]), a ∈ X}
traces(P o

9 Q) = (traces(P) ∩A∗)
∪ {s a t | s a 〈X〉 ∈ traces(P), t ∈ traces(Q)}

traces(P 2 Q) = traces(P) ∪ traces(Q).
traces(P u Q) = traces(P) ∪ traces(Q).
traces(P |[ X ]|Q) =

⋃ {s |[ X ]| t | s ∈ traces(P) ∧ t ∈ traces(Q)}
traces(P |[ X |Y ]| Q) = {s ∈ (X ∪ Y)∗X | s � X ∪ {X} ∈ traces(P) ∧

s � Y ∪ {X} ∈ traces(Q) }
traces(P || Q) = traces(P) ∩ traces(Q)
traces(P ||| Q) =

⋃ {s ||| t | s ∈ traces(P) ∧ t ∈ traces(Q)}
traces(P \ X) = {s \ X | s ∈ traces(P)}
traces(P[[R]]) = {t | ∃ s ∈ traces(P) . sR∗t}

traces(if ϕ then P else Q) =
{

traces(P); ϕ if evaluates to true
traces(Q); ϕ if evaluates to false

Figure 2.3: Semantic clauses for the traces model T .

DEFINITION 2.2.1 (TRACES REFINEMENT) Let P, Q be arbitrary CSP processes. P is a trace
refinement of Q written as Q vT P if and only if: traces(P) ⊆ traces(Q).

Two processes P and Q are traces-equivalent, P =T Q, if P vT Q and P wT Q, i.e.,
traces(P) = traces(Q). The process STOP is the most refined process in the traces model,
i.e., P vT STOP for all processes P.

The refinement notion in CSP (independent of the semantic model) has many properties
that can be exploited, for example it is transitive:

P v Q ∧Q v T ⇒ P v T

and monotone: if C[.] is any process context, namely a process definition with a slot to put
a process in, then

P v Q ⇒ C[P] v C[Q]

The refinement P v Q is also expressible as the equality P u Q = P. The following lemma
proves such equality.

LEMMA 2.2.2 Let P and Q be arbitrary CSP processes. Then,

P vT Q ⇐⇒ P =T P u Q

PROOF. The trace refinement P vT Q holds if and only if traces(Q) ⊆ traces(P). The trace
inclusion could be rewritten as traces(P) ∪ traces(Q) =T traces(P). Thus, by the definition
of the trace set of u we have that P =T P u Q.
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The model T is the weakest of the three denotational models of CSP that we consider. In
fact, the traces of internal and external choice are indistinguishable. This indicates that
traces(P) does not give a complete description of P, since we would like to be able to
distinguish between P u Q and P 2 Q. For example, the process a → SKIP guarantees
that if the environment is prepared to engage in the event a and then terminate, then it
can engage in the event a and terminate successfully. However, a → SKIP u a → STOP
does not guarantee that it can engage in the event a and terminate successfully if the
environment is ready to engage in the event a and terminates. The traces model identifies
both processes as they have the same traces. However, one of them guarantees that it will
terminate successfully, but the other does not guarantee.

In terms of verification, the traces model can be deployed for the verification of safety
conditions. That is, a process Q which is a trace refinement of a process P, will perform
traces already defined in P and nothing more, i.e., traces(Q) ⊆ traces(P). Safety conditions
are concerned with the exclusion of traces only.

2.2.2 Stable failure model – F

The stable failure model gives a finer information about processes. For instance it allows
us to distinguish between internal and external choice (and much else besides). In partic-
ular, it allows us to detect deadlocked processes. A failure of a process is a pair (s, X), that
describes sets of communications X which a process can fail to accept after executing the
trace s. The set X is called the refusal set; the process can not perform any event in the set
X no matter how long it is offered.

Formally, in the stable failures model, each process is modelled by a pair (T, F) where
T ⊆ A∗X and F ⊆ A∗X × P(AX), satisfying the following healthiness conditions:

T1. T is non-empty and prefix closed.

T2. ∀ s, X : (s, X) ∈ F =⇒ s ∈ T. This asserts that all traces performed by the failures
should be recorded in the traces component T. In other words it establishes consis-
tency between the traces component and the failures component.

T3. ∀ s, X : s a 〈X〉 ∈ T =⇒ (s a 〈X〉, X) ∈ F. If a trace terminates successfully by
producing X, then it should refuse all events in AX at the stable state after s a 〈X〉.

F2. ∀ s, X : (s, X) ∈ F ∧ Y ⊆ X =⇒ (s, Y) ∈ F. This asserts that in a stable state if a set X
is refused, then any subset Y of X should also be refused.

F3. ∀ s, X, Y : (s, X) ∈ F ∧ ∀ a ∈ Y . s a 〈a〉 6∈ T =⇒ (s, X ∪ Y) ∈ F.

This asserts that if a process P can refuse the set X of events in some stable state,
then the same state must also refuse any set of events Y that the process can never
perform after s.
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failures(STOP) = {(〈〉, X) | X ⊆ AX}
failures(SKIP) = {(〈〉, X) | X ⊆ A}⋃{(〈X〉, X) | X ⊆ AX}
failures(DIV) = ∅
failures(a → P) = {(〈〉, X) | a /∈ X}⋃ {(〈a〉a s, X) | (s, X) ∈ failures(P)}
failures(?x : X → P) = {(〈〉, X) | A ∩X = ∅}⋃ {(〈x〉a s, X) | (s, X) ∈ failures(P([a/x])), x ∈ A}
failures(P o

9 Q) = {(s, X) | s ∈ A∗, (s, X ∪ {X}) ∈ failures(P)}⋃{(s a t, X) | s a 〈X〉 ∈ traces(P), (t, X) ∈ failures(Q)}
failures(P 2 Q) = {(〈〉, X) | (〈〉, X) ∈ failures(P) ∩ failures(Q)}⋃{(t, X) | (t, X) ∈ failures(P) ∪ failures(Q), t 6= 〈〉}⋃{(〈〉, X) | X ⊆ A ∧ 〈X〉 ∈ traces(P) ∪ traces(Q)}
failures(P u Q) = failures(P) ∪ failures(Q)
failures(P |[ X ]|Q) = {(u, Y ∪ Z) | Y− (X ∪ {X}) = Z− (X ∪ {X}),

∃ s, t. (s, Y) ∈ failures(P), (t, Z) ∈ failures(Q),
u ∈ s |[ X ]| t}

failures(P \ X) = {(t \ X, Y) | (t, Y ∪X) ∈ failures(P)}
failures(P[[R]]) = {(t, X) | ∃ t′. (t′, t) ∈ R∗, (t′, R−1(X)) ∈ failures(P)}

failures(if ϕ then P else Q) =
{

failures(P); ϕ evaluates to true
failures(Q); ϕ evaluates to false

Figure 2.4: Semantic clauses for the stable failure model F .

F4. ∀ s : s a 〈X〉 ∈ T =⇒ (s,A) ∈ F.

This asserts that if we have any terminating trace s a 〈X〉, these should refuse A at
the stable state after s.

Similar to the trace semantics, Figure 2.4 illustrates the clauses to determine the failures of
the various processes.

In the failures of the renaming operator, R−1(X) = {a | ∃ a′ ∈ X . (a, a′) ∈ X} is the set of
all events that map to X under R.

As an example let us consider the following processes over the alphabet {a, b}:

R = a → STOP u b → STOP
Q = a → STOP 2 b → STOP

The stable failure set of R and Q are given by:

failures(R) = {(〈〉, Y), (〈〉, Z), (〈a〉, X), (〈b〉, X) | X ⊆ {a, b, X}, Y ⊆ {a, X}, Z ⊆ {b, X}}
failures(Q) = {(〈〉, {X}), (〈a〉, X), (〈b〉, X) | X ⊆ {a, b, X}}

Here, R and Q have different failures, i.e., the stable failure model F can distinguish be-
tween internal and external choice.

DEFINITION 2.2.3 (STABLE FAILURE REFINEMENT) Let P, Q be arbitrary CSP processes. P
is a stable failure refinement of Q written as Q vF P if and only if: traces(P) ⊆ traces(Q) ∧
failures(P) ⊆ failures(Q).
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In other words, if every trace s of Q is possible for P and every refusal after this trace is
possible for P. Q can neither accept an event nor refuse unless P does. Two processes P and
Q are stable failure-equivalent, P =F Q, if P vF Q and P wF Q, i.e., traces(P) = traces(Q)
and failures(P) = failures(Q). The bottom element in vF is (A∗X,A∗X × P(AX), while its
top element is (〈〉, ∅).

2.2.2.1 Deadlock analysis in CSP

Deadlock is a phenomenon pertaining to networks of communicating processes which
occur when two processes can not agree to communicate with each other, thus the whole
system becomes permanently frozen. This is potentially catastrophic in safety-critical com-
puting applications. A network which can never exhibit deadlock is said to be deadlock-
free.

The deadlock problem was first identified by Dijkstra [Dij02] in the early days of multi-
user operating systems. Early work focused on the scenario of user-resource networks,
where a collection of user processes compete for allocation of a set of shared resources,
without any direct communication between the user processes.

In CSP deadlock is represented by the process STOP, and it has

({〈〉}, {(〈〉, X) | X ⊆ AX}) ∈ P(A∗X)× P(A∗X × P(AX))

as its denotation in F , i.e., the process STOP can perform only the empty trace, and after
the empty trace the process STOP can refuse to engage in all events. In CSP, a process P is
considered to be deadlock free, if the process P after performing a trace s never becomes
equivalent to the process STOP.

DEFINITION 2.2.4 A process P is deadlock-free in CSP iff

∀ s ∈ A∗.(s,AX) /∈ failures(P).

This definition is justified, as in the model F the set of stable failures is required to be
closed under the subset-relation: (s, X) ∈ failures(P) ∧ Y ⊆ X ⇒ (s, Y) ∈ failures(P). In
other words: Before termination, the process P can never refuse all events; there is always
some event that P can perform. Moreover, the stable failure refinement notion preserves
the deadlock-freeness of a process. That is, if P is deadlock free and P vF Q, then Q is
deadlock free.

THEOREM 2.2.5 Let P and Q be processes such that P is deadlock free and P vF Q. Then Q is
deadlock free.

PROOF. Let P vF Q and let Q be a deadlocked process. We show that also P is a dead-
locked process. Let Q have a deadlock, i.e., there exists s ∈ A∗ with (s,A∗X) ∈ failures(Q).
From the stable failure refinement (vF ) arguments, we know that failures(Q) ⊆ failures(P).
Hence, (s,A∗X) ∈ failures(P) and P is a deadlocked process.
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Deadlock analysis in CSP has been studied in [Ros98], and an industrial application has
been described in [BKS97]. Tools for deadlock analysis are developed in [IRG05, IR].

2.2.3 Failures divergences model – N

This model has long been taken as the ’standard’ model for CSP. Here, the processes are
represented by two sets of behaviors: the failures and the divergences. The divergences of
a process are the finite traces on which the process can perform an infinite sequence of
internal actions. In this model each process P is modeled by the pair1

(failures⊥(P), divergences(P))

where:

• failures⊥(P) is the set of all stable failures (s, X) (where s is a trace and X is a set of
actions that the process can refuse in some stable state after s (unable to perform τ

or X), or results from state after s which can perform X and X ⊆ A), together with
all the pairs of the form (s, X) for s ∈ divergences(P).

• divergences(P) is the (extension-closed) set of traces s on which a process can diverge.

In such model, if s is a trace that process P can perform then either P diverges after s or
reaches a stable state or one that can perform X.

Formally the failures/divergences model N is defined to be the pairs (F⊥, D) satisfying
the following healthiness condition (where s, t range over A∗X and X, Y over P(AX)):

F.1 traces⊥(P) = {t | (t, X) ∈ F} is non-empty and prefix closed.

F.2 ∀ s, X : (s, X) ∈ F and Y ⊆ X then (s, Y) ∈ F.

F.3 ∀ s, X : (s, X) ∈ F and ∀ a ∈ Y : s a 〈a〉 /∈ traces⊥(P) implies (s, X ∪ Y) ∈ F.

F.4 ∀ s : s a 〈X〉 ∈ traces⊥(P) then (s,A) ∈ F.

D.1 ∀ s : s ∈ D∩A∗ and t ∈ A∗X then s a t ∈ D.

D.2 ∀ s : s ∈ D then (s, X) ∈ F.
This adds all divergences-related failures of F.

D.3 ∀ s : s a 〈X〉 ∈ D then s ∈ D.
This ensures that we don’t distinguish between how processes behaves after success-
ful termination.

Figure 2.5 illustrates the clauses to determine the divergences of some processes.

1In the standard CSP literature the failure set in the failures/divergences model is denoted as failures⊥(P).
However, in this thesis will be denoted as failures⊥(P). This is to avoid, later in the thesis, confusion with
notation out of the context in algebraic specification.
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divergences(STOP) = ∅
divergences(SKIP) = ∅
divergences(DIV) = A∗X

divergences(a → P) = {〈〉} ∪ {〈a〉a s | s ∈ divergences(P)}
divergences(?x : X → P) = {〈〉} ∪ {〈a〉a s | s ∈ divergences(P[a/x]), a ∈ X}
divergences(P o

9 Q) = divergences(P)⋃ {s a t | s a 〈X〉 ∈ traces⊥(P), t ∈ divergences(Q)}
divergences(P 2 Q) = divergences(P) ∪ divergences(Q).
divergences(P u Q) = divergences(P) ∪ divergences(Q).
divergences(P |[ X ]|Q) = {u a v | ∃ s ∈ traces⊥(P), t ∈ traces⊥(Q).

u ∈ (s |[ X ]| t) ∩A∗

(s ∈ divergences(P) ∨ t ∈ divergences(Q))}
divergences(P \ X) = {(s \ X) a t | s ∈ divergences(P)}⋃ {(u \ X) a t | u ∈ Aw ∧ (u \ X) finite

∧∀ s < u . s ∈ traces⊥(P)}
divergences(P[[R]]) = {s′ a t | ∃ s ∈ divergences(P) ∩A∗ . sR∗t}

divergences(if ϕ then P else Q) =
{

divergences(P); ϕ evaluates to true
divergences(Q); ϕ evaluates to false

Figure 2.5: Semantic clauses for the failures/divergences model N .

DEFINITION 2.2.6 (FAILURES/DIVERGENCES REFINEMENT) Let P, Q be arbitrary CSP pro-
cesses. P is a failures-divergences refinement of Q written as Q vN P if and only if: failures⊥(P) ⊆
failures⊥(Q) ∧ divergences(P) ⊆ divergences(Q).

2.2.3.1 Livelock analysis in CSP

A process is said to diverge or livelock if it reaches a state from which it may forever com-
pute internally through an infinite sequence of invisible actions. This is clearly a highly
undesirable feature of the process, described by some as “even worse than deadlock”
[Hoa85]. Livelock may invalidate certain analysis methodologies, and is often caused
by a bug in the modeling. However the possibility of writing down a divergent process
arises from the presence of two crucial constructs: hiding and ill-formed recursive processes.
Hiding turns a visible action into an invisible one. For example, let us consider the process
P = a → P, which performs an infinite stream of a’s. If one now conceals the event ‘a’ in
this process

P = (a → P) \ {a}
it no longer becomes possible to observe any behaviour of this process.

The CSP process DIV represents this phenomenon: immediately, it can refuse every event,
and it diverges after any trace. DIV is the least refined process in the vN model. The
process DIV has

(A∗X × P(AX),A∗X) ∈ P(A∗X × P(AX))× P(A∗X)
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as its semantics over N . Then, a process is said to be free of divergence (or livelock free)
if after carrying out a sequence of events, its denotation is different from DIV.

DEFINITION 2.2.7 A process P is said to be livelock free iff one of the following conditions holds:

C1. ∀ s ∈ A∗.{(t, X) | (s a t, X) ∈ failures(P)} 6= A∗X ×P(AX)

C2. ∀ s ∈ A∗.{t | (s a t) ∈ divergences(P)} 6= A∗X.

The failures/divergences refinement notion preserves the livelock freeness of a process.
That is, if P is livelock free and P vN Q, then Q is livelock free.

THEOREM 2.2.8 Let P and Q be processes such that P is livelock free and P vN Q. Then Q is
livelock free.

PROOF. Let P vN Q and Q be a livelocked process. We show that also P is a live-
locked process. Let Q have a livelock due to C.2, i.e., for all s ∈ A∗ with {t | (s a t) ∈
divergences(P)} = A∗X. From the failures/divergences refinement (vN ) definition, we
know that divergences(Q) ⊆ divergences(P). Hence, {t | (s a t) ∈ divergences(P)} = A∗X

and P is a livelocked process. We can draw the same conclusion following the failures
argument, w.r.t., C.1 of Definition 2.2.7.

Livelock analysis in CSP has been applied to an industrial application in [SPK99].

2.2.4 Analysing CSP recursion

In this section we briefly present how the semantics of recursive processes is defined in
CSP. The semantics of recursive processes in CSP is determined in terms of fixed points.
CSP offers two standard approaches to deal with fixed points: complete partial orders (cpo)
or complete metric spaces (cms). These two approaches follow a similar pattern: the first step
consists of proving that the domain of a given CSP model is a cms or a cpo, respectively. As
a particularity of CSP, metric spaces are introduced in terms of so-called restriction spaces.
The second step consists of proving that the various CSP operators satisfy the pre-requisite
properties, namely contractiveness for cms and continuity for cpo.

In the case of cms, Banach’s fixed point theorem is employed, while for the cpo approach
Tarski’s fixed point theorem is used. Banach’s theorem leads to a unique fixed point, while
Tarski’s theorem does not guarantee uniqueness. Here, the least fixed point is chosen in
the CSP models T and N , while the largest fixed point is chosen for the model F .

In order to prove properties of a recursive process in CSP, for example that Q refines P,
both the cms and the cpo approach offer as a technique the so-called fixed point induction.

In the CSP literature recursive processes are written in an equational style, for example:

P1 = a → b → P2

P2 = c → d → P2
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The Tarski fixed point theorem guarantees that a solution exists to the equations X = F(X),
for X an element in some domain D.

Let P = exp(P) be a process equation in CSP. CSP defines for each equation exp an un-
derlying function fexp on the domain. Given fexp, in the traces domain the semantics of the
above process equation is defined as

traces(P = exp(P)) =
⋃

n∈N

{f n
exp(⊥) | n > 0}

As all CSP operators are continuous in the traces domain, such a solution always exists.
This means that the trace set of P is determined by iteratively applying the function fexp

starting with the minimal element ⊥ of T . As illustrated previously, in the case of the
traces model the minimal element is identified by the process STOP.

For example, let us consider the trace set of the process Beep = beep → Beep. The induced
semantic function F(Beep) is {〈〉 ∪ {〈beep〉a t | t ∈ Beep}. The successive iterations F(Beep)
yields:

F0(⊥) = ⊥ = {〈〉}
F1(⊥) = F(F0(⊥)) = {〈beep〉, 〈〉}
F2(⊥) = F(F1(⊥)) = {〈beep, beep〉, 〈beep〉, 〈〉}
...

Taking the union of all the values yields the trace semantic of Beep; thus, traces(Beep) =
{tr | tr ≤ beep∗}, i.e., the prefixed closed set of traces. Here, beep∗ is a regular expression
where ∗ denotes Kleene’s star.

2.2.5 Tools for CSP

CSP’s practical success is founded on well developed tool support. Here we describe some
successful tools developed for CSP. In order to support some of these tools, a machine
readable version of CSP (CSP-M) is introduced, this is described in detailed in [Ros98,
Sca98].

Data in CSP-M is defined using a purely functional programming language with a strong
static type system, requiring explicit type declarations for channels and data types. For a
concrete example, let us consider the following specification taken from the FDR2 distri-
bution (www.fsel.com/software.html).

-- First, the set of values to be communicated
datatype FRUIT = apples | oranges | pears

-- Channel declarations
channel left,right,mid : FRUIT
channel ack

www.fsel.com/software.html
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-- The specification is simply a single place buffer
COPY = left ? x -> right ! x -> COPY

-- The implementation consists of two processes
SEND = left ? x -> mid ! x -> ack -> SEND
REC = mid ? x -> right ! x -> ack -> REC

-- These components are composed in parallel
-- and the internal communication is hidden
SYSTEM = (SEND [| {| mid, ack |} |] REC) \ {| mid, ack |}

-- Checking that "SYSTEM" is correct implementation of "COPY"
assert COPY [FD= SYSTEM

-- In fact, the processes are equal, as shown by
assert SYSTEM [FD= COPY

This example specifies a single-place buffer implemented over two channels, left and
right. It includes two specifications of such a buffer, and asserts that they are equivalent.
First an enumerated type is defined: FRUIT. Channels left,right and mid communi-
cate values of type FRUIT. The channel ack is singleton-typed. The abstract specification
COPY, states that a buffer’s behaviour is to repeatedly read some value on channel left,
bind it to the local variable x, and then write it out on the channel right. Then SYSTEM
is a concrete specification; here the receiving and sending parts are separate processes, i.e.,
SEND and REC. Those processes they synchronise on the channel mid and uses the channel
ack to proceed in lockstep. The channels mid and ack are then hidden from everything
outside the process SYSTEM. Finally, we assert that over the failures/divergences model
([FD =), the processes COPY and SYSTEM are equivalent.

We now list some successful tools developed for CSP:

FDR2 [Ltd06] is a model checking tool developed by Formal Systems (Europe). Specif-
ically, it allows us to check whether or not a process refines another, in each of the
three semantic models. It also performs checks for determinism, deadlock-freedom
and divergence-freedom. The tool takes as input a text file containing process de-
scriptions written in CSP-M.

PROBE [Ltd03] is an animator developed by Formal Systems (Europe). PROBE allows
you to load a CSP script file, then simulate some arbitrary CSP process description
and interact with it. In some sense, this tool allows the user to act as the environment
and to choose how much control he wants over the process.

CSP-PROVER [IR05, IRG05, IR06, IR07, IR08] is an interactive theorem prover built upon
Isabelle/HOL [NPW02] . CSP-PROVER is dedicated to refinement proofs within the
process algebra CSP. It is generic in the models of CSP that can be used. Currently
the trace model T and the stable-failures model F are available. CSP-PROVER pro-
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vides a deep-encoding of CSP within Isabelle/HOL; this means that the syntax and
semantics of CSP processes have been encoded within the logical framework of Is-
abelle/HOL. CSP-PROVER supports three methods for allowing the user to prove
process refinements, namely syntactical, semantical and semi-automatic proofs.
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C ASL stands for Common Algebraic Specification Language. It’s a specification lan-
guage designed by the Common Framework Initiative for algebraic specification and
development (CoFI). In this chapter we describe the main features of CASL follow-

ing [BM04, Mos04]. Section 3.1 describes the fundamental concepts of CASL, while in
Section 3.2 we describe the institutional framework of CASL. Here, we illustrate some
institutions of CASL. Finally, in Section 3.3 we present some notions of refinement for
CASL.

3.1 CASL – fundamental concepts

The aim of the CoFI project was to design a Common Framework for Algebraic Specification
and Development — an attempt to create a de facto standard framework for algebraic spec-
ification, providing a family of languages which are coherent, and are extensions or re-
strictions of some main algebraic specification language. This was motivated by the ex-
istence of a number of competing algebraic specification languages developed over the
years, with varying levels of tool support and industrial uptake; major examples include
ACT-ONE/TWO [EM85, CEW93], OBJ [GWM+93] and functional CafeOBJ [DF98], Extended
ML [KST97], Larch [GH93], ASF [BHK89], ASF-SDF [Kli93, DHK96] and Maude [MFS+07].

31
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3.1.1 Overview of CASL

CASL provides basic specifications consisting of many-sorted signatures with subsorting,
partial functions, sort generation constraints and axioms written in first order logic with
equality.

CASL consists of several layers, including basic (unstructured) specifications, structured
specifications and architectural specifications. We give a brief overview of the constructs
for writing basic specifications in CASL. A detailed description of the CASL language and
its semantics can be found in the “CASL Reference Manual” [Mos04].

A CASL basic specification consists of a set of declarations of symbols (i.e., names) for sorts
(the data types of the specification), symbols and profiles for operations (total and partial
functions on the sorts), symbols and profiles for predicates (relations on the sorts), and a
set of axioms and constraints which restrict the interpretations of the declared symbols. As
noted below, such specifications may be named for reference in structured specifications
and named specifications may be generic, i.e., include parameterised elements. The ax-
ioms are formulas in two–valued first order logic with equality (FOL=), with the usual
connectives and universal quantifiers; furthermore, they may make assertions regarding
definedness (e.g. of the results of partial functions) and subsorting.

CASL includes sort generation constraints to further control the contents of the Σ-algebras’
carrier sets. The models of a loose specification (the default interpretation) include all
those with the properties defined by the specification’s axioms, without further restraint
on the carrier sets (so for example trivial carriers such as singletons will tend to be in-
cluded); CASL also allows for generated and free datatypes. If a sort is declared as a gener-
ated datatype, values of the sort are built only using the sort’s provided constructors (‘no
junk’ – this provides an induction proof principle on such types); if a sort is declared as
a free datatype, it is generated and furthermore, values denoted by different constructor
terms are necessarily distinct (‘no confusion’).

We now illustrate some of the concepts mentioned above through the following example:
monoid specification in CASL.

spec MONOID =
sort Element
ops n : Element; @: Element× Element → Element;
axioms

vars x, y, z : Element
. n@x = x %(left unit 1)%
. x@n = x %(right unit 1)%
. (x@y)@z = x@(y@z) %(associativity)%

end

This example illustrates: a sort name declaration, two operations, one of which is 0-ary
and hence defines a constant, and three axioms on the items declared. The semantics
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of such a specification consists of a a many-sorted signature Σ(MONOID), and a class of
Σ(MONOID)-algebras corresponding to interpretations of the signature in which the ax-
ioms and constraints are satisfied. The Σ-algebra contains carrier sets corresponding to
Σ’s sorts, and functions and relations corresponding to Σ’s operations and predicates. In
the monoid example, the class of Σ-algebras forming this specification model includes the
natural numbers under multiplication with an identity of 1, the natural numbers under
addition with an identity of 0, and lists under concatenation with an identity of the empty
list.

A basic CASL specification may include declarations of subsorts. Subsorts are interpreted
by arbitrary embeddings (1-1 functions) between the sorts’ corresponding carrier sets. In
the following example, we illustrate a subsort declaration in CASL.

spec VEHICLE =
free type Nat ::= 0 | suc(Nat)
sorts Car, Bicycle < Vehicle
ops speed : Vehicle → Nat;

engine : Car → Nat
end

The above example introduces three sorts, Car, Bicycle and Vehicle. It declares both Car and
Bicycle to be subsorts of Vehicle. A subsort declaration entails that any term of a subsort is
also a term of the supersort, so here, any term of sort Car is also a term of sort Vehicle. Here
we can apply the operation speed to it. But we can also define operations on the subsorts,
for instance the operation engine can only be applied to Car.

Structured CASL specifications These are specifications which are built on basic specifi-
cations by allowing them to be combined into larger and more complex specifica-
tions with the same underlying semantics. Specifically, a structured specification
can combine basic specifications, references to named specifications, and instances of
generic (i.e., parameterised) specifications, using constructs of extension, union, hiding
and renaming. Like a basic specification, the semantics of a structured specification
consists of a signature Σ and a class of Σ-algebras. Structured specifications allow us
to build complex specifications out of simpler ones; architectural specifications explic-
itly describe the intended structure/composition of a system in terms of its compo-
nents; they target the design phase of development, in which the decomposition of a
system into components/modules for further development and implementation in
target languages is considered. We do not consider architectural specifications any
further in this work.

CASL Libraries These are “named collections of named specifications”, and provide the
highest-level organizational mechanism in CASL, collecting specifications into li-
braries identified by name and version number, with the aim of promoting reuse
of specifications.
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3.2 CASL – the institutional framework

CASL integrates subsorts, partiality, first-order logic and induction (known also as sort
generation constraints). In this section, we present the institutional framework of many-
sorted partial first-order logic with sort generation constraints and equality PCFOL=, and
SubPCFOL= which adds subsorting. We first give a general description of institutions.

Institutions capture the nature of logic systems and are the language used to define CASL

and CSP-CASL. Institution were introduced by Joseph Goguen and Rod Burstall in the late
1970’s in order to deal with the large volume of logical systems being used to developed
in various subjects in computer science. The use of institutions allows to create specifica-
tion languages, proof calculus and tools which are independent of the underlying logical
system. The institutional framework allows one to relate and translate institutions with
other institutions.

Informally, an institution consists of a collection of signatures with signature morphisms
and for each signature a collection of sentences, models and a satisfaction relation between
the sentences and models such that the satisfaction condition holds. The satisfaction condi-
tion ensures that if one translates a sentence under a signature with a signature morphism,
then the satisfaction of a translated sentence and a model is preserved.

The formal definition of institutions rely on category theory. An institution I as defined by
Mossakowski in [Mos02], is a quadruple (SIGN, sen, mod, |=) where:

• SIGN is a category.

• sen : SIGN → SET is a functor.

• mod : (SIGN)op → CAT is a functor.

• |=Σ⊆ |mod(Σ)| × sen(Σ), for each Σ : SIGN,

such that the satisfaction condition holds: for every σ : Σ → Σ′ in SIGN,

mod(σ)(M′) |=Σ ϕ ⇔ M′ |=Σ′ sen(σ)(ϕ)

holds for every ϕ ∈ sen(Σ) and for every M′ ∈ |mod(Σ′)|.

The category SIGN denotes the collection of signatures and signature morphism which
map symbols in a compatible way.

The functor sen : SIGN → SET gives for each signature Σ : SIGN, the set of sentences
sen(Σ) over the signature Σ, and for each signature morphism σ : Σ → Σ′, the map
sen(σ) : sen(Σ) → sen(Σ′) which translates sentences built over Σ to sentences built over
Σ′.

The functor mod : (SIGN)op → CAT gives for each signature Σ : SIGN, the category
of models for that signature mod(Σ), and for each signature morphism σ : Σ → Σ′, the
reduct functor mod(σ) : mod(Σ′) → mod(Σ) which reduces models over the signature
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SIGN SET

CAT

mod(Σ) mod(Σ′)

sen

mod

Σ Σ′
σ

sen(Σ) sen(Σ′)
sen(σ)

|σ M M′h
M|σ M′|σ

h|σ

Figure 3.1: The institutional framework.

Σ′ to models over the signature Σ. Figure 3.1 illustrates the overall framework of an insti-
tution.

Some basic shorthand notations that are often used when dealing with institutions: we
write σ(ϕ) for sen(σ)(ϕ), and M′ |σ for mod(σ)(M′). Hence, for each σ : Σ → Σ′ in SIGN,
the satisfaction condition becomes

M′|σ |=Σ ϕ ⇔ M′ |=Σ′ σ(ϕ)

for each M′ ∈ |mod(Σ′)| and ϕ ∈ sen(Σ).

Given an arbitrary fixed institution, we can define the usual notion of logical consequence
or semantical entailment. Given a set of Σ-sentences Γ ⊆ sen(Σ) and a Σ-sentences ϕ ∈
sen(Σ), we say

Γ |=Σ ϕ iff for all Σ models M ∈ |mod(Σ)|, M |=Σ Γ implies M |=Σ ϕ

where M |=Σ Γ means M |=Σ ψ for every ψ ∈ Γ.
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3.2.1 The institution PCFOL=

Here, we present the institution of the many-sorted partial first-order logic with sort gen-
eration constraint and equality PCFOL=.

Signatures A many-sorted signature Σ = (S, TF, PF, P) consists of

• a set S of sorts,

• two S∗ × S-sorted families TF = (TFw,s)w∈S∗,s∈S and PF = (PFw,s)w∈S∗,s∈S of total
function symbols and partial function symbols, respectively, such that TFw,s ∩ PFw,s = ∅
for each (w, s) ∈ S∗ × S, and

• a family P = (Pw)w∈S∗ of predicate symbols.

Given a function f : A → B, let f ∗ : A∗ → B∗ be its component-wise extension to finite
strings. Given two signatures Σ = (S, TF, PF, P) and Σ′ = (S′, TF′, PF′, P′), a many-sorted
signature morphism σ : Σ → Σ′ consists of

• a map σS : S → S′,

• a map σF
w,s : TFw,s ∪ PFw,s → TF′

σS∗ (w),σS(s) ∪ PF′
σS∗ (w),σS(s) preserving totality, for each

w ∈ S∗, s ∈ S, and

• a map σP : Pw → PσS∗ (w).

Models Given a many-sorted signature Σ = (S, TF, PF, P), a many-sorted Σ-model M con-
sists of

• a non-empty carrier set Ms for each s ∈ S,

• a partial function (fw,s)M : Mw → Ms for each function symbol f ∈ TFw,s ∪ PFw,s, the
function being total for f ∈ TFw,s, and

• a relation (pw)M ⊆ Mw for each predicate symbol p ∈ Pw.

A many-sorted Σ-homomorphism h : M → N is a family of functions h = (hs : Ms → Ns)s∈S
with the property that for all f ∈ TFw,s∪PFw,s and (a1, . . . , an) ∈ Mw with (fw,s)M(a1, . . . , an)
defined, we have

hs((fw,s)M(a1, . . . , an)) = (fw,s)N(hs1(a1), . . . , hs1(an)),

and for all p ∈ Pw and (a1, . . . , an) ∈ Mw,

(a1, . . . , an) ∈ (pw)M implies (hs1(a1), . . . , hs1(an)) ∈ (pw)N .

Let σ : Σ → Σ′ be a a many-sorted signature morphism, M′ be a Σ′-model. Then the reduct
M′ |σ=: M of M′ is the Σ-model with

• Ms := M′
σS(s) for all s ∈ S,
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• (fw,s)M := (σF
w,s(f ))M′ for all f ∈ TFw,s ∪ PFw,s, and

• (pw)M := (σP
w(p))M′ for all p ∈ Pw.

Given a many-sorted Σ′-homomorphism h′ : M′ → N′, its reduct h′ |σ: M′ |σ→ N′ |σ is
defined by (h′ |σ)s := h′

σS(s) for all s ∈ S.

Sentences Given a many-sorted signature Σ = (S, TF, PF, P), a variable system over Σ is
an S-sorted, pairwise disjoint family of variables X = (Xs)s∈S. The sets TΣ(X)s of many-
sorted Σ-terms of sort s, s ∈ S, with variables in X are the least sets satisfying

• x ∈ TΣ(X)s, if x ∈ Xs, and

• fw,s(t1, . . . , tn) ∈ TΣ(X)s,
if ti ∈ TΣ(X)si (i = 1 . . . n), f ∈ TFw,s ∪ PFw,s, w = s1 . . . sn.

Given a total variable valuation ν : X → M, the term evaluation ν] : TΣ(X) →?M is induc-
tively defined by

• ν]
s (x) := ν(x) for all x ∈ Xs and all s ∈ S.

• ν]
s (fw,s(t1, . . . , tn)) :=

(fw,s)M(ν]
s1(t1), . . . , ν]

sn(tn)) if ν]
s (ti) defined (i = 1 . . . n) and

(fw,s)M(ν]
s1(t1), . . . , ν]

sn(tn)) defined
undefined otherwise

for all f ∈ TFw,s ∪ PFw,s and ti ∈ TΣ(X)si (i = 1 . . . n), where w = s1 . . . sn. Note that
ν] can be undefined. That’s the reason why we add ‘?′ in its profile.

The set AFΣ(X) of many-sorted atomic Σ-formulae with variables in X is the least set satisfying
the following rules:

1. pw(t1, . . . tn) ∈ AFΣ(X), if ti ∈ TΣ(X)si , pw ∈ Pw, w = s1 . . . sn ∈ S∗,

2. t1
e= t2 ∈ AFΣ(X), if t1, t2 ∈ TΣ(X)s, s ∈ S (existential equations),

3. t1 = t2 ∈ AFΣ(X) if t1, t2 ∈ TΣ(X)s, s ∈ S (strong equations),

4. def t ∈ AFΣ(X), if t ∈ TΣ(X) (definedness assertions),

The set FOΣ(X) of many-sorted first-order Σ-formulae with variables in X is the least set satis-
fying the following rules:

1. AFΣ(X) ⊆ FOΣ(X),

2. F ∈ FOΣ(X) (read: false),

3. ϕ ∧ ψ ∈ FOΣ(X), if ϕ, ψ ∈ FOΣ(X),

4. ϕ ⇒ ψ ∈ FOΣ(X), if ϕ, ψ ∈ FOΣ(X),

5. ∀ x : s • ϕ ∈ FOΣ(X), if ϕ ∈ FOΣ(X ∪ {x : s}), s ∈ S,
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A many-sorted Σ-sentence is a closed many-sorted first order formula over Σ. Concern-
ing the definition of the translation of many-sorted Σ sentences along a many-sorted Σ-
morphism we refer to [Mos02].

Satisfaction The satisfaction of a many sorted first-order formula ϕ ∈ FOΣ(X) relative
to a valuation ν : X → M is defined inductively over the structure of ϕ :

• ν  pw(t1, . . . tn) if and only if ν](ti) is defined (i = 1 . . . n) and (ν](t1), . . . , ν](tn)) ∈
(pw)M.

• ν  t1
e= t2 if and only if ν](t1) and ν](t2) are both defined and equal.

• ν  t1=t2 iff ν](t1) and ν](t2) are either both undefined, or both are defined and
equal.

• ν  def t if and only if ν](t) is defined.

• not ν  F.

• ν  ϕ ∧ ψ if and only if ν  ϕ and ν  ψ.

• ν  ϕ ⇒ ψ if and only if ν  ϕ implies ν  ψ.

• ν  ∀ x : s • ϕ if and only if for all valuations ζ : X ∪ {x : s} → M with ζ(y) = ν(y)
for y 6= x : s, y ∈ X, we have ζ  ϕ.

M |= ϕ holds for a many-sorted Σ-model and a many-sorted formula ϕ, iff ν  ϕ for all
variable valuations ν into M. [Mos02] proves the satisfaction condition of PCFOL=.

3.2.2 The institution SubPCFOL=

Signatures A subsorted signature Σ = (S, TF, PF, P,≤) consists of a many-sorted signa-
ture (S, TF, PF, P) together with a reflexive and transitive subsort relation ≤S ⊆ S× S. The
relation ≤S extends point-wise to sequences of sorts. We drop the subscript S when it is
obvious from the context.

For a subsorted signature Σ = (S, TF, PF, P,≤) we define overloading relations ∼F and ∼P for
function and predicate symbols, respectively. Let f : w1 → s1, f : w2 → s2 ∈ TF ∪ PF.
Then f : w1 → s1 ∼F f : w2 → s2 if and only if there exist w ∈ S∗, s ∈ S such that
w ≤ w1, w ≤ w2, s1 ≤ s, and s2 ≤ s. Let p : w1, p : w2 ∈ P. Then p : w1 ∼P p : w2 if and only
if there exists w ∈ S∗ such that w ≤ w1 and w ≤ w2.

A subsorted signature morphism σ : Σ → Σ′ is a many-sorted signature morphism that
preserves the subsort relation and the overloading relations1, i.e., for σ holds:

p1 s1 ≤ s2 implies σS(s1) ≤ σS(s2) for all s1, s2 ∈ S

1Note that, thanks to preservation of subsorting, the preservation of the overloading relations can be sim-
plified.
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p2 f : w1 → s1 ∼F f : w2 → s2 implies σF
w1,s1

(f ) = σF
w2,s2

(f )
for all f ∈ TF∪ PF

p3 p : w1 ∼P p : w2 implies σP
w1

(p) = σP
w2

(p) for all p ∈ P

With each subsorted signature Σ = (S, TF, PF, P,≤) we associate a many-sorted signature
Σ̂ = (Ŝ, T̂F, P̂F, P̂), which extends the underlying many-sorted signature (S, TF, PF, P) with

• a total injection function symbol inj : s → s′ for each pair of sorts s ≤S s′,

• a partial projection function symbol pr : s′ →?s for each pair of sorts s ≤S s′, and

• an unary membership predicate symbol εs
s′ : s′ for each pair of sorts s ≤S s′.

Given a subsorted signature morphism σ : Σ → Σ′, we can extend it to a many-sorted sig-
nature morphism σ̂ : Σ̂ → Σ̂′ by just mapping the injections, projections and memberships
in Σ̂ to the corresponding injections, projections and memberships in Σ̂′.

Models Subsorted Σ-models are many-sorted Σ̂-models satisfying in PCFOL= the follow-
ing set of axioms Ĵ(Σ) (all variables are universally quantified):

1. injs,s(x) e= x for s ∈ S.

2. injs,s′(x) e= injs,s′(y) ⇒ x e= y for s ≤ s′.

3. injs′,s′′(injs,s′(x)) e= injs,s′′(x) for s ≤ s′ ≤ s′′.

4. prs′,s((injs,s′(x)) e= x for s ≤ s′.

5. prs′,s(x) e= prs′,s(y) ⇒ x e= y for s ≤ s′.

6. εs
s′(x) ⇔ def prs′,s(x) for s ≤ s′.

7. injs′,s(fw′,s′(injs1,s′1
(x1), . . . ,injsn,s′n(xn))) =

injs′′,s(fw′′,s′′(injs1,s′′1
(x1), . . . ,injsn,s′′n (xn))) for fw′,s′ ∼F fw′′,s′′ ,

where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s′n, w′′ = s′′1 . . . s′′n , s′, s′′ ≤ s.

8. pw′(injs1,s′1
(x1), . . . ,injsn,s′n(xn)) ⇔

pw′′(injs1,s′′1
(x1), . . . ,injsn,s′′n (xn)) for pw′ ∼P pw′′ ,

where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s′n, w′′ = s′′1 . . . s′′n .

Sentences The Subsorted formulae over Σ are the many-sorted first order formulae over Σ̂.
A sub-sorted Σ-sentence is a many-sorted first order sentences over Σ̂.

Satisfaction The satisfaction relations ν  ϕ and M |= ϕ are defined as in PCFOL=.
Again, for the proof of the satisfaction condition we refer to [Mos02].
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3.3 Refinement based on model class inclusion

The standard development paradigm of algebraic specification [EK99] postulates that de-
velopment begins with a formal requirement specification D0 – extracted from a software
project’s informal specification. Such specification fixes only expected properties but ide-
ally says nothing about implementation issues. This is to be followed by a number of refine-
ment steps that fix more and more details of the design until specification Dn is obtained.
Dn is detailed enough that its conversion into a program P is relatively straightforward:

D0 ; D1 ; . . . ; Dn

In the context of algebraic specification, [EK99] provides an excellent survey on different
refinement approaches. In the following paragraph we summarize the main concept high-
lighted in the survey.

Refinement and Implementation described in [EK99]. Let D1 and D2 be two specifica-
tions. A refinement of D1 by D2 is a 5-tuple (D, ε, σ, κ, α), where:

• D is the intermediate specification,

• ε : D2 → D is an enrichment,

• σ : Σ(D1) → Σ(D) is a signature morphism,

• κ : Mod(D2) → Mod(D) is a constructor,

• α : Mod(D1) → Mod(Σ(D1)) is an abstractor.

A refinement of a specification D1 into a specification D2 consists of a constructive part and
an abstraction part. The constructive part enriches D2 to D such that we find the signature
of D1 in D immediately or after some renaming. The abstraction part states which Σ(D1)-
models are acceptable as realizations of any D1-model.

A constructor κ is a mapping from D2-models to D-model classes. An abstractor α is a
mapping from D1 models to Σ(D1) models, that has to satisfy the reflexivity and transitiv-
ity conditions:

• A ∈ α(A) for all A ∈ Mod(D1)

• A1 ∈ α(A2) and A2 ∈ α(A3) ⇒ A1 ∈ α(A3), for all A1 ∈ Mod(Σ(D1)) and A2, A3 ∈
Mod(D1)

Intuitively the enrichment ε brings all the syntactic features that are needed in the refined
specification D2. However, if in D2 the needed signature is already specified, we can as-
sume D2 is the intermediate specification D. Constructor and abstractor relate the models
of D, D1 and D2.

A refinement is said to be correct if it is consistent and complete :
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(consistent) κ(Mod(D2)) |σ⊆ α(Mod(D1))
(complete) κ(Mod(D2)) |σ ∩α(A) 6= ∅ for every A ∈ Mod(D1)

Intuitively a correct refinement step relates possible and acceptable representations in a
suitable way. A consistent refinement means that every possible representation is accept-
able, and a complete refinement requires that every algebra of the refined specification
(implemented specification) is realized by the algebra of the specification to be refined
(implementing specification), up to abstraction.

In the literature one finds a vast number of implementation approaches: [Hoa76], [GTW78],
[EKP80], [Ehr82] and [ST97]. Mossakowski et.al. in [MST04] present a simple refinement
language for CASL.

The primary use of specifications is to describe programs, nevertheless CASL abstracts
away from all details of programming languages and programming paradigms. This is
common with most work on algebraic specification. Aspinall et.al. in [AS02] studies the re-
lationship between CASL and programming languages. The connection with programs is
indirect, via the use of partial first-order structures or similar mathematical models of pro-
gram behavior. Let Σ(P) be the CASL signature of a program P, and let [[P]] ∈ Alg(Σ(P))
be the partial first-order structure of the program P, i.e., the semantical denotation of P.
Then P is regarded as satisfying a specification Sp if Σ(Sp) = Σ(P) and [[P]] ∈ [[Sp]] where
Σ(Sp) and [[Sp]] ⊆ Alg(Σ(Sp)) are given by the semantics of CASL.

The simplest form of refinement is just model class inclusion. In the following we give some
definitions and examples for refinement based on model class inclusion.

DEFINITION 3.3.1 (MODEL CLASS INCLUSION) Given a signature Σ, and two model classes
C1 and C2. We say that C1 refines to C2, written as C1 ; C2 if and only if C2 ⊆ C1, for
C1, C2 ⊆ Mod(Σ).

EXAMPLE 3.3.2 As a first example we consider the refinement of the MONOID specifica-
tion to the specification of a commutative monoid.

spec COMMMONOID =
sort Element
ops n : Element; @: Element× Element → Element;
axioms

vars x, y, z : Element
. n@x = x %(left unit)%
. x@n = x %(right unit)%
. (x@y)@z = x@(y@z) %(assoc)%
. (x@y) = (y@x) %(comm)%

end

Let CM and of CCM be model classes of MONOID and COMMMONOID respectively, we
show that CM ; CCM. This trivially holds as every model of CCM is a model of CM.



42 Chapter 3 CASL

The notion of model class inclusion over the same signature is not enough to capture
realistic refinement steps. For instance, let us consider the specification of a Ring.

spec RING =
sort R
ops 1 : R; 0 : R; + : R× R → R; ∗ : R× R → R
axioms

vars x, y, z : R
. 1 ∗ x = x %(left unit 1)%
. x ∗ 1 = x %(right unit 1)%
. (x ∗ y) ∗ z = x ∗ (y ∗ z) %(assoc)%
. 0 + x = x %(left unit 0)%
. x + 0 = x %(right unit 0)%
. (x + y) + z = x + (y + z) %(assoc2)%
. x + y = y + x %(comm)%
. x ∗ (y + z) = (x ∗ y) + (x ∗ z) %(distrib1)%
. (x + y) ∗ z = (x ∗ z) + (y ∗ z) %(distrib2)%

end

Very rarely in the process of program development does the user work with just a single
signature: operations and sorts of data are renamed, added and hidden as the need arises.
This is captured by the signature morphism. A signature morphism σ : Σ → Σ′ maps the
sorts and operations of Σ to those in Σ′. This results in a translation of any Σ-equation ϕ to
a Σ′-equation σ(ϕ), and on semantic level, a translation of any Σ′-algebra A′ ∈ Mod(Σ′)
to its reducts A′ |σ∈ Mod(Σ).

DEFINITION 3.3.3 Let σ : Σ → Σ′ be a signature morphism. Let C1 and C2, be model classes
of Σ and Σ′ respectively. A refinement based on model class inclusion with change of signature is
defined as follows:

C1 ;σ C2

if and only if C2 |σ ⊆ C1, for C1 ⊆ Mod(Σ) and C2 ⊆ Mod(Σ′).

EXAMPLE 3.3.4 Let CM, CR be the model classes of MONOID and RING respectively. We
show that CM ;σ CR, where σ : Σ(MONOID) → Σ(RING) is a signature morphism such
that

σ(Elem) := R σ(@) := ∗ σ(n) := 1.

Let A ∈ CR, then:
A |= ∀ x, y, z : R. ((x ∗ y) ∗ z) = (x ∗ (y ∗ z))
A |= ∀ x : R. x ∗ 1 = x
A |= ∀ x : R. 1 ∗ x = x.

We first consider the assoc axiom. This holds by definition if and only if ∀ ν : X → A:
ν  ((x ∗ y) ∗ z) = (x ∗ (y ∗ z)). Here, ν is a total variable evaluation and X = {x : R, y :
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R, z : R} is a variable system. This is the case if and only if ν#((x ∗ y) ∗ z) = ν#(x ∗ (y ∗ z)).
For the left hand side we compute:

ν#((x ∗ y) ∗ z) = A(∗)(ν#(x ∗ y), ν#(z))
= A(∗)(A(∗)(ν#(x), ν#(y)), ν#(z))

Same computation is done also for the left hand side of the left unit axiom:

ν#(1 ∗ x) = A(∗)(ν#(1), ν#(x))
= A(∗)(A(1), ν#(x))

and right unit axiom:
ν#(x ∗ 1) = A(∗)(ν#(x), ν#(1))

= A(∗)(ν#(x), A(1))

Similar result holds also for the right hand side of each axioms. Now let B ∈ CM then:

B |= ∀ x, y, z : Element. ((x@y)@z) = (x@(y@z))
B |= ∀ x : Element. x@n = x
B |= ∀ x : Element. n@x = x.

is required to hold for all µ : {x : Element, y : Element, z : Element} → B.

We have to show that A |σ∈ CM. Let α : {x, y, z} → A |σ be a variable evaluation. Corre-
sponding to α we define a variable evaluation β : {x : R, y : R, z : R} → A as follows:

β(x) := α(x) β(y) := α(y) β(z) := α(z)

Consider (A |σ (@))((A |σ (@))(α(x : Element), α(y : Element), α(z : Element))), it follows:

(A(σ(@))((A(σ)(@))(α(x : σ(Element)), α(y : σ(Element))), α(z : σ(Element)))
= A(∗)(A(∗)(α(x : σ(Element)), α(y : σ(Element))), α(z : σ(Element)))
= A(∗)(A(∗)(β(x : R), β(y : R)), β(z : R)).

Same evaluation holds also for the left unit and right unit axioms:

(A |σ (@))((A |σ (n)), α(x : Element))
= A(σ(@))(A(σ(n)), α(x : σ(Element)))
= A(∗)(A(1), β(x : R))

Again similar result holds also for the right hand side of each axioms. Hence, we have
that CM ;σ CR, i.e., MONOID ;σ RING.

3.3.1 HETS – tool for CASL

The Heterogeneous Tool Set (HETS)[MML07] is a parsing, static analysis and proof man-
agement tool for various specification languages centered around CASL. HETS is an inter-
active system with a graphical user interface and also facility to be called on a command
line.
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HETS is a system which keeps track of open proof goals (which are caused by theorems
which have not yet been proven) and closed proof goals (which are caused by theorems
which have been proven or disproven). HETS reads a specification text possibly including
open proof goals, parses it, and then performs static analysis on it. After this, a graph
of the structure of the specification is displayed in its user interface. Within this graph,
the user can see which goals are open and which are closed. The user can also perform
various operations on each node in the graph, for instance requesting the theory of such a
node, HETS will then display the relevant information.

HETS can interface with different theorem provers, including Isabelle [NPW02] and
SPASS [spa]. HETS can call theorem provers with proof obligations and axioms given by
specifications in order to discharge open proof goals. This allows the user to pass control
over to a theorem prover to discharge open proof obligations.
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T HE specification language CSP-CASL integrates data specification in CASL and pro-
cess specification in CSP. Following [Rog06], we present the language’s main fea-
tures and its fundamental concepts. In Section 4.2 we describe the semantical con-

cepts of CSP-CASL and a simple refinement notion. As a running example we use a binary
calculator (taken from [KRS07]), to illustrate the various concepts.

4.1 CSP-CASL – fundamental concepts

CSP-CASL [Rog06] is a specification language which combines processes written in CSP

with the specification of data types in CASL [Mos04]. The general idea is to describe reactive
systems in the form of processes based on CSP operators, where the communications of
these processes are the values of data types, which are loosely specified in CASL. All stan-
dard CSP operators are available, such as multiple prefix, the various parallel operators
and operators for non-deterministic choice, communication over channels (see Chapter 2).
Concerning CASL features, the full language is available to specify data types, namely
many-sorted first order logic with sort-generation constraints, partiality, and sub-sorting.
Furthermore, the various CASL structuring constructs are included, where the structured
free construct adds the possibility to specify data types with initial semantics (see Chap-
ter 3).

Syntactically, a CSP-CASL specification with name Sp consists of a data part D, which is
a structured CASL specification, an (optional) channel part Ch to declare channels, which
are typed according to the data part, and a process part P written in CSP.

ccspec Sp = data D channel Ch process P end

45
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In the process part P, the CASL terms are used as communications – CASL sorts denote
sets of communications, relational renaming is described by a binary CASL predicate, and
the CSP conditional construct uses CASL formulae as conditions.

In the process part, recursive process definitions may be written using systems of process
equations, binding processes to process names. Processes can also be parameterised with
variables typed by CASL sorts.

The channel part Ch is just a syntactic encoding over the data part. A CSP-CASL specifica-
tion with channel declaration can be translated into one without a channel declaration as
presented in Figure 4.1.

(D, Ch, P) (D then DCh, P′)
syntactic encoding

Figure 4.1: Channel declaration – syntactic encoding.

Here, DCh is a data specification fragment, which monomorphically extends the data part
D to a CASL specification D then DCh. This construction neither adds new diversity nor
removes interpretation of the data part. The process P is rewritten to a form P′ without
channels.

The definition of CSP-CASL is generic in the choice of a specific CSP semantics. For ex-
ample, all denotational CSP models mentioned in Chapter 2, are possible parameters. In
CSP-CASL the data type (specified in CASL) not only provides the values of the alphabet
of communication, but they also provide certain test functions. For instance, as reported
in [Rog06], in CSP-CASL the following tests are possible:

• Test on equality for arbitrary CASL terms – Can two communications synchronize?

• Test on membership for a CASL term concerning a CASL sort – Does a communica-
tion belong to a certain subset of the alphabet of communications?

• Test whether a binary predicate holds between two CASL terms – Are the terms in a
renaming relation?

• Satisfaction of a CASL first order formula – Is the formula of the conditional construct
true?

Tool support for CSP-CASL consists of: A parser and static analyzer described in [Gim08];
A prover for process and data refinement, described in [OIR09].

We now give a concrete instance of CSP-CASL specification syntax through an example of
a binary calculator specification. We first give a note on syntax in CSP-CASL. The syntax of
CSP used in CSP-CASL, is slightly different than the one presented in Chapter 2. Figure 4.2
illustrates the different syntax of the CSP operators. This change of concrete syntax is
required to resolve overlaps in the syntax of CSP and CASL.
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Process Type Implemented in CSP-CASL CSP syntax
External prefix choice ?x :: s → P !x : s → P
Internal prefix choice !x :: s → P ?x : s → P

Channel send c!t → P c!x → P
Channel nondeterministic send c!x :: s → P c!x : s → P

Channel nondeterministic receive c?x :: s → P c?x : s → P

Figure 4.2: CSP notation in CSP-CASL– c.f. [Gim08].

EXAMPLE 4.1.1 Our binary calculator (Figure 4.3) has two input buttons and can com-
pute the addition function only. In the end, the implemented binary calculator has the
following characteristics: whenever one of the buttons is pressed, the integrated control
circuit displays the corresponding digit on the display. After pressing a second button, the
corresponding addition result is displayed and the calculator returns to its initial state.

Figure 4.3: Binary Calculator.

In a first high-level specification we abstract from the control flow and just specify the
interface of the system.

ccspec BCALC0 =
data sort Number

ops 0, 1 : Number;
+ : Number × Number →? Number

channels Button : Number;
Display : Number

process P0 : Button, Display ;
P0 = Button ? x :: Number →P0 u Display ! y :: Number →P0

end

In this specification, 0 and 1 are constants of sort Number, and + is a partial function from
pairs of type Number to Number. In the channel part, the statement Button:Number and
Display:Number declares two channels Button and Display of sort Number. In the process
part, we first declare the process name P0, which is typed over the events that it commu-
nicates.

The calculator receives values of type Number on the channel Button, while it sends val-
ues of type Number over the channel Display. The process Button?x :: Number → P0 is
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willing to receive any value of type Number over the channel Button, stores this value of
type Number in x, and behaves like P0. This corresponds to a user input. The process
Display!y → P0 chooses an arbitrary value y of type Number, sends this value over the
channel Display, and behaves like P0. This corresponds to the computed output of the
calculator. The process P0 as a whole repeatedly chooses one of the two above processes
in a non-deterministic way, which corresponds to an arbitrary interleaving of inputs and
outputs.

In the next section, we will present a more refined specification of BCALC0.

4.2 CSP-CASL – semantical construction

In this section we describe the semantical construction of CSP-CASL. We illustrate how the
alphabet of communication is constructed and a simple refinement notion of CSP-CASL

specification presented in [Rog06]. As a consequence of CASL’s loose semantics, semanti-
cally, a CSP-CASL specification Sp = (D, P) is a family of process denotations for a CSP

process P, where each model of the data part D gives rise to one process denotation.

In Chapter 3 we have presented different institutions for CASL. CSP-CASL as described in
[Rog06], requires an additional institution: the institution FinCommSubPFOL=.

The definition of the institution FinCommSubPFOL= provides the data-logic of the process
part of a CSP-CASL specification. It is a specialisation of the institution SubPCFOL=: Only
sub-sorted-signatures with finitely many sorts are allowed. Also, the notion of a model
is changed: A data-logic Σ-model M is the strict extension M := ext(C) of an ordinary
many-sorted model C over Σ̂ = (Ŝ, T̂F, P̂F, P̂) which satisfies in PCFOL= the set of axioms
Ĵ(Σ). For the carrier sets, this extension is defined as: Ms = ext(Cs) = Cs ∪ {⊥} for all
s ∈ Ŝ, where ⊥ 6∈ Cs for all s ∈ Ŝ. Given a model C, its extension ext(C) = M is uniquely
determined. Forgetting the strict extension results again in C.

Alphabet construction The purpose of the alphabet construction is to transform a CASL

model into a set for use as an alphabet of communication in the process algebra CSP.

Let Sp = (D, P) be a CSP-CASL specification, and let model M over the data D signature
Σ = (S, TF, PF, P, 6), with local top elements, i.e., for all u, u′, s ∈ S the following holds:
if u, u′ > s then there exists t ∈ S with t > u, u′. The alphabet of communications is
constructed as follows: Relatively to a model M, the alphabet

Alph(M) := (
⊎

s∈S Ms ∪ {⊥s})/∼M (∗)

is constructed by disjointly uniting all carrier sets extended by a bottom element ⊥, but
identifying carriers along subsort injections. The latter is captured by the equivalence
relation ∼M. The relation ∼M is an equivalence relation for any model M. ∼M is defined
as follows:

(s, x) ∼M (s′, x′)
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if and only if either

• x = x′ = ⊥ and

• there exists u ∈ S such that s ≤ u and s′ ≤ u,

or

• x 6= ⊥, x′ 6= ⊥,

• there exists u ∈ S such that s ≤ u and s′ ≤ u, and

• for all u ∈ S with s ≤ u and s′ ≤ u the following holds:

(inj(s,u))M(x) = (inj(s′,u))M(x′)

for s, s′ ∈ S, x ∈ Ms, x′ ∈ Ms′ .

The semantics of CSP-CASL is defined in a two-step approach, see Figure 4.4.

Sp = (D, Ch, P) Sp′ = (D then Ch, P′)

(P′′(Alph(β(M))))M∈Mod(D) (dM)M∈Mod(D)

Evaluation according to CASL

CSP semantics

CSP-CASL semantics

Figure 4.4: CSP-CASL 2-step semantics.

Let Sp = (D, Ch, P) be a CSP-CASL specification, i.e., D is a CASL specification, Ch is the
(optional) channel declaration and P is a CSP process.

We first obtain a CSP-CASL specification Sp′ = (D′, P′), without the channel declaration;
here D′ = (D then Ch). In the first step, the evaluation according to CASL, we translate D′

into a Mod(D′)-indexed family of CSP processes:

(P′′(Alph(β(M))))M∈Mod(D′).

Here, we define for each model M of D′ a CSP process P′′(Alph(β(M))) over the alphabet
of communication Alph(β(M)) induced by M. This alphabet is constructed by first obtain-
ing a model β(M), in which partial functions of M are totalized. Then, we use the alphabet
construction Alph as described in (∗).

We now present the evaluation of CASL terms, sorts, formulae, and relations occurring
in P′′. In order to do this, an evaluation function [[ ]] is defined, which takes a CSP-
CASL process specification and an evaluation ν : X → β(M) and yields a CSP process
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[[SKIP]]ν := SKIP
[[STOP]]ν := STOP
[[DIV]]ν := DIV
[[t → P]]ν := [[t]]ν → [[P]]ν
[[?x :: s → P]]ν := ?x :: [[s]]ν → [[P]](λ z.ν)
[[!x :: s → P]]ν := !x :: [[s]]ν → [[P]](λ z.ν)
[[P o

9 Q]]ν := [[P]]ν o
9 [[Q]]∅

[[P 2 Q]]ν := [[P]]ν 2 [[Q]]ν
[[P u Q]]ν := [[P]]ν u [[Q]]ν
[[P |[ s ]|Q]]ν := [[P]]ν |[ [[s]]ν ]| [[Q]]ν
[[P |[ s1 | s2 ]| Q]] := [[P]]ν |[ [[s1]]ν | [[s2]]ν ]| [[Q]]ν
[[P || Q]]ν := [[P]]ν || [[Q]]ν
[[P ||| Q]]ν := [[P]]ν ||| [[Q]]ν
[[P \ s]]ν := [[P]]ν \ [[s]]ν
[[P[[p]]]]ν := [[P]]ν[[[[p]]ν]]
[[if ϕ then P else Q]]ν := if [[ϕ]]ν then [[P]]ν else [[Q]]ν

Figure 4.5: Evaluation according to CASL

over Alph(β(M)). Here, the evaluations ν deal with CSP binding. Figure 4.5 illustrates
definition of the variable evaluations ν necessary to model the CSP binding. In Figure 4.5,
the clause for prefix choice turns the current environment ν into a function (λ z.ν) which
takes a substitution as its argument:

[[ ]]λ z.ν[a/x] := [[ ]]ν[a/x]

Here, ν[a/x](y) := ν(y) for y 6= x and ν[a/x](x) := a. Substitutions are the way how the
various CSP semantics model the binding concept of the prefix choice operator.

In the evaluation according to CSP, we apply point-wise a denotational CSP semantics.
This translates a process P′′(Alph(β(M))) into its denotation dM in the semantic domain of
the chosen CSP semantics. We will indicate as [[P]]∅:∅→β(M) to denote the process notation
with empty evaluation ∅, i.e., P has no free variables.

As an example of CSP-CASL semantical construction, we revisit the example of the binary
calculator (Example 4.1.1).

EXAMPLE 4.2.1 (SEMANTICAL CONSTRUCTION) We consider the specification of the bi-
nary calculator presented in the last section. Here, we construct the semantical model of
BCALC0. Let BCALC0C be the equivalent of BCALC0 without the channel declaration, i.e.,
Sp = BCALC0 and Sp′ = BCALC0C in Figure 4.4.
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ccspec BCALC0C =
data sort Number

ops 0, 1 : Number;
+ : Number × Number →? Number

then free type Button ::= butt(n : Number)
free type Display ::= disp(m : Number)

process P0c : Button, Display ;
P0c = (? x :: Button → P0c) u (! y :: Display → P0c)

end

The data signature of BCALC0C, which is a subsorted CASL signature, is composed of:

Σ(BCALC0C) = ({Number, Button, Display}, {0, 1, butt, disp, n, m}, { + }, ∅, ∅)

Let M be a CASL model such that:

M(Number) = {H, L} M(O) = L M(1) = H
M(Button) = {b.H, b.L} M(Display) = {d.H, d.L}

Here, M(butt)(x) = b.x and M(disp)(x) = d.x where x ∈ {H, L}. We totalize the model M
by adding the bottom element for each sort:

β(M)(Number) = M(Number) ∪ {⊥Number}
β(M)(Button) = M(Button) ∪ {⊥Button}
β(M)(Display) = M(Display) ∪ {⊥Display}

The CSP-CASL semantics construct the alphabet of communication. Here, as there is no
subsorting, the equivalence relation ∼M is the identity relation. Thus, the alphabet of
communication for the process P0c is:

Alph(β(M)) = β(M)(Number) ∪ β(M)(Button) ∪ β(M)(Display)
= {H, L,⊥Number} ∪ {b.H, b.L,⊥Button} ∪ {d.H, d.L,⊥Display}

We now construct the process denotation in the traces model:

traces([[P0C]]M) = {tr | tr ≤ (b∪ d)∗, b ∈ M(Button) and d ∈ M(Display)}

Here, (b ∪ d)∗ is the regular expression, using ‘∪′ for choice between two regular lan-
guages and ∗ for Kleene’s star operator.

4.2.1 CSP-CASL simple refinement notion

As described in the previous section, for a denotational CSP model with domain D, the
semantic domain of CSP-CASL specification Sp = (D, P) consists of the Mod(D)-indexed
families of process denotations dM ∈ D, i.e.,

(dM)M∈Mod(D).
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A refinement notion for CSP-CASL is defined over these elements. CSP-CASL refinement
is based on refinements developed in the context of the single languages CSP and CASL.
Intuitively, a refinement step, which we write here as ‘;’, reduces the number of pos-
sible implementations. Concerning data, this means a reduced model class, concerning
processes this mean less non-deterministic choice:

DEFINITION 4.2.2 For families (dM)M∈Mod(D) and (d′M′)M′∈Mod(D′) of process denotations we
write

(dM)M∈Mod(D) ;D (d′M′)M′∈Mod(D′)
iff

Mod(D′) ⊆ Mod(D) ∧ ∀M′ ∈ Mod(D′) : dM′ vD d′M′ .

Here, Mod(D′) ⊆ Mod(D) denotes inclusion of model classes over the same signature,
and vD is the refinement notion in the chosen CSP model D. In the traces model T , as
described in Chapter 2, we have P vT P′ ⇔ traces(P′) ⊆ traces(P), where traces(P) and
traces(P′) are prefixed closed sets of traces. Here we follow the CSP convention, where P
refines to P′ is written as P vD P′, i.e., the more specific process is on the right-hand side of
the symbol. The definitions of CSP refinements for D ∈ {T ,N ,F}, c.f. Chapter 2, which
are all based on set inclusion, yield that CSP-CASL refinement is a preorder.

Given CSP-CASL specifications Sp = (D, P) and Sp′ = (D′, P′), by abuse of notation we
also write

Sp ;D Sp′

if the above refinement notion holds for the denotations of Sp and Sp′, respectively.

On the syntactic level of specification text, we additionally define the notions of data re-
finement and process refinement in order to characterize situations, where one specifica-
tion part remains constant. In a data refinement, only the data part changes:

ccspec Sp = data D process P end
data
;

ccspec Sp = data D′ process P end

 if
{

1. Σ(D) = Σ(D′),
2. Mod(D′) ⊆ Mod(D).

Here, Σ(D) denotes the CASL signature of D. As in a data refinement the process part
remains the same, there is no need to annotate data refinement with a specific process
model: all CSP refinements notions are reflexive. In a process refinement, the data part is
constant:

ccspec Sp = data D process P end
proc
;D

ccspec Sp = data D process P′ end

 if
{

for all M ∈ Mod(D) :
[[[[P]]∅:∅→β(M)]]D vD [[[[P′]]∅:∅→β(M)]]D.

Here, [[ ]]D is the evaluation according to the CSP denotational semanticsD ⊆ {T ,F ,N},
and ∅ : ∅ → β(M) is the empty evaluation into the model β(M).

Clearly, both these refinements are special forms of CSP-CASL refinement in general.
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LEMMA 4.2.3 Let Sp = (D, P), Sp d = (D′, P), Sp p = (D′, P′) be CSP-CASL specifications.
Then, for all CSP models D ⊆ {T ,F ,N} it holds:

1. Sp data
; Sp d implies Sp ;D Sp d, and

2. Sp proc
;D Sp p implies Sp ;D Sp p.

PROOF. Let (dM)M∈Mod(D), (d′M′)M′∈Mod(D′) and (d′′M)M∈Mod(D) be the families of process
denotations of Sp, Sp d and Sp p respectively. We prove the implication in (1) and (2).

1. We need to show that:

(dM)M∈Mod(D) ;D (d′M′)M′∈Mod(D′)

This holds if Mod(D′) ⊆ Mod(D) and ∀M′ ∈ Mod(D′).dM′ vD d′M′ . The data re-

finement: (dM)M∈Mod(D)
data
; (d′M′)M′∈Mod(D′) establishes the inclusion of the model

classes, i.e., Mod(D′) ⊆ Mod(D), where Σ(D) = Σ(D′). For the process refinement
we have: ∀M′ ∈ Mod(D′). d′M =D d′M′ . Hence, (dM)M∈Mod(D) ;D (d′M′)M′∈Mod(D′),
i.e., Sp ;D Sp′.

2. Again, here we need to show that:

(dM)M∈Mod(D) ;D (d′′M)M∈Mod(D)

Here, we work with the same model classes Mod(D). From the process refinement
(dM)M∈Mod(D)

proc
;D (d′′M)M∈Mod(D) we have: ∀M ∈ Mod(D). dM vD d′′M. Hence,

(dM)M∈Mod(D) ;D (d′′M′)M′∈Mod(D′), i.e., Sp ;D Sp′.

EXAMPLE 4.2.4 In this example, we show a refinement of the binary calculator specified
in Example 4.1.1. A first refinement, could require that the pressing of buttons and the
display of digits strictly alternate 1.

ccspec BCALC1 =
data sort Number

ops 0, 1 : Number;
+ : Number × Number →? Number

channels Button : Number;
Display : Number

process P1 : Button, Display ;
P1 = Button ? x :: Number →Display ! y :: Number →P1

end

1In the process part of BCALC1, we write down explicitly the sort type (Number) in the channel nondeter-
ministic receive (Button?x :: Number). This is a design decision taken in the development of the parser and
static analyzer of CSP-CASL [Gim08]. However, as this case shows, typing can be unique and the current
design of CSP-CASL forces the user to give superfluous type information.
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We show by fixed point induction that BCALC0 proc
;F BCALC1.

Button?x :: Number → P0 u Display!y :: Number → P0)

1. = F (Button?x :: Number → ((Button?x :: Number → P0)
u (Display!y :: Number → P0)) u (Displat!y :: Number → P0)

2. vF Button?x :: Number → ((Button?x :: Number → P0)
u (Display!y :: Number → P0))

3. vF Button?x :: Number → Display!y :: Number → P0

The proofs use standard CSP algebraic step laws: In step 1, we unwind the recursion at the
first occurrence of P0. In step 2, we leave out the second branch of the last internal choice,
i.e., P u Q vF P. Finally, in step 3, we select the second branch of the internal choice.

Again, we refine furthermore the specification BCALC1. Here, we require that the first
displayed digit is echoing the input, and the second displays the result of the computation.

ccspec BCALC2 =
data sort Number

ops 0, 1 : Number;
+ : Number × Number →? Number

channels Button : Number;
Display : Number

process P2 : Button, Display ;
P2 = Button ? x :: Number → Display ! y :: Number

→ Button ? y :: Number → Display ! (x + y) → P2
end

We show that BCALC1 proc
;F BCALC2.

Button?x :: Number → Display!y :: Number → P1

1. = F Button?x :: Number → Display!y :: Number → Button?x′ :: Number
→ Display!y :: Number → P1

2. vF Button?x :: Number → Display!x → Button?x′ :: Number
→ Display!x′ → P1

3. =F Button?x :: Number → Display!x → Button?y :: Number
→ Display!(x + y) → P1

Again, in step 1, we unwind the recursion of P1. As P1 is independent of x we can rename
x into x′. In step 2, choosing the specific values x and (x + x′) for the two occurrences of



4.2 CSP-CASL – semantical construction 55

(Display!y :: Number) is a refinement. Finally, renaming x′ into y preserves the semantics
of the process.

So far we have refined the process part, what about the data part? For instance in P2 it
is still open the value of x + y shall be. We haven’t specified the arithmetic properties of
addition. In CSP-CASL, we express this functionality by adding some suitable axioms.

ccspec BCALC3 =
data sort Number

ops 0, 1 : Number;
+ : Number × Number →? Number

axioms
• 0 + 0 = 0
• 0 + 1 = 1
• 1 + 0 = 1

channels Button : Number;
Display : Number

process P3 : Button, Display ;
P3 = Button ? x :: Number →Display ! y :: Number

→ Button ? y :: Number → Display ! (x + y) → P3
end

Here, we have that BCALC2 data
; BCALC3. Adding axioms to a signature without chang-

ing the process part always results in a data refinement.
I.e., Σ(BCALC2DATA) = Σ(BCALC3DATA), where BCALC2DATA and BCALC3DATA is
the data part of BCALC3 and BCALC2 respectively, then we have that
Mod(BCALC3DATA) ⊆ Mod(BCALC2DATA). BCALC3 has models which satisfy the ax-
ioms 0 + 0 = 0, 1 + 0 = 1, 1 + 0 = 0 and is undefined for 1 + 1. As the axioms stated in
BCALC3 hold, e.g., for the natural numbers, the data part is consistent.

Often we study a more elaborated theory of CSP-CASL, which is called Multi-process CSP-
CASL. In such theory we allow the definition of several processes in the CSP part. In the
following subsection we illustrate how the CSP-CASL original theory as presented in this
chapter differs from Multi-process CSP-CASL.

4.2.2 Multi-Process CSP-CASL

In CSP-CASL, as designed in [Rog06], one specification denotes one unnamed system, see
e.g., specification CSPCASLSPEC in Figure 4.6.

The semantics of this specification is given as one family of process denotations. Over
the CSP traces model T , this family has the following structure: In CASL models M with
M |= a = b, the terms a and b can synchronize, and we obtain the denotation {〈〉, 〈M(a)〉}.
Here, M(a) is the communication corresponding to the interpretation of the constant a
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ccspec CSPCASLSPEC =
data

sort s
ops a, b : s

process
let P(x : s) =x → STOP

Q =b → STOP
in P(a) ‖ Q

end

logic CspCASL
ccspec MULTICSPCASLSPEC =

data
sort s
ops a, b : s

process
P(s) : s; Q : s; System : s
P(x) =x → STOP
Q =b → STOP
System =P(a) ‖ Q

end

Figure 4.6: Introduction of process names in Multi-process CSP-CASL.

in the model M. It is this point, where CSP-CASL differs from the pure CSP approach:
CSP-CASL interprets terms relatively to a model, pure CSP works with communications
without using an interpretation. In CASL models N with N |= ¬a = b, the terms a and
b cannot synchronize, thus the process part is in a deadlock situation and we obtain the
denotation {〈〉}. Overall, the semantics of the CSPCASLSPEC is

({〈〉, 〈M(a)〉)M∈{X∈Mod(DCSPCASLSPEC) |X|=a=b}
∪ ({〈〉})N∈{X∈Mod(DCSPCASLSPEC) |X|=¬a=b}.

Here, DCSPCASLSPEC denotes the data part of CSPCASLSPEC. Clearly, the process names P
and Q are only used to determine how the system behaves, they do not appear on the
semantical level.

In contrast to this, the specification MULTICSPCASLSPEC binds denotations to process
names. Rather than representing one system, it provides a collection of components. The
specification MULTICSPCASLSPEC in Fig. 4.6, is a ‘semantically equivalent’ version to CSP-
CASLSPEC.

Its models are pairs (M, J), where M is a CASL model and J is a ‘process model’. Such a
process model J maps process names to process denotations over the alphabet of commu-
nications derived from M.

Over the traces model T , we obtain as semantics for MULTICSPCASL: For a CASL model
M with M |= a = b, the process model J is the map

J(P(ā)) = {〈〉} ∪ {〈a〉 | a ∈ β(M)(s)}
J(Q) = {〈〉, 〈M(b)〉}
J(System) = {〈〉}

Here, β(M) denotes the extension of the CASL model M by bottom elements, and

β(M)(s) is the set of communications that is obtained from the carrier set of s in β(M).
Note, that this carrier set includes an element ⊥ representing undefinedness, which leads
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to a valid communication. For a CASL model N with N |= ¬a = b, the process model I is
the map

I(P(ā)) = {〈〉} ∪ {〈a〉, | a ∈ β(N)(s)}
I(Q) = {〈〉, 〈N(b)〉}
I(System) = {〈〉, 〈N(a)〉}

Note that the type of the functions I and J depends on the models M and N, respectively:
the process P takes a value of type s as a parameter; thus, the carrier set of the sort s deter-
mines the typing of the process interpretation. The overall model class of MULTICSPCASL

is finally
{(M, J) | M ∈ Mod(DMULTICSPCASLSPEC), M |= a = b}

∪ {(N, I) | N ∈ Mod(DMULTICSPCASLSPEC), N |= ¬a = b}.

The specification MULTICSPCASLSPEC simply adds process name information: hiding the
information concerning the system’s components, in our example the processes P and Q,
leads back to the original semantics of the specification CSPCASLSPEC.

In practice, it often comes handy to work with process names. Semantically, the treatment
of process names is a straightforward extension. However, in order to avoid notational
complexity, we develop our theoretical results using the original setting.





(CHAPTER . . . 5 )

Related approaches

Contents
5.1 Combining processes and data specification . . . . . . . . . . . . . . 59

5.2 System development notions . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Specification based testing . . . . . . . . . . . . . . . . . . . . . . . . . 63

T HE work presented in this thesis is related to various general research areas, includ-
ing the combination of process and data specification, system development no-
tions using different formal specification languages as well as specification based

testing. This chapter contains references to approaches which define the context of this
thesis.

5.1 Combining processes and data specification

Combination of process algebra and algebraic specification to form new formalisms have
been studied since the early 80’s. Astesiano et. al in [ABR99] presents a survey of method-
ologies of how algebraic specification can be used to describe concurrent systems. They
distinguish four kinds of approaches:

Process algebra Use algebraic specification at the metalevel, for instance, in the defini-
tion or in the use of specification languages. A specification will then involve def-
inition of one or more expressions of the language, representing one or more sys-
tems. Examples of such approach are for instance: ACP [BK84], CCS [Mil89], and
CSP [Hoa85, Ros98].

Process calculi plus algebraic specifications of static data types A particular specification
language for concurrent systems is complemented with the possibility of specifying
abstract data types using algebraic specification. Examples of such approach are LO-
TOS [ISO89] (and later became E-LOTOS [JTC01]) and PSF [MV90]. We will describe
LOTOS later on in this section.

59
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PSF [MV90] which stands for Process Specification Formalism, is a specification lan-
guage which combines process description based on ACP and algebraic specification
of data based on Algebric Specification Formalism [BHK89] (ASF). A PSF specifica-
tion consists of data modules and process modules. Data modules uses algebraic
specification with initial semantics and equational logic with total algebra. Process
modules are just ACP specifications of processes. The atomic actions in the process
part may have as components some values of the specified data types. An extensive
toolset has been developed for PSF (see, e.g., [MV92, PSF]).

Algebraic specification of dynamic-data types Use of particular algebraic specifications
that have “dynamic sorts”. Those are sorts whose elements correspond to concurrent
systems. In this approach there is only one “algebraic model” (for instance a first-
order structure or algebra) in which some elements represent concurrent systems.
As an example of this technique, the authors presents an approach based on label
transition systems called Label Transition Logic (LTL)[AR01].

Algebraic specification of dynamic data-types In this approach (abstract) data types are
specified, which dynamically changes with time. Here, different “algebraic” models
corresponds to different states of the system. The specialty of this approach is the
presence of data types which are dynamic. A comprehensive summary of these
approach can be found in [EO01].

There are several combinations of a process algebra with a state-based formalism; a few
examples are discussed in [Abr03, Sto97, TA97, Fis98, Smi99, TS99, But99, Fis00, MD00]. In
[SAA02a], a formal foundations is presented to make a generic combination of one process
algebra language and one algebraic specification language.

Closely related to CSP-CASL are the specification languages LOTOS, µCRL and to a certain
extent CIRCUS. In the following, we give a brief description of their main features.

LOTOS and E-LOTOS The Language of Temporal Ordering Specification- LOTOS [ISO89,
BSS87, BB88] was the first internationally known (since 1984), algebraic specification
formalism for concurrency. LOTOS is a specification language developed within ISO
(International Standards Organization). Although originally developed for the formal
specification of open distributed systems, and in particular for those related to the
Open Systems Interconnection (OSI) computer network architecture it is applicable
to distributed, concurrent systems in general. LOTOS is very similar to PSF; in the
sense that it adds algebraic specifications into a language for concurrency. However,
LOTOS uses ACT-ONE [EM85] instead of ASF in the data part; while on the process
part uses an extension of CCS instead of the process algebra ACP. In some sense PSF

is an improvement of LOTOS (see a discussion in [MV90]), since it allows more free-
dom in the definition of synchronization mechanism and supports of import/export
of action/processes, thus becoming more flexible for stepwise development.

E-LOTOS [JTC01] (Enhanced LOTOS ) is a new version of LOTOS. This new version
enhances the data part with new built-in data types, and on the process part adds
the interleaving semantics, plus real time and priorities features. Moreover it adds
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modularity of specifications.

LOTOS has been used in several practical applications and comes with an extensive
tool set. EUCALYPTUS [Gar96], which stands for European/Canadian LOTOS Protocol
Tool Set, is a tool set developed for LOTOS. The tool comprises among others: a static
analyzer, a simulator, a model generator, a model verifier (detection of deadlock and
livelock), a C-code generator, a model displayer, a trace analyzer and a test case
generator.

As mentioned earlier, in LOTOS, data are specified using ACT-ONE, which uses equa-
tional specification of data types with initial algebra semantics. For a relation be-
tween CASL and ACT-ONE we refer to [Mos02], which defines a representation of
the institution underlying ACT-ONE in first order logic with equality, a sub-language
of CASL (see Chapter 3). Furthermore, LOTOS uses initial semantics, while CASL pro-
vides both, initial and loose semantics. ACT-ONE does neither includes sub-sorting
nor partiality.

µCRL [GP95] (micro CRL), where CRL stands for Common Representation Language, it
is a specification language developed to study processes and data. Here, data types
are specified using equational logic with total function. On the process part contains
processes described in the usual process algebraic style, in particular the syntax is
taken from ACP [BK84]. Processes are represented by process terms, which describe
the order in which the actions from a set A may happen. A process term consists of
action names and recursion variables combined by process algebraic operators.

Each µCRL specification determine a labelled transition system, which is defined by
the structural operational semantics of µCRL [GP95]. The labelled transition system
consist of states which are process terms and the edges are labelled with parame-
terised actions. Equivalence relations on the states in labelled transition systems
is established using branching bisimulation [vGW96], which is sound for the proof
theory of µCRL [GP94].

µCRL2 is an improved version of µCRL. On the data side, µCRL2 contains a pre-
defined higher order data types, λ- calculus expressions and various other language
constructs. The µCRL toolset (see http://www.cwi.nl/~mcrl) supports the anal-
ysis and manipulation of µCRL specifications.

CIRCUS [WC01, WC02] combines data operation specified in Z [WD96] and interaction
specified in CSP, plus a refinement theory [CSW03]. The main motivation behind
the development of such language was the need for a language for refinement which
can describe programs but also capable of specifying high level models and designs.
Programs in CIRCUS are declared as a sequence of paragraphs, which can either be a
Z paragraph, a declaration of channels, a channel set declaration, or a process decla-
ration. The semantics of CIRCUS is based on the Unyfing Theories of Programming
(UTP) [HJ98] .

The declaration of process is composed by its name and its body specification. A pro-
cess may be explicitly defined or composed in terms of other processes. An explicit

http://www.cwi.nl/~mcrl
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process definition contains a sequence of process paragraphs and a distinguished
nameless main action, which defines its behaviors. Process paragraphs include Z
paragraphs and declaration of actions. An action can be a schema, a primitive action
like SKIP, a guarded command, an invocation to another action, or a combination of
these constructs using CSP operators.

There are various approaches of reactive CASL extensions. The definition of CSP-CASL,
like CCS-CASL [SAA01, SAA02b] or CASL-CHART [RR00], combines CASL with reactive
systems of a particular kind. All these approaches result in specification frameworks able
to model actual reactive systems. CASL-LTL [RAC00] and COCASL [MRS03] take a more
fundamental approach: they extend CASL internally. In the case of CASL-LTL, the logic
is extended by temporal operators, while COCASL dualizes the CASL by co-algebraic con-
structions.

5.2 System development notions

Formal development by stepwise refinement is one of the most prominent approaches
in formal program development. In the literature, one finds an amazing number of ap-
proaches, methodological claims and pragmatical claims of stepwise refinement. Here,
we mention some of them and give an overview of system development notions for the
languages presented on the last section e.g., LOTOS, µCRL and CIRCUS.

LOTOS allows the specification of systems at different descriptive levels. The relation-
ships between different LOTOS specification at different level of abstraction is studied by
using a notion of equivalence, proposed in [Par81] and used for a CCS-like calculus in
[Mil84]. This equivalence, known as observational equivalence, is based on the idea that the
behaviour of a system is determined by the way it interacts with external observers. Ex-
amples of stepwise refinement in LOTOS can be found in [MV91, PS91], while in [DBBS96]
a comparison between LOTOS and Z refinement notion is investigated.

A refinement notion for CIRCUS is described in [SWC02]. It starts from an abstract speci-
fication, and gradually, by iterations, it yields an implementation. Each iteration decom-
poses one process and typically includes three steps: a simulation that replaces the state
components of the single abstract process with the components of all the distributed pro-
cess to be derived; action refinement [vGG00] that partitions the concrete state and actions
in such a way that actions from one partition access only its components; and finally, a
process refinement that transforms the partitions in individual processes.

Horizontal development in terms of software product line, has received a great deal of
attention for its potential in fostering reuse of software artifacts across the development
phases. The concept of a software product lines (SPL) was introduced in the late 1990’s
(see e.g., [CW98, JRvdL00]), and extensively studied subsequently in [CN01, PBvdL05],
with annual conferences and a huge body of engineering literature in [SPLb, SPLa].
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5.3 Specification based testing

Traditionally formal methods and software testing have been seen as rivals. That is, they
largely failed to inform one another and there was very little interaction between the
two communities. In recent years, however, a new consensus has developed. Under
this consensus, these approaches are seen as complementary [BBC+02, Hoa96]. A gen-
eral overview of using formal specification to support software testing can be found in
[HBB+09]. In this article, the authors explore the many ways in which the presence of a
formal specification can support testing.

The work that will be presented in Chapter 9 on specification based testing for CSP-CASL

builds on previous work, mainly in the area of LOTOS, see e.g., [ISO89, GJ99, BHT97]. A
first formal treatment of testing was given by M-C. Gaudel [Gau95]. In [Mac99, Mac00], P.
Machado presents the work of testing from structured algebraic specification. The main
issue investigated here is the so-called oracle problem, that is, whether a decision proce-
dure can be defined for interpreting the results of tests according to a formal specification.
In the context of testing from algebraic specification, this consists in checking whether
specification axioms are satisfied by programs.

Many research activities have been directed at finding appropriate theories and algo-
rithms to derive test cases from formal specifications such that certain correctness proper-
ties can be guaranteed if the system under test passes all test cases of a test suite. Early
attempts were contributes by E. Brinksma [Bri88] using the specification language LOTOS.
Other approaches to generate test data have been investigated by J. Tretmans [Tre92]. The
latter, studies the conformance testing of asynchronous communicating systems, based on
general labelled transition systems. A general overview of approaches for the testing of
transition systems including an annotated bibliography can be found in E. Brinksma and
J. Tretmans [BT01].

Automatic generation of test data from formal specifications, is not the topic of this thesis;
however, in the literature, one finds a large body of approaches, see e.g., [BJK+05, UL06,
BBP96, Bin99].

In [CG07] M-C. Gaudel and A. Cavalcanti presents a model-based testing using CSP. Here,
the authors are concentrated on testing for traces and failures refinement. In [Pel96], J.
Peleska presents a pioneering work on CSP-based testing.

Testing for software product lines was investigated in [PM06, McG01] and others; the main
focus of these papers is the informal or formal derivation of test cases from requirement
and feature models.
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I N Chapter 4 we have reported a simple notion of refinement for CSP-CASL based on
model class inclusion over the same signature. However, in a refinement step, it is
often the case that the signature changes. In this chapter we formulate two directions

of system development: a refinement (or vertical development) notion for CSP-CASL; and
an enhancement (or horizontal development) notion for CSP-CASL specifications.

These new notions of CSP-CASL refinement and CSP-CASL enhancement allow to change
the signature of the data part. Such change of signature, however, does not “touch” the
processes. The notion of process signature has been described in [MR07]; but is far for be-
ing a stable notion yet. Thus, we propose CSP-CASL refinement and CSP-CASL enhance-
ment notions with change of signature for the data part only.

The results presented in this chapter have been published in [KR09] and [KRS08].

6.1 Theory of CSP-CASL refinement notion

In this section we define a general refinement notion for CSP-CASL. Such refinement no-
tion is based on the original CSP-CASL theory [Rog06]. There, a specification describes
only one unnamed process. Our notions of refinement for CSP-CASL are based on refine-
ments developed in the context of the single languages CSP and CASL. In the context of
algebraic specification, e.g., as mentioned in Chapter 3, Ehrig et al in [EK99] provide an
excellent survey on different approaches. For CSP, each of its semantical models comes
with a refinement notion of its own. There are for instance traces refinement, failure/di-
vergences refinement, and stable failures refinement, see Section 2.2.

67
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We now give an example to illustrate the type of refinement we would like to capture
in CSP-CASL. Later, we define formally a notion of CSP-CASL refinement with arbitrary
change of signature.

EXAMPLE 6.1.1 Let us consider the following two CSP-CASL specifications:

ccspec ABSTRACTSERVICE =
data

sort T
ops r1, r2, s1, s2 : T

process
AbsSer(x:T) =

r1 → s1 → AbsSer(x)
u r2 → s2 → AbsSer(x)

end

ccspec CONCRETESERVICE =
data

sort U
ops r3, r4, ser : U
axiom ¬(r3 = r4)

process
ConcSer(x:U) =

if (x = r3)
then r3 → ser → ConcSer(r4)

else r4 → ser → ConcSer(r3)

end

Intuitively, the specification ABSTRACTSERVICE specifies a system which provides a ser-
vice after a certain type of request has been made. That is, the process AbsSer(x : T)
behaves nondeterministically between choosing to offer the service s1 after a request r1,
or offering the service s2 after a request r2. The order of r1 and r2 is left open. Only the
additional specification of a scheduling mechanism would enforce that. This is done in
the specification CONCRETESERVICE. Here, a scheduling mechanism is introduced using
the if-then-else constructs of CSP.

The refinement step from ABSTRACTSERVICE to CONCRETESERVICE contains several as-
pects. On the data part we have change of signature: Let Σ and Σ′ be the signature of the
data part of ABSTRACTSERVICE and CONCRETESERVICE respectively, then σ : Σ → Σ′ be
a signature morphism such that:

σS(T) = U, σF(r1) = r3, σF(r2) = r4, σF(s1) = ser, σF(s2) = ser

Here, we notice that we have a non injective renaming of the unary operations s1 and
s2. Moreover the class of models of CONCRETESERVICE shrinks with respect to the model
classes of ABSTRACTSERVICE; and this is due to the axiom ¬(r3 = r4).

On the process side, the internal non-determinism is resolved by adding a scheduling
mechanism. On the CSP traces model, this means that the trace set of CONCRETESERVICE

is included in the trace set of ABSTRACTSERVICE.

Intuitively a CSP-CASL refinement describes the following development process: On the
data part, the possible interpretations (or model classes) are reduced by adding new infor-
mations about the data. The refined model classes are then used to construct the alphabet
of communications for the process behavior. On the process part, the refined process
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description is less internally non-deterministic. That is, the environment in which the
process is defined has more control of the process.

In Figure 6.1 we summarize the overall idea of CSP-CASL refinement that we would like
to define. Here, the circles denote the model classes of the two data signatures Σ and Σ′.
The small circle (I′) is included in the bigger circle (I) after applying the reduct to I′. This
denotes the inclusion of the model classes, thus data refinement.

CSP-CASL semantics constructs the alphabet of communication. Here, every model M′ ∈
I′ and M′|σ gives rise to an alphabetAlph(M′) andAlph(M′|σ). Those are used to construct
the CSP semantic domain D ∈ {T ,F ,N} (see Section 2.2); hence we obtain D(Alph(M′))
and D(Alph(M′|σ)). We need to define a mapping αD : D(Alph(M′|σ)) → D(Alph(M′)),
and an inverse mapping α̂D : D(Alph(M′)) → D(Alph(M′ |σ)). The latter represents a
reduct definition over the process denotations.

Let d′M′ ∈ D(Alph(M′)) and d′M′|σ ∈ D(Alph(M′|σ)) be two process denotations. In order
to “compare” these two process denotations for refinement, we apply an inverse mapping
α̂D to d′M′ . Finally, we compute the process refinement on these objects – dM′|σ vD α̂D(d′M′).

Σ Σ′
σ

I
I′I′|σ

M′M′|σ

D(Alph(M′))

d′M′ ∈ D(Alph(M′))

D(Alph(M′|σ))

dM′|σ vD α̂D(d′M′)

αD

α̂D

Figure 6.1: CSP-CASL refinement with change of signature.

From the above illustration, there are a number of concepts that we need to address; some
of them are:

• definition of signature morphism σ for CSP-CASL,

• proof that the mapping αD is well defined and injective, and
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• proof that the inverse mapping α̂D preserves the healthiness condition of the seman-
tical domain.

We start by giving a formal definition of the CSP-CASL data logic signature morphism,
following [Rog06], however with a slight modification.

DEFINITION 6.1.2 Let Σ = (S, TF, PF, P,≤) and Σ′ = (S′, TF′, PF′, P′,≤′) be two CASL data
logic signatures. A CSP-CASL data logic signature morphism σ : Σ → Σ′ is a many-sorted
signature morphism that preserves the subsort relation and the overloading relations, i.e., for σ

holds:

p1 s1 ≤ s2 implies σS(s1) ≤ σS(s2) for all s1, s2 ∈ S

p2 f : w1 → s1 ∼F f : w2 → s2 implies σF
w1,s1

(f ) = σF
w2,s2

(f )
for all f ∈ TF∪ PF

p3 p : w1 ∼P p : w2 implies σP
w1

(p) = σP
w2

(p) for all p ∈ P

refl σS(s1) ≤ σS(s2) implies s1 ≤S s2 for all s1, s2 ∈ S (reflection of the subsort relation) and

weak non-extension s1 6= s2 and σS(s1) ≤S′ u′ and σS(s2) ≤S′ u′ implies that there exist a
sort t ∈ S with s1 ≤ t, s2 ≤ t and σS(t) ≤ u′.

See Chapter 3 for details about the overloading relations. While the first three condi-
tions come from the CASL subsorted signature morphism, the conditions refl and weak
non-extension are required by CSP-CASL construction. The refl condition allows to reflect
the subsort relation after the signature morphism. The weak non-extension condition al-
lows to make sure that the subsort relation is extended, however, such extension must be
restricted. Note that we differ here from the original definition as given in [Rog06]. The
weak non extension property by [Rog06] implies the one given here, i.e., here we are more
general.

Let us consider the following two examples of data specification:

spec D =
sort S, T
ops a : S; b : T

end

spec D’ =
sort S, T ≤ U
ops a : S; b : T

end

In D the CSP-CASL alphabet construction yields that in all Σ-models M for the correspond-
ing events M(a) 6= M(b) hold. However, in D’, where S and T have a common supersort,
it depends on the model M whether M(a) = M(b) or M(a) 6= M(b). The weak non- ex-
tension condition ensure that the alphabet transformation over the CSP-CASL data logic
signature morphism is injective and well-defined.

In [MR07] it is shown that injectivity of alphabet translation is necessary in making sure
that the CSP process properties are preserved after the translation.

The definition of CSP-CASL data logic signature morphism restricts how we can extend the
data signature. The restrictions are chosen in a way that the imposed alphabet translation
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behave properly. If we consider the 2-step semantics of CSP-CASL defined in Section 4.2,
we obtain the picture shown in Figure 6.2.

Sp = (D, P)

Sp′ = (D′, P′)

(P(Alph(M)))M∈Mod(D)

(P′(Alph(M′)))M′∈Mod(D′)

(dM)M∈Mod(D)

(d′M′)M′∈Mod(D′)

σ

? ?

Figure 6.2: Property preserving translation.

Let us for instance consider the following two simple CASL specifications.

spec OLD =
sort T

end

spec NEW =
sort Q ≤ U

end

Let Σ and Σ′ be the signature of OLD and NEW. Let σ : Σ → Σ′ be a CSP-CASL data logic
signature morphism, such that σS(T) = Q. Let M′ be a Σ′-model such that M′(Q) = {1, 2}
and M′(U) = {3, 4, 5, 6}, with the following injection inj(Q,U)(1) = 3 and inj(Q,U)(2) =
4. In this setting, we have M′|σ (T) = {1, 2}. The alphabet construction over M′|σ and M′

yields:

Alph(β(M′ |σ)) = {[(T, 1)], [(T, 2)], [(T,⊥)]}
Alph(β(M′)) = {[(Q, 1), (U, 3)], [(Q, 2), (U, 4)], [(U, 5)], [(U, 6)], [(Q,⊥), (U,⊥)]}.

Here, we can observe that Alph(β(M′)) contains more and different symbols. Our aim
is to define a translation from Alph(β(M′ |σ)) to Alph(β(M′)) which is injective. In the
following we illustrate that an alphabet translation along a CSP-CASL data logic signature
morphism is well defined and injective.

LEMMA 6.1.3 Let σ : Σ → Σ′ be a CSP-CASL data logic signature morphism. Let M′ be a Σ′-
model. Then

Alph(M′ |σ) → Alph(M′)
α :

[(s, x)]∼M′ |σ
7→ [(σS(s), x)]∼M′
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is well-defined and injective. Furthermore, we have for all s ∈ S

α(β(M′ |σ)(s)) = β(M′)(σS(s))

where β(M)(s) := {[(s, x)]∼M | x ∈ β(M)}, i.e., β(M) in which partial functions of M are
totalized.

PROOF. We now prove the well-definedness property of the alphabet transformation. We
show that if (s, x) ∼M′|σ (t, y) then (σS(s), x) ∼M′ (σS(t), y).

Let (s, x) ∼M′|σ (t, y). Following the definition of ∼M′|σ defined in Section 4.2, there are
two cases to consider:

Case 1. [x = y = ⊥]. As (s, x) ∼M′|σ (t, y) holds, then there exists u ∈ S with s ≤ u and
t ≤ u. Thanks to p1 we obtain σS(s) ≤′ σS(u) and σS(t) ≤′ σS(u).

Case 2. [x 6= ⊥, y 6= ⊥]. We need to show that the following two conditions hold:

1. ∃ u′ ∈ S′ such that σS(s) ≤′ u′ and σS(t) ≤′ u′.

2. for all u′ ∈ S′ with σS(s) ≤′ u′ and σS(t) ≤′ u′ the following holds:

(inj(σS(s),u′))M′(x) = (inj(σS(t),u′))M′(y)

For condition 1, the proof is identical to the one under Case 1.

For condition 2, we consider the situation in which s = t and s 6= t.

• In the case of s = t, we set u = s and obtain:

(inj(s,s))M′|σ(x) = (inj(s,s))M′|σ(y)

This has as a consequence that x = y. Consequently we obtain

(inj(σS(s),u′))M′(x) = (inj(σS(s),u′))M′(y).

• In the case of s 6= t, we show that for all u′ ∈ S′ with σS(s) ≤′ u′ and σS(t) ≤′ u′,
the following holds:

(inj(σS(s),u′))M′(x) = (inj(σS(t),u′))M′(y) (**)

Let u′ ∈ S′ with σS(s) ≤′ u′ and σS(t) ≤′ u′. Using the weak non extension we
know that there exists v ∈ S such that s ≤ v, t ≤ v and σS(t) ≤′ u′. For s, t and
v we know that

(inj(s,v))M′|σ(x) = (inj(t,v))M′|σ(y).

Thus,
(inj(σS(s),σS(v)))M′(x) = (inj(σS(t),σS(v)))M′(y).

From the third axiom of inj 1, it follows:

(inj(σS(s),u′))M′(x) = (inj(σS(t),u′))M′(y).

1(injs′ ,s′′ )M((injs,s′ )M(x)) = (injs,s′′ )M for x ∈ Ms, s ≤ s′ ≤ s′′.
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For the injectivity proof, we show that if [(σS(s), x)]∼M′ = [(σS(t), y)]∼M′ , then
[(s, x)]∼M′ |σ

= [(t, y)]∼M′ |σ
, i.e.,

(σS(s), x) ∼M′ (σS(t), y) ⇒ (s, x) ∼M′|σ (t, y).

Again, following the definition of ∼M′ there are two cases to consider:

Case 1 [x = y = ⊥]. Here, we consider the situation in which s = t and s 6= t.

• In the case of s = t, its enough to set u = s.

• In the case s 6= t, we use the weak non-extension property. Let (σS(s),⊥) ∼M′

(σS(t),⊥). Then there exists a u′ ∈ S′ such that σS(s) ≤′ u′ and σS(t) ≤′ u′.
Then there exists a v ∈ S such that s ≤ v and t ≤ v. Thus, (s,⊥) ∼M′|σ (t,⊥).

Case 2 [x 6= ⊥, y 6= ⊥]. Let (σS(s), x) ∼M′ (σS(t), y). Then we know that ∃ u′ ∈ S′ such
that σS(s) ≤′ u′ and σS(t) ≤′ u′, and for all u′ ∈ S′ with σS(s) ≤′ u′ and σS(t) ≤′ u′

the following holds:

(inj(σS(s),u′))M′(x) = (inj(σS(t),u′))M′(y).

We show that the following two conditions hold:

1. ∃ u ∈ S such that s ≤ u and t ≤ u, and

2. for all u ∈ S with s ≤ u and t ≤ u the following holds:

(inj(s,u))M′|σ(x) = (inj(t,u))M′|σ(y).

In order to prove condition 1, we consider the situations in which s = t and s 6= t.

• In the case of s = t its enough to set u = s.

• In the case of s 6= t, we use the weak non-extension property. As there exists
u′ ∈ S′ such that σS(s) ≤′ u′, σS(t) ≤′ u′ and s 6= t, there exists v ∈ S such that
s ≤ v and t ≤ v.

For condition 2, we show that for all u ∈ S with s ≤ u the following holds:

(inj(s,u))M′|σ(x) = (inj(t,u))M′|σ(y).

Let u ∈ S with s ≤ u. Here, we apply the model reduct definition on both sides:

(inj(s,u))M′|σ(x) = (inj(t,u))M′|σ(y)
⇐⇒ (σF(inj(s,u)))M′(x) = (σF(inj(t,u)))M′(y)
⇐⇒ (inj(σS(s),σS(u)))M′(x) = (inj(σS(t),σS(u)))M′(y).

Thanks to the preservation property of CSP-CASL data logic signature morphism σ,
it follows that σS(s) ≤′ σS(u). We also know from ∼M′ that:

(inj(σS(s),σS(u)))M′(x) = (inj(σS(t),σS(u)))M′(y)

Hence, we obtain (inj(s,u))M′|σ(x) = (inj(t,u))M′|σ(y).
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We extend the map α canonically to four maps in the following way.

• To include the termination symbol X. αX : Alph(M′|σ)X → Alph(M′)X, defined as:

a 7→
{

α(a) if a ∈ Alph(M′|σ)
X if a = X

Here, Alph(M)X = Alph(M) ∪ {X}.

• To extend it to strings α∗ : Alph(M′|σ)∗ → Alph(M′)∗, defined as:

α∗(〈〉) 7→ 〈〉
α∗(a a t) 7→ α(a) a α∗(t)

where 〈〉 is the empty string and a a t is the concatenation of a with the string t.

• To extend it to strings and termination symbol α∗X : Alph(M′ |σ)∗X → Alph(M′)∗X,
defined as:

α∗X(s) = α∗(s)
α∗X(s a 〈X〉) = α∗(s) a 〈X〉

Where s ∈ Alph(M′|σ)∗. Here, Alph(M)∗X = Alph(M)∗ ∪ {s a 〈X〉 | s ∈ Alph(M)∗}.

• To extend it to the power domain, αX
P : P(Alph(M′ |σ)X) → P(Alph(M′)X), defined

as:
X 7→ {αX(x) | x ∈ X}.

• Finally, to apply it to elements of the semantical domains:

αD : D(Alph(M′|σ)) → D(Alph(M′))

whereD is one of the CSP semantic models studied in our context, i.e.,D ⊆ {T ,F ,N}.

– In the traces model; αT : T (Alph(M′|σ)) → T (Alph(M′)), defined as:

TM′|σ 7→ {α∗X(t) | t ∈ TM′|σ}.

– In the stable failure model; αF : F (Alph(M′ |σ)) → F (Alph(M′)), defined in
the following way: Let (TM′|σ , FM′|σ) ∈ F (M′ |σ). We define how the translation
goes for the single failures: α(t, X) = (α∗X(t), αX

P (X)) for (t, X) ∈ FM′|σ , then

αF (TM′|σ , FM′|σ) = (αT (TM′|σ), {(α∗X(t), αX
P (X)) | (t, X) ∈ FM′|σ}).

– In the failures/divergences model; αN : N (Alph(M′|σ)) → N (Alph(M′)), de-
fined in the following way: Let (F⊥M′|σ , DM′|σ) ∈ N (Alph(M′ |σ)). We define
how the translation goes for the single failures: α(t, X) = (α∗X(t), αX

P (X)) for

(t, X) ∈ F⊥M′|σ , then

αN (F⊥M′|σ , DM′|σ) = ({(α∗X(t), αX
P (X)) | (t, X) ∈ FM′|σ}, {α∗X(d) | d ∈ DM′|σ}).
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While α allow us to translate the alphabet generated by a model M of an abstract data spec-
ification to an alphabet generated by a refined model M′, we need to define also a mapping
that goes the other way around. Given an injective alphabet translation α : Alph(M′ |σ) →
Alph(M′) we define the partial inverse

α̂ : Alph(M′) →? Alph(M′|σ)

as:

[(σS(s), x)]∼M′ 7→


[(s, x)]∼M′ |σ

; if [(s, x)]∼M′ |σ
∈ Alph(M′|σ)

such that α([(s, x)]∼M′ |σ
) = [σS(s), x)]∼M′

undefined; otherwise

In the same way as the alphabet transformation α we extend the inverse translation α̂ to
four maps:

• To include the termination symbol X. α̂X : Alph(M′)X →? Alph(M′|σ)X, defined as:

a′ 7→


α̂(a′) if α̂(a′) is defined
X if a′ = X
undefined otherwise

• To extend it to strings α̂∗ : Alph(M′)∗ →? Alph(M′|σ)∗, defined as:

α̂∗(〈〉) 7→ 〈〉

α̂∗(a′ a t′) 7→
{

α̂(a′) a α̂∗(t) if α̂(a′) and α̂(t′) are defined
undefined otherwise

• To extend it to strings and termination symbol; α̂∗X : Alph(M′)∗X →? Alph(M′|σ)∗X,
defined as:

α̂∗X(s) = α̂∗(s)
α̂∗X(s a 〈X〉) = α̂∗(s) a 〈X〉

for s ∈ Alph(M′)∗.

• To extend it to the power domain, α̂X
P : P(Alph(M′)X) →? P(Alph(M′|σ)X), defined

as:
X 7→ {x ∈ Alph(M′|σ)X | αX(x) ∈ X}.

• Finally, to apply it to elements of the semantical domain:

α̂D : D(Alph(M′)) →? D(Alph(M′|σ))

whereD is one of the CSP semantic model studied in our context, i.e.,D ⊆ {T ,F ,N}.

– In the traces model; α̂T : T (Alph(M′)) →? T (Alph(M′|σ)) is defined as:

α̂T (TM′) = {t ∈ Alph(M′ |σ)∗X | α∗X(t) ∈ TM′}
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– In the stable failure model; α̂F : F (Alph(M′)) →? F (Alph(M′|σ)), defined as:

α̂F (TM′ , FM′) = ({t ∈ Alph(M′|σ)∗X | α∗X(t) ∈ TM′},
{(t, X) ∈ Alph(M′|σ)∗X × P(Alph(M′|σ)X) |
exists (t′, X′) ∈ FM′ with α∗X(t) = t′ and αX

P (X) = X′ ∩ α(Alph(M′|σ))})

– In the failures/divergences model; α̂N : N (Alph(M′)) →? N (Alph(M′ |σ)),
defined as:

α̂N (F⊥M′ , DM′) = {(t, X) ∈ Alph(M′|σ)∗X × P(Alph(M′|σ)X) |
exists (t′, X′) ∈ F⊥M′ with α∗X(t) = t′ and αX

P (X) = X′ ∩ α(Alph(M′|σ))},
{d ∈ Alph(M′|σ)∗ | α∗(d) ∈ DM′}).

The definition of the inverse map in the three semantical domains (α̂T , α̂F , α̂N ) defines the
notion of reduct of process denotation.

Note that our definitions subtly differ from the concept of eager abstraction and lazy ab-
straction as discussed, e.g., in [Ros98]. Eager and lazy abstractions hide the new events in
all traces – our approach, however, ignores traces that include new events.

For the definition of the process reduct, we need to prove that such translation is well
behaved. That is the healthiness condition of the various semantical model are still valid
after the translation. This is necessary when the signature of the data part changes in a re-
finement step we have to make sure that the semantics of the processes behaves well. For
instance, when moving to a larger alphabet of communications the processes defined be-
fore the refinement step may only use the “old” alphabet letters. In the next three lemmas,
we show that the inverse translation α̂T , α̂F and α̂N preserve the healthiness conditions
of the traces (T ), stable failure (F ) and failures/divergences (N ) model respectively.

In the following lemmas, let σ : Σ → Σ′ be the CSP-CASL data logic signature morphism
and M′ ∈ Mod(D′) be the model of the data part D′.

LEMMA 6.1.4 Over the traces model T the following holds:

T′ ∈ T (Alph(M′)) ⇒ α̂T (T′) ∈ T (Alph(M′|σ)).

PROOF. We prove that α̂T : T (Alph(M′)) →? T (Alph(M′ |σ)) preserves the healthiness
conditions of the traces model T .

T.1 We show that α̂T (T′) ∈ T (Alph(M′|σ)) is non empty and prefix closed. We know that
〈〉 ∈ T′. We have that α̂∗(〈〉) = 〈〉; it follows 〈〉 ∈ α̂T (T′).

Let T = α̂T (T′). Let t ∈ T, then there exists t′ ∈ T′ with α̂∗(t′) = t. Let s ≤ t,
then α∗(s) ≤ α∗(t) as T′ is prefixed closed i.e., α∗(s) ∈ T′. Thus, α̂∗(α∗(s)) ∈ T, i.e.,
α̂∗(α∗(s)) = s. Hence, s ∈ T.

LEMMA 6.1.5 Over the stable failure model F the following holds:

(T′, F′) ∈ F (Alph(M′)) ⇒ α̂F (T′, F′) ∈ F (Alph(M′|σ)).
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PROOF. We prove that α̂F : F (Alph(M′)) →? F (Alph(M′ |σ)) preserves the healthiness
conditions of the stable failure model F .

T.1 α̂T (T′) is non-empty and prefix closed by Lemma 6.1.4.

T.2 Let (T′, F′) ∈ F (Alph(M′)). Let (s, X) ∈ α̂(F′). We show that s ∈ α̂T (T′).

As (s, X) ∈ α̂(F′), there exists (s′, X′) ∈ F′ such that α̂∗(s′) = s, α̂X
P (X′) = X. We

know that F (Alph(M′)) fulfills T.2, i.e., (s′, X′) ∈ F′ implies s′ ∈ T′. It follows that
α̂∗(s′) = s ∈ α̂T (T′). Thus, α̂F (F (Alph(M′))) fulfills T.2.

T.3 Let (T′, F′) ∈ F (Alph(M′)). Let s a 〈X〉 ∈ α̂T (T′). We show that (s a 〈X〉, X) ∈ α̂(F′)
for all X ⊆ α̂(Alph(M′)X).

As s a 〈X〉 ∈ α̂T (T′), there exists (s′ a 〈X〉) ∈ T′ such that α̂∗X(s′ a 〈X〉) = s a 〈X〉.
We know that F (Alph(M′)) fulfills T.3, i.e., if s′ a 〈X〉 ∈ T′ implies (s′ a 〈X〉, X′) ∈
F′ for all X′ ⊆ Alph(M′)X. Then, it follows that (s a 〈X〉, α̂X

P (X′)) ∈ α̂(F′) for all
α̂X

P (X′) ⊆ α̂(Alph(M′)X). Hence, α̂F (F (Alph(M′))) fulfills T.3.

F.2 Let (T′, F′) ∈ F (Alph(M′)). Let (s, X) ∈ α̂(F′) and Y ⊆ X. We show that (s, Y) ∈ α̂(F′).

As (s, X) ∈ α̂(F′), there exists (s′, X′) ∈ F′ such that α̂∗(s′) = s and α̂X
P (X′) = X. We

know that F (Alph(M′)) fulfills F.2, i.e., if (s′, X′) ∈ F′ and Y′ ⊆ X′ then (s′, Y′) ∈ F′.

Let Y ⊆ α̂X
P (X′), then there exists Y′ ⊆ X′ with α̂X

P (Y′) = Y. It follows that (s, Y) ∈
α̂(F′). Hence, α̂F (F (Alph(M′))) fulfills F.2.

F.3 Let (T′, F′) ∈ F (Alph(M′)). Let (s, X) ∈ α̂(F′) and ∀ a ∈ Y : s a 〈a〉 /∈ α̂T (T′). We show
that (s, X ∪ Y) ∈ α̂(F′).

As (s, X) ∈ α̂(F′), then there exists (s′, X′) ∈ F′, such that α̂∗(s′) = s and α̂X
P (X′) = X.

We know that F (Alph(M′)) fulfills the F.3, i.e., if (s′, X′) ∈ F′ and ∀ a′ ∈ Y′ : s′ a

〈a′〉 /∈ T′ then (s′, X′ ∪ Y′) ∈ F′.

Let ∀ a ∈ Y : s a 〈a〉 /∈ α̂T (T′), there exists Y′ such that α̂X
P (Y′) = Y. It follows that

(s, X ∪ Y) ∈ α̂(F′). Hence, α̂F (F (Alph(M′))) fulfills F.3.

F.4 Let (T′, F′) ∈ F (Alph(M′)). Let s a 〈X〉 ∈ α̂T (T′). We show that (s,Alph(M′)) ∈ α̂(F′).

As s a 〈X〉 ∈ α̂T (T′), then there exists s′ a 〈X〉 ∈ T′ such that α̂∗X(s′ a 〈X〉) =
s a 〈X〉. We know that F (Alph(M′)) fulfills the F.4, i.e., if s′ a 〈X〉 ∈ F′ then (s′ a

〈X〉,Alph(M′)) ∈ F′. Then it follows that (α̂∗(s′), α̂(Alph(M′))) = (s,Alph(M′|σ)) ∈
α̂(F′). Hence, α̂F (F (Alph(M′))) fulfills F.4.

LEMMA 6.1.6 Over the failures/divergences model N the following holds:

(F′⊥, D′) ∈ N (Alph(M′)) ⇒ α̂N (F′⊥, D′) ∈ N (Alph(M′|σ)).
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PROOF. We show that α̂N preserves the healthiness conditions of the failures/divergences
model N .

F.1, F.2, F.3 and F.4. See the proofs of Lemma 6.1.5.

D.1 Let (F′⊥, D′) ∈ N (Alph(M′)). Let s ∈ α̂(D′) ∩ α̂(Alph(M′)∗) and t ∈ α̂(Alph(M′)∗X).
We show that s a t ∈ α̂(D′).

As s ∈ α̂(D′)∩ α̂(Alph(M′)∗ and t ∈ α̂(Alph(M′)∗X), there exists s′ ∈ D′ ∩Alph(M′)∗

and t′ ∈ Alph(M′)∗X such that α̂∗(s′) = s and α̂∗X(t′) = t. We know thatN (Alph(M′))
fulfills D.1, i.e., if s′ ∈ D′ ∩ Alph(M′)∗ and t′ ∈ Alph(M′)∗X then s′ a t′ ∈ D′. It fol-
lows that α̂∗(s′) a α̂∗(t′) = s a t ∈ α̂(D′). Hence, α̂N (N (Alph(M′))) fulfills D.1.

D.2 Let (F′⊥, D′) ∈ N (Alph(M′)). Let s ∈ α̂(D′). We show that (s, X) ∈ α̂(F′).

As s ∈ α̂(D′), then there exists s′ ∈ D′ such that α̂∗(s′) = s. We know thatN (Alph(M′))
fulfills D.2, i.e., if s′ ∈ D′ then (s′, X′) ∈ F′. Then it follows that (α̂∗(s′), α̂X

P (X′)) =
(s, X) ∈ α̂(F′). Hence, α̂N (N (Alph(M′))) fulfills D.2.

D.3 Let (F′⊥, D′) ∈ N (Alph(M′)). Let s a 〈X〉 ∈ α̂(D′). We show that then s ∈ α̂(D′).

As s a 〈X〉 ∈ α̂(D′), then there exists s′ a 〈X〉 ∈ D′ such that α̂∗X(s′ a 〈X〉) = s a 〈X〉.
We know that N (Alph(M′)) fulfills D.3, i.e., if s′ a 〈X〉 ∈ D′ then s′ ∈ D′. Then it
follows that α̂∗(s′) = s ∈ D. Hence, α̂N (N (Alph(M′))) fulfills D.3.

We now define the translation of CSP processes operators on the syntactical level.

DEFINITION 6.1.7 (PROCESS TRANSLATION) Let σ : Σ(D) → Σ(D′) be a CSP-CASL data
logic signature morphism. We define ρ to denote the translation of process operators defined as
follows:

ρ(STOP) := STOP
ρ(SKIP) := SKIP
ρ(DIV) := DIV
ρ(t → P) := σ(t) → ρ(P)
ρ(?x :: s → P) := ?x :: σ(s) → ρ(P)
ρ(!x :: s → P) := !x :: σ(s) → ρ(P)
ρ(P o

9 Q) := ρ(P) o
9 ρ(Q)

ρ(P 2 Q) := ρ(P) 2 ρ(Q)
ρ(P u Q) := ρ(P) u ρ(Q)
ρ(P |[ s ]|Q) := ρ(P) |[ σ(s) ]| ρ(Q)
ρ(P |[ s1 | s2 ]| Q) := ρ(P) |[ σ(s1) | σ(s2) ]| ρ(Q)
ρ(P || Q) := ρ(P) || ρ(Q)
ρ(P ||| Q) := ρ(P) ||| ρ(Q)
ρ(P \ s) := ρ(P) \ σ(s)
ρ(P[[p]]) := ρ(P)[[σ(p)]]
ρ(if ϕ then P else Q) := if σ(ϕ) then ρ(P) else ρ(Q)
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In the next theorem we prove that the reduct property holds over the CSP models. This
ensures that the semantics of a process is frozen when translated to a larger context.

THEOREM 6.1.8 (REDUCT PROPERTY OVER THE CSP MODELS) Let P be an arbitrary CSP

process of a CSP-CASL specification Sp = (D, P). Moreover, let σ : Σ → Σ′ be a CSP-CASL data
logic signature morphism and M′ a Σ′-model. Then,

traces([[P]]ν:X→M′|σ) = α̂T (traces([[ρ(P)]]ν̂:σ(X)→M′))
failures([[P]]ν:X→M′|σ) = α̂F (failures([[ρ(P)]]ν̂:σ(X)→M′))
divergences([[P]]ν:X→M′|σ) = α̂N (divergences([[ρ(P)]]ν̂:σ(X)→M′))

where X is the set of free variables in P, ν : X → M′|σ and ν̂ : σ(X) → M′ are variable evaluations
with

ν(x : s) = ν̂(x : σ(s)).

PROOF. The proof is by structural induction on the CSP process operator P. Here, we
show for each semantical model, how the proof is carried out for a primitive CSP operator
such as STOP and for the action prefix operator (t → P). The proof for the other CSP

process operators is reported in Appendix A.1.

Traces model For the primitive process STOP we need to prove the following:

traces([[STOP]]ν) = α̂T (traces([[ρ(STOP)]]ν̂)).

We unfold the left hand side of the equation. Here, we calculate the trace set, which is
{〈〉}. Applying the inverse translation of the traces domain α̂T , we obtain α̂∗({〈〉}),
i.e., α̂T (traces([[ρ(STOP)]]ν̂)). Thus, traces([[STOP]]ν) = α̂T (traces([[ρ(STOP)]]ν̂)).

For the action prefix process t → P we need to prove the following:

traces([[t → P]]ν) = α̂T (traces([[ρ(t → P)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[t]]ν → [[P]]ν).

We then calculate the trace set:

{[[〈〉]]ν} ∪ {[[t]]ν a q | q ∈ traces([[P]]ν)}.

We now unfold the definition of the variable evaluation [[t]]ν (details of this definition
can be found in [Rog06]):

[[t]]ν = [(s, ν](t))]∼M′ |σ
.

In [Rog06] (Lemma 5) proves that ν](t) = ν̂](σ(t)). Applying the alphabet transla-
tion α we obtain:

α([(s, ν](t))]∼M′ |σ
) = [(σS(s), ν̂](σ(t)))]M′ .



80 Chapter 6 CSP-CASL development notions

We now apply the inverse alphabet translation of the traces domain α̂T and using
the induction hypothesis on traces([[P]]ν), we obtain:

{α̂∗([[〈〉]]ν̂)} ∪ {α̂∗X([(σS(s), ν̂](σ(t)))]M′) a q | q ∈ α̂T (traces([[ρ(P)]]ν̂)).

Pulling out the α̂ from the above trace set, we obtain:

α̂T (traces([[ρ(t → P)]]ν̂)).

Thus, traces([[t → P]]ν = α̂T (traces([[ρ(t → P)]]ν̂)).

Stable failure model For the primitive process STOP we need to prove the following:

(traces([[STOP]]ν), failures([[STOP]]ν))
= α̂F (traces([[ρ(STOP)]]ν̂), failures([[ρ(STOP)]]ν̂)).

The trace component is identical to the one presented for the traces model. For the
failures component we prove the following:

failures([[STOP]]ν) = α̂F (failures([[ρ(STOP)]]ν̂)).

We unfold the left hand side of the equation. Here, we calculate the failures set:

{〈〉, X | X ⊆ Alph(M′|σ)X}.

We now apply the well-defined and injective alphabet translation
α, and we obtain:

{[[〈〉]]ν̂, X | X ⊆ Alph(M′)X}.

Applying the inverse translation of the stable failure domain α̂F , we obtain:

{α̂∗(〈〉), α̂X
P (X) | X ⊆ Alph(M′)X}.

I.e., α̂F (failures([[ρ(STOP)]]ν̂)). Thus, failures([[STOP]]ν) = α̂F (failures([[ρ(STOP)]]ν̂)).

For the action prefix process t → P we need to prove the following:

(traces([[a → P]]ν), failures([[a → P]]ν))
= α̂F (traces([[ρ(a → P)]]ν̂), failures([[ρ(a → P)]]ν̂)).

The trace component is identical to the one presented for the traces model. For the
failures component we prove the following:

failures([[t → P]]ν) = α̂(failures([[ρ(t → P)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures([[t]]ν → [[P]]ν).
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We then calculate the failures set and we obtain:

{([[〈〉]]ν, Y) | [[t]]ν /∈ Y, Y ∈ P(Alph(M′|σ)X)}
∪ {(〈[[t]]ν〉a q, Y) | (q, Y) ∈ failures([[P]]ν)}.

We now unfold the definition of the variable evaluation, i.e., [[t]]ν = [(s, ν](t))]∼M′ |σ
.

Thanks to Lemma 5 from [Rog06] we have that ν](t) = ν̂](σ(t)). We now apply the
inverse alphabet translation of the stable failure domain α̂F and using the induction
hypothesis on failures([[P]]ν), we obtain:

{α̂∗([[〈〉]]ν̂), α̂X
P (Y) | α̂([(σS(s), ν̂](σ(t)))]M′) /∈ α̂X

P (Y), α̂X
P (Y) ∈ P(Alph(M′)X)}

∪ {α̂∗X([(σS(s), ν̂](σ(t)))]M′ a q), α̂X
P (Y) | (q, Y) ∈ α̂(failures([[ρ(P)]]ν̂)}.

Pulling out the α̂ from the above failure set, we obtain:

α̂(failures([[ρ(t → P)]]ν̂)).

Putting together the trace set and the failures set, we obtain the stable failure deno-
tation of α̂F (traces([[ρ(a → P)]]ν̂), failures([[ρ(a → P)]]ν̂)).

Failures/divergences model For the primitive process STOP we need to prove the follow-
ing:

(failures⊥([[STOP]]ν), divergences([[STOP]]ν))
= α̂N (failures⊥([[ρ(STOP)]]ν̂), divergences([[ρ(STOP)]]ν̂)).

For the failures component we follow the same argument as in the stable failure
model, and obtain:

failures⊥([[STOP]]ν = α̂F (failures⊥([[ρ(STOP)]]ν̂)).

For the divergences component we prove the following:

divergences([[STOP]]ν = α̂F (divergences([[ρ(STOP)]]ν̂)).

This trivially holds, as the divergence set for the process STOP is the empty set.

For the action prefix process t → P we need to prove the following:

(failures⊥([[a → P]]ν), divergences([[a → P]]ν))
= α̂N (failures⊥([[ρ(a → P)]]ν̂), divergences([[ρ(a → P)]]ν̂)).

For the failures component we follow the same argument as above, and obtain:

failures⊥([[t → P]]ν = α̂F (failures⊥([[ρ(t → P)]]ν̂)).

For the divergences component we prove the following:

divergences([[t → P]]ν = α̂(divergences([[ρ(t → P)]]ν̂)).
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We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences([[t]]ν → [[P]]ν).

We then calculate the divergence set:

{[[t]]ν a q | q ∈ divergences([[P]]ν)).

We now unfold the definition of the variable evaluation, i.e., [[t]]ν = [(s, ν](t))]∼M′ |σ
.

Again, thanks to Lemma 5 in [Rog06] we have that ν](t) = ν̂](σ(t)). We apply the
alphabet translation α and obtain: α([(s, ν](t))]∼M′ |σ

) = [(σS(s), ν̂](σ(t)))]M′ .

We now apply the inverse alphabet translation α̂N of the failures/divergences model
and using the induction hypothesis on divergences([[P]]ν), we obtain:

{α̂∗X([(σS(s), ν̂](σ(t)))]M′) a q | q ∈ α̂(divergences([[ρ(P)]]ν̂)).

Pulling out the α̂ from the above divergence set, we obtain:

α̂(divergences([[ρ(t → P)]]ν̂)).

Putting together the failures set and the divergences set, we obtain the failures/di-
vergences denotation of α̂N (failures⊥([[ρ(a → P)]]ν̂), divergences([[ρ(a → P)]]ν̂)).

This insights allow us to define a refinement notion based on a general data logic signature
morphism for CSP-CASL.

DEFINITION 6.1.9 Let σ : Σ → Σ′ be a CSP-CASL data logic signature morphism as defined
in Definition 6.1.2. Let (dM)M∈I and (d′M′)M′∈I′ be families of process denotations over Σ and Σ′,
respectively. Then,

(dM)M∈I ;σ
D (d′M′)M′∈I′ ⇐⇒ I′|σ⊆ I ∧ ∀M′ ∈ I′ : dM′|σ vD α̂D(d′M′).

Here, I′ |σ= {M′ |σ | M′ ∈ I′}, and vD denotes CSP refinement in the chosen semantic,
where D ⊆ {T ,F ,N}.

Given CSP-CASL specifications Sp = (D, P) and Sp′ = (D′, P′), by abuse of notation we
also write (Sp refines to Sp′ )

Sp ;σ
D Sp′

if the condition of the model class inclusion and the set inclusion of the process denotation
holds for Sp and Sp′, respectively (see Definition 6.1.9).

On the syntactic level, we additionally define the notion of data refinement and process
refinement in order to characterize situations, where one specification part remains con-
stant.
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DEFINITION 6.1.10 (DATA REFINEMENT) Let (D, P) and (D′, ρ(P)) be two specifications and
σ : Σ(D) → Σ(D′) a CSP-CASL data logic signature morphism. CSP-CASL data refinement is
defined as follows:

(D, P) data
;σ (D′, ρ(P)) if Mod(D′)|σ⊆ Mod(D).

DEFINITION 6.1.11 (PROCESS REFINEMENT) Let (D, P) and (D, P′) be two specifications.
CSP-CASL process refinement is defined as follows:

(D, P) proc
;D (D, P′) if ∀M ∈ Mod(D) : [[[[P]]∅:∅→β(M)]]D vD [[[[P′]]∅:∅→β(M)]]D

for all D ∈ {T ,F ,N}.

Clearly, both these refinements are special forms of CSP-CASL refinement in general.

LEMMA 6.1.12 Let Sp = (D, P), Sp d = (D′, ρ(P)) and Sp p = (D, P′) be CSP-CASL specifi-
cations. Let σ : Σ(D) → Σ(D′) is the CSP-CASL data logic signature morphism and ρ the process
translation. Then, for all D ∈ {T ,F ,N},

1. Sp data
;σ Sp d implies Sp ;σ

D Sp d, and

2. Sp proc
;D Sp p implies Sp ;σ

D Sp p.

PROOF. Let (dM)M∈Mod(D), (d′M′)M′∈Mod(D′) and (d′′M)M∈Mod(D) be the families of process
denotations of Sp, Sp d and Sp p respectively. We prove the implication in (1) and (2).

1. We need to show that:

(dM)M∈Mod(D) ;σ
D (d′M′)M′∈Mod(D′).

This holds if Mod(D′)|σ⊆ Mod(D) and for all M′ ∈ Mod(D′) it holds
dM′|σ vD α̂D(dM′). The data refinement (dM)M∈Mod(D)

data
;σ (d′M′)M′∈Mod(D′) estab-

lishes the model class inclusion, i.e., Mod(D′)|σ⊆ Mod(D).

Let M′ ∈ Mod(D′) and d′M′ be the denotation of [[ρ(P)]]M′ . Then, thanks to the reduct
property we have that

d′M′|σ = α̂D(d′M′).

Thus, d′M′|σ vD α̂D(d′M′). Hence, (dM)M∈Mod(D) ;σ
D (d′M′)M′∈Mod(D′); therefore

Sp ;σ
D Sp d.

2. Again we need to show that:

(dM)M∈Mod(D) ;σ
D (d′′M)M∈Mod(D′).

Here, we work with the same model classes Mod(D). From the process refinement
(dM)M∈Mod(D)

proc
;D (d′′M)M∈Mod(D′) we have: ∀M ∈ Mod(D). dM vD d′′M. Thus,

(dM)M∈Mod(D) ;σ
D (d′M′)M′∈Mod(D′); therefore, Sp ;σ

D Sp′.
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6.2 Theory of CSP-CASL enhancement notion

In the last section we have presented a general theory for the refinement of CSP-CASL

specifications. Such theory allows to capture the vertical development of systems. That is,
we have a tower of specifications:

S0 ;σ
D S1 ;σ

D . . . ;σ
D . . . Sn−1 ;σ

D Sn.

Here, S0 is the abstract specification – it contains basic information about the system. In
CSP-CASL, this is captured by a loosely specified data and a nondeterministic process
description. Such specification is then refined step by step. This means, on the data part, a
reduction of the model classes; and on the process part, we have a process behavior which
is less nondeterministic. Finally the specification Sn contains a detailed description of the
system.

We are now interested in capturing a horizontal development of systems. In a horizontal
development new functionality or features are added to an existing systems. For the corre-
sponding software development process, this means that the specification of an advanced
product is developed by enhancement and combination of basic specifications. Such con-
cept allows to capture the notion of software product lines.

In this section we elaborate and present a theory of enhancement for CSP-CASL specifi-
cations. Here, we would like to capture the notion of horizontal development. That is,
how we can extend basic CSP-CASL specifications with new functionality and form new
elaborated CSP-CASL specifications.

In CSP-CASL we use the notion of conservative extension defined in the context of algebraic
specification. Intuitively speaking, an extension is conservative if it does not ’specify away’
any models, i.e., if each model of the original specification can be enlarged to a model of
the extended specification [Sho67].

DEFINITION 6.2.1 We say that a signature Σ = (S, TF, PF, P,≤) is embedded into a signature
Σ′ = (S′, TF′, PF′, P′,≤′) if S ⊆ S′, TF ⊆ TF′, PF ⊆ PF′, P ⊆ P′, and the following conditions
regarding subsorting hold:

preservation and reflection ≤=≤′ ∩ (S× S).

weak non-extension s1 6= s2 and σS(s1) ≤S′ u′ and σS(s2) ≤S′ u′ implies that there exist a
sort t ∈ S with s1 ≤ t, s2 ≤ t and σS(t) ≤ u′.

We write ι : Σ → Σ′ for the induced map from Σ to Σ′, where ιS(s) = s, ιTF∪PF(f ) = f , ιP(p) = p
for all sort symbols s ∈ S, functions symbols f ∈ TF∪ PF and predicate symbol p ∈ P.

Obviously, such induced map ι is both, a CASL signature morphism and a CSP-CASL data
logic signature morphism. We carry over the notion of a conservative extension to our set-
ting.

DEFINITION 6.2.2 Let D and D′ be two CASL specifications, with signatures Σ and Σ′ respec-
tively, where Σ is embedded into Σ′. D′ conservatively extends D if Mod(D) = Mod(D′) |ι.
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Therefore, an extension is conservative when no models are lost: every model of the spec-
ification being extended is a reduct of some model of the extended specification. CASL

provides annotations such as: %implies, %def, and %cons to denote that the model class
is not changed, that each model of the specification can be uniquely extended to a model
of the extended specification, or that the extension is conservative, respectively. Such an-
notations have no effect on the semantics of a specification: a specifier may use them to
express his intentions, tools may use them to generate proof obligations [RS02].

Extensions with new symbols are not necessarily conservative. For example, consider the
following specifications BAS and EXT, where the new symbol c in EXT imposes a constraint
on the symbols a and b inherited from BAS. Thus, models with M(a) 6= M(b) of BAS are
not included in Mod(EXT) |ι and EXT is not a conservative extension of BAS.

spec BAS =
sort S
op a, b : S

end

spec EXT =
sort S < T
ops a, b : S; c : T
axioms c = a; c = b

end

[RS02] compiles a comprehensive set of proof rules to establish that one specification con-
servatively extends another. For instance, the extension by the CASL construct ‘operation
definition’ is conservative.

In the semantical construction of CSP-CASL, signature embeddings lead to alphabet em-
beddings, exactly as proven in Lemma 6.1.3.

Now we define the central notion of enhancement between CSP-CASL specifications.

DEFINITION 6.2.3 Let Sp = (D, P) and Sp′ = (D′, P′) be CSP-CASL specifications, and let Σ
and Σ′ be the signatures of D and D′, respectively. Let ι and α be the induced mapping. We say
Sp′ is an enhancement of Sp, denoted by Sp�Sp′, if

1. Σ is embedded into Σ′,

2. Mod(D) = Mod(D′) |ι, and

3. for all M′ ∈ Mod(D′) it holds that:

traces([[P]]∅:∅→β(M′)) = α̂T (traces([[P′]]∅:∅→β(M′)))
failures([[P]]∅:∅→β(M′)) = α̂F (failures([[P′]]∅:∅→β(M′))).

Intuitively, a CSP-CASL enhancement notion asserts that: the meaning of old symbols
are preserved (condition 1 and 2) and new process symbols use old symbols only without
change the meaning. For the latter let us consider the following CSP-CASL specifications.
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ccspec HUGO =
data

free type s ::= a
process

P = a → SKIP
end

ccspec ERNA =
data

free type s ::= a
free type t ::= b

process
P = a → SKIP
Q = b → P

end

ccspec HERMINE =
data

free type s ::= a
free type t ::= b

process
P = a → SKIP

u b → SKIP
Q =b → P

end

Here, we have that HUGO � ERNA. That is, on the data part we have the embedding of
the symbols Σ(HUGO) ⊆ Σ(ERNA) and its a conservative extension, i.e., Mod(DHUGO) =
Mod(DERNA) |ι. On the process side the added new symbols don’t interfere with the
old process denotation, i.e., traces(HUGO) = α̂T (traces(ERNA)) and failures(HUGO) =
α̂F (failures(ERNA)).

However, we have that ¬(HUGO� HERMINE). Here, on the process part the old process
behavior uses the new added data. We have that traces(HUGO) = α̂T (traces(HERMINE)),
however failures(HUGO) 6= α̂F (failures(HERMINE)).

6.3 Summary

In this chapter we have presented two directions of system development: a refinement (or
vertical development) notion for CSP-CASL; and an enhancement (or horizontal development)
notion for CSP-CASL specifications.

For the refinement part, we have defined a new notion based on model class inclusion
with arbitrary change of signature in the data part. Intuitively a CSP-CASL refinement
describes the following development process: On the data part, the model classes are
reduced by adding new informations about the data. On the process part, the refined
process description is less internally non-deterministic. That is, the environment in which
the process is defined has more control of the process.

We also presented a theory of enhancement for CSP-CASL. Intuitively a CSP-CASL en-
hancement notion asserts that: the meaning of old symbols are preserved and new pro-
cess symbols use old symbols only without change the meaning. This theory will allow
us to capture the notion of horizontal development, in which new features (or functions) are
added to existing systems.



(CHAPTER . . . 7 )

Proof support for CSP-CASL development
notions

Contents
7.1 Proof support for CSP-CASL refinement . . . . . . . . . . . . . . . . . . 87

7.2 Proof support for CSP-CASL enhancement . . . . . . . . . . . . . . . . 91

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

I N this chapter we present techniques to discharge proof obligation that arises when
proving a development step (vertical or horizontal) between CSP-CASL specifications.
In Section 7.1 we present a proof support for CSP-CASL refinement. Such proof sup-

port is based on a decomposition theorem of CSP-CASL refinement. This will allow us
to re-use existing tools for CSP and CASL refinement. In Section 7.2 we illustrate a proof
support for CSP-CASL enhancement. Here, we provide two enhancement patterns that
allow us to prove enhancement relation between CSP-CASL specifications.

The results presented in this chapter have been published in [KR09] and [KRS08].

7.1 Proof support for CSP-CASL refinement

Proof support for CSP-CASL refinement is based on a decomposition theorem. This decom-
position theorem gives rise to a proof method for CSP-CASL, namely, we study CSP-CASL

refinement in terms of CASL refinement and CSP refinement separately. With regards to
CSP-CASL refinement, data turns out to dominate the processes: While any CSP-CASL re-
finement can be decomposed into first a data refinement followed by a process refinement,
there is no such decomposition result possible for the reverse order, i.e., first CSP refine-
ment and then CASL refinement. This insight is in accordance with the 2-step semantics
of CSP-CASL, where in the first step we evaluate the data part and only in the second step
apply the process semantics.

87



88 Chapter 7 Proof support for CSP-CASL

THEOREM 7.1.1 (CSP-CASL REFINEMENT DECOMPOSITION) Let (D, P), (D′, ρ(P)) and
(D′, P′) be CSP-CASL specifications and σ : Σ(D) → Σ(D′) be a CSP-CASL data logic signature
morphism. Then, for all D ∈ {T ,F ,N},

(D, P) data
;σ (D′, ρ(P)) and (D′, ρ(P)) proc

;D (D′, P′)
implies

(D, P) ;σ
D (D′, P′).

PROOF. Let (D, P) have denotations (dM)M∈Mod(D), (D′, ρ(P)) have denotations
(d′M′)M′∈Mod(D′), and (D′, P′) have denotations (d′′M′)M′∈Mod(D′). We need to show that:

(dM)M∈Mod(D) ;σ
D (d′′M′)M′∈Mod(D′).

This holds if Mod(D′)|σ⊆ Mod(D) and ∀M′ ∈ Mod(D′). dM′|σ vD α̂D(d′′M′).

The data refinement (data;σ ) immediately gives the required model class inclusion. That is,
Mod(D′)|σ⊆ Mod(D).

Let M′ ∈ Mod(D′) and d′M′ be the respective denotation. Then, thanks to the reduct
property we have that dM′|σ = α̂D(d′M′).

The process refinement (proc;D ) yields:

∀M′ ∈ Mod(D′). d′M′ vD d′′M′ .

Thanks to the monotonicity of the alphabet translation α̂D w.r.t. the process refinement,
we apply the inverse translation α̂D : D(Alph(M′ |σ)) →? D(Alph(M′)) to both sides of
the process denotation:

∀M′ ∈ Mod(D′). α̂D(d′M′) vD α̂D(d′′M′).

This allows us to conclude that

∀M′ ∈ Mod(D′). (dM′|σ =D α̂D(d′M′)) vD α̂D(d′′M′).

Thus, the refinement (dM)M∈Mod(D) ;σ
D (d′′M′)M′∈Mod(D′) holds, i.e., (D, P) ;σ

D (D′, P′).

This result forms the basis for the CSP-CASL tool support developed in [OIR09]. In order
to prove that a CSP-CASL refinement (D, P) ;σ

D (D′, P′) holds, first one uses proof support
for CASL [MML07] alone in order to establish Mod(D′) |σ⊆ Mod(D). Independently of
this, one has then to check the process refinement P vD P′, for all D ∈ {T ,F ,N}. In
principle, the latter step can be carried out using CSP-Prover, see e.g. [IR05]. The use of
CSP-Prover, however, requires the CASL specification D′ to be translated into an alphabet
of communications. The tool CSP-CASL-Prover [OIR09] implements this translation and
also generates proof support for theorem proving in CSP-CASL.
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Changing the order in the above decomposition theorem, i.e., to first perform a process
refinement followed by a data refinement, however, is not possible in general. Often,
process properties depend on data, as the following counter example illustrates, in which
we have

(D, P) ;σ
D (D′, P′) but (D, P) 6proc;D (D, P′).

Consider the three CSP-CASL specifications ABS, MID and CONC, where MID consists of
the data part of ABS and the process part of CONC:

ccspec ABS =
data

sorts S
ops a, b : S;

process
P = a → STOP

end

ccspec MID =
data

sort S
ops a, b : S;

process
Q = a → Stop |[ a ]|

b → STOP
end

ccspec CONC =
data

sort S
ops a, b : S;
axiom a = b

process
R = a → STOP |[ a ]|

b → STOP

end

Let N be a CASL model of the data part DABS of ABS with N(S) = {#, ∗}, N(a) = #,
N(b) = ∗. Concerning the process denotations in the traces model T relatively to N, for
ABS we obtain the denotation1 dABS = {〈〉, 〈#〉}. In MID, the alphabetized parallel operator
requires synchronization only w.r.t. the event a. As N |= ¬a = b, the right hand side of the
parallel operator, which is prepared to engage in b, can proceed with b, which yields the
trace 〈∗〉 in the denotation. The left hand side, however, which is prepared to engage in
a, does not find a partner for synchronization and therefore is blocked. This results in the
denotation dMID = {〈〉, 〈∗〉}. As dMID 6⊆ dABS, we have ABS 6proc;T MID.

In CONC, the axiom a = b prevents N to be a model of the data part. This makes it possible
to establish ABS

proc
;T CONC over the traces model T . Using Theorem 7.1.1, we first prove

the data refinement: CONC adds an axiom to ABS – therefore, DABS refines to DCONC with
respect to CASL; concerning the process refinement, using the equation a = b and the step
law for generalized parallel, we obtain

a → STOP |[ a ]| b → STOP = a → STOP |[ a ]| a → STOP
=T a → (STOP |[ a ]| STOP)
=T a → STOP

Thus, over DCONC the process parts of ABS CONC are semantically equivalent and there-
fore in refinement relation over the traces model T . Figure 7.1 illustrates the overall de-
composition of CSP-CASL refinement.

In the following example we illustrate how we prove a refinement step of the binary cal-
culator example, using the decomposition theorem implemented in CSP-CASL-PROVER.
More challenging refinement steps proof will be presented in Chapter 11.

1For the sake of readability, we write the element of the carrier sets rather than their corresponding events
in the alphabet of communications.
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(D, P)

(D, P′) (D′, ρ(P))

(D′, P′)

proc
;D

data
;σ

;σ
D

data
;σ

proc
;D

Figure 7.1: Decomposition theorem of CSP-CASL refinement.

EXAMPLE 7.1.2 Here, we show the following refinement of the binary calculator:

BCALC0 ;F BCALC3

In order to prove this refinement we state, using the keyword view, how the refinement
goes:

view Refinement: BCALC0 to BCALC3

A view is a convenient way in CASL to relate two specifications; here, we use it to state the
refinement. In general, a view is used in CASL to state a specification morphism (induced
by a symbol map) from a (source) specification to an (target) specification.

Figure 7.2 Illustrates a screenshot of CSP-CASL-PROVER for the refinement BCALC0 ;F
BCALC3.

Figure 7.2: Binary calculator refinement in CSP-CASL-PROVER.
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The left hand side shows the development graph of our specifications. Here, the back dia-
gram shows the refinement to be proven between the specification BCALC0 and BCALC3;
specifically the red arrow indicates the existence of proof obligations. CSP-CASL imple-
ments the decomposition theorem and this makes the data refinement to be automatically
discharged by HETS. The front diagram illustrates the state of the overall refinement af-
ter the data refinement has been proved. Here, the red bubble indicates the presence of
a proof obligations to be discharged using CSP-PROVER. To this end, in the right hand
side we choose CSP-CASL-PROVER. Here, the tool automatically constructs the alphabets
of communications for the process part and generates a theory file2 in which the process
description is translated to the input language of CSP-PROVER. At this point we use CSP-
PROVER to interactively prove the process refinement. The Isabelle proof script can be
found in the Appendix A.2.

7.2 Proof support for CSP-CASL enhancement

In order to prove an enhancement step in CSP-CASL, we have identified some enhancement
patterns. Such patters captures the notion of adding new features to an existing system.

CSP-CASL enhancement guarantees preservation of behaviour up to the first communica-
tion that lies outside the original alphabet. This observation is captured in the following
proof principle:

THEOREM 7.2.1 (EXTERNAL CHOICE ENHANCEMENT) Let Sp = (D, P =?x :: s → P′), let
Sp′ = (D′, P =?x :: s → P′ 2?y :: t′ → Q′), and let Σ and Σ′ be the signatures of D and D′,
respectively, let S be the set of sorts in Σ. If

1. Σ is embedded into Σ′, Mod(D) = Mod(D′) |ι, and

2. for all u ∈ S it holds that D′ |=Σ′ ∀ x : u, y : t′ . x 6= y,

then Sp�Sp′.

PROOF. The first two conditions of the enhancement definition hold by assumption. We
prove the third condition, that is for all M′ ∈ Mod(D′) we have

traces([[P =?x :: s → P′]]ν:X→β(M′|ι)) = α̂T (traces([[P =?x :: s → P′

2?y :: t′ → Q′]]ν′ :X→β(M′)))

failures([[P =?x :: s → P′]]ν:X→β(M′|ι)) = α̂F (failures([[P =?x :: s → P′

2?y :: t′ → Q′]]ν′ :X→β(M′))).

For the traces condition, the trace set of the process P =?x :: s → P′ is given by

{〈〉} ∪ {〈a〉a q | q ∈ traces([[P′[a/x]]]ν:X→β(M′|ι)), a ∈ [s]∼β(M′ |ι)
}.

2A theory file is a Isabelle file, in which using different tactics we interactively discharge proof obligations.
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Here, [s]∼β(M′ |ι)
is the set of values in the alphabet generated by the sort symbol s relatively

to the model β(M′|ι). The trace set for the extended process P =?x :: s → P′ 2?y :: t′ → Q′

is given by:

{〈〉} ∪ {〈a〉a t | t ∈ traces([[P′[a/x]]]ν′ :X→β(M′)), a ∈ [s]∼β(M′)}
∪ {〈b〉a q | q ∈ traces([[Q′[b/y]]]ν′ :X→β(M′)), b ∈ [q]∼β(M′)}

Applying the reduct definition to the trace set of the extended process
α̂T (traces([[P =?x :: s → P′ 2?y :: t′ → Q′]]ν′ :X→β(M′))) we obtain:

{〈〉} ∪ {〈a〉a t | t ∈ traces([[P′[a/x]]]ν:X→β(M′|ι)), a ∈ [s]∼β(M′ |ι)
}.

Thus, we have that:

traces([[P =?x :: s → P′]]ν:X→β(M′|ι)) = α̂T (traces([[P =?x :: s → P′

2?y :: t′ → Q′]]ν′ :X→β(M′)))

For the failures condition, the failure set of the process ?x :: s → P′ is given by:

{(〈〉, X) | [s]∼β(M′ |ι)
∩X = ∅}

∪ {(〈a〉a p, X) | (p, X) ∈ failures([[P′([a/x])]]ν:X→β(M′|ι)), a ∈ [s]∼β(M′ |ι)
}

and the failure set of ?y :: t′ → Q′ is given by:

{(〈〉, Y) | [t′]∼β(M′) ∩ Y = ∅}
∪ {(〈b〉a q, Y) | (q, Y) ∈ failures([[Q′([b/y])]]ν′ :X→β(M′)), b ∈ [t′]∼β(M′)}

The failure set for the extended process P =?x :: s → P′ 2?y :: t′ → Q′ is given by:

{(〈〉, X′) | [s]∼β(M′) ∩X′ = ∅ and [t′]∼β(M′) ∩X′ = ∅}
∪ {(〈a′〉a p′, X′) | (p′, X′) ∈ failures([[P′([a′/x])]]∅:∅→β(M′)), a′ ∈ [s]∼β(M′)}
∪ {(〈b′〉a q′, X′) | (q′, X′) ∈ failures([[Q′([b′/y])]]∅:∅→β(M′)), b′ ∈ [t′]∼β(M′)}
∪ {(〈〉, X) | X ⊆ [s]∼β(M′) ∪ [t′]∼β(M′)

and 〈X〉 ∈ traces([[?x :: s → P′]]ν′ :X→β(M′)) ∪ traces([[?y :: t′ → Q′]]ν′ :X→β(M′))}

We now apply the reduct definition α̂F of the above failure set. The last set is empty as
〈X〉 is not in the traces. For the first set we obtain:

α̂T ({(〈〉, X′) | [s]∼β(M′) ∩X′ = ∅ and [t′]∼β(M′) ∩X′ = ∅})
= {(〈〉, X) | α(〈〉) = 〈〉, α(X) = X′ ∩ α(Alph(β(M′|σ))), [s]∼β(M′) ∩X′ = ∅, [t′]∼β(M′) ∩X′ = ∅}
= {(〈〉, X) | [s]∼β(M′ |ι)

∩X = ∅}

For the second set we obtain:

{(〈a〉a p, X) | (p, X) ∈ failures([[P′([a/x])]]ν:X→β(M′|ι)), a ∈ [s]∼β(M′ |ι)
}.

Putting these failures together we obtain the failures of P =?x :: s → P′, i.e.,

failures([[P =?x :: s → P′]]ν:X→β(M′|ι)) = α̂F (failures([[P =?x :: s → P′

2?y :: t′ → Q′]]ν′ :X→β(M′))).

Hence, we have that Sp � Sp′.



7.2 Proof support for CSP-CASL enhancement 93

Often a specification Sp is enhanced by a specification Sp′ by using the overloading func-
tionalities and by adding supersorts. To capture this technique by a characterization the-
orem, we introduce an extension operation, first on CASL signatures, then on CSP-CASL

processes.

DEFINITION 7.2.2 Given a mapping ξ : S → S′ on sort names, we define

• ξ(f ) = f : ξ(s1)× · · · × ξ(sk) → ξ(s) for a function symbol f : s1 × · · · × sk → t,

• ξ(p) = p : ξ(s1)× · · · × ξ(sk) for a predicate symbol p : s1 × · · · × sk,

• ξ(x : s) = x : ξ(s) for a variable x of type s and

• ξ(f (t1, .., tk)) = ξ(f )(ξ(t1), . . . , ξ(tk) for a CASL term f (t1, . . . , tk).

Σ is embedded into Σ′ with a mapping ξ : S → S′ if Σ is embedded into Σ′, TF′ = TF ∪ ξ(TF),
PF′ = PF ∪ ξ(PF), P′ = TF ∪ ξ(P), and ≤′ is the minimal subsort relation with ≤⊆≤′ and
(s, ξ(s)) ∈≤′.

The setting of Definition 7.2.2 ensures that any new function and predicate symbols in Σ′

are in overloading relation with the old symbols of Σ. For CSP-CASL processes, ξ is the
identity with the exception:

• ξ(t → P) = ξ(t) → ξ(P)

• ξ(?x :: s → P) =?x :: ξ(s) → ξ(P).

And now we show that enhancement via extension of data using overloading functions
and supersorts leads to enhancement of CSP-CASL specifications.

THEOREM 7.2.3 (SUPERSORT ENHANCEMENT) Let Sp = (D, P) and Sp′ = (D′, P′) be CSP-
CASL specifications, let Σ and Σ′ be the signatures of D and D′, respectively. Let S and S′ be the
sets of sorts in Σ and Σ′, respectively, let ξ : S → S′ be a mapping on sort names. If

1. Σ is embedded into Σ′ with the mapping ξ,

2. Mod(D) = Mod(D′) |ι, and

3. P′ = ξ(P),

then Sp�Sp′.

PROOF. The first two conditions of CSP-CASL enhancement definition holds by assump-
tion. We prove the third condition, that is for all M′ ∈ Mod(D′) it holds that:

traces([[P]]ν:X→β(M′|ι)) = α̂T (traces([[ξ(P)]]ν′ :X′→β(M′)))
failures([[P]]ν:X→β(M′|ι)) = α̂F (failures([[ξ(P)]]ν′ :X′→β(M′))).

First, we show that in the enhanced setting we only have to consider variable bindings
to values in the original subsorts. The only introduction of bindings is via the multiple
choice operator ?x :: s → P(x). The reduct operator removes traces starting with the value
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not present in the original setting:

α̂T (traces([[?x :: ξ(s) → ξ(P)(x : ξ(s))]]ν′ :X′→β(M′))
= α̂T (traces([[?x :: s → ξ(P)(x : s)]]ν′ :X′→β(M′))) (∗)

where ν′ : X′ → β(M′) is an arbitrary variable evaluation. This holds as s ≤′ ξ(s) and
therefore [s]∼β(M′) ⊆ [ξ(s)]∼β(M′) . Furthermore, for b ∈ [ξ(s)]∼β(M′) ∩ [s]∼β(M′) we have b /∈
α(Alph(β(M′|ι))).

We now prove by structural induction on the process operator P that the following holds:

traces([[P]]ν:X→β(M′|ι)) = α̂T (traces([[ξ(P)]]ν′ :X′→β(M′))).

where ν′(x : ξ(s)) = α(x : s), i.e., ν′ evaluates only to values reachable under α.

On the CSP-CASL process operator, the mapping ξ is defined as the identity, with the
exception of two operators mentioned above.

Let P =?x :: s → P. Then P′ =?x :: ξ(s) → ξ(P). We now show the following:

traces([[?x :: s → P]]ν:X→β(M′|ι)) = α̂T (traces([[?x :: ξ(s) → ξ(P)]]ν′ :X′→β(M′))).

By the argument illustrated in (*), we can replace the right hand side:

traces([[?x :: s → P]]ν:X→β(M′|ι)) = α̂T (traces([[?x :: s → ξ(P)(x : s)]]ν′ :X′→β(M′))).

We unfold the left hand side of the equation. Here, we first apply the evaluation according
to CASL, and we obtain:

traces([[?x :: s]]ν:X→β(M′|ι) → [[P]]ν:X→β(M′|ι)).

We then calculate the trace set:

{〈〉} ∪ {〈a〉a t | t ∈ traces([[P[a/x]]]ν:X→β(M′|ι)), a ∈ [s]∼β(M′ |ι)
}.

We unfold the right hand side of the equation, and we obtain:

α̂T ({〈〉} ∪ {〈a〉a t | t ∈ traces([[ξ(P)[a/x]]]ν′ :X′→β(M′)), a ∈ [s]∼β(M′)}).

The claim follows by induction hypothesis and applying the reduct definition.

Let P = t → P. Then we have that P′ = ξ(t) → ξ(P). We prove the following:

traces([[t → P]]ν:X→β(M′|ι)) = α̂T (traces([[ξ(t) → ξ(P)]]ν′ :X′→β(M′))).

As all symbols in t and ξ(t) are in overloading relation, and ν′ is restricted to values in the
original setting, we have that

ν′ |= t = ξ(t).

The claim follows by induction hypothesis and applying the reduct definition.
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The reduct operator over the failures set (α̂F ) removes the failures which are not present
in the original setting:

α̂F (failures([[?x :: ξ(s) → ξ(P)(x : ξ(s))]]ν′ :X′→β(M′)))
= α̂F (failures([[?x :: s → ξ(P)(x : s)]]ν′ :X′→β(M′))) (∗∗)

where ν′ : X′ → β(M′) is an arbitrary variable evaluation. This is a consequence of the
condition presented in the traces condition (see (*)) – the healthiness conditions of the
stable failure model requires that the trace component in the failures needs to be present
in the traces.

For the failures condition, we show the following by structural induction on the process
operator P:

failures([[P]]ν:X→β(M′|ι)) = α̂F (failures([[ξ(P)]]ν′ :X→β(M′))).

where ν′(x : ξ(s)) = α(x : s), i.e., ν′ evaluates only to values reachable under α.

Again we consider the two cases: Let P =?x :: s → P. Then P′ =?x :: ξ(s) → ξ(P). We
show the following:

failures([[?x :: s → P]]ν:X→β(M′|ι)) = α̂F (failures([[?x :: ξ(s) → ξ(P)]]ν′ :X→β(M′))).

By the argument in (**) we unfold the right hand side, and obtain

failures([[?x :: s → P]]ν:X→β(M′|ι)) = α̂F (failures([[?x :: s → ξ(P)(x : s)]]ν′ :X′→β(M′))).

We unfold the left hand side of the equation. Here, we first apply the evaluation according
to CASL, and we obtain:

failures([[?x :: s]]ν:X→β(M′|ι) → [[P]]ν:X→β(M′|ι)).

We then calculate the failures set and we obtain:

{(〈〉, X) | [s]∼β(M′ |ι)
∩X = ∅}

∪ {(〈a〉a q, X) | (q, X) ∈ failures([[P([a/x])]]ν:X→β(M′|ι)), a ∈ [s]∼β(M′ |ι)
}

The claim follows by induction hypothesis and applying the reduct definition.

For the other case, we show the following:

failures([[t → P]]ν:X→β(M′|ι)) = α̂F (failures([[ξ(t) → ξ(P)]]ν′ :X→β(M′))).

We unfold the left hand side of the equation. Here, we first apply the evaluation according
to CASL, and we obtain:

failures([[t]]ν:X→β(M′|ι) → [[P]]ν:X→β(M′|ι)).

We then calculate the failures set and we obtain:

{([[〈〉]]∅:∅→β(M′), Y) | [[t]]ν:X→β(M′|ι) /∈ Y, Y ∈ P(Alph(M′ |ι)X)}
∪ {(〈[[t]]∅:∅→β(M′)〉a q, Y) | (q, Y) ∈ failures([[P]]ν:X→β(M′|ι))}.
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We unfold the right hand side and calculate the failures set:

α̂F ({([[〈〉]]ν′ :X→β(M′), Y′) | [[ξ(t)]]ν′ :X→β(M′) /∈ Y′, Y′ ∈ P(Alph(M′)X)})
∪ α̂F ({(〈[[ξ(t′)]]ν′ :X→β(M′)〉a q′, Y′) | (q′, Y′) ∈ failures([[P]]ν′ :X→β(M′))}).

As above for the traces condition we have that a ν′ |= t = ξ(t). Then the claim follows by
induction hypothesis and applying the reduct definition.

In Section 10.3 we will illustrate, through a case study, how we use the enhancement
patterns introduced in this section.

7.3 Summary

Establishing the theoretical framework for CSP-CASL development notions is not useful
in practice if not accompanied by tool support. In this chapter we have presented tech-
niques to discharge proof obligations that could arise from the development notions of
CSP-CASL.

On the refinement side of CSP-CASL specifications, we established an approach based on
a decomposition theorem. Such decomposition theorem allows us to prove CSP-CASL re-
finement, first by reasoning about data refinement and then by process refinement. Based
on this approach we are able to re-use existing tools to discharge proof obligations.

On the enhancement side of CSP-CASL specifications, we have proposed two enhance-
ment patterns that allow us to capture the notions of adding new features to existing
specifications.
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I N this chapter we present techniques to prove interesting properties of CSP-CASL

specifications. In particular we study deadlock and livelock analysis in the CSP-CASL

context. We show how we use the CSP-CASL refinement notion to prove that proper-
ties specified in the abstract specification are inherited by the refined specification.

Throughout this chapter, on the syntactical level we make the following assumption: Let
Sp = (D, P) and Sp = (D′, P′) be two CSP-CASL specifications and σ : Σ(D) → Σ(D′) be
the CSP-CASL data logic signature morphism. Let Alphabet(P) and Alphabet(P′) be the set
of the communication alphabets used in the processes P and P′ respectively. We assume
that Alphabet(P′) ⊆ α(Alphabet(P)), where α is the alphabet translation (see Section 6.1).
Such assumption is necessary in order to make sure that the inverse translation α̂ is always
defined. We call such property the alphabet condition.

8.1 Deadlock analysis in CSP-CASL

In this section we show how to analyze deadlock freeness in the context of CSP-CASL.
To this end, first we recall how deadlock is characterized in CSP (see Section 2.2). Then,
we define what it means for a CSP-CASL specification to be deadlock free. Finally, we
establish a proof technique for deadlock freeness based on CSP-CASL refinement, which
turns out to be complete.

We recall that in the CSP context, the stable failures model F is best suited for deadlock
analysis. Deadlock is represented by the process STOP. Let A be the alphabet. Then the

97
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process STOP has denotation

({〈〉}, {(〈〉, X) | X ⊆ AX}) ∈ P(A∗X)× P(A∗X × P(AX))

in the stable failure model F , i.e., the process STOP can perform only the empty trace, and
after the empty trace the process STOP can refuse to engage in all events. In CSP, a process
P is by definition deadlock free if and only if

∀ s ∈ A∗.(s, AX) /∈ failures(P).

In other words: Before termination, the process P can never refuse all events; there is
always some event that P can perform.

8.1.1 Deadlock definition in CSP-CASL

A CSP-CASL specification has a family of process denotations as its semantics. Each of
these denotations represents a possible implementation. We consider a CSP-CASL spec-
ification to be deadlock free, if it enforces all its possible implementations to have this
property. On the semantical level, we capture this idea as follows:

DEFINITION 8.1.1 Let (dM)M∈I be a family of process denotations over the stable failures model,
i.e., dM = (TM, FM) ∈ F (Alph(M)) for all M ∈ I.

• dM is deadlock free if (s, X) ∈ FM and s ∈ Alph(M)∗ implies that X 6= Alph(M)X.

• (dM)M∈I is deadlock free if for all M ∈ I it holds that dM is deadlock free.

Deadlock can be analyzed trough refinement checking; that is an implementation is dead-
lock free if it is the refinement of a deadlock free specification.

THEOREM 8.1.2 Let Sp = (D, P) and Sp = (D′, P′) be two CSP-CASL specifications. Let
Sp ;σ

F Sp′. Let the alphabet condition holds, i.e., Alphabet(P′) ⊆ α(Alphabet(P)). If Sp is
deadlock-free, then so is Sp′.

PROOF. Let (dM)M∈Mod(D) and (d′M′)M′∈Mod(D′) be the family of process denotations of
Sp = (D, P) and Sp = (D′, P′) respectively. The proof is carried out by contraposition.

Let (d′M′)M′∈Mod(D′) contains a denotation with deadlock. From the refinement argument
we know that:

Mod(D′)|σ⊆ Mod(D)
and ∀M′ ∈ Mod(D′). dM′|σ = (TM′|σ , FM′|σ) vF α̂F (T′M′ , F′M′) = α̂F (d′M′).

We show that dM′|σ = (TM′|σ , FM′|σ) contain a denotation with deadlock. Let M ∈ I′ such
that d′M = (T′M, F′M) with (s′,Alph(M)X) ∈ F′M, i.e., d′M is a deadlocked process denotation.
We unfold the reduct definition over the stable failure model F :

α̂F (T′M, F′M) = ({s ∈ Alph(M′|σ)∗X | α∗X(s) ∈ T′M},
{(s, X) ∈ Alph(M′|σ)∗X × P(Alph(M′|σ)X) |
exists (s′, X′) ∈ F′M with α∗X(s) = s′ and αX

P (X) = X′ ∩ α(Alph(M′|σ))}).
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Since d′M is a deadlocked process denotation, we have that X′ = Alph(M)X. Unfolding the
definition of stable failure refinement we have that

α̂T (T′M) ⊆ TM|σ and α̂(F′M) ⊆ FM|σ .

It follows that (s,Alph(M)X) ∈ FM|σ), this means that d′M is a deadlocked process denota-
tion. Hence, (dM)M∈I contains a denotation with deadlock.

Following an idea from the CSP context, we formulate the most abstract deadlock free CSP-
CASL specification over a subsorted CASL signature Σ = (S, TF, PF, P,≤) – see [Mos04] for
the details – with a set of sort symbols S = {s1, . . . , sn}, n ≥ 1 :

ccspec DFΣ =
data

. . . declaration of Σ . . .
process

DFS = us:S
(!x :: s → DFS) u SKIP

end

Here, the process DFS can either internally choose to successfully terminate, or behave
like !x :: s → DFS. The latter, internally chooses an element x from the sort s, engages in it,
and then recursively behaves like DFS. We observe:

LEMMA 8.1.3 DFΣ is deadlock free.

PROOF. Let (dfM)M∈I be the denotation of DFΣ over the stable-failures model,
where dfM = (TM, FM). For all M ∈ I holds:

TM = Alph(M)∗X

FM = {(t, X) | t ∈ Alph(M)∗, X ⊆ Alph(M) ∨ ∃ a ∈ Alph(M). X ⊆ Alph(M)X − {a}}
∪{(t a 〈X〉, Y) | t ∈ Alph(M)∗, Y ⊆ Alph(M)X}.

That is after a non-terminating trace t, DFΣ never has Alph(M)X as its refusal set. Hence,
DFΣ is deadlock free.

This result on DFΣ extends to a complete proof method for deadlock freeness in CSP-CASL:

THEOREM 8.1.4 A CSP-CASL specification (D, P) is deadlock free if and only if
DFΣ ;F (D, P).

PROOF. Let (dfM)M∈Mod(Σ) and (dM′)M′∈Mod(D) be the family of process denotations of
DFΣ and (D, P) respectively. We show both sides of the equivalence:

⇒) Let (dM′)M′∈Mod(D) be deadlock free. We apply the decomposition theorem (Theo-
rem 7.1.1) and prove first the data refinement and then the process refinement. The
data refinement holds, as the model class of DFΣ consists of all CASL models over
Σ.
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For the process refinement we show that for all M′ ∈ Mod(D) it holds that:

dfM′ = (TM′ , FM′) vF (T′M′ , F′M′) = dM′

To this end we show that T′M′ ⊆ TM′ and F′M′ ⊆ FM′ holds. The trace inclusion is
trivial, as T′M = Alph(M′)∗X, i.e., the set of traces of DFΣ consists of all possible
traces. The inclusion of the failures set holds for the similar reason: In the case of
t being a non-terminating trace, i.e, t ∈ Alph(M′)∗, then the refusal set X needs to
be a proper subset of Alph(M′)X – otherwise (d′M′)M′∈Mod(D) contains a deadlocked
denotation.

Thus, the failure set is also included in the failure of DFΣ.

⇐) If DFΣ ;F (D, P), Lemma 8.1.3 and Theorem 8.1.2 imply that (D, P) is deadlock free.

8.2 Livelock analysis in CSP-CASL

For concurrent systems, divergence (or livelock) is regarded as an individual starvation,
i.e., a particular process is prevented from engaging in any actions. As described in Chap-
ter 2, in CSP, the failures/divergences model N is considered best to study systems with
regard to divergence. The CSP process DIV represents this phenomenon: immediately, it
can refuse every event, and it diverges after any trace. DIV is the least refined process in
the vN model.

In the failures/divergences model N , a process is modeled as a pair (F, D). Here, F repre-
sents the failures, while D collects all divergences. Let A be the alphabet. The process DIV
has

(A∗X × P(AX), A∗X) ∈ P(A∗X × P(AX))× P(A∗X)

as its semantics over the failure/divergences model N .

Following these ideas, we define what it means for a CSP-CASL specification to be diver-
gence free: Essentially, after carrying out a sequence of events, the denotation shall be
different from DIV.

DEFINITION 8.2.1 Let (dM)M∈I be a family of process denotations over the failure divergence
model, i.e, dM = (FM, DM) ∈ N (Alph(M)) for all M ∈ I.

• A denotation dM is divergence free if and only if :

C.1 ∀ s ∈ Alph(M)∗.{(t, X) | (s a t, X) ∈ FM} 6= Alph(M)∗X × P(Alph(M)X) or

C.2 ∀ s ∈ Alph(M)∗.{t | (s a t) ∈ DM} 6= Alph(M)∗X.

• (dM)M∈I is divergence free if for all M ∈ I it holds that dM is divergence free.

As in the case of analysis for deadlock freeness, also the analysis for divergence freeness
can be checked trough refinement, this time over the model N .
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THEOREM 8.2.2 Let Sp = (D, P) and Sp = (D′, P′) be two CSP-CASL specifications. Let
the alphabet condition holds, i.e., Alphabet(P′) ⊆ α(Alphabet(P)). Let Sp ;σ

N Sp′. If Sp is
divergence free, then Sp′ is divergence free.

PROOF. Let (dM)M∈Mod(D) and (d′M′)M′∈Mod(D′) be the family of process denotations of
Sp = (D, P) and Sp = (D′, P′) respectively. The proof goes by contraposition.

Let (d′M′)M′∈Mod(D′) contains a denotation with divergence, i.e., there exists a model M ∈
Mod(D′) such that d′M = (F′M, D′

M) is divergent. Then, conditions C.1 and C.2 do not hold
for d′M.

We show that (dM)M∈Mod(D) contains a denotation with divergence, i.e., there exists a
model N ∈ Mod(D′) |σ such that dN = (FN, DN) is divergent. From the refinement ar-
gument we know that:

Mod(D′)|σ⊆ Mod(D)
and ∀M′ ∈ Mod(D′). dM′|σ = (F⊥M′|σ , DM′|σ) vN α̂N (F′⊥M′ , D′

M′) = α̂N (d′M′).

Let M ∈ Mod(D′) such that d′M = (F′⊥M , D′
M) is divergent, i.e., there is s′ ∈ Alph(M) with

{(t′, X′) | (s′ a t′, X′) ∈ α̂(F′⊥M )} = Alph(M)∗X × P(Alph(M)X)
and {t′ | (s′ a t′) ∈ α̂(D′

M)} = Alph(M)∗X.

Such trace s should already exist in dM|σ , due to the refinement argument. Hence, in dM|σ
there exist s ∈ Alph(M |σ) with α̂∗X(s′) = s, α̂X∗(t′) = t and α̂X

P (X′) = X such that

{(t, X) | (s a t, X) ∈ F⊥M|σ
} = Alph(M |σ)∗X × P(Alph(M |σ)X)

and {t | (s a t) ∈ DM|σ} = Alph(M |σ)∗X).

Here, the translation α̂ gives the full alphabet, thanks to the reduct property (Theorem 6.1.8).
Therefore, (dM)M∈Mod(D) contains a divergent process denotation.

As for the analysis of deadlock freeness we formulate the least refined divergence free CSP-
CASL specification over a CASL signature Σ with a set of sort of symbols S = {s1, . . . , sn}
with n ≥ 1.
ccspec DIVFΣ =

data
. . . declaration of Σ . . .

process
DivF = (STOP u SKIP) u (us:S

!x :: s → DivF)
end

DivF may deadlock at any time, it may terminate successfully at any time, or it may per-
form any event at any time, however, it will not diverge.
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LEMMA 8.2.3 DIVFΣ is divergence free.

PROOF. Let (dM)M∈I be the semantics of DIVFΣ over the failures/divergences model N
where dM = (F⊥M, DM) ∈ N (Alph(M)).

We compute the failures and divergence component of dM. Here, we need to compute the
fixed point of DIVFS. For the model N this is given by the componentwise intersection

uS = ({∩F | (F, D) ∈ S}, {∩D | (F, D) ∈ S})

S is the directed set of process under the refinement in the model N . For the failures
component, we have for all models M that: F⊥M = Alph(M)∗X × P(Alph(M)X). As for
the divergences component the intersection gives the empty set. Hence, we have that
dM = (Alph(M)∗X × P(Alph(M)X), ∅). Such a denotation fulfills the condition C.2 of the
divergence free definition. Thus, DIVFΣ is divergence free.

Putting things together, we obtain a complete proof method for divergence freedom of
CSP-CASL specifications:

THEOREM 8.2.4 A CSP-CASL specification (D, P) is divergence free if and only if
DIVFΣ ;F (D, P). Here Σ is the signature of D.

PROOF. We show both directions of the equivalence:

⇒) Now let (D, P) be divergence free. Assume that DIVFΣ 6;N (D, P). As the data part
of DIVFΣ refines to D, with our decomposition Theorem 7.1.1 we can conclude that
(D, DivF) 6proc;N (D, P).

Let (dM)M∈Mod(D) be the semantics of (D, DivF), where dM = (FM, DM), and
(d′M)M∈Mod(D) be the semantics of (D, P), where d′M = (F′M, D′

M). By definition of
process refinement there exists a model M ∈ Mod(D) such that F′M 6⊆ FM or D′

M 6⊆
DM.

As FM = Alph(M)∗X × P(Alph(M)X), see the proof of Lemma 8.2.3, we know that
F′M ⊆ FM holds. Therefore, we know that D′

M 6⊆ DM. As DM = ∅, there exists a trace
t ∈ D′

M not ending with X, as the healthiness condition D3 of the failures/diver-
gences model asserts that for any trace u′ = u a 〈X〉 ∈ D′

M also u ∈ D′
M. Applying

healthiness condition D1 we obtain t a t′ ∈ D′
M for all t′ ∈ Alph(M)∗X. With healthi-

ness condition D2 this results in

{(t a t′, X) | t′ ∈ Alph(M)∗X, X ∈ P(Alph(M)X)} ⊆ F′M.

Hence, d′M is not divergence free, as D′
M violates C.2 – contradiction to (D, P) diver-

gence free.

⇐) If DIVFΣ ;N (D, P), Lemma 8.2.3 and Theorem 8.2.2 imply that (D, P) is divergence
free.
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8.3 Summary

In this chapter we have presented proof techniques for the verification of properties of
CSP-CASL specifications. Specifically, we have shown that refinement over certain CSP

denotational models preserve some properties. This concept allows to verify properties
already on abstract specifications – which in general are less complex than the more con-
crete ones. The properties, however, are preserved over the design steps.

We have illustrated how to analyze deadlock and livelock freeness in the context of CSP-
CASL. To this end, we have first defined what it means for a CSP-CASL specification to
be deadlock or livelock free . Finally, we have established a proof technique for deadlock
and livelock freeness based on CSP-CASL refinement, which turns out to be complete.
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I N this chapter we describe the theory of testing from CSP-CASL specifications. We first
illustrate the general idea of our approach. Here, we present the ‘main challenges’
of setting up the theory for CSP-CASL using the example of a binary calculator. In

Section 9.2 and 9.4 we describe the theoretical framework of our approach.

The notions and results presented in this chapter have been published in [KRS07].

9.1 Challenges for CSP-CASL based testing

Software testing is recognized as a necessary means of program verification. Even when
other program verification techniques such as static analyses and formal proofs are em-
ployed, testing is still considered necessary to complement these techniques, and to build
greater confidence in the system being developed.

In contrast to the approaches mentioned in the background Chapter 5, here we are using a
specification language with loose semantics which allows under-specification, refinement
and enhancement. Hence, a proper testing theory which exploits such aspects is needed.

When dealing with testing based on formal specifications, there are some inherent chal-
lenges to be solved. We believe that these challenges are common to all sufficiently ab-
stract specification formalisms. In order to illustrate such challenges, we consider as an
SUT the binary calculator example described in Section 4.1 (Example 4.1.1). Here, the
abstract specification (BCALC0) is step by step refined to a more concrete specification.

107
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A testing framework should be capable to deal with incomplete and nondeterministic
specifications. Basically, for CSP-CASL based testing we shall define:

• what is a CSP-CASL test case,

• the expected result of a test case with respect to a CSP-CASL specification (the test
evaluation), and

• the execution result of a test cases with respect to a (black box) SUT (the test verdict).

A first challenge is to therefore to define these notions such that the evaluation of test
cases reflect the development notions of CSP-CASL specifications. This means that test
suites can be incrementally extended and refined according to the development notions as
presented in Chapter 6.

For the calculator example, we recall the first high-level specification (specified in Chap-
ter 4):

ccspec BCALC0 =
data sort Number

ops 0, 1 : Number;
+ : Number × Number →? Number

channels Button : Number;
Display : Number

process P0 : Button, Display ;
P0 = Button ? x :: Number →P0 u Display ! y :: Number →P0

end

Even for such loosely specified systems we would like to be able to derive meaningful
tests. For example, we could design test cases which are used for setting up the interface
between testing system and SUT. The testing framework should be able to cope with such
a situation.

A more refined specification could require that the pressing of buttons and the display of
digits strictly alternates:

P1 = Button?x :: Number → Display!y :: Number → P1

In the process P1 each input is directly followed by some output. For such a specification,
we would like to be able to test exactly the mentioned property, namely that after each
press of a button some digit is displayed.

An even more refined version requires that the first displayed digit is echoing the input,
and the second displays the result of the computation:

P2 = Button?x :: Number → Display!x → Button?y :: Number
→ Display!(x + y) → P2

Here, we would like to test for instance that after input of x the display shows x, and if
after input of x and y the display shows the value of the term x + y. Such refinement
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steps could occur, for example, when use cases which are derived from customer’s wishes
are integrated into the formal specification. Ideally, we would like to be able to re-use
test cases on a more detailed level which have been designed for a more abstract level;
since the refined specification is more precise than the abstract one, the outcome of testing
should also be more precise. In particular, each test case developed for P1 should be
reusable for P2.

In P2 it is still left open what the value of x + y shall be. We haven’t yet specified the
arithmetic properties of addition. Such situations of under-specifications occur, e.g., in
object-oriented design. Here, it is often the case that library functions are used whose ex-
act functionality is specified at a later stage. As presented in Chapter 4 (Example 4.2.4),
we add some suitable axioms to the data part.

ccspec BCALC3 =
data sort Number

ops 0, 1 : Number;
+ : Number× Number →? Number

axioms 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1
channels Button : Number;

Display : Number
process P3 : Button, Display;

P3 =Button?x :: Number → Display!x
→ Button?y :: Number → Display!(x + y) → P3

end

In BCALC3, the specification does not constrain the SUT in the result of the + operator.
This is because we haven’t specified yet what happened in the case of 1 + 1. Such a situ-
ation might for example arise when the functionality of border cases or exceptions is not
constrained in the basic specification. E.g., in many programming languages the value of
an integer variable in case of overflow is not defined. However, we want to design test
cases which cover the normal, non-exceptional behaviour, and to re-use these test cases
later on. With such a specification, we expect to be able to test whether the calculator
behaves correctly, e.g., for the input of 0 and 1.

Taking the standard arithmetic CARDINAL from the CASL library of Basic Datatypes [Mos04],
we specify a one bit calculator where 1 + 1 is seen as an arithmetic overflow and therefore
is an undefined term.
ccspec BCALC4 =

data CARDINAL [op WordLength = 1 : Nat]
with sort CARDINAL 7→ Number

channels Button : Number;
Display : Number

process P3 : Button, Display;
P3 =Button?x :: Number → Display!x

→ Button?y :: Number → Display!(x + y) → P3
end
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For this specification all models of the data part are isomorphic, and in the process part
there is no internal non-determinism. Such a specification can be completely tested.

9.2 Test case evaluation

As mentioned in the previous section each test case reflects some intentions described in
the specification. Here, we introduce a colouring scheme to reflect the intentions of test
cases. Intuitively, green test cases reflect required behaviour of the specification. Red test
cases reflect forbidden behaviour of the specification. A test is coloured yellow if it depends
on an open design decision, i.e., if the specification does neither require nor disallow the
respective behaviour.

DEFINITION 9.2.1 Let Sp = (D, P) be a CSP-CASL specification such that D is consistent, and
let X = (Xs)s∈S be a variable system over the signature Σ of the data part D. A test case T is any
CSP-CASL process in the signature of Sp and the variable system X. The colour of a test case T
with respect to Sp is a value c ∈ {green, red, yellow}, such that

• colourSp(T) = green iff for all models M ∈ Mod(D) and all variable evaluations
ν : X → M it holds that:

1. (Traces condition) traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M)) and

2. (Failures condition) for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all 1 ≤ i ≤ n it
holds that:
(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M))

• colourSp(T) = red iff for all models M ∈ Mod(D) and all variable evaluations
ν : X → M it holds that:

traces([[T]]ν) 6⊆ traces([[P]]∅:∅→β(M))

• colourSp(T) = yellow otherwise.

In other words: a test case T is green, if all models agree (1) that all its traces are possible
system runs, and (2) the execution of such traces can’t be refused. A test case T is red,
if all models agree that not all of its traces are possible system runs and, finally, a test
case T is yellow, if the execution of some possible system run can also lead to failure, or
the process T has a trace which some models consider as a possible system run while
others don’t. In analysing red test cases, we only consider the traces condition, because the
CSP semantics only consider refusals for possible system runs. A CSP-CASL specification
with an inconsistent data part D does not reflect any intention, and, consequently, such a
specification does not lead to any colouring of test cases. The following proposition lists
some simple properties of our colouring scheme.

PROPOSITION 9.2.2 Let Sp = (D, P) be a CSP-CASL specification. The following holds:

1. colourSp(STOP) = green.
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2. With the specification Sp = (D, STOP) all test cases different from STOP are coloured red.

3. If T and T′ are test cases such that colourSp(T) = c, colourSp′(T′) = c′, and
traces([[T′]]ν) ⊆ traces([[T]]ν) for all models M ∈ Mod(D) and all variable evaluations
ν : X → M, then c = green implies c′ = green and c′ = red implies c = red.

PROOF.

1. The test process STOP gives rise to the empty observation 〈〉. Hence, the conditions
for the green colour, (1) and (2) trivially hold.

2. The trace set of Sp = (D, STOP) is {〈〉}, hence [[STOP]]ν 6vT [[T]]ν for any
T 6=T STOP. Here, T being semantically different from STOP over the traces model
(=T ), carries over also to the other CSP models; i.e., 6=T⇒6=F , and 6=N .

3. For all models M ∈ Mod(D) and all variable evaluations ν : X → M:

• If c = green, i.e., traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M)). Then, it follows

traces([[T′]]ν) ⊆ traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M)).

For every tr = 〈t1, . . . tn〉 ∈ traces([[T′]]ν), we have tr ∈ traces([[T]]), so that
(〈t1, . . . , tj−1〉, {tj}) /∈ failures([[P]]∅:∅→β(M)) follows for every 1 ≤ j ≤ k. Thus
c′ = green.

• If c′ = red, then there exists tr ∈ traces([[T′]]ν) such that tr /∈ traces([[P]]∅:∅→β(M)).
But then, since traces([[T′]]ν) ⊆ traces([[T]]ν), we have tr ∈ traces([[T]]ν) and
traces([[T]]ν) /∈ traces([[P]]∅:∅→β(M)). Thus, c = red.

We now discuss the main sources of yellow test cases. Typical examples of open design
decisions which lead to yellow test cases are the following:

Internal nondeterminism This means, that one action may have multiple outcomes. Let
us consider the following CSP-CASL specification:

ccspec NONDETERMINISM =
data sort S

ops a, b : S
process

Choice = a → STOP u b → STOP
end

The order of a and b as a first action is left open. Consider the test case T = a → STOP.
The traces condition holds, as traces([[T]]ν) ⊆ traces([[Choice]]∅:∅→β(M)). However,
at the first step of Choice neither the execution of a nor the execution of b can be
guaranteed. This is due to the fact that Choice has the failure (〈〉, {a}), this means
that it can refuse to run the event a of T; hence the colour of T is yellow.
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Loose specification In the same way, a heterogeneous model class of the data part can
lead to a yellow test. Take for example the following CSP-CASL specification:

ccspec LOOSE =
data sorts Signal, Number

ops f : Number → Number;
0, 1 : Number;
continue, shutDown : Signal

process
P = if f (0) = 1

then continue → SKIP
else shutDown → STOP

end

Here, the signal continue is sent in models where f is, e.g., the successor function.
In other models, f might be the predecessor function and shutDown is sent. If the
interpretation of f is still an open design decision in the current specification, there
are two correct implementations behaving differently.

The second example illustrates also that the classification of a test process as green, red, or
yellow is in general undecidable, as CASL includes full first order logic and arbitrary CASL

predicates are allowed in case distinctions. As mentioned in Section 5.3, this is called the
test oracle problem (see e.g., [Mac00][Mac99]).

9.3 Syntactic characterization for colouring CSP-CASL test cases

Using techniques originally developed in the context of full abstraction proofs for CSP

[Ros98], the semantical definition of colouring test processes presented in the previous
section has an equivalent syntactical characterisation for certain test processes. Here, we
first show a syntactic encoding for the traces condition and then for the failures condi-
tion. Finally, we illustrate some properties of such syntactic encodings in the context of
colouring CSP-CASL test cases.

9.3.1 Traces condition

A test processes T is called linear if it can be written as T = t1 → . . . → tn → STOP.
Concerning trace inclusion with respect to a linear test process T of length n ≥ 0, we
define the following system of process equations:
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CheckT = ((P ‖ T)[[Rs1 ]] . . . [[Rsh ]]
|[ A ]|

count(n)) \ {A}

count(n : Nat) = if n = 0
then OK → STOP

else a → count(n− 1)

Here, h > 0 is the number of sorts in which T can possibly communicate.

To make this a valid process part of a CSP-CASL specification, we take the original data
part and extend it conservatively, i.e., without losing any model of the data part. To this
end we add a datatype Nat with the standard operations, a free type A consisting only
of the constant a, a free type OK consisting only of the constant OK, and for each of the
finitely many sorts s1 . . . sh in which T could possibly communicate a renaming predicate
Rsi : si ×A with the axiom ∀ x : si • R(x, a).

The following CASL specification illustrates how we extend the data specification in order
to make CheckT a valid CSP-CASL specification. We first import the NAT specification from
the CASL library. DATA is the data specification of P, with only one sort S.

from BASIC/NUMBERS get NAT

spec CHECKTDATA =
NAT and DATA

then %cons
free type A ::= a
free type OK ::= ok
pred R : S × A
• ∀ x : S • R(x, a)

end

The idea behind CheckT definition is as follows: The synchronous parallel operator ‖ forces
P and T to agree on all communications. Should P agree to execute the communications
t1, . . . , tn of T in exactly this order, this results in a sequence of n communications. All
these communications are renamed into a via the predicates Rsi,A. The process count com-
municates OK after the execution of n a′s. Hiding the communication a makes only this
OK visible.

We now show that in order to check the first condition for the green test case we need to
prove that CheckT =T OK → STOP.

THEOREM 9.3.1 Given a model M ∈ Mod(D) and a variable evaluation ν : X → M, then the
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following holds:
traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M))

⇐⇒
[[CheckT]]ν =T [[OK → STOP]]ν

PROOF. We prove both direction of the equivalence:

⇒) Let M be the model and ν : X → M be the variable evaluation such that traces([[T]]ν) ⊆
traces([[P]]∅:∅→β(M)). Then the trace set of the synchronous parallel in CheckT is given
by the intersection of the traces of T and P.

Using the assumption traces([[T]]ν) ⊆ traces[[P]]∅:∅→β(M)), we have that,

traces([[T]]ν || [[P]]∅:∅→β(M)) = traces([[T]]ν).

Clearly, traces([[T]]ν[[Rs1 ]] . . . [[Rsh ]]) = a → . . . → a︸ ︷︷ ︸
n times

→ STOP. Thus, we have that,

traces([[(T[[Rs1 ]] . . . [[Rsh ]]) |[ A ]| count(n)]]ν) = traces([[a → . . . → a︸ ︷︷ ︸
n times

→ OK → STOP]]ν).

The next step is to hide all the a’s; it follows that,

traces([[(a → . . . → a︸ ︷︷ ︸
n times

→ OK → STOP) \ {a}]]ν) = traces([[OK → STOP]]ν).

Hence, traces([[CheckT]]ν) = traces([[OK → STOP]]ν).

⇐) The proof is done by contraposition. Let M be the data model such that traces([[T]]ν) 6⊆
traces([[P]]∅:∅→β(M)) for some variable evaluation ν : X → M.

We have that traces([[T]]ν) = {p | p ≤ 〈[[t1]]ν, . . . , [[tn]]ν〉}. Then there exists a k ∈ N

such that 0 ≤ k < n with 〈[[t1]]ν, . . . , [[tk]]ν〉 ∈ traces([[P]]∅:∅→β(M))
and 〈[[t1]]ν, . . . , [[tk+1]]ν〉 /∈ traces([[P]]∅:∅→β(M)). This means in the synchronous paral-
lel we have:

traces([[T]]ν || [[P]]∅:∅→β(M)) = traces([[t1 → . . . → tk → STOP]]ν).

Applying the renaming operators we obtain,

traces(([[T]]ν || [[P]]∅:∅→β(M))[[Rs1 ]] . . . [[Rsh ]]) = traces([[a → . . . → a︸ ︷︷ ︸
k times

→ STOP]]ν).

Thus, we have that,

traces([[
k times︷ ︸︸ ︷

a → . . . → a → STOP |[ A ]| count(n)]]ν) = traces([[STOP]]ν).

Hence, [[STOP]]ν 6=T [[OK → STOP]]ν.
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9.3.2 Failures condition

Concerning the characterisation of the failures condition, we assume that the traces con-
dition for the linear test process T already has been established. Here, we use a technique
based on a refinement checking between two process equations to establish if each event
in the test case is refused or not by a CSP-CASL process.

Let Sp = (D, P) be a CSP-CASL specification and T = t1 → . . . → tn → STOP a liner test
process. Here, we assume the trace condition holds; that is for all M ∈ Mod(D) and all
variable evaluation ν : X → M it holds traces([[T]]ν) ⊆ traces[[P]]∅:∅→β(M)). Let Alph(M) be
the alphabet of communication constructed over the model M ∈ Mod(D). The main idea
is to test locally if each event ti of the test case T is accepted or refused by the process P.
We call this test Local Refusal Test (LRT).

In order to perform a local refusal test at position i of the test case T defined over a CSP-
CASL specification Sp = (D, P), 1 ≤ i ≤ n, we construct the following processes:

Ti = t1 → . . . → ti → STOP

RTESTi = (P || PRETESTi) || Ti
PRETESTi = t1 → . . . → ti−1 → RUND

CHECKERi(n) = if n = 1
then ti → STOP

else((us∈S
x :: s → Checkeri(n− 1)) u STOP)

The process Ti represents the so far tested events of T. This mean that the trace 〈t1, . . . , ti−1〉
is a possible trace of P and that each event t1, . . . , ti−1 is not in the refusal set of P. Now,
the purpose is to test if the event ti is refused or not by P. In order to do this, we need
to check the refinement CHECKERi(i) proc

;F RTESTi. If the refinement holds, it means the
event ti cannot be refused by P otherwise the event ti is in the refusal set of P.

In RTESTi we run the process P in parallel with PRETESTi and the process Ti. The process
PRETESTi allow us to make progress in the process P until the point we would like to
perform the local refusal test. Here, the process RUND is of the form:

RUND = 2s∈S
?x :: s → RUND 2 SKIP

It is a process which is always prepared to communicate an event from s ∈ S or to termi-
nate successfully. The process CHECKERi(n) is parameterised by the trace length n of the
test case T. Such process, recursively chooses internally an event x :: s and engages in it;
otherwise, it has the possibility to internally choose to deadlock. Here S is the sort set of
the signature Σ of the data part D.

Assuming the traces condition for the test case T holds, the local refusal test is determined
by the decision procedure described in Figure 9.1.
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for(i = 1, i 6 n, i + +){
if(CHECKERi(i) 6proc;F RTESTi holds)

then(〈t1, . . . , ti−1〉, {ti}) ∈ failures(P)

else(〈t1, . . . , ti − 1〉, {ti}) 6∈ failures(P)
}

Figure 9.1: Local refusal test – LRT.

DEFINITION 9.3.2 (SUCCESSFUL LRT) We say that a local refusal test (LRT) of a test case T
for a CSP-CASL process P is successful, if for all events ti of T the refinement CHECKERi(i) proc

;F
RTESTi holds. We say an LRT of a test case T for a CSP-CASL process P is not successful if exists
an event ti of T such that the refinement CHECKERi(i) proc

;F RTESTi doesn’t hold.

In the following theorem, we prove that in order to check for the failures condition of a
test case we need to check the local refusal test. Here, we illustrate for a single event ti at
the position i of the test case.

THEOREM 9.3.3 Let Sp = (D, P) be a CSP-CASL specification.
Let T = t1 → . . . → tn → STOP be a CSP-CASL test case for Sp. Then for all 1 ≤ i ≤ n, the
following holds:

(D, CHECKERi(i)) proc
;F (D, RTESTi)

⇐⇒
for all M ∈ Mod(D) and ν : X → M. (〈t1, . . . , ti−1〉, {ti} /∈ failures([[P]]∅:∅→β(M)).

PROOF. We show both directions of the equivalence.

=⇒) (By contradiction.) Let (D, CHECKERi(i)) proc
;F (D, RTESTi). Let M ∈ Mod(D) and

variable evaluation ν : X → M. Then, from the process refinement over the stable
failure model we have failures([[RTESTi]]ν) ⊆ failures([[CHECKERi(i)]]ν).

We now calculate the failures set of CHECKERi(i):

failures([[CHECKERi(i)]]ν) =
⋃

1≤j≤i−2{(〈a1, . . . , aj−1〉, X) | 〈a1, . . . , aj−1〉 ∈ Alph(M)∗

and X ⊆ Alph(M)X}
∪{(〈a1, . . . , ai−1〉, X) | 〈a1, . . . , ai−1〉 ∈ Alph(M)∗

and ti /∈ X ⊆ Alph(M)X}
∪{(〈a1, . . . , ai−1, ti〉, X) | 〈a1, . . . , ai−1〉 ∈ Alph(M)∗

and X ⊆ Alph(M)X}

We have that (〈t1, . . . , ti−1〉, {ti}) /∈ failures([[RTESTi]]ν, since we have that
failures([[RTESTi]]ν) ⊆ failures([[CHECKERi(i)]]ν) and the event ti is not in the refusal
set of CHECKERi(i).
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Assume that (〈t1, . . . , ti−1〉, {ti}) ∈ failures([[P]]∅:∅→β(M)), then it follows that
(〈t1, . . . , ti−1〉, {ti}) ∈ failures([[RTESTi]]ν). The latter is a contradiction to our earlier
assertion. Hence, (〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M)).

⇐=) (By contradiction.) Let (〈ν](t1), . . . , ν](ti−1)〉, {ν](ti)}) /∈ failures([[P]]∅:∅→β(M)).

Assume that (D, CHECKERi(i)) 6proc;F (D, RTESTi). It follows that
failures([[RTESTi]]ν) 6⊆ failures([[CHECKERi(i)]]ν). This means that there is a failure set
in RTESTi which is not present in the failures set of CHECKERi(i).

This is the case, when (〈t1, . . . , ti−1〉, {ti}) ∈ failures([[RTESTi]]ν). It follows that
(〈t1, . . . , ti−1〉, {ti}) ∈ failures([[P]]∅:∅→β(M)), which contradicts our assertion. Hence,
(D, CHECKERi(i)) 6proc;F (D, RTESTi).

From the above theorem we obtain the following corollary, which basically states that
checking for the failures condition boils down to test the ‘successfulness’ of all local refusal
test.

COROLLARY 9.3.4 Let Sp = (D, P) be a CSP-CASL specification.
Let T = t0 → . . . → tn → STOP be a CSP-CASL test case for Sp. Let the traces condition holds
for T, i.e., for all M ∈ Mod(D) and all variable evaluation ν : X → M it holds traces([[T]]ν) ⊆
traces([[P]]∅:∅→β(M)). Then the following holds:

1. LRT is successful if and only if colourSp([[T]]ν) = green.

2. LRT is not successful if and only if colourSp([[T]]ν) = yellow.

The following corollary summarizes the colouring of a CSP-CASL test process using the
syntactic characterization introduced in the last sections.

COROLLARY 9.3.5 Let Sp = (D, P) a CSP-CASL specification. Let T = t1 → . . . → tn →
STOP be a linear test process for Sp, and let Var(T) = {x1 : s1, . . . , xk : sk} be the variables
occurring in T. Then the colour of T is:

• Green iff the following two conditions holds:

a) ({CHECKTDATA then op x1 : s1, . . . , xk : sk}, CheckT)
=T

({CHECKTDATA then op x1 : s1, . . . , xk : sk}, OK → STOP)
and

b) a) ⇒ (D, CHECKERi(i)) proc
;F (D, RTESTi) holds for all 1 ≤ i ≤ n.
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• Yellow iff the following two conditions holds:

a) ({CHECKTDATA then op x1 : s1, . . . , xk : sk}, CheckT)
=T

({CHECKTDATA then op x1 : s1, . . . , xk : sk}, OK → STOP)
and

b) a) ⇒ exists an i such that (D, CHECKERi(i)) 6proc;F (D, RTESTi).

Moreover, for a monomorphic data D, the colour of T is:

1. Green iff the following two conditions holds:

a) ({CHECKTDATA then op x1 : s1, . . . , xk : sk}, CheckT)
=T

({CHECKTDATA then op x1 : s1, . . . , xk : sk}, OK → STOP)
and

b) a) ⇒ (D, CHECKERi(i)) proc
;F (D, RTESTi) holds for all 1 ≤ i ≤ n.

2. Red iff the following condition hold:

a) ({CHECKTDATA then op x1 : s1, . . . , xk : sk}, CheckT)
6=T

({CHECKTDATA then op x1 : s1, . . . , xk : sk}, OK → STOP)

3. Yellow iff the following two conditions holds:

a) ({CHECKTDATA then op x1 : s1, . . . , xk : sk}, CheckT)
=T

({CHECKTDATA then op x1 : s1, . . . , xk : sk}, OK → STOP)
and

b) a) ⇒ exists an i such that (D, CHECKERi(i)) 6proc;F (D, RTESTi).

Having a monomorphic data specification and a deterministic process, test cases for such
specifications are coloured either green or red and not yellow. Intuitively this means that
the specification has already resolved all the open design decisions, and for the process
part means we do not have an internal non-determinism.

Colouring a test case is performed using CSP-CASL-PROVER. Here, we use syntactic en-
coding for the traces and failures condition to prove the colour of a test case with respect to
a CSP-CASL specification. In the following example we illustrate a colouring proof script
in CSP-CASL-PROVER. Here, we use the binary calculator specification.

EXAMPLE 9.3.6 Let us consider BCALC4, and the following test case T1:

T1 = Button!0 → Display!0 → Button!1 → Display!1 → STOP
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We show a script of CSP-CASL-PROVER that proves colourBCalc4(T1) = Green. For the latter
we need to show that the traces condition and the failures condition holds.

For the traces condition, we use Theorem 9.3.1 to prove the traces condition. Here, we
need to show:

CheckT =T OK → STOP

In order to encode the syntactic encoding CheckT, we enrich the event set by adding the
events ’A’ and ’OK’:

datatype Event = Button Number | Display Number | A | OK

Here, Button Number and Display Number are the two channels used for the communica-
tion. In the following we encode CheckT:

consts CheckT : : " ( ’ p , Event ) proc "
defs CheckT_def : " TestColour ==

( ( ( P3 || T1 ) [ [ MyRenaming ] ] )
|[ {A} ]|

Count4 ) −− {A} "

Here, MyRenaming = {(x, A) | x ∈ Σ} is the process which renames every event to ‘A’,
and Count4 :

consts Count4 : : " ( ’ p , Event ) proc "
defs Count4_def : " Count4 == A −> A −> A −> A −> OK −> STOP"

The equations CheckT =T OK → STOP can be shown by systematically proving some
auxiliary lemmas:

1) P3 || T1 =T T1 Parallel one
2) T1[[MyRenaming]] =T A → A → A → A → STOP Renaming
3) A → A → A → A → STOP =T Count4 Parallel two
4) Count4 \ {A} =T OK → STOP Hiding

In step 1, we prove that indeed the process P3 agree on the events prescribed in the test
case T1. In step 2, we rename all the actions to A’s. In step 3, the process Count4 verifies
that there are four agreed actions and communicates the event OK. In the last step we
hide all the A’s in order to make the event OK visible.

All these steps are formalized in CSP-CASL-PROVER in the following script:

theorem TraceCondition : " CheckT =T OK −> STOP"
apply ( simp add : CheckT_def )
apply ( cspT_simp P a r a l l e l _ o n e )
apply ( simp add : T1_def )
apply ( cspT_simp Renaming )
apply ( simp add : Count4_def )
apply ( cspT_simp P a r a l l e l _ t w o )
apply ( cspF_simp Hiding )

done
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The proof is discharged using tactics developed in the context of CSP-PROVER. Such tactics
use CSP algebraic laws in order to prove the equivalence of processes and the process
refinement by syntactically rewriting process expressions.

In theorem TraceCondition, the command (simp add: ) allows us to unfold the defini-
tion of the different processes, e.g., CheckT def. The tactic (cspT simp ) takes care of
the rewriting process. This tactic takes as a parameter the name of a lemma to be applied,
e.g., Parallel one. These four lemmas can be proven following a systematic approach. The
CSP-PROVER tactic (cspT simp ) is usually able to prove simple equations. Adding a
’+’ to a proof command triggers its repeated execution till it fails. The detailed proof script
of these lemmas is reported in Appendix A.3.

We then prove that the failures condition holds. Here, we have to make sure that the
LRT for each event is successful. Let us consider the LRT for the first event (Button!0), the
following proof script illustrate the steps to prove that the LRT is successful.

theorem LRT_Button0 : " Check_Button0 <=F RTest_Button0 "
apply ( unfold Check_Button0_def RTest_Button0_def )
apply ( cspF_auto | auto | cspF_hsf | r u l e cspF_decompo )+
apply ( r u l e cspF_rw_right )
apply ( r u l e cspF_decompo )
apply ( simp )
apply ( r u l e cspF_IF )
apply ( cspF_auto | auto | r u l e cspF_decompo | r u l e c s p F _ I n t _ c h o i c e _ l e f t 1 )+

done

Here, in Check Button0 and RTest Button0 we encode the processes CHECKER and RTEST

respectively for the LRT of the first event.

9.4 Test case execution

Here, we define the execution of a test process with respect to a particular SUT. The test
verdict is obtained during the execution of the SUT from the expected result defined by
the colour of the test process.

A point of control and observation (PCO) P = (A, ‖...‖,D) of a SUT consists of

• an alphabet A of primitive events which can be communicated at this point,

• a mapping ‖ · ‖ : A −→ TΣ(X) which returns for each a ∈ A a term (usually a
constant) over Σ, and

• a direction D : A −→ {ts2sut, sut2ts}.

ts2sut stands for signals which are sent from the testing system to the system under test,
and sut2ts stands for signals which are sent in the other direction. In telecommunications,
the mapping ‖...‖ is called a coding rule. For the data type definition language ASN.1
(Abstract Syntax Notation One) [Dub00] there are standardized coding rules for many
frequently used PCOs. In Section 12.4 we show a concrete use of ASN.1 as coding rules.
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We now define conditions for a test case to be executable.

DEFINITION 9.4.1 (EXECUTABLE TEST CASE) A test case T is executable at a PCO P with
respect to a specification Sp = (D, P), if

1. for each term t occurring in T there is exactly one at ∈ A such that at and t are equal,

2. for a, b ∈ A, if ‖a‖ equals ‖b‖ then a and b are the same primitive event.

Condition 1 ensures that each term in the test case corresponds to some observable or
controllable event in the SUT. This is the case if at and t are of the same sort and

D |= (∀X.‖at‖ = t)

Here, X is a variable system including all variables of ‖at‖ and t. Since in general equal-
ity of CASL terms is undecidable, in general it is undecidable if an arbitrary test case is
executable with respect to a PCO. However, for all practical purposes equality is easily
decidable. Condition 2 ensures that different observations or control events represent dif-
ferent values.

For test execution, we consider the SUT to be a process over the alphabet A, where the
internal structure is hidden. Hence, the SUT can engage in communications at the PCO.
Communications a with D(a) = sut2ts are initiated by the SUT and are matched by the
testing system with the expected event from the test case. Communications a with D(a) =
ts2sut are initiated by the testing system and cannot be refused by the SUT. Figure 9.2
illustrate the notion of test direction.

Test Environment SUT

ts2sut

sut2ts

Figure 9.2: Direction of test events.

If the SUT sends an event without a stimulus, the SUT deviates from the specified be-
haviour. If the SUT internally refuses some communication, this can only be observed by
the fact that it doesn’t answer, i.e., the testing system waits for some event sut2ts, but this
event does not happen. Testing is concerned with safety properties only; thus we say that
in such a case a timeout happens.

The test verdict of a test case is defined relatively to a particular CSP-CASL specification and
a particular SUT. The verdict is either pass, fail or inconclusive. Intuitively, the verdict pass
means that the test execution increases our confidence that the SUT is correct with respect
to the specification. The verdict fail means that the test case exhibits a fault in the SUT, i.e.,
a violation of the intentions described in the specification. The verdict inconclusive means
that the test execution neither increases nor destroys our confidence in the correctness of
the SUT.
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Let T = (t1 → t2 → . . . → tn → STOP) be a linear test case. Assume colour(T) = c
with respect to a specification (D, P). Assume further that T is executable at a PCO P =
(A, ‖...‖,D). The test verdict of the test case T with colour c at the PCO P relatively to an
execution of the SUT is defined inductively as follows:

• If n = 0 the colour c of the test case yields the test verdict as follows: if c = green
the test verdict is pass, if c = red the test verdict is fail, if c = yellow the test verdict is
inconclusive.

• If n > 0, let a be the primitive event with ‖a‖ equals t1. Assume that the colour c is

– green: If the direction D(a) = sut2ts and we receive a, then we inductively de-
termine the test verdict by continuing to execute the SUT against the remaining
linear test case (t2 → . . . → tn → STOP).

If the direction D(a) = sut2ts and we receive some b different from a or if a
timeout occurs, then the test verdict is fail.

If the direction D(a) = ts2tsut and we receive an event from the SUT within the
timeout period, then the test verdict is fail.

If the direction D(a) = ts2sut and we do not receive an event during the timeout
period, then we send a to the SUT and obtain the test verdict by continuing to
execute the SUT against the remaining linear test case (t2 → . . . → tn → STOP).

– red: If the direction D(a) = sut2ts and we receive a we obtain the test verdict
by continuing to execute the SUT against the remaining linear test case (t2 →
. . . → tn → STOP). If the direction D(a) = sut2ts and we receive some b
different from a or if a timeout occurs, then the test verdict is pass.

If the direction D(a) = ts2tsut and we receive an event from the SUT within the
timeout period, then the test verdict is pass.

If the direction D(a) = ts2sut and we do not receive an event during the timeout
period, then we send a to the SUT and obtain the test verdict by continuing to
execute the SUT against the remaining linear test case (t2 → . . . → tn → STOP).

– yellow: the test verdict is inconclusive.

The verdict of a yellow test case is always inconclusive and does not require any execution
of the SUT. Recall that a yellow test case reflects an open design decision. Consequently,
such a test case can neither reveal a deviation from the intended behaviour, nor can it
increase the confidence that the system is apt to its intended use. After taking this de-
sign decision, however, i.e., turning the property into an intended or a forbidden one, the
colour of the test will change and we will obtain pass or fail as a verdict.
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9.5 Summary

In this chapter, we have presented a theory for the evaluation of test cases with respect to
CSP-CASL specifications. The major innovations are the separation of the test oracle and
the test evaluation problem by defining:

• the expected result (green, red and yellow) and,

• the verdict (pass, fail and inconclusive) of a test case.

The CSP-CASL specification determines the alphabet of the test suite, and the expected
result of each test case. The expected result of a test case, in terms of the colouring scheme,
is proved using CSP-CASL-PROVER.

The test verdict is obtained during the execution of the SUT from the expected result de-
fined by the colour of the test processes. Here, we have defined an algorithm which allows
to determine the verdict of the test case on the fly. Figure 9.3 illustrate the general overview
of our testing approach.
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Figure 9.3: CSP-CASL validation triangle.

Specification, Implementation and Test Cases are mutually related artifacts. Specifications and
Test Cases are written in CSP-CASL, the Implementation is treated as a black box. Test cases
can be constructed either from the specification – as shown in the triangle – or indepen-
dently from it. The specification determines the alphabet of the test suite, and the expected
result of each test case. The expected result is coded in a colouring scheme of test cases.
If a test case is constructed which checks for the presence of a required feature (according
to the specification), we define its colour to be green. If a test case checks for the absence
of some unwanted behaviour, we say that it has the colour red. If the specification does
neither require nor disallow the behaviour tested by the test case, i.e., if a SUT may or may
not implement this behaviour, the colour of the test case is defined to be yellow. Here, we
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have defined a syntactic characterization in order to colour a CSP-CASL test process. The
colouring of a CSP-CASL test process is done in CSP-CASL-PROVER.

During the execution of a test on a particular SUT, the verdict is determined by comparing
the colour of the test case with the actual behaviour. A test fails, if the colour of the test
case is green but the SUT does not exhibit this behaviour, or if the colour is red but the
behaviour can be observed in the SUT. The execution of a yellow test case yields an incon-
clusive verdict. A test passes, if the colour is green and the SUT exhibit this behavior, or if
the colour is red and the SUT doesn’t exhibit this behavior.
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I N this chapter we study how the CSP-CASL testing theory relates to the notion of
vertical and horizontal development of CSP-CASL specifications. In Section 10.1 we
study how refinement of specifications and testing relate to each other. In Section 10.2

we illustrate how the notion of specification enhancement relate to testing and how we can
re-use test cases in a software product line. In Section 10.3 we illustrate these notions with
a simple case study of remote control unit for home appliances.

The notions and results presented in this chapter have been published in [KRS07] and
[KRS08].

10.1 Testing and CSP-CASL refinement

In this section, we show the relation between CSP-CASL refinement notion and the evalua-
tion of test cases. In particular we show the preservation of the colour of a test case under
a well-behaved refinement notion.

Let ≤ be a binary relation over CSP-CASL specifications such that (D, P) ≤ (D′, P′). We
call such a relation to be ≤ well-behaved, if, given specifications (D, P) ≤ (D′, P′) with con-
sistent data parts D and D′ and a variable system X over the signature of D, the following
holds for any test process T over D:

1. colour(D,P)(T) = green implies colour(D′,P′)(T) = green, and

125
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2. colour(D,P)(T) = red implies colour(D′,P′)(T) = red.

Interpreting ≤ as a development step, this means: If a test case T reflects a desired be-
havioural property in (D, P), i.e., colour(D,P)(T) = green, after a well-behaved development
step from (D, P) to (D′, P′) this property remains a desired one and the colour of T is green.
If a test case reflects a forbidden behavioural property in (D, P), i.e., colour(D′,P′)(T) = red,
after a well-behaved development step from (D, P) to (D′, P′) this property remains a for-
bidden one and the colour of T is red. A well-behaved development step can change only
the colour of a test case T involving an open design decision, i.e., colour(D,P)(T) = yellow.

In the following, we study for various refinement relations if they are well-behaved.

THEOREM 10.1.1 (DATA REFINEMENT IS WELL-BEHAVED) Let Sp = (D, P) and
Sp′ = (D′, ρ(P)) be CSP-CASL specifications such that Sp data

;σ Sp′ hold via data refinement,
i.e., Mod(D′)|σ⊆ Mod(D). Then, data;σ is well-behaved in the chosen CSP modelD ⊆ {T ,F ,N}.

PROOF. We need to show that the colour of a test case T over Sp remains unchanged over
Sp′ after a data refinement.

Let σ : Σ → Σ′ be the CSP-CASL data logic signature morphism. We consider the cases of
the green and Red test cases.

• Let colourSp(T) = green. We show that colourSp′(ρ(T)) = green.

Let M′ ∈ Mod(D′). From the data refinement argument we know that Mod(D′)|σ⊆
Mod(D). This implies that M′ is also a model of D. For all models of D, the traces and
failures conditions for a green test case hold by assumption. For the traces condition
we have that:

traces([[T]]ν:X→β(M′|σ)) ⊆ traces([[P]]∅:∅→β(M′|σ)).

Thanks to the reduct property (Theorem 6.1.8) we have that:

traces([[T]]ν:X→β(M′|σ)) = α̂T (traces([[ρ(T)]]ν:X→β(M′))
traces([[P]]∅:∅→β(M′|σ)) = α̂T (traces([[ρ(P)]]∅:∅→β(M′)).

This implies that α̂T (traces([[ρ(T)]]ν:X→β(M′)) ⊆ α̂T (traces([[ρ(P)]]∅:∅→β(M′)). Elimi-
nating the inverse alphabet translation α̂T from both sides we obtain:

traces([[ρ(T)]]ν:X→β(M′) ⊆ traces([[ρ(P)]]∅:∅→β(M′). (∗)

For the failures condition we have that for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν:X→β(M′|σ))
and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M′|σ)).

Thanks to the reduct property we have that:

failures([[P]]∅:∅→β(M′|σ)) = α̂F (failures([[ρ(P)]]∅:∅→β(M′))).
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This implies that for all tr = 〈t1, . . . tn〉 ∈ α̂T (traces([[ρ(T)]]ν:X→β(M′))) and for all
1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ α̂F (failures([[ρ(P)]]∅:∅→β(M′|σ))). (∗∗)

Putting together the results of the traces (*) and failures (**) condition it follows that
colourSp′(ρ(T)) = green.

• Let colourSp(T) = red. We show that colourSp′(ρ(T)) = red.

Let M′ ∈ Mod(D′). From the data refinement argument we know that Mod(D′)|σ⊆
Mod(D). This implies that M′ is also a model of D. Moreover, we know that:

traces([[T]]:X→β(M′|σ)) 6⊆ traces([[P]]∅:∅→β(M)).

Thanks to the reduct property we have that:

traces([[T]]ν:X→β(M′|σ)) = α̂T (traces([[ρ(T)]]ν:X→β(M′))
traces([[P]]∅:∅→β(M′|σ)) = α̂T (traces([[ρ(P)]]∅:∅→β(M′)).

Then it follows that α̂T (traces([[ρ(T)]]ν:X→β(M′)) 6⊆ α̂T (traces([[ρ(P)]]∅:∅→β(M′)). Thus,
traces([[ρ(T)]]ν:X→β(M′) 6⊆ traces([[ρ(P)]]∅:∅→β(M′), i.e., colourSp′(ρ(T)) = red.

10.1.1 Model T : Process refinement is not well-behaved

As the CSP trace refinement does not guarantee the preservation of behaviour, it is to
be expected that the CSP-CASL notion of process refinement based on T fails to be well-
behaved. This is illustrated by the following counter-example:

ccspec DOONEA =
data

sorts S
op a : S;

process
P = a → STOP

end

ccspec DONOTHING =
data

sort S
op a : S;

process
STOP

end

As STOP refines any process in the CSP traces model T , we have:

DOONEA proc
;T DONOTHING

Let us consider the following test case:

T = a → STOP

The colour of T with respect to DOONEA is green. However, T is coloured red over
DONOTHING, i.e., traces([[T]]ν) 6⊆ traces([[DONOTHING]]∅:∅→β(M)), for all models M ∈
Mod(D) and all variables evaluations ν : X → M, where D is the data specification of
DONOTHING.
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10.1.2 Models F and N : Process refinement is well-behaved for divergence-free
processes

Here, we show that CSP-CASL process refinement based on CSP models F and N is well-
behaved, provided the processes involved are divergence-free.

THEOREM 10.1.2 Let Sp = (D, P) and Sp′ = (D, P′) be two CSP-CASL specifications, with
Sp proc

;D Sp′. Then, proc;F and proc
;N are well-behaved provided the processes are divergence-free.

PROOF. Concerning F and N it is sufficient to prove this for F only, as failures/diver-
gences refinement and stable failures refinement are equivalent on divergence-free pro-
cesses.

We need to show that the colour of a test case T over Sp remain unchanged over Sp′ after
a process refinement. Let (D, P) proc

;F (D, P′), we consider the cases of the green and red
test cases.

Green Let the test process T be green with respect to Sp. Let M be a model and
ν : X → β(M) be a variable evaluation. We prove the two conditions:

1. We prove by induction on the length n of traces t ∈ traces([[T]]ν) that
t ∈ traces([[P′]]∅:∅→β(M)).

For n = 0, this is obviously the case. Let t = 〈t1, . . . , tn, tn+1〉 ∈ traces([[P]]∅:∅→β(M)).
Then 〈t1, . . . , tn〉 ∈ traces([[P]]∅:∅→β(M)) and thus by induction hypothesis also
〈t1, . . . , tn〉 ∈ traces([[P′]]∅:∅→β(M)).

Let us assume that 〈t1, . . . , tn, tn+1〉 /∈ traces([[P′]]∅:∅→β(M)). As a divergence-free
process, P′ has the failure (〈t1, . . . , tn〉, ∅). Thus, by healthiness of the stable
failures domain1, P′ has also failure (〈t1, . . . , tn〉, {tn+1}) .
This is a contradiction to failures([[P′]]∅:∅→β(M)) ⊆ failures([[P]]∅:∅→β(M)) and
(〈t1, . . . , tn〉, {tn+1}) 6∈ failures([[P]]∅:∅→β(M)).

2. We show that for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all 1 ≤ i ≤ n it holds
that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P′]]∅:∅→β(M)).

This trivially holds, as failures([[P′]]∅:∅→β(M)) ⊆ failures([[P]]∅:∅→β(M)), and by
assumption we know that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M)).

Red Let the test process T be red with respect to Sp. Let M be a model, and ν be a vari-
able evaluation. We prove the non-inclusion of the traces of T with respect to Sp′.
We show that exists a trace t ∈ traces([[T]]ν) such that t /∈ traces([[P′]]∅:∅→β(M)).
This follows directly, since we know that there exists t ∈ traces([[T]]ν) such that
t /∈ traces([[P′]]∅:∅→β(M)) and traces([[P′]]∅:∅→β(M)) ⊆ traces([[P]]∅:∅→β(M)).

1Specifically the healthiness condition F3, see Chpater2.
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Besides the question whether refinements are well behaved with respect to test case colour-
ing, one can also ask the other way round: Is there a refinement between the specification and
the test processes? Here, we have the relation: Given a green test T over a CSP-CASL speci-
fication (D, P). Then (D, P) ;T (D, T), i.e. every green test process is a CSP-CASL process
refinement with respect to the traces model T .

LEMMA 10.1.3 Let Green(D,P) be the set of all green test processes with respect to (D, P). Then
(D, P) proc

;T (D,uGreen(D,P)).

PROOF. We show that ∀M ∈ Mod(D) : [[[[P]]M]]T vT [[[[uGreen]]M]]T .
As the traces([[uGreen]]M) is the union of all the green traces; all of which are subsets of
traces([[P]]M), we have traces([[uGreen]]M) ⊆ traces([[P]]∅:∅→β(M)).

Thus, (D, P) proc
;T (D,uGreen(D,P)).

10.2 Testing and CSP-CASL enhancement

In Section 6.2 we have defined the notion of enhancement or horizontal development of
CSP-CASL specifications. Here, we show that such enhancement relations allow the re-
use of results established w.r.t. the original specification. That is, test cases preserve their
colour after an enhancement step. Therefore, test cases which have been designed for basic
features can be re-used whenever a more advanced product is conceived which includes
these features.

THEOREM 10.2.1 Let Sp = (D, P) and Sp′ = (D′, P′) be CSP-CASL specifications with
Sp�Sp′. Let T be a test process over Sp. Then, colourSp(T) = colourSp′(T).

PROOF. Let T be a test case over Sp. Let signature Σ and Σ′ be the signature of the data
part D and D′ respectively. Let ι : Σ → Σ′ be the induced mapping from Σ to Σ′. We
consider the cases of the green, red and yellow test cases.

For green test cases we show the following:

colourSp(T) = green ⇐⇒ colourSp′(T) = green.

We prove both direction of the equivalence.

=⇒) Let colourSp(T) = green, i.e.,

1. For all M ∈ Mod(D) and all variable evaluations ν : X → β(M) we have
traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M)).

2. For all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M)).
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We show that colourSp′(T) = green. i.e.,

1. For all M′ ∈ Mod(D′) and all variable evaluations ν′ : X′ → β(M′) it holds
traces([[T]]ν′) ⊆ traces([[P′]]∅:∅→β(M′)).

2. For all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν′) and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P′]]∅:∅→β(M′)).

Let M′ ∈ Mod(D′). From the enhancement argument we know that there exists
M ∈ Mod(D) such that M = M′ |ι. Let α : Alph(β(M′ |ι)) → Alph(β(M′)) be
the injective alphabet translation. For the traces condition, we apply the alphabet
translation on both sides:

αT (traces([[T]]ν:X→β(M′|ι))) ⊆ αT (traces([[P]]∅:∅→β(M′|ι))).

This results in, traces([[T]]ν′ :X→β(M′)) ⊆ traces([[P]]∅:∅→β(M′)). From the enhancement
argument we know that:

traces([[P]]∅:∅→β(M′)) = α̂T (traces([[P′]]∅:∅→β(M′))).

It follows that traces([[T]]ν′ :X→β(M′)) ⊆ traces([[P′]]∅:∅→β(M′)).

The same argument holds for the failures condition. Again, we apply the alphabet
translation and obtain failures([[P]]∅:∅→β(M′)). From the enhancement argument we
know that:

failures([[P]]∅:∅→β(M′)) = α̂F (failures([[P′]]∅:∅→β(M′))).

It follows that for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν′ :X→β(M′)) and for all 1 ≤ i ≤ n it
holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P′]]∅:∅→β(M′)).

Hence the traces and failures condition holds for colourSp′(T) = green.

⇐=) Let colourSp′(T) = green, i.e.,

1. For all M′ ∈ Mod(D′) and all variable evaluations ν′ : X → β(M′) we have
traces([[T]]ν′) ⊆ traces([[P′]]∅:∅→β(M′)).

2. For all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν′) and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P′]]∅:∅→β(M′)).

We show that colourSp(T) = green, i.e.,

1. For all M ∈ Mod(D) and all variable evaluations ν : X → β(M) we have
traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M)).

2. For all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M)).
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Let M ∈ Mod(D). Again, from the enhancement argument we know that there
exists M′ ∈ Mod(D′) such that M = M′ |ι.

Then, for the traces condition we apply the reduct over the processes on both sides:

α̂T (traces([[T]]ν′ :X→β(M′))) ⊆ α̂T (traces([[P′]]∅:∅→β(M′))).

From the enhancement argument we have

traces([[P]]∅:∅→β(M′|ι)) = α̂T (traces([[P′]]∅:∅→β(M′|ι))).

It follows that
traces([[T]]ν:X→β(M′|ι)) ⊆ traces([[P]]∅:∅→β(M′|ι)).

For the failures condition we directly obtain that for all
tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν:X→β(M′|ι)) and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M′|ι)).

This follows by applying the reduct and the enhancement argument, i.e.,

failures([[P]]∅:∅→β(M′|ι)) = α̂F (failures([[P′]]∅:∅→β(M′|ι))).

Thus, the traces and failures condition holds for colourSp(T) = green.

For red test cases, we show the following:

colourSp(T) = red ⇐⇒ colourSp′(T) = red

We prove both direction of the equivalence.

=⇒) Let colourSp(T) = red, i.e., ∀M ∈ Mod(D) and all variable evaluations ν : X → M it
holds traces([[T]]ν) 6⊆ traces([[P]]∅:∅→β(M)).

We show that colourSp′(T) = red, i.e., ∀M′ ∈ Mod(D′) and all variable evaluations
ν′ : X′ → M′ it holds traces([[T]]ν′) 6⊆ traces([[P′]]∅:∅→β(M′)).

Let M′ ∈ Mod(D′). From the enhancement argument we know that there exists
M ∈ Mod(D) such that M = M′ |ι.

We show that exists a trace t′ ∈ traces([[T]]ν′ :X→β(M′)) such that t′ /∈ traces([[P′]]∅:∅→β(M′)).

We know that there exists a t ∈ traces([[T]]ν:X→β(M′|ι)) such that t /∈ traces([[P]]∅:∅→β(M′|ι)).
Let α∗(t) = t′, where α : Alph(M′ |ι) → Alph(M′) is the injective alphabet transla-
tion. From the enhancement argument we have

traces([[P]]∅:∅→β(M′)) = α̂T (traces([[P′]]∅:∅→β(M′))).

Thus, it follows that t′ ∈ traces([[T]]ν′ :X→β(M′)) and t′ /∈ traces([[P′]]∅:∅→β(M′)). Hence,
traces([[T]]ν′ :X→β(M′)) 6⊆ traces([[P′]]∅:∅→β(M′)), i.e., colourSp′(T) = red.
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⇐=) Let colourSp′(T) = red. We show that colourSp(T) = red, i.e., ∀M ∈ Mod(D) and all
variable evaluations ν : X → M it holds traces([[T]]ν) 6⊆ traces([[P]]∅:∅→β(M)).

Let M ∈ Mod(D). Again, from the enhancement argument we know that there
exists M′ ∈ Mod(D′) such that M = M′ |ι.

We show that exists a trace t ∈ traces([[T]]ν) such that t /∈ traces([[P]]∅:∅→β(M)). This
follows directly, since we know that there exists t ∈ traces([[T]]ν′) such that t /∈
traces([[P′]]∅:∅→β(M′)) and from the enhancement argument we have that

traces([[P]]∅:∅→β(M′)) = α̂T (traces([[P]]∅:∅→β(M′))).

Hence, traces([[T]]ν′) 6⊆ traces([[P′]]∅:∅→β(M′)), i.e., colourSp(T) = red.

For yellow test cases, we show the following equivalence holds

colourSp(T) = yellow ⇐⇒ colourSp′(T) = yellow

In both direction of the equivalence, for the trace condition, the same proof argument as
in the case of green test case holds. Here, we show how it goes for the failures condition.

Let colourSp(T) = yellow, i.e., for all M ∈ Mod(D) and variable evaluations ν : X → M the
following holds: for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all 1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) ∈ failures([[P]]∅:∅→β(M)).

We show that colourSp′(T) = yellow i.e., for all M′ ∈ Mod(D′) and variable evaluations
ν′ : X′ → M′ the following holds: for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν′) and for all 1 ≤ i ≤ n
it holds that:

(〈t1, . . . , ti−1〉, {ti}) ∈ failures([[P′]]∅:∅→β(M′)).

Let M′ ∈ Mod(D′). From the enhancement argument we know that there exists M ∈
Mod(D) such that M = M′|ι. Let α : Alph(β(M′|ι)) → Alph(β(M′)) be the injective alpha-
bet translation. We apply the alphabet translation on the failures: αF (failures([[P]]∅:∅→β(M′|ι))).
This results in, failures([[P]]∅:∅→β(M′)). From the enhancement argument we know that:

failures([[P]]∅:∅→β(M′)) = α̂F (failures([[P′]]∅:∅→β(M′))).

Then, we directly obtain, that for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν′ :X→β(M′)) and for all
1 ≤ i ≤ n it holds that:

(〈t1, . . . , ti−1〉, {ti}) ∈ failures([[P′]]∅:∅→β(M′)).

Hence, colourSp′(T) = yellow.

Summarizing, the enhancement notion developed for CSP-CASL allows us to re-use test
cases developed for basic specification, to experiment the same behavior in enhanced spec-
ification. That is, green, red and yellow test cases remain unchanged after an enhancement
step.
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10.3 Case study: remote control unit

In this section we develop an example from the embedded systems domain: an infrared
remote control unit used for home appliances such as TV, VCR, DVD player etc. Here we
give abstract and concrete specifications and show the various CSP-CASL specifications
at different levels of abstraction. We show how the refinement and enhancement of the
various CSP-CASL specifications influence the testing procedure of such device.

10.3.1 Specification of a remote control unit

Figure 10.1: Basic Remote Control Unit (BRCU)

On an abstract level, a remote control unit (RCU) can be described as follows: there are a
number of buttons which can be pressed (one at a time), and a light emitting diode (LED)
which is capable of sending signals (bitvectors of a certain length). The RCU has an internal
table which signal correspond to which button. Whenever a button is pressed, it sends a
corresponding signal via the LED. Such an Abstract Remote Control Unit can be specified
in CSP-CASL as follows:

ccspec ABSRCU =
data

sort Button, Signal
op codeOf : Button → Signal;

process
AbsRCU = ?x : Button → codeOf (x) → AbsRCU

end

Basic remote control units (BRCU) as they were produced in the 1970’s had e.g., 12 but-
tons
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(i.e., b0 . . . b9, bOnOff, bMute), where the corresponding signals are 16-bit key-codes; for exam-
ple:

0000.01010.0000001 is a signal for b1

There are various standards for remote controls; one of these defines that the first 4 bits
identify the company ID, the next 5 bits represent the device ID (i.e., TV, DVD, etc.), while
the last 7 bits identify which button was pressed. This can be specified in CSP-CASL as
follows:

ccspec BRCU =
data

sort Button, Signal
ops b0, b1, . . . , b9, bOnOff, bMute : Button;
free type Bit ::=0 | 1
then LIST[sort Bit ]

then
sort Signal = {l : List[Bit] • #ł = 16}
op codeOf : Button → Signal;

pre f ix : List[Bit] = [0000] + +[01010]
axioms

codeOf (b0) = pre f ix ++[0000000];
. . .
codeOf (b9) = pre f ix ++[0001001];
codeOf (bMute) = pre f ix ++[0001111];
codeOf (bOnOff) = pre f ix ++[1111111];
∀ b : Button • ∃ l : List[Bit] • codeOf (b) = pre f ix ++l

process
BRCU = ?x : Button → codeOf (x) → BRCU

end

Soon after the first generation, the market demanded more comfortable devices with more
functionality and, thus, more buttons. Modern remote control units have about 50-200
buttons. For the example, we assume that in the Extended specification the buttons bvolup
and bvoldn for controlling the volume and bchup and bchdn for zapping though channels were
added, with appropriate key-codes. In CSP-CASL, such an extension can be specified by
defining a sort EButton which is an extension (superset) of sort Button. Of course, in the
extended specification, the domain of operation codeOf must be suitably extended. Here
is the abstract version of an extended remote control unit:

ccspec ABSERCU =
data

sorts Button < EButton; Signal
ops codeOf : Button → Signal;

codeOf : EButton → Signal
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process
AbsERCU = ?x : EButton → codeOf (x) → AbsERCU

end

For a concrete implementation of the abstract extended specification, we use the super-
sorting and overloading features built into CASL. To this end, we import the data part
of BRCU, named BRCUDATA, and define a supertype EButton of Button, which includes
four new buttons. The function codeOf : EButton → Signal is in overloading relation with
the function codeOf : Button → Signal. Therefore, the CASL semantics ensure that both
functions yield the same result for elements of type Button.

ccspec ERCU =
data BRCUDATA then

free type EButton ::= sort Button | bvolup | bvoldn | bchup | bchdn
op codeOf : EButton → Signal
axioms

codeOf (bvolup) = pre f ix ++[0010000];
codeOf (bvoldn) = pre f ix ++[0100000];
codeOf (bchup) = pre f ix ++[1000000];
codeOf (bchdn) = pre f ix ++[1100000];

process
ERCU = ?x : EButton → codeOf (x) → ERCU

end

If more and more functions are added to a device, buttons need to be reused. That is,
some buttons have a main and alternate inscription and there is a special button balt; if this
button is pressed the key-code of the subsequently pressed button changes according to
the alternate inscription. Basically, the button balt serves as a modifier of the next button.
This enhancement differs from the previous one, since it requires the device to distinguish
between two states (whether the balt modifier button has been pressed or has not been
pressed), and it enforces a modification in the process part of the specification. The en-
hancement from BRCU to ERCU makes use of overloading and added supersorts. The
following is an (abstract) specification of a RCU with Modifier enhancing the extended
RCU. To this end, we import the data part of ERCU, named ERCUDATA.

ccspec MERCU =
data ERCUDATA then

free type MButton ::= sort EButton | balt
sort AltButton = {x : MButton • x = balt}
op codeOfAlt : EButton → Signal

process
MERCU = ?x : EButton → codeOf (x) → MERCU

2 bAlt →?x : EButton → codeOfAlt(x) → MERCU
end

As the codeOfAlt is not in overloading relation with codeOf , after pressing the button bAlt
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the remote control can send out different signals for the buttons pressed. The specification
MERCU is abstract in so-far, as the functionality of codeOfAlt is not further specified. In
order to demonstrate the integration of features in a software product line development,
we show how to reuse specification modules. A universal remote control is a device which
can be used for TV, VCR, and DVD players. For this purpose, it has a button mode, which
allows the user to cycle through the three operation modes (TV, VCR, DVD). The specifica-
tion URCU builds onto the specification ERCU, as well as on similar built specifications
ERCUDDVD and ERCUVCR.

ccspec URCU =
data { ERCUDATA and ERCUDATADVD and ERCUDATAVCR }

then sort NewButton
op mode : NewButton

process
let TV =?x : Button → codeOf (x) → TV

2 mode → DVD
DVD=?x : Button → codeOfDVD(x) → DVD

2 mode → VCR
VCR =?x : Button → codeOfVCR(x) → VCR

2 mode → TV
in TV

end

10.3.2 Refinement and enhancement of the remote control unit

Here, we formally relate all the specifications described in the previous section. Fig-
ure 10.2 summarizes the development of the remote control unit specification in CSP-
CASL.

ABSRCU ABSERCU

BRCU ERCU

MERCU

URCU

�

data
;σ

data
;σ

�

�

�

Figure 10.2: Remote control unit in CSP-CASL specifications development
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In the following lemmas we prove each of the development notion (refinement or enhance-
ment) illustrated in Figure 10.2.

LEMMA 10.3.1 The following holds: ABSRCU data
;σ BRCU and ABSERCU data

;σ ERCU.

PROOF. ABSRCU data
;σ BRCU holds if Mod(DBRCU)|σ⊆ Mod(DAbsRCU), where

σ : Σ(DAbsRCU) → Σ(DBRCU) is the signature morphism. This trivially holds as every
model of DBRCU is a model of DABSRCU. The same arguments holds for ABSERCU data

;σ

ERCU. Both data refinements are simply proved using HETS.

LEMMA 10.3.2 The following holds: ABSRCU � ABSERCU.

PROOF. The process AbsERCU communicates in a richer data structure. Here, we observe
that all models of the data part DAbsRCU of ABSRCU can be extended to models of the data
part DAbsERCU of ABSERCU:

Mod(DAbsRCU) = Mod(DAbsERCU)|ι
where ι : Σ(DAbsRCU) → Σ(DAbcERCU) is the induced map from the signature of DAbsRCU to
DAbcERCU. Here, the signature of DAbsRCU is embedded into the signature DAbcERCU , i.e.,

Σ(DAbsRCU) = ({Signal, Button}, {codeOfButton×Signal}, ∅, ∅, ∅)
⊆

Σ(DAbsERCU) = ({Signal, Button, EButton}, {codeOfButton×Signal, codeOfEButton×Signal},
∅, ∅, {<Button,EButton})

Here, we use the supersort enhancement pattern (Theorem 7.2.3) to show that
ABSRCU�ABSERCU. To this end we define a mapping ξ : S → S′ from the set of sorts
of Σ(DAR) to the set of sort of Σ(DER), which is simply the identity with the exception:

ξ(Button) = EButton

As we define codeOf only for the new values, we have a conservative model extension.
Obviously, ξ maps the process of ABSRCU to the process ABSERCU, i.e., we map the
process name ξ(AbsRCU) = AbsERCU, and we obtain:

ξ(AbsRCU) = ?x : ξ(Button) → ξ(codeOf (x)) → ξ(AbsRCU)
= ?x : EButton → codeOf (x) → AbsERCU

This proves the three conditions for supersort enhancement pattern. Therefore, we have that
ABSRCU � ABSERCU.

LEMMA 10.3.3 The following holds: BRCU � ERCU.

PROOF. Here again we use the supersort enhancement pattern to prove that BRCU�ERCU:
To this end we define the map ξ to be the identity on all sorts with the exception of
ξ(Button) = EButton. Clearly, the signatures are embedded with ξ. As we define codeOf
only for the new values, we have a conservative model extension. Obviously, ξ maps the
process of BRCU to the process of ERCU. Thus, all three conditions are true and therefore
BRCU�ERCU.
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LEMMA 10.3.4 The following holds: ERCU � MERCU.

PROOF. Here, we use the external choice enhancement patter (Theorem 7.2.1) to prove that
ERCU�MERCU. First, we have to adjust the process part of MERCU to the syntactic
pattern stated in the theorem. To this end, we use the following law:

(∗) a → R =?x : {a} → R

This allows us to make the following transformation:

MERCU = ?x : EButton → codeOf (x) → MERCU
2 bAlt →?y : EButton → codeOfAlt(y) → MERCU

⇓
MERCU = ?x : EButton → codeOf (x) → MERCU

2?z : AltButton →?y : EButton → codeOfAlt(y) → MERCU.

Concerning the data part, MERCU is a conservative extension of ERCU, as all added
symbols are new, and, if they relate to old ones, they follow a definitional extension pat-
tern. Thanks to the CASL free type balt is different from all values of EButton. Thus, both
conditions of the external choice enhancement pattern hold, hence ERCU�MERCU.

LEMMA 10.3.5 The following holds: ERCU�URCU.

PROOF. Again, we use external choice enhancement pattern to establish ERCU�URCU. Us-
ing the rule (∗), we adjust the process part of URCU, and we obtain the following process:

let TV =?x : Button → codeOf (x) → TV
2?y : ModeButton → DVD

DVD=?x : Button → codeOfDVD(x) → DVD
2?y : ModeButton → VCR

VCR =?x : Button → codeOfVCR(x) → VCR
2?y : ModeButton → TV

in TV

On the data part, we have that Σ(DERCU) ⊆ Σ(DURCU). The added symbol in DURCU
don’t interfere with the old symbols, hence Mod(DERCU) = Mod(DURCU) |ι, where ι is the
induced mapping.

10.3.3 Testing the remote control unit

In this section we design some test cases for the RCU specifications and show the re-use
of test cases as well as the preservation of colours described in the previous section. The
first set of test cases is designed to test ABSRCU:
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A0 : u : Button → codeOf (u) → STOP
A1 : u : Button → v : Signal → STOP
A3 : u : Button → w : Button → STOP

Here, u, v and w are variable over the indicated sorts.

Thanks to the refinement and the enhancement results summarized in Figure 10.2, test
cases T over ABSRCU are also test cases over all the other specifications. With respect to
their colouring we obtain e.g., the following inheritance relations:

• colourABSERCU(T) = colourABSRCU(T) thanks to ABSRCU � ABSERCU.

• colourBRCU(T) = colourABSRCU(T) thanks to ABSRCU data
; BRCU.

• colourERCU(T) = colourABSRCU(T), where we can either use the connection over
BRCU or over ABSERCU.

This means for our three test cases A0, A1 and A2 that their colour is the same in all speci-
fication mentioned in Figure 10.2, where their colouring can be determined by looking at
ABSRCU only, i.e., the specification with the smallest number of axioms. For the colouring
we obtain the following result respect to ABSRCU:

A0 A1 A2

AbsRCU Green Yellow Red

A next set of test cases is designed to test BRCU:

T0 : STOP
T1 : b1 → STOP
T2 : b1 → codeOf (b1) → b6 → codeOf (b6) → STOP
T3 : b1 → b6 → STOP
T4 : b0 → (prefix ++[0000101]) → STOP

The following table shows how these test process are coloured with respect to BRCU.

T0 T1 T2 T3 T4

BRCU Green Green Green Red Red

The empty observation T0 is green with respect to all specifications (see Proposition 9.2.2).
T1 is green for BRCU as BRCU cannot refuse the event b1 after the empty trace. The same
holds for T2, since BRCU cannot refuse the signal of b1 after the event of b1. T3 consists
of a sequence of two button presses and therefore is red for BRCU. T4 however is red for
BRCU due to a wrong signal event, i.e., codeOf (b0) 6= codeOf (b5). Similarly to the result
above, these test cases preserve these colours w.r.t. ERCU, MERCU and URCU.

In order to test the new features available in a the product line, new test cases have to be
designed which use the new symbols. E.g., for ERCU the following test cases do this:
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T5 : b1 → codeOf (b1) → bVolUp → codeOf (bVolUp) → STOP
T6 : bChUp → codeOf (bChUp) → STOP
T7 : bChDn → codeOf (bChDn) → b1 → STOP
T8 : bChUp → bVolDn → STOP
T9 : bChUp → codeOf (bVolUp) → STOP

These test process are coloured with respect to ERCU in the following way:

T5 T6 T7 T8 T9

ERCU Green Green Green Red Red

These test cases preserve these colours w.r.t. MERCU and URCU.

As BRCU � ERCU, the colour of the test cases T0 . . . T4 over ERCU is inherited from
their colour w.r.t. BRCU. As ERCU�MERCU, the colour of the test cases T0 . . . T9 over
ERCU is inherited from their colour w.r.t. ERCU. However, the testing of the new features
of MERCU requires new test cases, for instance:

T10 : b1 → codeOf (b1) → bAlt → b2 → codeOfAlt(b2) → STOP
T11 : bAlt → b1 → codeOfAlt(b1) → STOP
T12 : b2 → codeOfAlt(b2) → STOP
T13 : bAlt → bVolDn → codeOf (bVolDn) → STOP

The following table shows how these test process are coloured with respect to MERCU:

T10 T11 T12 T13

MERCU Green Green Red Red

Again, we design test cases to experiment the new features specified in URCU:

T14 : b1 → codeOf (b1) → mode → b2 → codeOfDVD(b2)
→ mode → b5 → codeOfVCR(b5)
→ mode → b7 → codeOf (b7) → STOP

T15 : mode → b1 → codeOfDVD(b1) → STOP
T16 : b2 → codeOfVCR(b2) → STOP
T17 : mode → bVolDn → codeOf (bVolDn) → STOP

And their colour:

T14 T15 T16 T17

URCU Green Green Red Red
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10.3.3.1 Test case evaluation and execution

In this section we consider the evaluation of test cases w.r.t. CSP-CASL specifications from
an implementation point of view. We also demonstrate how we run test cases on an imple-
mentation of the remote control. Our testing framework essentially consist of two parts
which all have tool support:

1. We use CSP-CASL-prover [OIR09] to verify the colour of a test case. To this end we
use the syntactic characterization of the test colouring as defined in Section 9.3. We
also verify that a test case T is executable for the chosen PCO, see Section 9.4 for the
definition.

2. Given a coloured test case and a particular SUT, our Test Execution and test Verdict
program (TEV), automatically runs a test against the SUT and automatically deter-
mines the test verdict.

In terms of executing tests against the SUT, we have implemented in Java some of the
remote control specifications discussed in the previous sections. In the following we illus-
trate the essential parts of the Java implementation for the BRCU.

public c l a s s BasicRemoteControl extends JFrame
implements Act ionLis tener {

public BasicRemoteControl ( ) { // Constructor
. . .
j lbOutput = new J T e x t F i e l d ( 1 2 ) ;
j lbOutput . s e t E d i t a b l e ( f a l s e ) ;
. . .
jbnButtons = new JButton [ 1 3 ] ;

for ( i n t i =0 ; i <=9; i ++){ // Create numeric Jbut tons
jbnButtons [ i ] = new JButton ( S t r i n g . valueOf ( i ) ) ;

} }

public void actionPerformed ( ActionEvent e ) { //Perform a c t i o n
for ( i n t i =0 ; i < jbnButtons . length ; i ++){

i f ( e . getSource ( ) == jbnButtons [ i ] ) {
switch ( i ) {

case 0 :
codeOf ("0000010100000000" )

break ;
case 1 :

codeOf ("0000010100000001" ) ;
break ;

. . . . } } } }

void codeOf ( S t r i n g s ) { // Set the s i g n a l
j lbOutput . s e t T e x t ( s ) ;

}

public s t a t i c void main ( S t r i n g args [ ] ) { // Main method
BasicRemoteControl brc = new BasicRemoteControl ( ) ; . . . } }
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Let PBRCU = (ABRCU, ‖...‖,D), be the PCO of BRCU with respect to the Java program
BasicRemoteControl.java, in Listing 2.1. Here, the alphabetABRCU of primitive events which
can be communicated at this point are the various AWT components of the buttons and
the text field where the signal is shown, e.g.,

ABRCU = {jplOutput, jbnButtons[0], jpnButtons[1], . . . , jpnButtons[9]}.

We establish the following mapping:

‖jplOutput‖ = Signal, ‖jbnButtons[0]‖ = b0, . . . ‖jbnButtons[9]‖ = b9

In order to make the connection between the SUT and the testing system we use abbot [abb],
which is a Java package that enables to test Java AWT components. Here we establish also
the direction of testing D.

In order to make such connection, we develop a new program called TeVBRCU which re-
sides in the package of the BRCU Java implementation (BasicRemoteControl.java). TeVBRCU
is able to make the connection with the SUT, in this case BasicRemoteControl and to access
the different objects to be tested. Moreover, in TeVBRCU we program the decision proce-
dure to determine the verdict of a test case (see Section 9.4).

In the initial part of the TeVBRCU class, we declare private objects which are going to be
tested.

public c l a s s TeVBRCU extends ComponentTestFixture {

p r i v a t e BasicRemoteControl brc ;
p r i v a t e J T e x t F i e l d display ;
p r i v a t e JButton button0 , button1 , button2 , button3 , button4 , button5 ,

button6 , button7 , button8 , button9
p r i v a t e J B u t t o n Te s t e r bt0 , bt1 , bt2 , bt3 , bt4 , bt5 , bt6 , bt7 , bt8 , bt9
p r i v a t e J T e x t F i e l d T e s t e r d ;
boolean hasEventOccured = f a l s e ;

p r i v a t e S t r i n g Colour = " " ; // colour of t e s t case
p r i v a t e Timer timer ; // length of timeout

public TeVBRCU( S t r i n g name ) {
super (name ) ;

}
. . .
/∗ Set up the SUT and Run t e s t cases∗/
. . .

}

Here, ComponentTestFixture is an abstract class which extends the TestCase class of JUnit2.
ComponentTestFixture ensures proper setup and cleanup for a GUI environment, it pro-
vides methods for automatically placing a GUI component within a frame and properly
handling window showing/hiding operations. In this initial part we declare two type of

2http://www.junit.org/

http://www.junit.org/
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objects: objects that refers to the actual SUT, e.g., display, button0 etc; and objects that will
be used to stimulate the SUT, e.g., bt0, bt1, etc. Here, we declare also the colour of a test
case as a string.

In a second part of the program, we setup a method that initialize the system under test, in
our case the Java program BasicRemoteControl. Here, we make sure that the SUT is visible:

protected void setUp ( ) throws Exception {
brc = new BasicRemoteControl ( ) ;
brc . s e t S i z e ( 2 4 1 , 2 1 7 ) ;
brc . pack ( ) ;
brc . s e t L o c a t i o n ( 4 0 0 , 2 5 0 ) ;
brc . s e t V i s i b l e ( t rue ) ;
showWindow( brc , null , f a l s e ) ;
. . .

}

The abbott package allows us to find automatically the components of the system to be
tested. In the case of the remote control unit it finds the different buttons. For instance,
the following code finds button 1, and binds it to the private object button1:

button1 = ( JButton ) getFinder ( ) .
f ind (new ClassMatcher ( JButton . c l a s s ) {

public boolean matches ( Component c ) {
return c instanceof JButton &&

( ( JButton ) c ) . getText ( ) . equals ( " 1 " ) ; } } ) ;

The same procedure we adopt to find the text field where the signal is displayed:

display = ( J T e x t F i e l d ) getFinder ( ) .
f ind (new ClassMatcher ( J T e x t F i e l d . c l a s s ) ) ;

d isplay . addCaretLis tener (new C a r e t L i s t e n e r ( ) {
public void caretUpdate ( CaretEvent caretEvent ) {

hasEventOccured = t rue ;
}

} ) ;

In order to execute test cases we instantiate robot-like objects, which automatically stimu-
late the SUT.

bt0 = new J Bu t t on Te s t er ( ) ; . . . . bt9 = new J Bu t t on Te s t er ( ) ;
d1 = new J T e x t F i e l d T e s t e r ( ) ;

Here, the objects bt0 of JButtonTester() provides action methods and assertion for objects
declared as JButton.

Our decision procedure for determining the verdict of a test case, makes use of the timeout
in order to make sure certain events can really happen. In our program we make use of
the Java class Timer ( import java.util.Timer; ) in order to set a timeout and make sure that
events are performed within this timeout.
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For the execution of a test, we set a timeout of 1 secs as the period of time in which a
signal is expected from the RCU. Depending on the colour of the test case and the response
from the SUT, TEV determines automatically the test verdict. Here, we have encoded the
verdict algorithm within each test case.

The decision procedure for determining the verdict of a test case is encoded with in each
test case. In our a program, a test case is a unit test, e.g, testFirstCase(). In the following
test units we encode some test cases developed for BRCU.

• T1 = b1 → STOP

public void t e s t F i r s t C a s e ( ) throws Exception {
colour = " Green " ;
System . out . p r i n t l n ( " S t a r t time of Test Case : " + getTime ( ) ) ;

bt1 . a c t i o n C l i c k ( button1 ) ; // c l i c k button 1 −− t s 2 s u t
System . out . p r i n t l n ( " Button 1 pressed at : " + getTime ( ) ) ;

i f ( hasEventOccured ) {
System . out . p r i n t l n ( " Has Event Occured : " + hasEventOccured ) ;
System . out . p r i n t l n ( " S igna l " + display . getText ( )

+ " showed at : " + getTime ( ) ) ;
System . out . p r i n t l n ( " Test Resul t : FAIL " ) ;

} e lse {
System . out . p r i n t l n ( " Test Resul t : PASS " ) ;

}
hasEventOccured = f a l s e ;

}

• T2 = b1 → codeOf (b1) → b6 → codeOf (b6) → STOP

public void testSecondCase ( ) throws Exception {
colour = " Green " ;
System . out . p r i n t l n ( " S t a r t time of Test Case : " + getTime ( ) ) ;

bt1 . a c t i o n C l i c k ( button1 ) ; // c l i c k button 0 −− t s 2 s u t
System . out . p r i n t l n ( " Button 0 pressed at : " + getTime ( ) ) ;

i f ( hasEventOccured
&& display . getText ( ) . equals ( " 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 " ) ) {
System . out . p r i n t l n ( " Has Event Occured : " + hasEventOccured ) ;
System . out . p r i n t l n ( " S igna l " + display . getText ( )

+ " showed at : " + getTime ( ) ) ;
// proceed to t e s t button 6
t e s t B u t t o n 6 ( ) ;

} e lse {
System . out . p r i n t l n ( " Test Resul t : FAIL " ) ;

}
hasEventOccured = f a l s e ;

}

public void t e s t B u t t o n 6 ( ) throws Exception {
bt6 . a c t i o n C l i c k ( button6 ) ; // c l i c k button 6 −− t s 2 s u t
System . out . p r i n t l n ( " Button 6 pressed at : " + getTime ( ) ) ;
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i f ( hasEventOccured
&& display . getText ( ) . equals ( " 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 " ) ) {

System . out . p r i n t l n ( " Has Event Occured : " + hasEventOccured ) ;
System . out . p r i n t l n ( " S igna l " + display . getText ( )

+ " showed at : " + getTime ( ) ) ;
System . out . p r i n t l n ( " Test Resul t : PASS " ) ;

} e lse {
System . out . p r i n t l n ( " Test Resul t : FAIL " ) ;

}
hasEventOccured = f a l s e ;

}

10.4 Summary

In this chapter, we have demonstrated the connection between the testing framework pre-
sented in Chapter 9 and the CSP-CASL development notion presented in Chapter 6. The
major innovations are:

Testing and vertical development In our approach, we can build test suites for any level
of abstraction in this process. In particular, test cases can be constructed already in
the very beginning, as soon as the first loose specifications are written. Our approach
ensures that test cases which are designed at an early stage can be used without mod-
ification for the test of a later development stage. Ergo, test suites can be developed
in parallel with the SUT, which reduces the overall development time and helps to
avoid ambiguities and specification errors.

Testing and horizontal development We have proved that our notion of enhancement
(or horizontal development) for CSP-CASL allows the preservation of expected result
of test cases. Therefore, this notions allow to reuse test cases throughout a product
line. In particular, test cases preserves their colour.

We have illustrated the overall framework of testing and CSP-CASL development with the
example of a remote control units for home appliances.
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I N this chapter we demonstrate that the so far presented theoretical results are applica-
ble in an industrial setting. Namely, we apply our technique to an electronic payment
system called EP2. In the next section, we will introduce EP2 and discuss the speci-

fication structure and style of EP2. We demonstrate how we capture in a faithful way
such specification in CSP-CASL. We prove the formal refinement of the different levels
of abstraction. We analyze deadlock and livelock freedom, and finally we show a testing
framework for an EP2 payment system.

A first modelling approach in CSP-CASL of the EP2 specification has been presented in
[GRS05]; while in [KR09] a refinement verification as well as deadlock and livelock analy-
sis of EP2 has been carried out.

11.1 Introducing the EP2 payment system

The EP2 system is an electronic payment system and it stands for ‘EFT/POS 2000’, short
for ‘Electronic Fund Transfer/Point Of Service 2000’, it is a joint project established by a
number of (mainly Swiss) financial institutes and companies in order to define EFT/POS
infrastructure for credit, debit, and electronic purse terminals in Switzerland1. EP2 builds
on a number of other standards, most notably EMV 2000 (the Europay/Mastercard/Visa
Integrated Circuit Card standard2) and various ISO standards. The EP2 project began in

1www.eftpos2000.ch
2www.emvco.com
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October 2000, and was officially completed on May 31 2003. The latest version (ep2 spec
V5.0.0) of the EP2 standard was released on October 2008.

The EP2 system, as illustrated in Figure 11.1, consists of seven autonomous entities:

Acquirer: A system for processing electronic payment transactions.

Card: Payment utility opened by a specific cardholder.

Point Of Service (POS): A system where a cardholder may purchase goods and/or ser-
vices.

POS Management System (PMS): System that allows the merchant to administrate his
terminal population.

Service Center: A system component used for configuration and maintenance of a termi-
nal.

Terminal: A system used for processing transactions.

These components are centered around an EP2 Terminal. The different entities communi-
cate with the Terminal and, to a certain extent, with one another via XML-messages in a
fixed format over TCP/IP. The messages contain information about authorisation, finan-
cial transactions, as well as initialisation and status data. The state of each component
heavily depends on the content of the exchanged data. Each component is a reactive sys-
tem defined by a number of use cases. Thus, there are both reactive parts and data parts
which need to be modelled. Both these parts are heavily intertwined.

11.1.1 EP2 document structure and specification style

The EP2 specification consists of twelve documents, each of which describe the different
components or some aspect common to the components. Figure 11.2 illustrates a general
overview of the EP2 document structure. Different books are concerned with a particular
aspect of the system.

• EP2 system book: Contains general information on EP2 as well as chapters which are
common interest in all EP2 specification documents.

• EP2 component book: Contains information about the functional and non-functional
requirements of each component, i.e., Acquirer, Service Center, etc.

• EP2 interface book: Contains the specification of the communication interfaces of the
EP2 system, i.e., blue lines in Figure 11.1.

• EP2 data dictionary book: Contains a detailed description of the various XML message
formats exchanged between the different EP2 components.

• EP2 security book: Contains information regarding the the EP2 security mechanism.
It contains the format and management of the various public key, i.e., as well as
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Figure 11.1: The EP2 system [Con08].
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Figure 11.2: Overview of EP2 document structure. [Con08].

specification of the cryptographic algorithms used for authentication and financial
transaction.

• EP2 component book (supplementary book): Contains additional information on the var-
ious EP2 component.

One of the characteristics of such a document structure is that, when considering a par-
ticular dialogue between two (or more) EP2 components, the information required to un-
derstand that aspect is contained in several different books; each of which describe the
dialogue from different points of view. In order to understand one particular dialogue
between two EP2 components, one has to look at the individual component book, the
interface book and the data dictionary book.

Each document is comprised of a number of different specification notations: plain En-
glish; UML-like graphics (use cases, activity diagrams, message sequence charts, class
models, etc.); pictures; tables; lists; file descriptions; encoding rules, etc.

The top level EP2 documents provide only an overview of the data involved, while the
presentation of further details for a specific type is delayed to separate low-level docu-
ments.

CSP-CASL is able to match such a document structure by a library of specifications, where
the informal design steps of the EP2 specification are mirrored in terms of a formal refine-
ment relation. Structuring the CSP-CASL specifications in the same way as the original
EP2 documents allows to exhibit some ambiguities, omissions and contradictions in the
documents.

CSP-CASL’s loose specification of data types plays an important role. Usually, the top
level EP2 documents provide an overview of the data involved, while the presentation of
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further details for a specific type is delayed to separate low-level documents. In the next
section we illustrate how we match the informal specification of EP2 in CSP-CASL.

11.2 Modelling EP2 in CSP-CASL

In this section we describe the modelling of the various levels of the EP2 specification in
CSP-CASL. We have modeled three levels of abstraction of the EP2 specification. Those
are: the architectural level, the abstract component level and the concrete component level.
Figure 11.3 illustrate the different levels of specification.

...
. . . . . .

...
. . . . . .

Architectural
Level

Abstract
Component

Level

Concrete
Component

Level

Figure 11.3: EP2 specification at different level.

On the architectural level we capture the overall system as depicted in Figure 11.1. On the
abstract component level, we model the interaction between two EP2 components. Here,
we model the use cases of the different functionality of the EP2 components, e.g., configu-
ration of the terminal, initialization different services, processing payments, etc. In some
sense, at this level, we narrow down the modelling exercise to an abstract view of the in-
teraction between the different components. On the concrete component level we refine the
abstract view of each component by modelling which specific values the different compo-
nents are going to send and receive. Here, we model the behavior of each component to
be stateful. That is, each component will behave according to what kind of message it is
receiving or sending.

In the next subsections, we illustrate the EP2 specifications in CSP-CASL on the different
levels. We first give an explanation of how the informal EP2 specification describes the
various components and the different methodologies used to specify them. Subsequently,
we will show how we capture these aspects in CSP-CASL.
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11.2.1 Architectural specification

The architectural specification of EP2 portraits the general overview of the system. An
overview of the EP2 architectural level is illustrated in Figure 11.1. It specifies, at a high
level, each of the nine interfaces represented by solid blue lines in Figure 11.1 (CAI Card,
SI Config, COI Config, SI Init, FE FrontEnd, MI Subm, MI Rec, BE BackEnd, EI ECR).

The data specification (ARCH EP2 DATA) defines sorts describing the data communi-
cated on each of the interfaces listed above; this is loose specification, where in fact all
we are doing is defining a name for each sort.

spec ARCH EP2 DATA =
sorts CAI Card; SI Config; COI Config; SI Init; FE FrontEnd;

MI Subm; MI Rec; BE BackEnd; EI ECR
end

The CSP-CASL specification of th architectural level (ARCH EP2), begins by declaring
channels representing each of the interfaces; each channel’s sort comes from the data part.
The value of each data is communicated over channels; data of sort CAI Card is inter-
changed over on a channel C CAI Card linking the Card and the Terminal. For each line of
communication (or interface) we introduce a new channel. For instance, the Acquirer com-
municates with the Terminal and the PMS on the MI Subm interface. Here, we model by
introducing two different channels over the same interface; namely C PMSAcq MI Subm
typed over MI Subm and C TerAcq MI Subm typed over MI Subm.

Each process is declared with the appropriate alphabet, consisting of the channels over
which it may communicate. The Card process may communicate only on the C CAI Card
channel.

This is followed by process equations defining the behaviour of each component’s pro-
cess as a CSP-CASL process term. Here, each process is modeled as the RUN process,
i.e., they are always prepared to communicate any event from their alphabet. For ex-
ample, the ServiceCenter process can communicate all values of channel C SI Config and
C COI Config. Finally, we declare and define the process ArchEP2, which represent the
entire system at the architectural level. Its communication alphabet consists of all the
channels we have defined.

The Terminal, is at the center of the system, and communicates with the ‘rest of the sys-
tem’ over the different channels; except C COI Config and C MI Rec. The ‘rest of the
system’ is then modelled as three processes interleaved: the Card, the POS, and a process
in which the communications between the ServiceCenter, Acquirer and PMS are restricted
using alphabetized parallel; for instance here the ServiceCenter cannot communicate with
the PMS.

ccspec ARCH EP2 =
data ARCH EP2 DATA

channels C CAI Card : CAI Card; C SI Config : SI Config;
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C COI Config : COI Config; C SI Init : SI Init;
C FE FrontEnd : FE FrontEnd; C TerAcq MI Subm : MI Subm;
C PMSAcq MI Subm : MI Subm; C MI Rec : MI Rec;
C BE BackEnd : BE BackEnd; C EI ECR : EI ECR

process Card : C CAI Card ;
ServiceCenter : C SI Config, C COI Config ;
Acquirer : C COI Config, C SI Init, C FE FrontEnd,

C PMSAcq MI Subm, C TerAcq MI Subm, C MI Rec ;
PMS : C BE BackEnd, C MI Rec, C PMSAcq MI Subm;
POS : C EI ECR ;
Terminal : C CAI Card, C SI Config, C SI Init, C FE FrontEnd,

C TerAcq MI Subm, C BE BackEnd, C EI ECR ;
ArchEP2 : C CAI Card, C SI Config, C SI Init, C FE FrontEnd,

C BE BackEnd, C EI ECR, C COI Config, C PMSAcq MI Subm,
C TerAcq MI Subm, C MI Rec ;

Card = RUN(C CAI Card )
ServiceCenter = RUN(C SI Config, C COI Config )
Acquirer = RUN(C COI Config, C SI Init, C FE FrontEnd,

C PMSAcq MI Subm,C TerAcq MI Subm, C MI Rec )
PMS = RUN(C BE BackEnd, C PMSAcq MI Subm, C MI Rec )
POS = RUN(C EI ECR )
Terminal = RUN(C CAI Card, C SI Config, C SI Init, C FE FrontEnd,

C TerAcq MI Subm, C BE BackEnd, C EI ECR )
ArchEP2 =
Terminal |[ C CAI Card, C SI Config, C SI Init, C FE FrontEnd,

C TerAcq MI Subm, C BE BackEnd, C EI ECR]|
(Card
||| ( ServiceCenter |[ C SI Config, C COI Config

|| C COI Config, C SI Init,C FE FrontEnd,
C TerAcq MI Subm, C PMSAcq MI Subm, C MI Rec ]|
Acquirer |[ C SI Config, C COI Config, C SI Init,

C FE FrontEnd, C TerAcq MI Subm,
C PMSAcq MI Subm, C MI Rec
|| C PMSAcq MI Subm, C MI Rec,

C BE BackEnd ]| PMS )
||| POS )

end

This very first specification in CSP-CASL mirrors the informal architectural specification of
EP2, portrayed in Figure 11.1. It is, a very abstract view of the system — but certainly not
a trivial one. Even from such an abstract specification, we would like to verify interesting
properties (see Section 11.3); and design meaningful test cases (see Section 11.4).
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11.2.2 Abstract component level

At this level we model the activity diagram of the different functionality of the EP2 compo-
nents. For the sake of good understanding, in this section we will present the details of the
modelling of the interaction between two components, namely the ServiceCenter and the
Terminal. In this interaction, both components exchange messages in order to configure
the Terminal capabilities.

The get configuration use case describes how the ServiceCenter informs and maintains the
Terminal configuration data. This communication is carried out over the SI Config channel.
This interface is a bidirectional message flow. The Terminal acts as communication master
and the ServiceCenter as communication slave. The interface is used for the download
of terminal specific configuration parameters; for instance information about the Acquirer
initialisation server data. The ServiceCenter may optionally request information about the
terminal configuration and initialisation data.

Figure 11.4: EP2 Get configuration activity diagram – Terminal part [Con08].

For both the Terminal and the ServiceCenter, activity diagrams are given describing the



11.2 Modelling EP2 in CSP-CASL 157

flow of control on the receipt of messages. Figure 11.4 and 11.5 shows the diagrams of the
Terminal and ServiceCenter component in the context of exchanging the configuration data.

Figure 11.5: EP2 Get configuration activity diagram – ServiceCenter part [Con08].

At this level, the data specifications are refined by introducing a type system on messages.
In CASL, this is realised by introducing subsorts of the various data sorts introduced in
ARCH EP2, e.g., CAI Card, . . . , EI ECR.

On the data part (D ACL GETCONFIG), we introduce suitable subsort which corresponds
to the various messages which are sent between the ServiceCenter and the Terminal. In the
case of the get configuration dialogue, those are the messages which appear in the activity
diagram (see Figure 11.4): Session start, Config data request, Config data response, etc. Here,
we have to make sure that the various messages are different by adding some suitable
axioms.

spec D ACL GETCONFIG =
sorts SessionStart, SessionEnd, ConfigDataRequest, ConfigDataResponse,

ConfigNotif, ConfigAck, TerminalClearNotif, TerminalClearAck,
RemoveConfigNotif, RemoveConfigAck, ActivateConfigNotif,
ActivateConfigAck < D SI Config

∀ x : SessionEnd; y : ConfigDataRequest • ¬ x = y
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∀ x : SessionEnd; y : ConfigNotif • ¬ x = y
∀ x : SessionEnd; y : TerminalClearNotif • ¬ x = y
∀ x : SessionEnd; y : RemoveConfigNotif • ¬ x = y
. . . . . . . . .
∀ x : RemoveConfigNotif ; y : ActivateConfigNotif • ¬ x = y

end

On the process part (ACL GETCONFIGURATION), the process RUN from the architectural
specification is refined without changing the overall communication structure. In the case
of the get configuration dialogue, we specify how the Terminal and the ServiceCenter reacts
to the sending and receiving of the various messages.

ccspec ACL GETCONFIGURATION =
data D ACL GETCONFIG

channel C SI Config : D SI Config
process
TerminalConfiguration = Ter Config |[ C SI Config ]| SC Config
Ter Config = C SI Config ! sesStart :: SessionStart →Ter Mgm
Ter Mgm = C SI Config ? configMess :: D SI Config →

if configMess ∈ D SI Config SessionEnd then SKIP
else if configMess ∈ ConfigDataRequest

then C SI Config ! resp :: ConfigDataResponse →Ter Mgm
else if configMess ∈ ConfigNotif

then C SI Config ! ack :: ConfigAck→ Ter Mgm
else if configMess ∈ TerminalClearNotif

then C SI Config ! ackT :: TerminalClearAck → Ter Mgm
else if configMess ∈ RemoveConfigNotif

then C SI Config ! ackR :: RemoveConfigAck → Ter Mgm
else if configMess ∈ ActivateConfigNotif

then C SI Config ! ackA :: ActivateConfigAck →Ter Mgm
else STOP

SC Config = C SI Config ? sesStart :: SessionStart → SC Mgm
SC Mgm = C SI Config ! seM :: SessionEnd → SC Config

u C SI Config ! cdrM :: ConfigDataRequest →
C SI Config ? response :: ConfigDataResponse → SC Mgm

u C SI Config ! cdnM :: ConfigNotif →
C SI Config ? confAck :: ConfigAck → SC Mgm

u C SI Config ! tclearM :: TerminalClearNotif →
C SI Config ? tclearAck :: TerminalClearAck → SC Mgm

u C SI Config ! rcdnM :: RemoveConfigNotif →
C SI Config ? rmConfAck :: RemoveConfigAck → SC Mgm

u C SI Config ! acdnM :: ActivateConfigNotif →
C SI Config ? actAck :: ActivateConfigAck → SC Mgm

end
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The process TerminalConfiguration models the interaction between the terminal (Ter Config)
and the service center (SC Config), which runs in parallel via the channel C SI Config. The
process Ter Config initiates the dialogue by sending a message of type
D SI Config SessionStart; on the other side the process SC Config receives this message.
The process SC Config takes the internal decision either to end the dialogue by sending
the message of type D SI Config SessionEnd or to send another type of message, for ex-
ample a message of type D SI Config ConfigRequest. This is modelled using the internal
choice operator (u) of CSP. On the other side the process Ter Config, depending on what
kind of message the process SC Config has requested, engages in a data exchange. For
example, if it receives a message of type ConfigDataRequest it will send a message of type
ConfigDataResponse.

This model captures in a faithful way the activity diagram of the Terminal and the Service
Center represented in Figure 11.5 and 11.4.

11.2.3 Concrete component level

In the abstract component level we have captured the activity diagram of the various
components as depicted in the original EP2 specification. Here, for each state of the activity
diagram, a verbal description is given of which message parameters are admissible in this
state, and what appropriate response messages are composed of. For example, in the
activity diagram of the ServiceCenter (Figure 11.5), the state “Send �Config data Request�
Message” is accompanied by the following verbal description:

The service center shall send the message � Config data Request � Message to the
terminal. The service center shall set < Config Data Object > to the configuration
data object, which the service center is interested in. For CPTD, TACD and CAD the
service center shall specify with an AID respectively ...

The parameter values of the various configuration data objects, such as CPTD, TACD etc,
are informally described in another table. Figure 11.6 illustrates an excerpt from such
table.

For the concrete encoding of the various messages, we have to look in to two other books:
the EP2 interface book and the EP2 data dictionary book. For instance in the interface book,
we find the sequence diagram for the various activity. Figure 11.7 illustrate the sequence
diagram for requesting the configuration data.

Moreover, in such documents, we find details of the data elements. For instance, for the
message �Config data Request� we find the data elements reported in Figure 11.2.3. Here,
the table presents the various XML tags and some conditions. The condition for Acquirer
Identifier asserts that this data element should only be present in the case the requested
data object is of type ACD and AISD and is optional in the case of a data object of type
LAID.
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Figure 11.6: Message parameters for terminal configuration data [Con08].

Figure 11.7: Sequence diagram ’Request configuration data’ [Con08].

Figure 11.8: Data elements for �Config data Request� [Con08].

On the concrete component level, we model which specific values the different EP2 com-
ponents are going to send and receive. It is at this level, the processes becomes stateful.
Here, the state is represented by a pair:

p : Pair[State][Trigger]

State represents the EP2 Terminal’s memory, while Trigger represents what kind of mes-
sages initiate the communication (e.g., configuration management in the case of the get
configuration data).
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The data part (D CCL GETCONFIG) becomes more elaborated and detailed. In order to
model the state of the processes, we import from the CASL standard library the specifica-
tion of PAIR and MAYBE. The latter, is necessary to model the fact that in the data models
certain elements are optional (See Figure 11.2.3). The following illustrate the MAYBE spec-
ification:

spec MAYBE[sort S] =
sort Maybe[S]
ops nothing : Maybe[S];

just : S → Maybe[S];
getJust : Maybe[S] →? S

pred defined : Maybe[S]
• ¬ def getJust(nothing)
• ∀ x : S • getJust(just(x)) = x
• ∀ x : Maybe[S] • defined(x) ⇔ def getJust(x)

end

Finally, we import the data specification from the abstract component level of the get
configuration (D ACL GETCONFIG). We then extend the data with new sorts, i.e., Ac-
quirerID, AID3 etc.

spec D CCL GETCONFIG =
PAIR [sort State fit sort S 7→ State] [sort Trigger fit sort T 7→ Trigger]
and MAYBE[sort ACD]
and MAYBE[sort AISD]
and MAYBE[sort CAD]
and MAYBE[sort CPTD]
and MAYBE[sort CAD]
and MAYBE[sort TACD]
and MAYBE[sort TCD]
and MAYBE[sort AcqID]
and MAYBE[sort AID]
and MAYBE[sort RID]
and D ACL GETCONFIG

then sorts AcquirerID, AID, RID, TerminalRangeID, TerminalUnitID, ServiceCenterID, . . .

The concrete value of each message triggers a specific behavior in the process part. Thus,
it is necessary to specify the data types up to representation. Specifically, at this level we
would like to capture the data elements such as those in Figure 11.6. These messages can
be modelled by a CASL free type, and we can make concrete what data is involved in
each message. In the following for instance, we specify what type of elements the config-
uration data object (Config Data Obj) contains. Those are exactly the elements specified in

3AID: stands for Application Identifier. RID: stands for Registered Application Identifier. Terminal-
RangeID is the a unique number assigned to a terminal by the EP2 registration authority. TerminalUnitID
is a unique identifier assigned to a terminal by the merchant. Both the TerminalRangeID and the TerminalU-
nitID constitutes a unique identfier for a particular terminal.
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Figure 11.2.3.

free type ConfigDataObj ::= ACD | AISD | CPTD | CAD | TACD | TCD

The specific message for requesting data configuration (ConfigDataRequest) is then speci-
fied as follows:

free type ConfigDataRequest ::=
mk ConfigDataRequest(get AcqID : Maybe[AcqID];

get AID : Maybe[AID];
get req : ConfigDataObj;
get RID : Maybe[RID];
get SCID : ServiceCenterID;
get TrmID : TerminalID)

We now have to add some suitable axioms in order to capture the conditions specified
in the data elements of Figure 11.2.3. For example, in the following we specify the con-
dition that if the requested message is of type ACD the Acquirer ID is defined while the
application identifier (AID) and the registered application provider identifier (RID) are
not defined.

∀ cdr : ConfigDataRequest
• get req(cdr) = ACD ⇒ defined(get AcqID(cdr)) ∧ ¬ defined(get AID(cdr))

∧ ¬ defined(get RID(cdr))
• get req(cdr) = AISD ⇒ defined(get AcqID(cdr)) ∧ ¬ defined(get AID(cdr))

∧ ¬ defined(get RID(cdr))
• get req(cdr) = CPTD ⇒ ¬ defined(get AcqID(cdr)) ∧ defined(get AID(cdr))

∧ ¬ defined(get RID(cdr))
• get req(cdr) = CAD ⇒ ¬ defined(get AcqID(cdr)) ∧ ¬ defined(get AID(cdr))

∧ defined(get RID(cdr))
• get req(cdr) = TACD ⇒ ¬ defined(get AcqID(cdr)) ∧ defined(get AID(cdr))

∧ ¬ defined(get RID(cdr))
• get req(cdr) = TCD ⇒ ¬ defined(get AcqID(cdr)) ∧ ¬ defined(get AID(cdr))

∧ ¬ defined(get RID(cdr))

Once the Terminal receives a request for a configuration data from the ServiceCenter, the
response of the terminal is dependent of what kind of message the ServiceCenter has re-
quested. The data response from the Terminal has the following format:

type ConfigDataResponse ::=
mk ConfigDataResponse(get SCID : ServiceCenterID;

get TrmID : TerminalID;
get ACD : Maybe[ACD];
get AISD : Maybe[AISD];
get CAD : Maybe[CAD];
get CPTD : Maybe[CPTD];
get TACD : Maybe[TACD];
get TCD : Maybe[TCD])
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In order to compute the correct data response for the configuration data request, we de-
clare a function which takes the ConfigDataRequest and the State of the terminal and com-
putes the ConfigDataResponse.

op msg DataResp : ConfigDataRequest × State → ConfigDataResponse

Which specific value should the data response contain is stated by adding some axioms.
For example, in the following we specify that if the data request contains the message
ACD, then the terminal should retrieve the data elements of ACD.

∀ cdr : ConfigDataRequest; s : State
• get req(cdr) = ACD ⇒ defined(get ACD(msg DataResp(cdr, s)))
∧ ¬ defined(get AISD(msg DataResp(cdr, s)))
∧ ¬ defined(get CAD(msg configDataResponse(cdr, s)))
∧ ¬ defined(get CPTD(msg DataResp(cdr, s)))
∧ ¬ defined(get TACD(msg DataResp(cdr, s)))
∧ ¬ defined(get TCD(msg DataResp(cdr, s)))

On the process part, we have that at the concrete component level, the activity of the
ServiceCenter remains unchanged. Basically it is the same as specified in the abstract com-
ponent level (see ACL GETCONFIGURATION). However, the Terminal’s reactive behavior
changes completely. Here, we would like to capture the fact that the Terminal is stateful,
i.e., it depends on the pair State× Trigger.

ccspec CCL GETCONFIGURATION =
data D CCL GETCONFIG

channel C SI Config : D SI Config
process
TerminalConfiguration(Pair [State,Trigger]) : C SI Config ;
Ter Config(Pair[State,Trigger]) : C SI Config ;
Ter Mgm(Pair [State, Trigger]) : C SI Config ;

TerminalConfiguration(p) = Ter Config (p) |[ C SI Config ]| SC Config

Ter Config(p) = C SI Config ! msg sessionStartConf (second(p)) → Ter Mgm(p)

Ter Mgm(p) = C SI Config ? configMess :: D SI Config →
if configMess ∈ D SI Config SessionEnd then SKIP
else if configMess ∈ ConfigDataRequest

then C SI Config ! msg DataResp (configMess as ConfigDataRequest, first (p))
→Ter Mgm(p)

else if configMess ∈ ConfigNotif
then C SI Config ! msg configAck (configMess as ConfigNotif, first(p))
→Ter Mgm ( pair ((st configAck (configMess as ConfigNotif, first (p))),

second(p)))
else if configMess ∈ TerminalClearNotif

then C SI Config ! msg clearlearNotif (configMess as TerminalClearNotif, first(p))
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→Ter Mgm ( pair((st terClearNotif (configMess as TerminalClearNotif, first(p))),
second(p)))

else if configMess ∈ RemoveConfigNotif
then C SI Config ! msg removeAck (configMess as RemoveConfigNotif, first(p))
→ Ter Mgm ( pair((st removeAck(configMess as RemoveConfigNotif, first (p))),

second(p)))
else if configMess ∈ ActivateConfigNotif

then C SI Config ! msg actConfDataAck(configMess as ActivateConfigNotif, first(p))
→ Ter Mgm ( pair ((st actConfAck (configMess as ActivateConfigNotif, first (p))),

second(p)))
else STOP

(. . . Service Center process specification . . . )
end

In CCL GETCONFIGURATION the process TerminalConfiguration is dependent on the pa-
rameter Pair[State, Trigger], i.e., TerminalConfiguration(Pair[State, Trigger]). On the terminal
side (Ter Config), a message configMess is received from the ServiceCenter over the chan-
nel C SI Config. Depending on the type of configMess, different answers are sent back to
the ServiceCenter and the internal state of the Terminal changes. For example, in the case
configMess is of type ConfigDataRequest, the terminal replies with the current configuration
message. The function msg DataResp(configMess as ConfigDataRequest, first(p)) computes
the right data elements requested; here, in configMess as ConfigDataRequest we need to
downcast the type, since configMess is of type D SI Config and ConfigDataRequest is a sub-
sort of D SI Config (see [Gim08]). The activity of requesting configuration data from the
Terminal doesn’t change the internal state of the Terminal; thus we don’t model the change
of the state.

In the case ServiceCenter informs the Terminal of some changes, that is when configMess is
of type ConfigNotif , the internal state of the Terminal changes. This is computed by the
function st configAck(configMess as ConfigNotif , first(p)).

The complete specification of the get configuration dialogue at the three levels of abstraction
can be found in the Appendix C.5.

11.3 Property verification of EP2

In this section we prove some interesting properties of EP2. Namely we show that re-
finement steps from the different layers of specification hold. Furthermore, for selected
dialogue of EP2 components we prove the absence of deadlock and livelock. Here we take
a single dialogue, namely the get configuration dialogue between the service center and the
terminal, to illustrate how the verification is done in CSP-CASL.
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11.3.1 Refinement

Our notion of CSP-CASL refinement presented in Chapter 6 is capable of capturing the
vertical development steps presented in the previous section. Summarizing the vertical
development of EP2: the first system design sets up the interface between the components
(architectural level), then these components are developed further to capture the dialogue
between the components (abstract component level), in the next level the system becomes
stateful and heavily dependent on the specific messages exchanged between the parties.
Figure 11.9 shows the overall idea how the refinement verification is carried out.

...
. . . . . .

...
. . . . . .

Architectural
Level

Abstract
Component
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Concrete
Component

Level

EP2 Design
Process

CSP-CASL Spec
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Formalisation

Formalisation
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CSP-CASL
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Intuitive Refinement Formal Refinement

CSP-CASL

T , σ F , σ
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Figure 11.9: EP2 refinement verification in CSP-CASL.

In order to prove the refinement from the architectural level to the abstract component
level for the get configuration dialogue, we introduce some intermediate specifications and
refinement proofs.

In the first step, we restrict the EP2 architectural specification (ARCH EP2) to include only
the communication over the SI Config channel between the ServiceCenter and the Terminal.
This is captured in the following specification:
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ccspec ARCH GETCONFIG =
data D SI Con f ig
channel C SI Con f ig : D SI Con f ig
process

let ServiceCenter = EP2RUN Terminal = EP2RUN
in Terminal |[ C SI Con f ig ]| ServiceCenter

end

The EP2RUN process is specified as:

EP2RUN = (C SI Config ?x : D SI Config → Config RUN) 2 SKIP

Such process is always prepared to communicate an event from D SI Config or to termi-
nate successfully. We now prove the following lemma:

LEMMA 11.3.1 EP2RUN =T EP2RUN |[ C SI Config ]| EP2RUN.

PROOF. The proof is done in CSP-CASL-PROVER.

Then, we introduce a new specification SEQ GETCONFIG. Such specification is a sequen-
tial version of the get configuration dialogue:

ccspec SEQ GETCONFIG =
data D ACL GETCONFIG

channel C SI Config : D SI Config
process
Seq Start = C SI Config ! sesStart :: SessionStart → SC Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SC Config

u C SI Config ! cdrM :: ConfigDataRequest →
C SI Config ! response :: ConfigDataResponse → Seq Mgm

u C SI Config ! cdnM :: ConfigNotif →
C SI Config ! confAck :: ConfigAck → Seq Mgm

u C SI Config ! tclearM :: TerminalClearNotif →
C SI Config ! tclearAck :: TerminalClearAck → Seq Mgm

u C SI Config ! rcdnM :: RemoveConfigNotif →
C SI Config ! rmConfAck :: RemoveConfigAck → Seq Mgm

u C SI Config ! acdnM :: ActivateConfigNotif →
C SI Config ! actAck :: ActivateConfigAck → Seq Mgm

end

We prove that SEQ GETCONFIG is equivalent over the stable failure model to ACL GETCONFIG4.

LEMMA 11.3.2 ACL GETCONFIG =F SEQ GETCONFIG.

4A similar proof methodologies have been applied in [OIR09]
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PROOF. The proof is done in CSP-CASL-PROVER. Here, both processes uses the same data
specification. The following is a snippet of the Isabelle proof script.

theorem GetConfig_Seq : " Acl_GetConfig =F Seq_GetConfig "
apply ( simp add : Acl_GetConfig_def Seq_GetConfig_def )
apply ( r u l e cspF_fp_ induct_r ight [ of _ _ " Seq_To_Config " ] )
apply ( s imp_al l )
apply ( simp )
apply ( induct_ tac procName )
apply ( cspF_auto | cspF_hsf | r u l e cspF_decompo )+

done

We first unfold the definitions of Acl GetConfig and Seq GetConfig. Next, we apply
(metric) fixed point induction on the rhs and make a case distinction over the process
names, here encoded as induct tac procName. In the last step we apply powerful
CSP-PROVER tactics which combines three basic tactics. The result of which rewrites the
processes to head normal form (cspf hsf), and applies simplification (cspF auto and
cspF decompo) in terms of CSP step laws in order to equate processes. CSP-PROVER

tactics are explained in details in [IR].

Finally we prove the main refinement proof:

THEOREM 11.3.3 ARCH GETCONFIG ;σ
T ACL GETCONFIG.

PROOF. Having established some equivalence in Lemma 11.3.1 and 11.3.2, we now use
CSP-CASL-PROVER to establish this refinement.

We want to prove that EP2RUN ;σ
T SEQ GETCONFIG. To this end we apply the decom-

position theorem presented in Section 7.1. Using HETS, we automatically prove the data
refinement D ARCH GETCONFIG

data
;σ D ACL GETCONFIG.

Now, we have formed the specification (D ACL GETCONFIG, PSEQ GETCONFIG).
Where PSEQ GETCONFIG denotes the process part of SEQ GETCONFIG. Next we show in
CSP-CASL-PROVER that, over the traces model T , the refinement RUN GETCONFIG ;σ

T
SEQ GETCONFIG holds. Here, we show a snippet of the Isabelle proof script for the re-
finement proof.

theorem Arch_ACL_GetConfig : "EP2RUN <=T S e q _ S t a r t "
apply ( unfold EP2RUN_def Seq_Star t_def )
apply ( r u l e cspT_fp_induct_r ight [ of _ _ " SeqToRun " ] )
apply ( induct_ tac procName )
. . .
apply ( r u l e cspT_rw_lef t | r u l e cspT_decompo )+
. . .
apply ( cspT_auto | auto )
apply ( simp add : cspT_semantics )
apply ( r u l e )
apply ( simp add : i n _ t r a c e s )
apply ( auto simp add : t r a c e _ n i l _ o r _ T i c k _ o r _ E v )
apply ( auto simp add : S e s s i o n S t a r t _ d e f SessionEnd_def . . . )

done



168 Chapter 11 The electronic payment system EP2

We first unfold the definitions of Config Run and Seq Start. Next, we apply (metric)
fixed point induction on the rhs and make a case distinction over the process names, here
encoded as induct tac procName. After rewriting and decomposing both of the pro-
cesses we compute the trace semantics (cspT semantics) and check that there is indeed
an inclusion of traces (in traces); here, we need to add the definition of the various
sorts (SessionStart def etc).

As illustrated in Figure 11.9 the refinement from the architectural level to the abstract com-
ponent level doesn’t hold over the stable failure model F . We recall that refinement in F
holds if and only if there is an inclusion of the trace and the failure set. In our case, how-
ever the process EP2RUN has less refusal set than the process part of SEQ GETCONFIG,
i.e., failures(SEQ GETCONFIG) 6⊆ failures(EP2RUN).

We now prove the refinement step from the abstract component level to the concrete com-
ponent level, in the context of the get configuration dialogue.

THEOREM 11.3.4 ACL GETCONFIG ;σ
F CCL GETCONFIG.

PROOF. Again we use the decomposition theorem to first establish the data refinement
D ACL GETCONFIG

data
;σ D CCL GETCONFIG. Such proof is discharged automatically

in HETS. Now, we have formed the specification (D CCL GETCONFIG, PCCL GETCONFIG).
Where PCCL GETCONFIG denotes the process part of CCL GETCONFIG. Next we show in
CSP-CASL-PROVER that, over the stable failure model F , the refinement

ACL GETCONFIG ;σ
F CCL GETCONFIG

holds. The proof in CSP-CASL-PROVER is relatively substantially longer than the proof of
Theorem 11.3.3. Here, we illustrate the main snippet of the Isabelle proof script.

theorem ACL_TO_CCL : " ! ! p . ACL_GetConfig <=F CCL_GetConfig p"
apply ( simp add : ACL_Configuration_def CCL_Configuration_def )
apply ( r u l e cspF_decompo )
apply ( simp )
. . .

(∗ Refinement on the Terminal s ide ∗ )
. . .
apply ( r u l e c s p F _ f p _ i n d u c t _ l e f t [ of _ "ACL_TO_CCL " ] )
apply ( s imp_al l )
apply ( r u l e c s p F _ R e p _ i n t _ c h o i c e _ l e f t )
apply ( simp )
apply ( r u l e _ t a c x="p" in exI )
apply ( simp )
apply ( simp add : co nf ig_ gener a l )
. . .

(∗ Refinement on the ServiceCenter s ide ∗ )
. . .
apply ( r u l e c s p F _ f p _ i n d u c t _ l e f t [ of _ "ACL_TO_CCL " ] )
apply ( s imp_al l )
apply ( simp )
apply ( simp add : co nf ig_ gener a l )

done
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We first unfold the definitions of ACL GetConfig and CCL GetConfig. The latter pro-
cess is parameterised by P, which is pair of State and Trigger (See Section 11.2). The proof
of refinement is done first on the Terminal side and then on the ServiceCenter side. On both
sides, we apply (metric) fixed point induction on the rhs and apply simplification tactics.

11.3.2 Deadlock analysis

Most of EP2 components interact with each other over some channels (see Figure 11.1).
As illustrated in Section 11.2, this is modeled as a parallel composition, in which both
components communicate over a channel, i.e., in CSP this is realized using the generalized
parallel operator P |[ C ]|Q.

In such interaction it is possible that the deadlock phenomenon could occur. Furthermore,
processes like Ter Mgm of the specification ACL GETCONFIG includes the CSP process
STOP within one branch of its conditional. Should this branch of Ter Mgm be reached, the
whole system will be in deadlock. This is of course an undesirable situation, especially in
the case of payment transaction, i.e., communication between the Terminal and the Acquirer
over the FE FrontEnd in order to authorize a payment (see Figure 11.10). Hence, an early
analysis of such undesirable behavior is very beneficial for the overall verification of the
EP2 system.

Figure 11.10: EP2 process transaction[Con08].

In this subsection we illustrate how the deadlock analysis is carried out in the get configu-
ration dialogue. Such analysis is done at the abstract component level.

In Lemma 11.3.2 we have proven that the Get configuration dialogue is equivalent on the
stable failure model to its sequential version (SEQ GETCONFIG). By syntactic characteriza-
tion such process is deadlock free. Here, we prove that indeed SEQ GETCONFIG is dead-
lock free. To this end we establish in CSP-CASL-PROVER that DF ;σ

F SEQ GETCONFIG,
where DF is the least refined deadlock free process described in Section 8.1.

LEMMA 11.3.5 DF ;σ
F SEQ GETCONFIGUARTION.

PROOF. The proof is done in CSP-CASL-PROVER, here we give the main snippet of the
Isabelle proof script:
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theorem GetConfiguration_Is_DF : "DF <=F Seq_GetConfig "
apply ( unfold Seq_GetConfig_def DF_def )
apply ( r u l e cspF_fp_ induct_r ight [ of _ _ " Seq_to_DF " ] )
apply ( s imp_al l )
apply ( simp )
apply ( indu ct_ tac procName , auto )
apply ( cspF_auto )+
apply ( r u l e c s p F _ I n t _ c h o i c e _ l e f t 1 )
apply ( r u l e cspF_decompo_ref )
apply ( cspF_auto | auto )+
apply ( r u l e c s p F _ I n t _ c h o i c e _ l e f t 2 )
apply ( cspF_auto | auto )+
. . .
apply ( r u l e c s p F _ I n t _ c h o i c e _ l e f t 1 | r u l e cspF_decompo_ref

| cspF_auto | auto )+
done

First the main goal is unfolded, then we apply the (metric) fixed point induction is ap-
plied; here we have defined a mapping from the process Seq GetConfig to the process DF.
Next, the involved recursive processes are proven to be guarded using the Isabelle simpli-
fication tactics. Then, we make a case distinction over the process names (induct tac
procName). At this point, we have seven subgoals of the following form:

x ∈ SessionEnd =⇒ DF vF C SI Config x → SKIP

Each of these subgoals corresponds to the internal choice branching of the SEQ GETCONFIG.
In order to discharge these subgoals we use CSP-PROVER tactics, which make use of sev-
eral CSP step laws, i.e., the tactic cspF Int choice left1 allows to make the follow-
ing step P1 vF Q ⇒ P1 u P2 vF Q.

We have now established that ACL GETCONFIG is deadlock free. In Theorem 11.3.4 we
have proven that the refinement ACL GETCONFIG ;σ

F CCL GETCONFIG holds. The sta-
ble failure model preserves deadlock freeness of processes (see Section 8.1). Therefore, we
can conclude that CCL GETCONFIG is deadlock free. Figure 11.11 illustrates the overall
idea of deadlock analysis of the get configuration dialogue.

ACL GETCONFIG

CCL GETCONFIG

SEQ GETCONFIG

DF

CSP-CASL

F , σ

CSP-CASL

F
=F

Figure 11.11: EP2 deadlock analysis in CSP-CASL.
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We have carried out deadlock analysis of several other dialogues between EP2 compo-
nents. Basically, these analysis follow the same kind of approach as presented for the get
configuration dialogue.

11.3.3 Livelock Analysis

As described in Section 8.2 livelock freeness is best analysed in the failures/divergences
model N . The model N has not been implemented in CSP-CASL-PROVER. However, in
the following, we prove using basic step and distributivity laws of CSP that the dialogue
between the Terminal and the ServiceCenter is livelock free.

We first show that the sequential version of the get configuration dialogue is livelock free. To
this end, we use Theorem 8.2.4 to prove that the refinement DIVF ;σ

N SEQ GETCONFIG

holds. Here, DIVF is the least refined livelock free process:

ccspec DIVF =
data D ACL GETCONFIG

process
DivF = (STOP u SKIP) u (us:S

!x : s → DivF)

end

The sort S contains all the sorts declared in D ACL GETCONFIG. For simplicity, in the
SEQ GETCONFIG specification we consider only a process nucleus. That is, only one
branch of the internal choice operator, i.e.,

Seq Start = C SI Config ! sesStart :: SessionStart → SC Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SC Config

u C SI Config ! cdrM :: ConfigDataRequest →
C SI Config ! response :: ConfigDataResponse → Seq Mgm

THEOREM 11.3.6 DIVF ;σ
N SEQ GETCONFIG.

PROOF. This is basically a process refinement over the failures/divergence model, i.e.,
DIVF vN SEQ GETCONFIG. This can be transformed into

DIVF =N DIVF u SEQ GETCONFIG

We now apply CSP step laws to prove the equivalence:

DivF =N DivF u Seq GetConfig
(by symmetry) |

DivF u Seq GetConfig =N DivF
(unfolding) |
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((STOP u SKIP) u (us:S
!x :: s → DivF))

u
Seq Start = C SI Config ! sesStart :: SessionStart → Seq Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SKIP

u C SI Config ! cdrM :: ConfigDataRequest
→ C SI Config ! response :: ConfigDataResponse
→ Seq Mgm

(distributivity of u) |
((us:S

!x :: s → DivF) u SKIP) u (us:S
!x :: s → DivF) u STOP))

u
Seq Start = C SI Config ! sesStart :: SessionStart → Seq Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SKIP

u C SI Config ! cdrM :: ConfigDataRequest
→ C SI Config ! response :: ConfigDataResponse
→ Seq Mgm

(u −step law) |
((us:S

!x :: s → DivF) u SKIP) u (us:S
!x :: s → DivF) u STOP))

u
Seq Start = C SI Config ! sesStart :: SessionStart → Seq Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SKIP

(u −step law) |
((us:S

!x :: s → DivF) u STOP)
u
Seq Start = C SI Config ! sesStart :: SessionStart → Seq Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SKIP

(u−rewriting) |
((us:S

!x :: s → DivF) u STOP)
u
us:{SessionStart,SessionEnd}!x :: s → Seq Start u SKIP

(distributivity of u) |
(us:S

!x :: s → DivF) u (STOP u SKIP) = DivF

This proves that DivF =N DivF u Seq GetConfig.

Now that we have proved SEQ GETCONFIG is livelock free, we proceed to verify that
the actual dialogue between the Terminal and the ServiceCenter is livelock free. To this
end, we use the property that the failures/divergences model preserves livelock freeness.
We show that the sequential version is equivalent over the failures/divergences model
to the actual dialogue. For simplicity, in the ACL GETCONFIG specification we consider
only a nucleus process nucleus. That is, one branch of the activity diagram presented in
Figure 11.5, i.e.,

TerminalConfiguration = Ter Config |[ C SI Config ]| SC Config
Ter Config = C SI Config ! sesStart :: SessionStart →Ter Mgm
Ter Mgm = C SI Config ? configMess :: D SI Config →

if configMess ∈ D SI Config SessionEnd then SKIP
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else if configMess ∈ ConfigDataRequest
then C SI Config ! resp :: ConfigDataResponse →Ter Mgm

else if configMess ∈ ConfigNotif
then C SI Config ! ack :: ConfigAck→ Ter Mgm

SC Config = C SI Config ? sesStart :: SessionStart → SC Mgm
SC Mgm = C SI Config ! seM :: SessionEnd → SC Config

u C SI Config ! cdrM :: ConfigDataRequest →
C SI Config ? response :: ConfigDataResponse → SC Mgm

THEOREM 11.3.7 ACL GETCONFIG =N SEQ GETCONFIG.

PROOF. We apply CSP step laws to prove the equivalence. We start from the lhs:

C SI Config ! sesStart :: SessionStart → Ter Mgm
|[ C SI Config ]|

C SI Config ? sesStart : SessionStart → SC Mgm
(‖ −step) |

C SI Config ! sesStart :: SessionStart →
(Ter Mgm |[ C SI Config ]| SC Mgm)

(unfold) |
C SI Config ! sesStart :: SessionStart →
(C SI Config ? configMess →

(if (configMess in DataRequest)
then C SI Config ! resp : ConfigDataResponse → Ter Mgm

else if (configMess in SessionEnd) then SKIP else STOP)
|[ C SI Config ]|

C SI Config ! seM :: SessionEnd → SKIP
u C SI Config ! cdrM :: ConfigDataRequest
→ C SI Config ! response :: ConfigDataResponse → SC Mgm

(‖ −distrib) |
C SI Config ! sesStart :: SessionStart →

(C SI Config ! seM :: SessionEnd → SKIP
|[ C SI Config ]|

(C SI Config ? configMess → (if . . . ))
u

C SI Config ! cdrM :: ConfigDataRequest
→ C SI Config ! response :: ConfigDataResponse → SC Mgm

|[ C SI Config ]|
(C SI Config ? configMess → (if . . . )))

(if − step) |
C SI Config ! sesStart :: SessionStart →

(C SI Config ! seM :: SessionEnd → SKIP)
u

C SI Config ! cdrM :: ConfigDataRequest
→ C SI Config ! response :: ConfigDataResponse → SC Mgm

The last if − step is applied twice, i.e., one per u branch. By doing a process renaming and
re-structuring, we obtain SEQ CONFIG, i.e,
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Seq Start = C SI Config ! sesStart :: SessionStart → SC Mgm
Seq Mgm = C SI Config ! seM :: SessionEnd → SC Config

u C SI Config ! cdrM :: ConfigDataRequest →
C SI Config ! response :: ConfigDataResponse → Seq Mgm

Similarly to the deadlock analysis, we have carried out livelock analysis of several other
dialogues between EP2 components. This analysis follow the same kind of approach as
presented for the get configuration dialogue.

11.4 Testing framework for EP2

In this section we describe how the testing process of EP2 has been carried out. Here, we
show how we select the test cases to be executed. We evaluate the test cases using CSP-
CASL-PROVER; for this, we use the syntactic encoding of colouring test cases presented in
Section 9.3.

Moreover, we introduce the EP2 Testing Evaluator tool (TEV). This is an on-the-fly testing
framework for an EP2 terminal. Such a tool will allow us to run test cases in a hardware-
in-the-loop testing fashion. Here, we describe its architecture and its basic features.

11.4.1 Test case selection and evaluation

Selection of test cases is done using some general guidelines based on the informal EP2
specification and the CSP-CASL specifications. In selecting the test cases we adopt three
general test purposes:

Main functionality of the EP2 components: Here, the purpose is to test the various func-
tionality of the EP2 components prescribed in the various EP2 specification books.
For instance, functionality like: configuration of the terminal by the service cen-
ter; payment authorization performed by the acquirer; book keeping and logging
of transaction performed by the POS management system, etc.

For such purpose, we select most of the test cases from the activity diagram of the
various components. For instance, for the get configuration activity diagram (see Fig-
ure 11.4), we design at least one test case for each branch of the activity state.

Security features: EP2 uses the latest cryptographic techniques, which are very complex.
Those techniques are built upon the combination of various cryptographic concepts
such as cryptographic algorithms, mode, padding, hashing, Message Authentication
Code (MAC) and Key exchange. The EP2 security specification prescribes three levels
of security for exchanging messages between the components:
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• Level 0: Has the lowest security with no cryptographic property. Messages at
this level are sent in plain.

• Level 1: It enhances the security of the communication by introducing a MAC
into the header of the message. This provides a message integrity check.

• Level 2: This is the highest security level. At this level, messages not only have
a MAC for integrity check, but also the whole message is encrypted.

Depending on the message type the EP2 components are exchanging, one of the
three level of security is applied. For instance, when an authorization for a payment
transaction is sent from the terminal to the acquirer, level 2 is used. The acquirer
replies to the terminal with a message which uses only level 1. In case of an error
message, level 0 is used.

For such purpose, we select test cases that experiments the right level of security is
used during the interactions.

Re-use of test case: Here, the purpose is to select test cases in order to illustrate our ap-
proach of re-using test cases in a vertical development as described in Chapter 10.

In the following we describe a sample of test cases that illustrate the overall approach of
testing from CSP-CASL specifications. The first set of test cases are designed to experiment
the EP2 system at the architectural level. As described in Section 11.2, the architectural
specification of EP2, portraits the general overview of the system. Here, we design test
cases which mainly will be used for setting up the test environment and the EP2 terminal
system. In the following, we describe three CSP-CASL test cases:

T0 = C SI Init!x :: D SI Init → C SI Init!y :: D SI Init → STOP
T1 = x :: D BE BackEnd → STOP

Here, x and y are variable over the indicated sorts.

T0 : Experiments a secure communication between the acquirer and the terminal. Even
with such simple test case, we can experiment various features described in the spec-
ification. On the functionality level, T0 experiments the bidirectional communication
between the terminal and the acquirer. Using such test, we can ensure a successful
communication between the test environment and the SUT.

On the security level, here we can test for the authenticity of a particular acquirer.
In fact the EP2 security specification prescribes that the service center is responsible
of informing the terminal of the acquirer data. This information includes the ip and
port address and the public key of the acquirer allowed to communicate with the
terminal. The public key is then used to calculate the MAC data of a message. In the
case of a fake acquirer the control for message integrity would fail. Therefore, this
test case experiment a required behavior of the EP2 system; thus is colored green.

T1 : Experiments a communication between the terminal and the PMS. Here, we don’t
specify the channel of the communication. With this test we want to test that com-
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munication happens in designated channels. Therefore, this test case experiments a
forbidden behavior of the system; hence is colored red.

We now illustrate a set of test cases designed to experiment the EP2 system at the abstract
and concrete component level. The following are the CSP-CASL test cases:

T2 = C FE FrontEnd ! authReq :: AuthRequest
→ C FE FrontEnd ! authRes :: AuthResponse → STOP

T3 = C SI Init ! sesStart :: SessionStart → C SI Init ! notif :: DataNotif
→ C SI Init ! sesEnd :: Session → STOP

T4 = C SI Init ! sesStart :: SessionStart → C SI Init ! notif :: RemoveNotif
→ C SI Init ! notif :: RemoveAck → C SI Init ! actNotif :: ActivationNotif
→ C SI Init ! actAck :: ActicationAck → C SI Init ! sesEnd :: Session → STOP

T5 = C SI Config ! sesStart :: SessionStart → C SI Config ! req :: ConfigDataRequest
→ C SI Config ! res :: ConfigDataResponse → C SI Config!sesEnd :: SessionEnd
→ STOP

Here we give a brief explanation of:

T2 Experiments a communication between the acquirer and the terminal in the context of
payment transaction. Here, the terminal sends a message to the acquirer to authorize a
payment for a purchased goods. The acquirer authorize the transaction by sending a
message of type AuthResponse. This is a required behavior of the system, as specified
in the EP2 terminal (and acquirer) book [Con08].

T3 Experiments a communication between the acquirer and the terminal in the context
of the initialization of the terminal data. Here, the acquirer informs the terminal
what type of credit card are acceptable at this point. This is done by sending a
notification message to the terminal. However the communication ends without an
acknowledgment from the acquirer. This is a forbidden behavior, as all message
exchanges needs to be acknowledged.

T4 Experiments a communication between a acquirer and the terminal in the contest of
initialization of the terminal data. The acquirer informs the terminal that a payment
transaction using a particular type of cards (e.g., Maestro cards) are no longer accept-
able. This is done by sending a message of type remove config data to the terminal.
Then, by sending an activation message in order to make the initialization message
active on the terminal. The data specified at the abstract component level, does not
prescribe what kind of data the message remove config data has. At this point of the
vertical development this decision is still left open.

T5 Experiments a communication between a service center and the terminal in the contest
of get configuration data use case. Here, we experiment the retrieval of some config-
uration data from the terminal. The service center sends a message of type config
data request and is interested to retrieve the configuration data of a non existent ac-
quirer. Again, at the level of the abstract component level, the details of the message
config data request is left open. Only in the concrete component level will make this
message concrete.
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The color of the test cases T3, . . . , T6 is as follows:

Spec. Level T2 T3 T4 T5

ACL EP2 GREEN RED YELLOW YELLOW
CCL EP2 GREEN RED GREEN RED

11.4.2 Testing framework for EP2

Here, we describe the architecture of the testing framework for EP2– Testing EValuator
(TEV). TEV is a hardware-in-a-loop on-the-fly testing framework, designed to test an EP2
terminal.

Hardware-in-a-loop testing (HIL) is a well established approach to validate complex sys-
tems, where the correct integration of software with its underlying hardware is essential.
HIL has been deployed in defense and aerospace industry as early as the 1950s [NBAR04],
nowadays it is an established testing technique. HIL is heavily used in verifying criti-
cal system in projects such as the power and thermal control unit of the X-ray satellite
"ABRIXAS" [SMH99] and for cabin management controllers for Airbus families [Pel02]
and more.

The general architecture of TEV was originally designed in [Chu05]. The designed ar-
chitecture has been only tested with a simulator of EP2 messages, called CEPTEST EP2
developers test tool. The latter has been developed by CELSI AG5, which is a member
of the EP2 consortium. CEPTEST allows developers of any EP2 components to be able to
create and send messages through any message oriented EP2 interface.

The author of this thesis have made significant changes to the architecture in order to be
able to interface with the ’physical terminal’- cCredit Terminal Software provided by Six
Card Solutions6. Here, we list the changes and new features implemented:

• Interface with the actual software of cCredit Terminal Software.

• Ability to test multiple EP2 components in a single run of a test case.

• Implementation of new security features as described in the EP2 standard version 4.0.

• Implementation of the test evaluation algorithm described in Section 9.4.

Figure 11.12 illustrate the hardware-in-the-loop testing framework for EP2.

As described in Section 11.1, the EP2 standard involves various technologies, such as cryp-
tography, XML, and TCP/IP. The testing framework has to mirror such a complex system
that involves different technologies. Hence, a well-structured testing architecture is re-
quired. Figure 11.13 illustrate TEV’s architecture.

5http://www.celsi.ch/
6www.six-card-solutions.com

http://www.celsi.ch/
www.six-card-solutions.com
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Figure 11.12: Hardware in the loop testing for EP2.

TEV is written in Java and uses several APIs and libraries: For cryptographic operation:
JCA (Java Cryptography Architecture)7 and JCE (Java Cryptography Extension)8, for ma-
nipulation of XML documents: SAX (Simple API for XML)9, JDOM (Java Document Ob-
ject Model)10, XMLUnit11, FOP(Format Objects Processor)12; and other logging utility li-
braries such as log4j13.

TEV is composed of a number of layers. Each layer provides a set of functions for the trans-
mission and manipulation of the EP2 data. Here, we explain each layer in Figure 11.13:

• Test Applications: This layer is the basic interface of TEV. The tester interacts with the
functionality provided in this layer in order to create, execute and get the verdict of
test suites. It is composed by three stand-alone applications:

– TEVCREATOR : Automatically generates a test case protocol in an XML format.

– TEVMANAGER : It runs automatically the chosen test cases and evaluates on
the fly the verdict of a test case.

– TEVREPORTER : Automatically generates test verdicts in a readable format (ps,
pdf, etc.)

• EP2 Components: This layer implements the various EP2 components which will be
used by the test manager.

7http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html
8http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
9http://www.saxproject.org/

10http://www.jdom.org/
11http://xmlunit.sourceforge.net/
12http://xmlgraphics.apache.org/fop/
13http://logging.apache.org/log4j

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://www.saxproject.org/
http://www.jdom.org/
http://xmlunit.sourceforge.net/
http://xmlgraphics.apache.org/fop/
http://logging.apache.org/log4j
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Figure 11.13: TEV – architecture [Chu05].

• Conversation: This layer deals with the manipulation of the EP2 XML messages. At
this level most of the test verdict algorithm is implemented.

• Cryptography: This layer implements the necessary cryptographic operations for the
encryption and decryption of EP2 data.

• Network: This layer deals with the network communication protocol between EP2
components.

Figure 11.4.2 illustrate a typical test case protocol of EP2. After the user inputs the nec-
essary information, such file is automatically generated by the tool TEVCREATOR. The
structure of the test case protocol consists of six parts:

• meta (line 3-7): contains basic information of the test case.

• ccTest (line 8-14): illustrates the CSP-CASL test process.

• pcoInfo (line 15-20): contains information about the PCO, the level of abstraction of
the specification and the name of the CSP-CASL specification.

• testcaseEvalInfo (line 21-25): contains information about the test case evaluation, i.e.,
color of test case, location of the colouring proof and timeout information.

• componentList (line 26-50): contains information about the EP2 components which
are involved in this specific test run. For instance in this test case, the Aquirer and
the Terminal are involved. Here, for each component we specify: in which interface
(channel) they communicate (e.g., FEFrontEnd), the level of security in which the
interaction happen (e.g., Level 2), in which communication mode the component is
communicating (e.g., server). Here, we can add as many EP2 components as we like
to test.

• testSequence (line 51-72): contains the actual test sequence run. Here, we specify how
the test environment interact with the SUT. Here, the event section of the test se-
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quence represent one test run. Within each event we specify the conversation between
the parties, i.e., recieve and send. Moreover, at this level we specify the expected
message for each message sent from the SUT.

TEVMANAGER takes as input a test case protocol, execute the test case and compute the
test verdict. The latter is then written in an XML file. TEVMANAGER is also responsible
to simulate the EP2 component(s) which is interacting with the cCredit Terminal Software.

In the next section we describe the scenario of a typical test case execution of EP2.

11.4.3 Test case execution

The test verdict is obtained during the execution of the SUT from the expected result de-
fined by the colour of the test process. Here, we need to first establish a PCO. Here we
consider a PCO, which connects test cases derived from the CSP-CASL abstract compo-
nent level specification. For instance, let us consider the CSP-CASL test case T2 described
above. T2 experiments the authorization of a payment transaction between the terminal
and the acquirer. The following is the concrete XML message that the terminal send for
the authorization:

XML message for authorization request
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ep2:message xmlns:ep2="http://www.eftpos2000.ch" specversion="0400">
3 <ep2:authreq msgnum="7222">
4 <ep2:AcqID>00000000004</ep2:AcqID>
5 <ep2:TrmID>TERM1234</ep2:TrmID>
6 <ep2:TrxDate>20100223</ep2:TrxDate>
7 <ep2:TrxTime>130842</ep2:TrxTime>
8 <ep2:TrxSeqCnt>24551</ep2:TrxSeqCnt>
9 <ep2:AmtAuth>50</ep2:AmtAuth>

10 <ep2:TrxCurrC>756</ep2:TrxCurrC>
11 <ep2:Track2Dat>OZYbmsV8ODZ3EC3vY4z9yA==</ep2:Track2Dat>
12 <ep2:TVR>AAAAgAA=</ep2:TVR>
13 <ep2:CVMRes>HgAA</ep2:CVMRes>
14 <ep2:POSEntry>90</ep2:POSEntry>
15 <ep2:TrxTypeExt>3</ep2:TrxTypeExt>
16 <ep2:AID>oAAAAVcAIA==</ep2:AID>
17 </ep2:authreq>
18 </ep2:message>

In order to establish the PCO we develop an equivalence relation which allows us to
abstract some aspects of the primitive events, such as the message number (msgnum).
In general, for each interface of communication between EP2 components (blue lines in
Figure 11.1) we establish an equivalence relation of the XML messages exchanged, i.e.,
∼SI Config,∼SI Init, . . . ,∼FE FrontEnd.

As an example, we show a PCO in order to execute test case T2:

Alphabet The alphabet of primitive events are all the possible XML messages that are
communicated over the interface FE FrontEnd, such as the XML message reported
above. We denote the set of these XML messages as XML FE FrontEnd, e.g., [ep2 :
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <test>
3 <meta>
4 <result>resources/TestVerdict/PaymentTestResult.xml</result>
5 <description>Test Case 7 - Authorization for payment transaction</description>
6 <name>Process Transaction Test</name>
7 </meta>
8 <ccTest>
9 <testCase number="T7">

10 T7 = C_FE_FrontEnd ! authreq::D_FE_FrontEnd_AuthReq
11 -> C_FE_FrontEnd ! authresp::D_FE_FrontEnd_AuthRes
12 -> STOP
13 </testCase>
14 </ccTest>
15 <pcoInfo>
16 <pcoFile>resources/PCO/PCO.xml</pcoFile>
17 <SpecificationLevel>Abstract Component Level</SpecificationLevel>
18 <SpecificationFile>ACL_ProcessTransaction</SpecificationFile>
19 <Timeout>10ms</Timeout>
20 </pcoInfo>
21 <testcaseEvalInfo>
22 <ep2Dialogue>ProcessTransaction</ep2Dialogue>
23 <color>GREEN</color>
24 <colorProofDir>resources/ColorProof/GREEN/T8</colorProofDir>
25 </testcaseEvalInfo>
26 <componentList>
27 <component class="Acquirer">
28 <namespace>http://www.eftpos2000.ch</namespace>
29 <templatePath>resources/template/FEFrontEnd/</templatePath>
30 <serverIp>192.168.1.1</serverIp>
31 <encoding>1</encoding>
32 <AcqID>00000000004</AcqID>
33 <prefix>ep2</prefix>
34 <interfaceName>FEFrontEnd</interfaceName>
35 <serverPort>6625</serverPort>
36 <name>Acquirer</name>
37 <communicationMode>server</communicationMode>
38 </component>
39 <component class="Terminal">
40 <namespace>http://www.eftpos2000.ch</namespace>
41 <templatePath>resources/template/FEFrontEnd/</templatePath>
42 <encoding>2</encoding>
43 <TrmID>TERM1234</TrmID>
44 <prefix>ep2</prefix>
45 <interfaceName>FEFrontEnd</interfaceName>
46 <port>6625</port>
47 <ip>192.168.1.2</ip>
48 <name>cCredit Terminal</name>
49 </component>
50 </componentList>
51 <testSequence>
52 <event source="Acquirer" target="cCredit Terminal">
53 <conversation>
54 <receive>
55 <type>authreq</type>
56 <AcqID>00000000004</AcqID>
57 <TrmID>TERM1234</TrmID>
58 </receive>
59 <expected>
60 <type>authreq</type>
61 <filename>authreq.xml</filename>
62 </expected>
63 <send>
64 <AcqID>00000000004</AcqID>
65 <type>authrsp</type>
66 <TrmID>TERM1234</TrmID>
67 <filename>authrsp.xml</filename>
68 </send>
69 </conversation>
70 </event>
71 </testSequence>
72 </test>

Figure 11.14: TEV– test case protocol.
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authreq] ∈ XML FE FronEnd where [ep2 : authreq] denote the XML message pre-
sented above.

Mapping In T2 we have two events, those are mapped as follows:

‖[ep2 : authreq]‖ = C FE FrontEnd.authReq
‖[ep : authres]‖ = C FE FrontEnd.authRes

Direction For each linear test case we determine the direction of the particular test case.
In the case of T2 we have that, C FE FrontEnd.authReq is of type sut2ts. The acquirer
is simulated by TEV, thus the direction of C FE FrontEnd.authRes is of type ts2sut.

The test execution is conducted in a network environment, where two different machines
are connected with a crossed Ethernet cable. Figure 11.15 illustrate this setting. Here, the
EP2 terminal software is running on the black laptop (Windows OS), where a Pinpad is
attached on the serial port. TEV is running on the white laptop (Mac OS).

In order to perform experiments regarding the payment transaction (test cases like T2), we
use magnetic stripe test cards of different financial institutes: Visa, MasterCard, Maestro14

etc.

Figure 11.15: EP2 testing framework in action.

For the execution of the test cases, we define 10ms as the period of time in which we expect
a response from the EP2 payment terminal. Executing the test cases T0, . . . , T6 results in
the following test verdict:

14Courtesy of Six Card Solutions.
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Spec. Level T0 T1 T2 T3 T4 T5

ARCH EP2 PASS PASS - - - -
ACL EP2 - - PASS PASS Not executed Not executed
CCL EP2 - - PASS PASS PASS PASS

The automatically generated test verdict for test case T3 can be found in the Appendix C.6.

11.5 Summary and evaluation of the project

In this chapter we have described the modelling, verification and testing of the electronic
payment system EP2. A first modeling approach of the different levels of EP2 in CSP-
CASL has been described in [GRS05]. Here, we have extended the modeling in more
detail by carrying out the specification of the various EP2 components at different levels
of abstraction. We have systematically proven the refinement steps of the various level
of specification using CSP-CASL-PROVER [OIR09]. Moreover, we have proven that the
interaction of the EP2 components is deadlock free. Again this is done systematically using
CSP-CASL-PROVER. For some selected interaction of EP2 components we have proven to
be livelock free.

For the testing part, we have evaluated test cases using CSP-CASL-PROVER. Moreover, we
have presented a testing framework for a EP2 payment terminal. Such testing framework,
tests the EP2 payment terminal in a hardware-in-the-loop testing fashion.

The overall experience of modeling, verification and testing EP2 in CSP-CASL was positive.
In the following we evaluate how the three activity have been conducted:

Modeling of EP2 Formalizing EP2 in CSP-CASL leads to the partial or complete resolu-
tion of some of the ambiguity or inconsistency problems, described in [GRS05]. For
instance, in the EP2 specification inconsistency arises from the fact that certain as-
pects of the system are described in multiple books. For example, in order to under-
stand how the payment transaction works, one has to look at the terminal and the
acquirer books for the functionality and then the interface and data dictionary books
in order to get the specific messages exchanged at this point. CSP-CASL enables us
to specify the data involved only one and – via CSP-CASL’s library mechanism – use
it then in different contexts.

Identifying the three level of abstraction was rather straightforward; this was al-
ready done in [GRS05]. The modeling of the architectural and the abstract compo-
nent level was relatively easy. Although, at the abstract component level, we had
to take decisions of which information to formalized at this point or leave it open
for the next level of abstraction. For this two levels we have pretty much followed
the semi-formal description present in the EP2 specifications. Those are, the activity
diagram, UML-like diagrams and use cases.

At the concrete component level, one has to deal with more unresolved and unclear
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descriptions (mostly presented as text), and decide which information must be for-
malized and what details should be ignored at this point.

As for CSP-CASL’s expressive power in formalizing EP2, both the data types and the
reactive behavior present in EP2 was adequately formalized. In modeling the data
types, CASL’s subsorting feature and the CASL standard library were quite helpful.
In modelling the process part the different operators of CSP allowed us to capture
precisely certain aspects of the system. For example, at the architectural level, the
interleaving and the generalized parallel operator allowed us to capture the fact that
some EP2 components interact with each other or they simply run independently.

Verification of EP2 The benefit of specifying EP2 in CSP-CASL is that it makes it possible
to establish properties by formal proofs. Here, we have shown formal proofs of
refinement, deadlock and livelock analysis.

The refinement proof from the architectural level to the abstract component level
was quite straightforward. This is thanks to the introduction of intermediate spec-
ification, i.e., the sequential version of the dialogues. The overall proof script for
discharging the refinement proof is fairly long, this is due to the fact that at some
point of the proof we needed to calculate the semantics of the processes. Conversely,
as expected, the refinement verification from the abstract component level to the con-
crete component level was more complicated and the proof script was rather long.

The verification of deadlock freedom has been done by considering each individual
dialogue between the EP2 components, i.e., the communication between terminal
and acquirer, etc. Although this give us a good insight in the verification of deadlock
freeness, still deadlock could occur when we consider the whole system. This could
be analaysed using new theories for compositional reasoning of reactive systems.

Testing of EP2 In testing EP2, we could clearly see the impact of our testing theory of
re-using test cases in a vertical development. Test cases developed from the archi-
tectural level allowed us to set up the interface with the testing framework. Later, at
each stage of the vertical development we were able to re-use the green and red test
cases.

The presented testing framework was capable of running test cases in an efficient
and convincing way. However, there is still several aspects that haven’t been under-
taken. Firstly, although in principle our testing framework presents several benefits,
a ’formal’ comparison between our approach and the current testing practice at SIX
Card Solutions is needed. Secondly, since payment systems like EP2 rely heavily on
cryptographic based security features; here there is a need of a novel strategy to test
such features. Finally, only a sample of test cases have been executed on the SUT. In
order to increase our confidence that the SUT is conform with the specification we
need to run more meaningful test cases. The latter could be achieved by studying
new concepts of test converges from CSP-CASL specifications.

Overall this industrial application, demonstrates the feasibility of modeling, verification
and testing in CSP-CASL. This includes many aspects:
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• Scalability: It is possible to completely model a non trivial system like EP2.

• Expressiveness: CSP-CASL is expressive enough to capture the different aspect of such
system. The reactive behavior and the complex data types.

• Clarity: CSP-CASL is able to mirror the informal specification and to capture the
different level of abstraction. The refinement between the different levels are then
proven using CSP-CASL-PROVER.

• Verification and Testing: Having a formal specification made it possible to prove inter-
esting properties of the system.
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I N this chapter we report on a successful applications of the theoretical framework of
testing based on CSP-CASL presented in Chapter 9. In particular we apply this theory
to the starting system of a ROLLS-ROYCE BR725 1 software control. The BR725 is a

newly designed jet engine for ultra-long-range and high-speed business jets. We model
the starting system in CSP; specifically we use CSP-M – the machine readable version of
CSP. Here, we have chosen CSP-M instead of CSP-CASL due to the nature of the system
specification we formalize. These specifications do not require loosely specified data or
complex data structures. CSP-M is able to capture the data type that we require. Moreover,
using CSP-M we can use the FDR2– model checker for CSP and PROBE– simulator of CSP

specifications.

We validate our model using the CSP simulator PROBE. We then evaluate the test suites
against the formal model. Such evaluation is done using the model checker FDR2. Part
of the test suites is inspired by existing test cases of the BR700 family jet engines. We
execute our test suite in an in-the-loop setting on the so-called “rig”. This puts the engine
control system through test scenarios identical to those carried out in engine test stand
testing, however with considerably lower cost, reduced risk, and less burden on human
and mechanical resources.

We first describe a control system of a jet engine in general, continuing to concentrate on
the starting system of the BR725 jet engine. In Section 12.2 we show how we model the
BR725 starting system in CSP. In Section 12.3 we illustrate the verification of interesting

1In the rest of the chapter we will refer to this engine type simply as BR725.
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properties of the modeled system. Subsequently, in Section 12.4 we show how we eval-
uate and execute test cases. In Section 12.5 we conclude this chapter by evaluating the
advantages and disadvantages of this experience.

The results presented in this chapter have been published in [KHRS09].

12.1 Introducing the ROLLS-ROYCE BR725 starting system

Formal methods offer many advantages for the development and testing of control soft-
ware for jet engines. They can help to achieve high reliability, and they can be used to
provide evidence of reliability claims which can then be subjected to external scrutiny.

Jet engines belong to the safety critical systems of an airplane. Their control software
can be classified as a reactive system: it accepts commands from the pilot, receives status
messages from the airframe and the engine sensors, and issues commands to the engine.
ROLLS-ROYCE is one of the leading companies in the productions of jet engines of different
sizes and for different purposes. Here we study the ROLLS-ROYCE BR725 jet engine. The
BR725 is a new jet engine for ultra-long-range and high-speed business jets. It is part of the
BR700 family. Figure 12.1 shows the BR725 jet engine and its electronic engine controller.

Figure 12.1: ROLLS-ROYCE BR725 jet engine – Courtesy of ROLLS-ROYCE.

The main component of the control system of a jet engine is the Electronic Engine Controller
(EEC). A simplified view of the BR725 EEC architecture and its interfaces with the engine
is shown in Figure 12.1. The EEC encapsulates all signaling aspects of the engine; it con-
trols, protects, and monitors the engine. In order to provide fault-tolerance, the EEC is
realised as a dual-channel system. Its control loop involves: reading data from sensors
and other computer systems in the aircraft, receiving commands from the pilot, calculat-
ing new positions of the engine actuators, and issuing commands to the engine actuators.
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In its monitoring function it transmits data about the engine condition and information on
any failures diagnosed on the electronics back to the aircraft. In this paper we concentrate
on the Starting System, one of the many functionalities the EEC provides.

Figure 12.2: Electronic Engine Controller Architecture – Courtesy of ROLLS-ROYCE.

12.1.1 Control system at ROLLS-ROYCE

The control system team at ROLLS-ROYCE is responsible for designing, developing, veri-
fying, testing and certifying the hardware and software components of the EEC. A typical
team for each type of jet engine is composed by the following teams:

• System design: responsible for the design, development and certification of the hard-
ware part.

• Software development: responsible for the design, development and certification of
the software part.

• System verification: responsible for overall system (hardware + software) testing, i.e.,
black-box testing.

The author was part of the system verification team for the BR725 controls systems. The
team is responsible for carrying out system level testing. Here, a black-box view is taken
of the whole system.

The software developed by ROLLS-ROYCE executes on an Electronic Engine Controller (EEC)
which is part of an engine control system comprising many electronic and mechanical
components; this system is a part of an engine which is, in turn, a component of an aircraft.

A Real-Time Engine Model (RTEM) simulates the behaviour of the engine and is used to
test prototype software builds in a PC-based environment. Later in the development life-
cycle the implemented code is executed on the EEC in a Hardware-In-The-Loop (HIL) test
environment. The process continues through a chain of “test vehicles”, with each vehicle
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providing an environment which is ever closer to reality. Examples of vehicles are hy-
dromechanical rigs which incorporate sensors and actuators with real fluids (oil, air and
fuel), real engine tests (on-ground and in altitude test facilities) and “fying test beds”.

12.2 Modelling BR725 starting system in CSP

The jet engine BR725 can be started in both, on-ground and in-flight situations. Further-
more, the pilot can select between Automatic or Manual starting mode.

The detected situation (on-ground or in-flight) together with the selected starting mode
(automatic or manual) results in four different control flows in which the EEC controls
the engine. Cranking adds two further flows of the EEC, namely dry and wet cranking
(i.e., without and with fuel on respectively). Dry cranking is usually used to remove any
residual fuel in the combustor or jet pipe that remains from a previous failed start. Wet
cranking is used to push the inhibiting fluid through the fuel system until sufficient fuel
can be metered to the combustor for ignition. The functionalities provided for the starting
system are the following:

Normal (automatic) Ground Start: provides an automatic start mode available on ground.
The start sequencing is fully controlled by the EEC after being initiated by the pilot.

Manual Ground Start: provides the pilot to start the engine manually on ground. We
will study this function in detail in the rest of the section.

Normal (automatic) Flight Start: this function is provided in order to reduce the pilot
workload in-flight.

Manual Flight Start: this function enables the pilot to start the engine manually in-flight.

Cranking: this function provides a way to test the rotation of the windmill when the jet
engine is on ground and is not ignited.

For automatic on-ground starts, a start sequence may include a maximum of two start
attempts. A start sequence in-flight has as many attempts as necessary to successfully
start the engine. There are three essential steps during a normal (i.e., anomaly-free) on-
ground start sequence, which commences when both the fuel and start switch are in the
“On” position:

• The starting system commands the starter motor on. The motor, mechanically cou-
pled to an engine shaft, starts to rotate the engine.

• When the shaft has reached a sufficient rotational speed, and FOC (Fuel-On Condi-
tions) are met, the starting system commands the fuel SOV (Shut-Off Valve) open,
allowing fuel to flow to the combustion chamber. At this point the starting system
also commands ignition on and, if there are no anomalies, the engine lights up.

• When the rotational speed of the engine reaches a threshold the starting system de-
tects that the start is complete and commands both the starter motor and ignition
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off.

Figure 12.2 shows an abstraction of the basic system architecture of a ROLLS-ROYCE jet
engine starting system. The main signals transmitted between the components are as
follows. In the Cockpit the pilot has a start switch in order to initiate the starting sequence;
the pilot also has a fuel switch. The Airframe informs the EEC if the plane is in-flight or
on-ground. The EEC can switch the Starter On and Off, can Open and Close the fuel SOV
(Shut-Off Valve), and can turn the Ignition On and Off. The engine reports back to the EEC
information about the shaft speed and the TGT (Turbine Gas Temperature). For BR725 the

Figure 12.3: Starting system component architecture.

ROLLS-ROYCE Starting Subsystem Definition Document (SSDD) makes the Starting System
within the EEC specific to this engine. This document describes all aspects of the Starting
System: it gives an overview of the Starting System in general, it presents so-called activity
diagrams and explains them in plain English. In the following we give an example of such
an activity diagram and its accompanying text.

Figure 12.4 shows the internal logic of the manual ground start in the form of an activity
diagram. These activity diagrams are formulated in an informal, graphical specification
language. This language was specifically developed by ROLLS-ROYCE in order to describe
engine controllers. An example of an accompanying text would be the following:

I3005/1 When NH reaches the required speed, the pilot switches the Fuel Control to run.

Note that every specification line is identified with a unique number, in our example with
I3005/1. ROLLS-ROYCE makes use of this during the testing process as a coverage cri-
terium: it is required that there is at least one test case for every line in the specification.
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The graphical specification language of the activity diagram shown in Figure 12.4 uses
symbols in the following way:

Start point of the activity diagram
End point of the activity diagram
Error state
Box – Used for encoding states as well as activities

Switch in the cockpit

Switch in the cockpit, ignored by this activity digram
Displayed signal in the cockpit
Control flow in the EEC

Transition – checks for conditions

Interrupt of a flow

Timeout

Figure 12.4 shows the Manual Ground Start (MGS) functionality which allows the pilot to
start the engine manually. The flow from the start point to the second transition shows
that the MGS can only be initiated when the aircraft is on the ground and the engine is not
running, starting or cranking. In this situation the pilot can initiate the MGS by selecting
the following control switches: Master Crank to On, Continuous Ignitions to On, and Engine
Start to On.

Upon switching the Engine Start to On, the EEC will command the Starter Air Valve (SAV)
to be opened and the starter motor is activated. If the pilot now switches the Fuel Control
Switch to Run the EEC commands the fuel to flow. If at this point the Continuous Ignitions
is still On the EEC ignites the motor (not shown in the Figure12.4) and begins to monitor
the shaft speed of the engine. Should this speed reach a certain threshold the starting
procedure is complete. While the starting procedure is active within the EEC, the pilot
can abort it by switching the Master Crank or the Fuel Control to Off. If the pilot switches
the Continuous Ignitions to Off the starting procedure ends in an error state.

12.2.1 Modeling of the starting system in CSP-M

Our main objective is to capture in a faithful way the original specification of the Starting
System. To this end, we model the system in a way that a natural mapping can be drawn
between the original specification (SSDD activity diagrams) and the CSP-M model. In the
following we describe some aspects of the modeling in CSP-M of the manual on-ground
starting procedure.
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Figure 12.4: Activity diagram for manual ground start.

We have modeled the system in a two step approach: first we formalize the ’normal’ ex-
ecution pattern of the system. Only in a second step we add the handling of error cases
such as interrupting the start by switching Continuous Ignitions to Off. CSP-M supports
such a compositional approach of modelling via its interrupt operator.
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In the following we describe some of the patterns which we have identified in the mod-
eling process. We first describe some patterns and discuss then how their combination
results in the overall control-flow.

Switch Buttons have two states: ON and OFF. Pressing a button in state OFF will turn it
ON, releasing a button in state ON will turn it OFF.
channel press, release
ButtonOFF = press -> ButtonON
ButtonON = release -> ButtonOFF

We instantiate ButtonON and ButtonOFF to form the different switch buttons avail-
able in the Cockpit for the Starting System. This is done by simply using the CSP

renaming operator, e.g., for MasterCrank:
channel mc_press, mc_release
MasterCrank = ButtonOFF[press <- mc_press

release <- mc_release]

All button processes run in an interleaved way. This corresponds to arbitrary press
/ release operations in the Cockpit. Note how this specification covers in an obvious
way part of the activity diagram in Figure 12.4.
Buttons = MasterCrank ||| MasterStart

||| EngineStartON ||| FuelControl ||| ContIgnition

Here, we have leave out the code of the EngineStartON which as a push button
has no state.

Active waiting The starting sequence can only proceed when the following events hap-
pens: (1) the checks for Aircraft and Engine condition has been successful, (2) the
pilot has issued the necessary starting commands. This is captured in the CSP-M
model in the following way:
InteractEEC=(CheckConditions [|{synchStart}|] CrankAndIgnite)

\ {synchStart}
; FuelAndSAV
; MasterIdle

where CheckConditions is the process that checks for the Aircraft and Engine con-
dition.
channel aircraftCondition:Bool
channel engineCondition:Bool
channel inhibitStart, startOK
CheckConditions = aircraftCondition ? ac

-> engineCondition ? ec -> Checking(ac,ec)
[] engineCondition ? ec
-> aircraftCondition ? ac -> Checking(ac,ec)

Checking(ac,ec) = if (ac and ec)
then startOK -> SKIP

else InhibitStart

InhibitStart = inhibitStart -> Idle



12.2 Modelling BR725 starting system in CSP 195

CrankAndIgnite is the process that handles the input of the pilot; namely the
cranking and the ignition commands. CheckConditions and CrankAndIgnite
synchronize on the synchStart event, only when the synchronization is successful
the process FuelandSAV takes over. The FuelandSAV and MasterIdle processes
capture the rest of the starting sequence.

datatype SAVMode = open | close
channel sav:SAVMode
channel commandFuelON, commandIgnON, started
SPEED1 = 15 SPEED2 = 65
channel readNH:{0..100}

FuelandSAV = sav.open -> fc_press -> Fuel
[] fc_press -> sav.open -> Fuel

Fuel = commandFuelON -> commandIgnON -> MasterSpeed
[] commandIgnON -> commandFuelON -> MasterSpeed

MasterSpeed = readNH ? x -> (if (x>SPEED1)
then SpeedReached

else MasterSpeed)

SpeedReached = sav.close -> SKIP

MasterIdle = readNH ? x -> (if (x>SPEED2)
then StartCompleted

else MasterIdle)

StartCompleted = started -> Idle

SPEED1 and SPEED2 are the percentage threshold of the overall speed to be reached.

Interleaving of decisions At different points of the activity diagram there are decisions
that happen in an interleaved way. We model this scenario using the external choice
operator in the following way:

CrankAndIgnite = mc_press -> ci_press -> InitStartOK
[] ci_press -> mc_press -> InitStartOK

Here, in order to have state names available, we choose the semantically equivalent
encoding of interleaving in terms of external choice and action prefix. The process
CrankAndIgnite offers the to first switch MasterCrank or ContIgnition.

The whole manual on-ground start sequence is represented by the process MGS. The pro-
cesses InteractEEC and Buttons runs in an alphabetized parallel. This corresponds to
the interaction of the pilot (trough the Cockpit switches) and the EEC.

MGS_Core = InteractEEC || Buttons

In the second step of the modeling process we have identified and handled the error
cases. Observing the activity diagrams, at different points of time during the starting
sequence the pilot has the ability to abort the sequence by releasing the FuelControl or
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the ContIgnition. We model this procedure using the CSP interrupt operator - P ∧Q –
the progress of the process P can be interrupted on occurrence of the first event of Q.

channel commandIgnOFF, abort, error
InterruptFC = fc_release -> abort -> SKIP
InterruptCI = ci_release -> commandIgnOFF -> Error

MGS_ErrorHandling = MGS_Core /\ (InterruptFC [] InterruptCI)

The abortion due to releasing of the MasterCrank is only available after the Command
Fuel ON event has occurred and prior reaching the Starter Disengagement Speed. In a picto-
rial way in Figure 12.4, this is identified by the dotted box.

In Appendix B.3 we report the full CSP-M specification for the normal (automatic) ground
start.

12.2.2 Shortcomings

ROLLS-ROYCE uses activity diagrams such as shown in Figure 12.4 as memos. The engi-
neers share common knowledge on jet engines, the activity diagrams merely trigger ideas
how the control software works. Here, we list some of the shortcomings that we encoun-
tered during the modeling and reading process of the SSDD specification document.

• Although the Engine Start is a momentary button and Master Crank is a push button
with two states both are shown with the same symbol in the activity diagram. That
the Engine Start is a momentary button becomes clear from the textual description
of the activity diagram. This explains also why there is no interrupt related to this
button.

• We identically modeled both boxes which monitor speed (Monitor Starter Disengage-
ment Speed, Monitor Achieving of Idle) relatively to the signal NH, while in the activity
diagram the first box has no self-loop and the second box has a self-loop.

• Although the commands IGN ON and IGN OFF appear at first sight to be related,
they are not: the command IGN ON is given by the pilot in the cockpit while the
command IGN OFF is sent by the EEC to the engine. Therefore, we model these
commands as two different events.

• As there is a command FUEL ON one would expect command FUEL OFF to appear
in the activity diagram, e.g., when aborting the start. However, this is not the case.

12.2.3 CSP-M vs CSP-CASL

As described in Chapter 2, CSP-M is the machine readable version of CSP. Data in CSP-
M are defined using a purely functional language with a strong type system , requiring
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explicit type declarations for channels and data types. In CSP-M it is also possible to
define higher order functions.

In CSP-CASL data are specified in CASL. Here, data are specified in an algebraic way.
CASL has different type of semantics, where loose semantics is the standard one.

Confronting the two approaches: On one side we have data specified in CASL that allows
us to specify data in a loose way, therefore suitable for step-wise development. On the
other side we have the data specification in CSP-M where loose specification of data is
not possible, however we are allowed to use all the features present in a typical functional
language.

In this project we choose CSP-M instead of CSP-CASL due to the nature of the system spec-
ifications we formalize. These specifications do not require loosely specified data or com-
plex data structures. Instead, they use simple data types only; mostly they speak about
booleans and finite subranges of numbers. Data types used in modeling BR725, are avail-
able in the type system of CSP-M, and they can also be modeled within CASL (Figure 12.5).
The following table illustrate, data specification in CSP-M and the corresponding version
in CASL:

CSP-M CASL

channel press free type press ::= press
datatype savMode = open | close free type savMode ::= open | close
channel sav : savMode free type sav ::= sav(s : savMode)

CSP-M datatypes

CASL datatypes

BR725 datatypes

Figure 12.5: CSP-M data types for BR725.

12.3 Property verification of BR725 starting system

We have verified that our model is deadlock and livelock free. This is done using the
model checker FDR2. In Figure 12.6 we illustrate a screenshot of FDR2 performing the
verification of our model. Furthermore, we have verified that our model is determinis-
tic. The screenshot presents FDR2 after successfully proved the three properties. This
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is illustrated by the green tick (X) symbol next to the main CSP-M process definition
(ManualGroundStart). For the different property verification we choose the appropriate
CSP model in which to perform the verification: for deadlock analysis the model F , for
livelock and determinism analysis the model N .

Figure 12.6: Screenshot of FDR2 for the verification of our model.

Simulations with the CSP animator PROBE, discussions with the ROLLS-ROYCE verifica-
tion team, and – last but not least – the structural correspondence with the activity dia-
gram validate our formal model. Figure 12.7 shows a screenshot of PROBE simulating the
CSP specification of the manual on-ground starting functionality.

The screenshot shows a simulation of the manual on-ground starting CSP-M model. Here,
the user acts as the environment and chooses the different events possible at certain in-
stance of the process definition. In the figure, for instance as a first event we choose
aircraftCondition.true, and then the event engineCondition.true followed by ci press.

12.4 Testing BR725 starting system

In this section we describe the evaluation of test cases, how we establish the PCO and
execute the test cases in the hardware-in-the-loop rig.

12.4.1 Test case evaluation

We use the syntactic encoding, presented in Section 9.3 to check the colour of a CSP-M
test case T w.r.t. a CSP-M specification P. In the following we show how the test case
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Figure 12.7: Screenshot of PROBE for the simulation of our model.

TC1 is coloured green. TC1 experiment a successful on-ground manual start. Figure 12.8
illustrates the input test script to check the trace condition. Here, CheckT encode the trace
condition. Equality checking in FDR2 is done by refinement checking on both sides, i.e.,
vT ∧ wT ⇒ =T .

TC1 = aircraftCondition.true -> engineCondition.true -> MC_press -> CI_press
-> engineStartON -> sav.open -> FC_press -> commandFuelON -> commandIgnON
-> readNH.17 -> sav.close -> readNH.68 -> started -> STOP

channel OK, a
GREEN = OK -> STOP

CheckT = ( ( ( MGS [ {|aircraftCondition.true,...,started|} |] TC1 % Parallel
) [[aircraftCondition.true <- a,...,started <-a]] % Renaming

) [| {a} |] a -> ... -> a -> OK -> STOP % Parallel
) \ { obs } % Hiding

assert CheckT [T= GREEN assert GREEN [T= CheckT % Assert Check_T

Figure 12.8: FDR2 test script to check Green test case.

Since our model is deterministic and uses monomorphic data specifications, there is no
need to check for the failures condition, w.r.t, green coloring of test cases.

For red test cases we prove that CheckT doesn’t hold. We simply negate the assertion
of the traces condition CheckT (see Figure 12.9). For instance, TC2 experiment a manual
on-ground start sequence, however the first NH value is less than the prescribed threshold
(15). Therefore, TC2 is colored red.
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TC2 = aircraftCondition.true -> engineCondition.true -> MC_press -> CI_press
-> engineStartON -> sav.open -> FC_press -> commandFuelON -> commandIgnON
-> readNH.10 -> sav.close -> readNH.68 -> started -> STOP

assert not GREEN [T= CheckT assert not CheckT [T= GREEN

Figure 12.9: FDR2 test script to check Red test case.

12.4.2 Establishing a PCO

The test verdict is obtained during the execution of a test case in the HIL rig. ROLLS-
ROYCE uses a propetary scripting language in order to write test scripts; a snippet of such
script is shown below:

1 Set("MasterCrankCnd",1)
2 WaitTime(2)
3 Set("REngContinuousIGN",1)
4 WaitTime(2)
5 Set("REngStartCnd",1)
6 WaitTime(2)

7 Set("REngStartCnd",0)
8 WaitUntil("NHP>15")
9 Set("MasterLever",0)

10 WaitUntil("LIT==1")
11 Set("FlightStatus",1)
12 WaitUntil("NHP>65",60)
13 ...

Line 1,3,5 are commands to switch the Master Crank, Continuos Ignition and Fuel Control
switch to ON respectively. The time delay, in between commands, is necessary in order to
capture the signal, and store it in a log for an offline analysis.

We now establish a PCO P = (A, ‖...‖,D) in the following way:

• The alphabet of primitive events: A = { MasterCrankCnd, . . . ,FlightStatus}.

• We use ASN.1 (Abstract Syntax Notation One) [Dub00] to map the primitive events
to CSP events.

MasterCrankCnd ::= ENUMERATED{
MC_press (1)
MC_release (0)

}

MasterLever ::= ENUMERATED{
FC_press (1)
FC_release (0)

}

For example, we describe MasterCrankCnd and MasterLever as the ASN.1 type
ENUMERATED; MasterCrankCnd can take only the values specified in the list, e.g.,
the value 0 stands for MC press.

• The direction of primitive events are defined as follows: ts2RIG stands for signals
which are sent from the testing software to the HIL rig. For instance, set(...)
in the test script are of type ts2RIG. The other direction RIG2ts, which stands for
signals which are sent from the HIL rig to the testing software. Those are captured
by different logging system; for instance Log HST(...): logs primary variables
of the EEC, Log Mod(...): logs simulation parameters and Log HST(...): logs
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aircraft discretes. The following are examples of such logging system:

Log_HST("mstrstrtswtchsncckpt") ;Master Start Switch - EEC variable
Log_Mod("P30") ;Engine pressure simulation parameters
Log_ARINC("IL270_DAU2_LA_2_B20") ;SAV discretes

After running the test case in the HIL rig, the analysis of the test result is done “offline”,
by analyzing the different logs. Such “offline” analysis is carried out using tools provided
within MatLab. Basically, in this process the systems engineer analysis the behaviour of
the different signals (captured in the log files).

12.5 Summary and evaluation of the project

In this chapter we have described a work completed in cooperation with the ROLLS-
ROYCE system verification team. We have applied the theory of formal testing based
on CSP-CASL, to the starting system of ROLLS-ROYCE BR725 control software. We have
modeled the system in CSP, evaluate test suites against the formal model using the model
checker FDR2. We executed the test suites in an in-the-loop setting of the SUT. The SUT
did not show any deviation from the intended behaviour, i.e., the testing process increased
the trust in its correctness.

The modeling and testing of such systems worked successfully on the chosen of abstrac-
tion. Overall, modeling the system in CSP was quite. On the positive side, various CSP

operator came very handy in the modeling process. The interleaving operator, the sequen-
tial composition, the hiding operator and the interrupt allowed us to capture many system
aspects in an elegant way. On the negative side, the global state approach of CSP forced us
to explicitly have one process name per transition (arrow in the activity diagrams). This
allowed us to take care of or ignore state changes of the buttons while following the con-
trol flow of the activity diagram. Overall, however, CSP served well in modeling such a
controller. On the tool side, FDR2 and PROBE coped quite easily in discharging the proof
obligations, w.r.t, test coloring and deadlock/livelock/determinism check.

In general this case study demonstrates the applicability of our testing theory to indus-
trial systems: it scales up to real world applications and it potentially fits into current
verification practice at ROLLS-ROYCE. Due to time restriction, the decision procedure to
determine the test verdict on the fly, by running the tests on the rig, has not been im-
plemented. As described earlier, the test verdict is determined off-line (using tools like
MatLab), by analyzing the different signals and log files.

On the other side, our approach gave new insights to the ROLLS-ROYCE BR725 system ver-
ification team. As a first point we mention that the ability of our approach to formally link
the outcome of a test case with the specification by means of coloring technique, could par-
tially help the engineers in the certification process. In particular, the engineers could use
our coloring technique to trace which test case comes from which part of the specification.
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In fact, engineers are required to explicitly illustrate from which part of the specification a
certain test case has been designed – this is formally know as the traceablity aim.

As a second point we mention, that our approach gave a new insight in designing nega-
tive test cases. That is, test cases that experiment for properties that are not specified in
the specification. More often the test engineers designs test cases which experiments the
intended behavior prescribed in the specification.
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T HE final chapter of this thesis present a short summary of the work and highlights
its scientific contributions. In Section 13.2 we give an overview of possible future
work in the area of systems development notion for CSP-CASL and specification

based testing for CSP-CASL.

13.1 Summary

In this thesis we have described a theoretical and industrial application in the area of for-
mal systems development, verification and formal testing using the specification language
CSP-CASL. The latter is a comprehensive specification language which allows to describe
systems in a combined algebraic/ process algebraic notation. To this end it integrates the
process algebra CSP and the algebraic specification language CASL.

The thesis has proposed various formal development notions for CSP-CASL capable of
capturing informal vertical and horizontal software development which we typically find
in industrial applications. Here, we have presented two directions of system develop-
ment: a refinement (or vertical development) notion for CSP-CASL; and an enhancement (or
horizontal development) notion for CSP-CASL specifications.

For the refinement part, we have defined a new notion based on model class inclusion with
arbitrary change of signature in the data part. We also presented a theory of enhancement
for CSP-CASL. This theory allows us to capture the notion of horizontal development, in
which new features (or functions) are added to existing systems.

We have provided proof techniques for the CSP-CASL development notions and verifi-
cation methodologies to prove interesting properties of reactive systems. Here, we have

205
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presented techniques to discharge proof obligations that could arise from the development
notions of CSP-CASL.

On the refinement side of CSP-CASL specifications, we established an approach based on
a decomposition theorem. Such decomposition theorem allows us to prove CSP-CASL re-
finement, first by reasoning about data refinement and then by process refinement. Based
on this approach we are able to re-use existing tools to discharge proof obligations.

On the enhancement side of CSP-CASL specifications, we have proposed three enhance-
ment patterns that allow us to capture the notions of adding new features to existing
specifications.

We have proposed proofs techniques for the verification of properties of CSP-CASL speci-
fications. Here, we have illustrated how to analyse deadlock and livelock freeness in the
context of CSP-CASL. We have established establish a proof technique for deadlock and
livelock freeness based on CSP-CASL refinement, which turns out to be complete.

We have also proposed a theoretical framework for formal testing from CSP-CASL specifi-
cations. Here, we have presented a conformance relation between a physical system and a
CSP-CASL specification. In particular we have studied the relation between CSP-CASL de-
velopment notion and the implemented system. The major innovations are the separation
of the test oracle and the test evaluation problem by defining:

• the expected result (green, red and yellow) and,

• the verdict (pass, fail and inconclusive) of a test case.

The CSP-CASL specification determines the alphabet of the test suite, and the expected
result of each test case. The expected result of a test case, in terms of the coloring scheme,
is proved using CSP-CASL-PROVER.

The test verdict is obtained during the execution of the SUT from the expected result de-
fined by the colour of the test processes. Here, we have defined an algorithm which al-
lows to determine the verdict of the test case on the fly. Moreover, we have presented a
link between CSP-CASL development notion and the testing theory. Such link allow us to
perform testing at all stages in a system’s design, and to re-use test cases. For the latter,
in the case of enhancement we showed that test cases which have been designed for basic
features can be re-used whenever a more advanced product is conceived which includes
these features.

The proposed theoretical notions of formal system development, property verification and
formal testing for CSP-CASL, have been successfully applied to two industrial application:
an electronic payment system called EP2 and the starting system of the BR725 ROLLS-
ROYCE control software.
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13.2 Further work

There are a number of questions which arise from this work that could be undertaken
to follow on from this project. In the following subsections, we address some of these
aspects.

13.2.1 New development notions for CSP-CASL

Regarding development notions for CSP-CASL, for both directions we identify some direc-
tion for future works:

Vertical development In terms of vertical development notions, more “sophisticated” re-
finement notions for CSP-CASL could be studied. In [BST08], Bidoit et al., presents a
refinement notion based on observational interpretation of CASL specifications.

The study of the behavioural refinement [BST06, BH05], notions is motivated by the
fact that, in general an implementation does not need to satisfy strictly the proper-
ties outlined in the abstract specification but it can be considered as correct if this
implementation respects the observable consequences of the specification to be im-
plemented. Often there are models that do not satisfy the axioms in a strictly way
but in which all observations nevertheless deliver the required results.

Following the work of Bidoit et al., one can develop observational refinement for
CSP-CASL. In the context of EP2 such refinement would be required in order to
capture the relations between the more detailed levels. That is, in order to capture
the XML level of the EP2 system we need a more ‘sophisticated’ refinement notion.
The XML level in EP2 is the a further refinement of the concrete component level. On
the data part, one would model in CASL the various constructs of the XML messages.
Figure 13.2.1 illustrate this idea.

Horizontal development For the horizontal development in CSP-CASL, there are other
notions of enhancement which are not covered by our definition. For example, in
object-oriented systems, re-use is by inheritance of signatures and methods: The
enhances version of a software product may inherit certain fields and classes, and
redefine others. It would be intresting to study such notions also for CSP-CASL.

13.2.2 Testing theory for CSP-CASL

Regarding future work for formal testing from CSP-CASL we mention:

Automatic tool support for coloring test cases We have developed a convincing proof strat-
egy in CSP-CASL-PROVER to discharge proof obligations for the coloring of test cases.
However, one could develop new strategy in order to discharge such proofs in a
(semi)automatic fashion, for instance by incorporating automated provers.
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Figure 13.1: EP2 observational refinement in CSP-CASL.

Test coverage In this thesis, we haven’t addressed the topic of test coverage criteria. In
the literature one finds a sheer amount of test coverage metrics, e.g., [WRHM06]. It
would be interesting to include a coverage criteria in our testing theory.

Automatic test case selection Many research activities have been directed at finding ap-
propriate theories and algorithms to derive test cases from formal specifications such
that certain correctness properties can be guranteed if the system under test passes
all test cases of a test suite. Early attempts were contributes by Brinksma [Bri88]
using the specification language LOTOS. Here, one could study new theories for
the automatic test case selection from CSP-CASL specification based on a predefined
coverage criteria.
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CSP-CASL development notion and testing

In this appendix we report proofs from Chapter 6, 7 and Section 10.3.

A.1 Proof of CSP-CASL reduct property

In the following we give a full proof of Theorem 6.1.8.

Reduct property over the CSP models Let P be an arbitrary CSP process of a CSP-CASL

specification Sp = (D, P). Moreover, let σ : Σ → Σ′ be a CSP-CASL data logic signature
morphism and M′ a Σ′-model. Then,

traces([[P]]ν:X→M′|σ) = α̂T (traces([[ρ(P)]]ν̂:σ(X)→M′))
failures([[P]]ν:X→M′|σ) = α̂F (failures([[ρ(P)]]ν̂:σ(X)→M′))
divergences([[P]]ν:X→M′|σ) = α̂N (divergences([[ρ(P)]]ν̂:σ(X)→M′))

where X is the set of free variables in P, ν : X → M′ |σ and ν̂ : σ(X) → M′ are variable
evaluations with

ν(x : s) = ν̂(x : σ(s)).

PROOF. The proof is by structural induction on the CSP process operator P. Here, we
show for each semantical model, how the proof is carried out for each CSP process oper-
ator. The proofs for the primitive process STOP and action prefix a → P can be found in
Section 6.1.

Traces model

• SKIP : We need to prove the following:

traces([[SKIP]]ν) = α̂T (traces([[ρ(SKIP)]]ν̂)).

211
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We unfold the left hand side of the equation. Here, we calculate the trace set, which
is {〈〉, 〈X〉}. Applying the inverse translation of the traces domain α̂T we obtain
α̂∗X(〈〉, 〈X〉), i.e., α̂T (traces([[ρ(SKIP)]]ν̂)).

Thus, traces([[SKIP]]ν) = α̂T (traces([[ρ(SKIP)]]ν̂)).

• DIV : We need to prove the following:

traces([[DIV]]ν) = α̂T (traces([[ρ(DIV)]]ν̂)).

We unfold the left hand side of the equation. Here, we calculate the trace set, which
is {〈〉}. Applying the inverse translation of the traces domain α̂T we obtain α̂∗(〈〉),
i.e., α̂T (traces([[ρ(DIV)]]ν̂)). Thus, traces([[DIV]]ν) = α̂T (traces([[ρ(DIV)]]ν̂)).

• ?x :: s → P : We need to prove the following:

traces([[?x :: s → P]]ν) = α̂T (traces([[ρ(?x :: s → P)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces(?x :: [[s]]ν → [[P]]λ z.ν).

We then calculate the trace set:

{〈〉} ∪ {〈a〉a t | t ∈ traces([[P]]ν[a/x]), a ∈ [[s]]ν}.

We now unfold the definition of the variable evaluation [[s]]ν (details of this definition
can be found in [Rog06]):

[[s]]ν = [s]∼M′ |σ
.

Applying the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal

to [[σS(s)]]ν̂. We now apply the inverse alphabet translation of the traces domain α̂T
and using the induction hypothesis on traces([[P]]ν), we obtain:

{α̂∗(〈〉)} ∪ {〈a〉a t | t ∈ α̂T (traces([[ρ(P)]]ν̂[a/x])), a ∈ α̂([[σS(s)]]ν̂)}.

Pulling out the α̂ from the above trace set, we obtain α̂T (traces([[ρ(?x :: s → P)]]ν̂)).
Thus, traces([[?x :: s → P]]ν = α̂T (traces([[ρ(?x :: s → P)]]ν̂)).

• !x :: s → P : The same procedure as in the case of ?x :: s → P.

• P o
9 Q : We need to prove the following:

traces([[P o
9 Q]]ν) = α̂T (traces([[ρ(P o

9 Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[P]]ν o
9 [[Q]]ν).
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We then calculate the trace set:

traces([[P]]ν) ∩Alph(M′|σ)∗

∪ {s a t | s a 〈X〉 ∈ traces([[P]]ν), t ∈ traces([[Q]]ν)}.

Applying the inverse alphabet translation of the traces domain α̂T and using the
induction hypothesis on traces([[P]]ν) and traces([[Q]]ν), we obtain:

α̂T (traces([[ρ(P)]]ν̂)) ∩ α̂∗(Alph(M′)∗)
∪ {s a t | s a 〈X〉 ∈ α̂T (traces([[ρ(P)]]ν̂)), t ∈ α̂T (traces([[ρ(Q)]]ν̂))}.

Pulling out the α̂ from the above trace set, we obtain α̂T (traces([[ρ(P o
9 Q)]]ν̂)). Thus,

traces([[P o
9 Q]]ν = α̂T (traces([[ρ(P o

9 Q)]]ν̂)).

• P 2 Q : We need to prove the following:

traces([[P 2 Q]]ν) = α̂T (traces([[ρ(P 2 Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[P]]ν 2 [[Q]]ν).

We then calculate the trace set:

traces([[P]]ν) ∪ traces([[Q]]ν).

Applying the inverse alphabet translation of the traces domain α̂T and using the
induction hypothesis on traces([[P]]ν) and traces([[Q]]ν), we obtain:

α̂T (traces([[ρ(P)]]ν̂)) ∪ α̂T (traces([[ρ(Q)]]ν̂)).

Pulling out the α̂ from the above trace set, we obtain α̂T (traces([[ρ(P 2 Q)]]ν̂)). Thus,
traces([[P 2 Q]]ν = α̂T (traces([[ρ(P 2 Q)]]ν̂)).

• P u Q : The same procedure as in the case of P 2 Q.

• P |[ s ]|Q : We need to prove the following:

traces([[P |[ s ]|Q]]ν) = α̂T (traces([[ρ(P |[ s ]|Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[P]]ν |[ [[s]]ν ]| [[Q]]ν).

We then calculate the trace set:⋃
{t1 |[ [[s]]ν ]| t2 | t1 ∈ traces([[P]]ν) ∧ t2 ∈ traces([[Q]]ν)}.
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We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.

We now apply the inverse alphabet translation of the traces domain α̂T and using
the induction hypothesis on traces([[P]]ν) and traces([[Q]]ν), we obtain:

⋃{t1 |[ α̂([[σS(s)]]ν̂) ]| t2 | t1 ∈ α̂T (traces([[ρ(P)]]ν̂))
∧ t2 ∈ α̂T (traces([[ρ(Q)]]ν̂))}. (p1)

In order to pull out the inverse translation α̂ from the above trace set, we need to
show the following equality:

t1 |[ α̂([[σS(s)]]ν̂) ]| t2 = α̂(t1 |[ [[σS(s)]]ν̂ ]| t2). (p2)

This is done by induction on the trace length n and m of the trace t1 and t2. Let
[[a]]ν̂ ∈ [[σS(s)]]ν̂ and [[b]]ν̂ /∈ [[σS(s)]]ν̂. As a base case we consider the following cases:

〈〉 |[ α̂([[σS(s)]]ν̂) ]| 〈〉 = α̂(〈〉 |[ [[σS(s)]]ν̂ ]| 〈〉) = {〈〉}
〈〉 |[ α̂([[σS(s)]]ν̂) ]| 〈[[a]]ν̂〉 = α̂(〈〉 |[ [[σS(s)]]ν̂ ]| 〈[[a]]ν̂〉) = {}
〈〉 |[ α̂([[σS(s)]]ν̂) ]| 〈[[b]]ν̂〉 = α̂(〈〉 |[ [[σS(s)]]ν̂ ]| 〈[[b]]ν̂〉) = {〈[[b]]ν̂〉}.

Let the equality p2 holds for a trace length n− 1 and m− 1. We now consider the
following cases (here, let q1, q2 ∈ α̂T (traces([[ρ(P)]]ν̂)) ):

1. Let t1 = 〈[[a]]ν̂〉a q1 and 〈[[b]]ν̂〉a q2, then for the left hand side we have:

〈[[a]]ν̂〉a q1 |[ α̂([[σS(s)]]ν̂) ]| 〈[[b]]ν̂〉a q2
= {〈[[b]]ν̂〉a q | q ∈ 〈[[a]]ν̂〉a q1 |[ α̂([[σS(s)]]ν̂) ]| q2}.

By induction hypothesis for the right hand side we obtain:

α̂(〈[[a]]ν̂〉a q1 |[ [[σS(s)]]ν̂ ]| 〈[[b]]ν̂〉a q2)
= {〈[[b]]ν̂〉a q | q ∈ α̂(〈[[a]]ν̂〉a q1 |[ [[σS(s)]]ν̂ ]| q2)}.

2. Let t1 = 〈[[a]]ν̂〉a q1 and 〈[[a]]ν̂〉a q2, then for the left hand side we have:

〈[[a]]ν̂〉a q1 |[ α̂([[σS(s)]]ν̂) ]| 〈[[a]]ν̂〉a q2
= {〈[[a]]ν̂〉a q | q ∈ q1 |[ α̂([[σS(s)]]ν̂) ]| q2}.

By induction hypothesis for the right hand side we obtain:

α̂(〈[[a]]ν̂〉a q1 |[ [[σS(s)]]ν̂ ]| 〈[[a]]ν̂〉a q2)
= {〈[[a]]ν̂〉a q | q ∈ α̂(q1 |[ [[σS(s)]]ν̂ ]| q2)}.
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3. Let t1 = 〈[[a]]ν̂〉a q1 and 〈[[a′]]ν̂〉a q2, where [[a′]]ν̂ ∈ [[σS(s)]]ν̂ and [[a]]ν̂ 6= [[a′]]ν̂.
Then for the left hand side we have:

〈[[a]]ν̂〉a q1 |[ α̂([[σS(s)]]ν̂) ]| 〈[[a′]]ν̂〉a q2 = {}.

By induction hypothesis for the right hand side we obtain:

α̂(〈[[a]]ν̂〉a q1 |[ [[σS(s)]]ν̂ ]| 〈[[a′]]ν̂〉a q2) = {}.

4. Let t1 = 〈[[b]]ν̂〉a q1 and 〈[[b′]]ν̂〉a q2, where [[b′]]ν̂ /∈ [[σS(s)]]ν̂. Then for the left
hand side we have:

〈[[a]]ν̂〉a q1 |[ α̂([[σS(s)]]ν̂) ]| 〈[[b]]ν̂〉a q2
= {〈[[b]]ν̂〉a q | q ∈ q1 |[ α̂([[σS(s)]]ν̂) ]| 〈[[b′]]ν̂〉a q2}

∪ {〈[[b′]]ν̂〉a q | q ∈ 〈[[b]]ν̂〉a q1 |[ α̂([[σS(s)]]ν̂) ]| q2}.

By induction hypothesis for the right hand side we obtain:

α̂(〈[[a]]ν̂〉a q1 |[ [[σS(s)]]ν̂ ]| 〈[[b]]ν̂〉a q2
= {〈[[b]]ν̂〉a q | q ∈ α̂(q1 |[ [[σS(s)]]ν̂ ]| 〈[[b′]]ν̂〉a q2}

∪ {〈[[b′]]ν̂〉a q | q ∈ α̂(〈[[b]]ν̂〉a q1 |[ [[σS(s)]]ν̂ ]| q2)}.

Thus, we have that t1 |[ α̂([[σS(s)]]ν̂) ]| t2 = α̂(t1 |[ [[σS(s)]]ν̂ ]| t2). We now can pull
out α̂T from the trace set in p1, and we obtain α̂T (traces([[ρ(P |[ s ]|Q)]]ν̂)). Hence,
traces([[P |[ s ]|Q]]ν) = α̂T (traces([[ρ(P |[ s ]|Q)]]ν̂)).

• P |[ s1 | s2 ]| Q: Here, since P |[ s1 | s2 ]| Q = P |[ s1∩ s2 ]|Q, the proof follows the
same procedure as in the case of the generalized parallel.

• P || Q : Here, since P || Q = P |[Alph(M) ]|Q, the proof follows the same procedure
as in the case of the generalized parallel.

• P ||| Q : Here, since P ||| Q = P |[ {} ]|Q, the proof follows the same procedure as in
the case of the generalized parallel.

• P \ s : We need to prove the following:

traces([[P \ s]]ν) = α̂T (traces([[ρ(P \ s)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[P]]ν \ [[s]]ν).

We then calculate the trace set:

{t \ [[s]]ν | t ∈ traces([[P]]ν)}.
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We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.

We now apply the inverse alphabet translation of the traces domain α̂T and using
the induction hypothesis on traces([[P]]ν), we obtain:

{t \ α̂([[σS(s)]]ν̂) | t ∈ α̂T (traces([[ρ(P)]]ν̂))}. (h1)

In order to pull out the inverse translation α̂ from the above trace set, we need to
show the following equality:

t \ α̂([[σS(s)]]ν̂) = α̂(t \ [[σS(s)]]ν̂). (h2)

This is done by induction on the trace length n of t. For n = 0, we have that

〈〉 \ α̂([[σS(s)]]ν̂) = α̂(〈〉 \ [[σS(s)]]ν̂) = 〈〉

Let the equality in (h2) holds for a trace q of length n− 1. Now let t = 〈[[a]]ν̂〉a q
where q ∈ α̂T (traces([[ρ(P)]]ν̂)). Here for the left hand side we have:

α̂(〈[[a]]ν̂〉a q) \ α̂([[σS(s)]]ν̂) :=


α̂([[a]]ν̂) a (q \ α̂([[σS(s)]]ν̂)) if [[a]]ν̂ /∈ [[σS(s)]]ν̂

q \ α̂([[σS(s)]]ν̂) otherwise.

By induction hypothesis, for the right hand side we have that:

α̂(〈[[a]]ν̂〉a q \ [[σS(s)]]ν̂) :=


α̂([[a]]ν̂ a (q \ [[σS(s)]]ν̂)) if [[a]]ν̂ /∈ [[σS(s)]]ν̂

α̂(q \ [[σS(s)]]ν̂) otherwise.

Thus, we have that t \ α̂([[σS(s)]]ν̂) = α̂(t \ [[σS(s)]]ν̂). This allow us to pull out the α̂

from the trace set in (h1), and we obtain α̂T (traces([[ρ(P \ s)]]ν̂)). Hence, traces([[P \
s]]ν) = α̂T (traces([[ρ(P \ s)]]ν̂)).

• P[[p]] : We need to prove the following:

traces([[P[[p]]]]ν) = α̂T (traces([[ρ(P[[p]])]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[P]]ν[[[[p]]ν]]).

We then calculate the trace set:

{t | ∃ s ∈ traces([[P]]ν) . s[[p∗]]νt}.
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We now unfold the definition of the variable evaluation [[p∗]]ν (details of this defini-
tion can be found in [Rog06]):

[[ps1s2]]ν = {([s1, x]∼M′ |σ
, [s2, y]∼M′ |σ

) | (x, y) ∈ (ps1s2)M′|σ}.

Applying the alphabet translation α we obtain:

{(α([s1, x]∼M′ |σ
), α([s2, y]∼M′ |σ

)) | (x, y) ∈ α((ps1s2)M′|σ)}
= {([σS(s1), x]∼M′ , [σS(s2), y]∼M′ ) | (x, y) ∈ (pσS(s1)σS(s2))M′}
= {([[σS(s1), x]]ν̂, [[σS(s2), y]]ν̂) | (x, y) ∈ (pσS(s1)σS(s2))M′}

We now apply the inverse alphabet translation of the traces domain α̂T and using
the induction hypothesis on traces([[P]]ν), we obtain:

{t | ∃ s ∈ α̂T (traces([[ρ(P)]]ν̂) . s α̂([[p∗]]ν̂) t}. (r1)

In order to pull out the inverse translation α̂ from the above trace set, we need to
show the following equality:

s α̂([[p∗]]ν̂) t = α̂(s [[p∗]]ν̂ t). (r2)

This is done by induction on the trace length n of t. For n = 0: we have

〈〉 α̂([[p∗]]ν̂) 〈〉 = α̂(〈〉[[p∗]]ν̂ 〈〉) = 〈〉

Let the equality in (r2) holds for a trace length of n− 1. Now let t = 〈[[a]]ν̂〉a q where
q ∈ α̂T (traces([[ρ(P)]]ν̂)). Here for the left hand side we have:

s α̂([[p∗]]ν̂) (〈[[a]]ν̂〉a q) ::=


α̂([[a]]ν̂) a (α̂(s)α̂([[p∗]]ν̂) α̂(q)) if [[a]]ν̂ /∈ [[σS(s)]]ν̂

α̂(s)α̂([[σS(s)]]ν̂))α̂(q) otherwise.

By induction hypothesis, for the right hand side we have that:

α̂(s [[p∗]]ν̂ 〈[[a]]ν̂〉a q) ::=


α̂([[a]]ν̂ a (s[[p∗]]ν̂ q)) if [[a]]ν̂ /∈ [[σS(s)]]ν̂

α̂(s[[σS(s)]]ν̂)q) otherwise.

Thus, we have that α̂(s) α̂([[p∗]]ν̂) α̂(t) = α̂(s [[p∗]]ν̂ t). This allow us to pull out the α̂

from the trace set in (r1), and we obtain α̂T (traces([[ρ(P[[p]])]]ν̂)).
Hence, traces([[P[[p]]]]ν) = α̂T (traces([[ρ(P[[p]])]]ν̂)).

• if ϕ then P else Q: We need to prove the following:

traces([[if ϕ then P else Q]]ν)
= α̂T (traces([[ρ(if ϕ then P else Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces(if [[ϕ]]ν then [[P]]ν else [[Q]]ν).
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We then calculate the trace set:{
traces([[P]]ν); [[ϕ]]ν if evaluates to true
traces([[Q]]ν); [[ϕ]]ν if evaluates to false.

We now unfold the definition of the variable evaluation [[ϕ]]ν (details of this defini-
tion can be found in [Rog06]):

[[ϕ]]ν :=
{

true if ν  ϕ

false if not ν  ϕ

In [Rog06] (Theorem 6 – Generalized satisfaction condition) proves that:

ν  σ(ϕ) iff ν̂  σ.

Applying the alphabet translation α we obtain:

α([[ϕ]]ν) = [[σ(ϕ)]]ν̂ :=
{

true if ν̂  ϕ

false if not ν̂  ϕ

We now apply the inverse alphabet translation of the traces domain α̂T and using
the induction hypothesis on traces([[P]]ν) and traces([[Q]]ν), we obtain:{

α̂T (traces([[ρ(P)]]ν̂)); if ν̂  ϕ

α̂T (traces([[ρ(Q)]]ν̂)); if not ν̂  ϕ.

Pulling out the α̂ from the above trace set, we obtain:

α̂T (traces([[ρ(if ϕ then P else Q)]]ν̂)).

Thus, traces([[if ϕ then P else Q]]ν) = α̂T (traces([[ρ(if ϕ then P else Q)]]ν̂)).

Stable failure model

For each process operator, the trace component is identical to the one presented for the
traces model. Here, we illustrate how the proves goes for the failures component.

• SKIP : We need to prove the following:

failures([[SKIP]]ν) = α̂(failures([[ρ(SKIP)]]ν̂)).

We unfold the left hand side of the equation. Here, we calculate the failure set:

{(〈〉, X) | X ⊆ Alph(M′|σ)}
⋃
{(〈X〉, X) | X ⊆ Alph(M′|σ)X}.

Applying the inverse translation of the stable failure domain α̂F we obtain:

{(α̂∗(〈〉), α̂X
P (X)) | α̂X

P (X) ⊆ α̂(Alph(M′))}⋃ {(α̂∗X(〈X〉), α̂P(X)) | α̂P(X) ⊆ α̂XAlph(M′)X}.

Pulling out the α̂ from the above failure set, we obtain α̂(failures(ρ[[SKIP]])). Thus,
failures([[SKIP]]ν) = α̂(failures([[ρ(SKIP)]]ν̂)).
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• DIV : We need to prove the following:

failures([[DIV]]ν) = α̂T (failures([[ρ(DIV)]]ν̂)).

This trivially holds as the failure set for DIV is the empty set.

• ?x :: s → P : We need to prove the following:

failures([[?x :: s → P]]ν) = α̂(failures([[ρ(?x :: s → P)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures(?x :: [[s]]ν → [[P]]λ z.ν).

We then calculate the failure set:

{(〈〉, Y) | Alph(M′|σ) ∩ Y = ∅, Y ∈ P(Alph(M′|σ)X)}
∪ {(〈a〉a t, Y) | (t, Y) ∈ failures([[P]]ν[a/x]), a ∈ [[s]]ν}.

We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.

We now apply the inverse alphabet translation of the stable failure domain α̂F and
using the induction hypothesis on failures([[P]]ν), we obtain:

{(α̂∗(〈〉), α̂X
P (Y)) | Alph(M′|σ) ∩ α̂X

P (Y) = ∅, α̂X
P (Y) ∈ P(Alph(M′|σ)X)}

∪ {(α̂∗X(〈a〉a t), α̂X
P (Y)) | (t, Y) ∈ α̂(failures([[ρ(P)]]ν̂[a/x])), a ∈ α̂([[σS(s)]]ν̂)}.

Pulling out the α̂ from the above failure set, we obtain α̂(failures([[ρ(?x :: s → P)]]ν̂)).
Thus, failures([[?x :: s → P]]ν = α̂(failures([[ρ(?x :: s → P)]]ν̂)).

• P o
9 Q : We need to prove the following:

failures([[P o
9 Q]]ν) = α̂(failures([[ρ(P o

9 Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures([[P]]ν o
9 [[Q]]ν).

We then calculate the failure set:

{(t, X) | t ∈ Alph(M′|σ)∗, (t, X ∪ {X}) ∈ failures([[P]]ν)}⋃ {(t a q, X) | t a 〈X〉 ∈ traces([[P]]ν), (q, X) ∈ failures([[Q]]ν)}.

Applying the inverse alphabet translation of the stable failure domain α̂F and using
the induction hypothesis on failures([[P]]ν), traces([[P]]ν) and failures([[Q]]ν), we obtain:

{(t, X) | t ∈ α̂∗(Alph(M′)∗), (t, X ∪ {X}) ∈ α̂(failures([[ρ(P)]]ν̂))}⋃ {(t a q, X) | t a 〈X〉 ∈ α̂T (traces([[ρ(P)]]ν̂)), (q, X) ∈ α̂(failures([[ρ(Q)]]ν̂))}.

Pulling out the α̂ from the above failure set, we obtain α̂(failures([[ρ(P o
9 Q)]]ν̂)). Thus,

failures([[P o
9 Q]]ν = α̂(failures([[ρ(P o

9 Q)]]ν̂)).
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• P 2 Q : We need to prove the following:

failures([[P 2 Q]]ν) = α̂(failures([[ρ(P 2 Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces([[P]]ν 2 [[Q]]ν).

We then calculate the failure set:

{(〈〉, X) | (〈〉, X) ∈ failures([[P]]ν) ∩ failures([[Q]]ν)}⋃ {(t, X) | (t, X) ∈ failures([[P]]ν) ∪ failures([[Q]]ν), t 6= 〈〉}⋃ {(〈〉, X) | X ⊆ Alph(M′|σ) ∧ 〈X〉 ∈ traces([[P]]ν) ∪ traces([[Q]]ν)}.

Applying the inverse alphabet translation of the stable failure domain α̂F and using
the induction hypothesis on failures([[P]]ν), failures([[Q]]ν), traces([[P]]ν) and traces([[Q]]ν)
we obtain:

{(〈〉, X) | (〈〉, X) ∈ α̂(failures([[ρ(P)]]ν̂)) ∩ α̂(failures([[ρ(Q)]]ν̂))}⋃ {(t, X) | (t, X) ∈ α̂(failures([[ρ(P)]]ν̂)) ∪ α̂(failures([[ρ(Q)]]ν̂)), t 6= 〈〉}⋃ {(〈〉, X) | α̂X
P (X) ⊆ α̂(Alph(M′|σ)) ∧ 〈X〉 ∈ α̂(traces([[ρ(P)]]ν̂))

∪ α̂(traces([[ρ(Q)]]ν̂))}.

Pulling out the α̂ from the above failure set, we obtain: α̂(failures([[ρ(P 2 Q)]]ν̂)).
Thus, failures([[P 2 Q]]ν = α̂(failures([[ρ(P 2 Q)]]ν̂)).

• P u Q : We need to prove the following:

failures([[P u Q]]ν) = α̂(failures([[ρ(P u Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures([[P]]ν u [[Q]]ν).

We then calculate the failure set:

failures([[P]]ν) ∪ failures([[Q]]ν).

Applying the inverse alphabet translation of the stable failure domain α̂F and using
the induction hypothesis on failures([[P]]ν) and failures([[Q]]ν), we obtain:

α̂T (failures([[ρ(P)]]ν̂)) ∪ α̂T (failures([[ρ(Q)]]ν̂)).

Pulling out the α̂ from the above failure set, we obtain α̂(failures([[ρ(P u Q)]]ν̂)). Thus,
failures([[P u Q]]ν = α̂(failures([[ρ(P u Q)]]ν̂)).



A.1 Proof of CSP-CASL reduct property 221

• P |[ s ]|Q : We need to prove the following:

failures([[P |[ s ]|Q]]ν) = α̂(failures([[ρ(P |[ s ]|Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures([[P]]ν |[ [[s]]ν ]| [[Q]]ν).

We then calculate the failure set:

{(u, Y ∪ Z) | Y− ([[s]]ν ∪ {X}) = Z− ([[s]]ν ∪ {X}),
∃ t, q. (t, Y) ∈ failures([[P]]ν), (q, Z) ∈ failures([[Q]]ν),
u ∈ t |[ [[s]]ν ]| q, Y ∈ P(Alph(M′|σ)X), Z ∈ P(Alph(M′|σ)X)}.

We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.

We now apply the inverse alphabet translation of the stable failure domain α̂F and
using the induction hypothesis on failures([[P]]ν) and failures([[Q]]ν) we obtain:

{(u, Y ∪ Z) | Y− (α̂([[σS(s)]]ν̂) ∪ {X}) = Z− (α̂([[σS(s)]]ν̂) ∪ {X}),
∃ t, q. (t, Y) ∈ α̂(failures([[ρ(P)]]ν̂)), (q, Z) ∈ α̂(failures([[ρ(Q)]]ν̂)),
u ∈ t |[ α̂([[σS(s)]]ν̂) ]| q, α̂X

P (Y) ∈ P(Alph(M′|σ)X),
α̂X

P (Z) ∈ P(Alph(M′|σ)X)}.

Here, we can pull out α̂ from the above failure set. This is thanks to
t1 |[ α̂([[σS(s)]]ν̂) ]| t2 = α̂(t1 |[ [[σS(s)]]ν̂ ]| t2) (see proof in the traces model). Conse-
quently, we obtain α̂(failures([[ρ(P |[ s ]|Q)]]ν̂)). Thus,

failures([[P |[ s ]|Q]]ν) = α̂(failures([[ρ(P |[ s ]|Q)]]ν̂)).

• P \ s : We need to prove the following:

failures([[P \ s]]ν) = α̂(failures([[ρ(P \ s)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures([[P]]ν \ [[s]]ν).

We then calculate the failures set:

{(t \ [[s]]ν, Y) | (t, [[s]]ν ∪ Y) ∈ failures([[P]]ν)}.

We now unfold the definition of the variable evaluation, i.e.,[[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.
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We now apply the inverse alphabet translation of the stable failure domain α̂F and
using the induction hypothesis on failures([[P]]ν), we obtain:

{(t \ α̂([[σS(s)]]ν̂), Y) | (t, (α̂([[σS(s)]]ν̂) ∪ Y) ∈ α̂(failures([[ρ(P)]]ν̂))}.

Here, we can pull out α̂ from the above failure set. This is thanks to t \ α̂([[σS(s)]]ν̂) =
α̂(t \ [[σS(s)]]ν̂) (see proof in the traces model).

Consequently we obtain α̂(failures([[ρ(P \ s)]]ν̂)). Thus,

failures([[P \ s]]ν) = α̂(failures([[ρ(P \ s)]]ν̂)).

• P[[p]] : We need to prove the following:

failures([[P[[p]]]]ν) = α̂T (failures([[ρ(P[[p]])]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures([[P]]ν[[[[p]]ν]]).

We then calculate the failure set:

{(t, X) | ∃ t′. (t′, t) ∈ [[p∗]]ν, (t′, p−1(X)) ∈ failures([[P]]ν).

We now unfold the definition of the variable evaluation [[p∗]]ν:

[[ps1s2]]ν = {([s1, x]∼M′ |σ
, [s2, y]∼M′ |σ

) | (x, y) ∈ (ps1s2)M′|σ}.

Applying the alphabet translation α as illustrated in the traces model we obtain:

{([[σS(s1), x]]ν̂, [[σS(s2), y]]ν̂) | (x, y) ∈ (pσS(s1)σS(s2))M′}

We now apply the inverse alphabet translation of the stable failure domain α̂F and
using the induction hypothesis on traces([[P]]ν), we obtain:

{(t, X) | ∃ t′. (t′, t) ∈ α̂([[p∗]]ν̂), (t′, p−1(X)) ∈ α̂F (failures([[ρ(P)]]ν̂)).

Here, we can pull out α̂ from the above failure set. This is thanks to t α̂([[p∗]]ν̂) t′ =
α̂(t [[p∗]]ν̂ t′) (see proof in the traces model).

Consequently, we obtain α̂T (failures([[ρ(P[[p]])]]ν̂)). Thus,

failures([[P[[p]]]]ν) = α̂T (failures([[ρ(P[[p]])]]ν̂)).

• if ϕ then P else Q: We need to prove the following:

failures([[if ϕ then P else Q]]ν)
= α̂(failures([[ρ(if ϕ then P else Q)]]ν̂)).
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We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

failures(if [[ϕ]]ν then [[P]]ν else [[Q]]ν).

We then calculate the failures set:{
failures([[P]]ν); [[ϕ]]ν if evaluates to true
failures([[Q]]ν); [[ϕ]]ν if evaluates to false.

We now unfold the definition of the variable evaluation [[ϕ]]ν:

[[ϕ]]ν :=
{

true if ν  ϕ

false if not ν  ϕ

In [Rog06] (Theorem 6 – Generalized satisfaction condition) proves that:

ν  σ(ϕ) iff ν̂  σ.

Applying the alphabet translation α we obtain:

α([[ϕ]]ν) = [[σ(ϕ)]]ν̂ :=
{

true if ν̂  ϕ

false if not ν̂  ϕ

We now apply the inverse alphabet translation of the failures domain α̂F and using
the induction hypothesis on failures([[P]]ν) and failures([[Q]]ν), we obtain:{

α̂T (failures([[ρ(P)]]ν̂)); if ν̂  ϕ

α̂T (failures([[ρ(Q)]]ν̂)); if not ν̂  ϕ.

Pulling out the α̂ from the above failures set, we obtain
α̂(failures([[ρ(if ϕ then P else Q)]]ν̂)). Thus,

failures([[if ϕ then P else Q]]ν) = α̂(failures([[ρ(if ϕ then P else Q)]]ν̂)).

Failures/Divergences model

For each process operator, the failures component is identical to the one presented for
the stable failures model. Here, we illustrate how the proves goes for the divergences
component.

• SKIP : We need to prove the following:

divergences([[SKIP]]ν) = α̂N (divergences([[ρ(SKIP)]]ν̂)).

This trivially holds as the divergence set of SKIP is the empty set.
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• DIV : We need to prove the following:

divergences([[DIV]]ν) = α̂N (divergences([[ρ(DIV)]]ν̂)).

We unfold the left hand side of the equation. Here, we calculate the divergence set,
which isAlph(M′|σ)∗X. Applying the inverse translation of the failures/divergences
domain α̂N , we obtain α̂∗X(Alph(M′)∗X), i.e., α̂N (divergences([[ρ(DIV)]]ν̂)). Thus,
divergences([[DIV]]ν) = α̂N (divergences([[ρ(DIV)]]ν̂)).

• ?x :: s → P : We need to prove the following:

divergences([[?x :: s → P]]ν) = α̂∗(divergences([[ρ(?x :: s → P)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences(?x :: [[s]]ν → [[P]]λ z.ν).

We then calculate the divergence set:

{〈〉} ∪ {〈a〉a t | t ∈ divergences([[P]]ν[a/x]), a ∈ [[s]]ν}.

We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.

We now apply the inverse alphabet translation of the failures/divergences domain
α̂N and using the induction hypothesis on divergences([[P]]ν), we obtain:

{α̂∗(〈〉)} ∪ {〈a〉a t | t ∈ α̂∗(divergences([[ρ(P)]]ν̂[a/x])), a ∈ α̂([[σS(s)]]ν̂)}.

Pulling out the α̂ from the above divergence set, we obtain: α̂∗(divergences([[ρ(?x ::
s → P)]]ν̂)). Thus, divergences([[?x :: X → P]]ν = α̂∗(divergences([[ρ(?x :: s → P)]]ν̂)).

• !x :: s → P : The same procedure as in the case of ?x :: s → P.

• P o
9 Q : We need to prove the following:

divergences([[P o
9 Q]]ν) = α̂∗(divergences([[ρ(P o

9 Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences([[P]]ν o
9 [[Q]]ν).

We then calculate the divergence set:

divergences([[P]]ν)
∪ {s a t | s a 〈X〉 ∈ traces⊥([[P]]ν), t ∈ divergences([[Q]]ν)}.



A.1 Proof of CSP-CASL reduct property 225

Applying the inverse alphabet translation of the failures/divergences domain α̂N
and using the induction hypothesis on traces⊥([[P]]ν) and divergences([[Q]]ν), we ob-
tain:

α̂N (divergences([[ρ(P)]]ν̂))
∪ {s a t | s a 〈X〉 ∈ α̂T (traces([[ρ(P)]]ν̂)), t ∈ α̂∗(divergences([[ρ(Q)]]ν̂))}.

Pulling out the α̂ from the above divergence set, we obtain:α̂∗(divergences([[ρ(P o
9

Q)]]ν̂)). Thus, divergences([[P o
9 Q]]ν = α̂∗(divergences([[ρ(P o

9 Q)]]ν̂)).

• P 2 Q : We need to prove the following:

divergences([[P 2 Q]]ν) = α̂∗(divergences([[ρ(P 2 Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences([[P]]ν 2 [[Q]]ν).

We then calculate the divergence set:

divergences([[P]]ν) ∪ divergences([[Q]]ν).

Applying the inverse alphabet translation of the failures/divergences domain α̂N
and using the induction hypothesis on divergences([[P]]ν) and divergences([[Q]]ν), we
obtain:

α̂∗(divergences([[ρ(P)]]ν̂)) ∪ α̂∗(divergences([[ρ(Q)]]ν̂)).

Pulling out the α̂ from the above trace set, we obtain α̂∗(divergences([[ρ(P 2 Q)]]ν̂)).
Thus, divergences([[P 2 Q]]ν = α̂∗(divergences([[ρ(P 2 Q)]]ν̂)).

• P u Q : The same procedure as in the case of P 2 Q.

• P |[ s ]|Q : We need to prove the following:

divergences([[P |[ s ]|Q]]ν) = α̂∗(divergences([[ρ(P |[ s ]|Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences([[P]]ν |[ [[s]]ν ]| [[Q]]ν).

We then calculate the divergence set:

{u a v | ∃ t ∈ traces⊥([[P]]ν), q ∈ traces⊥([[Q]]ν)
u ∈ (t |[ [[s]]ν ]| q) ∩Alph(M′|σ)∗

∧(t ∈ divergences([[P]]ν) ∨ q ∈ divergences([[Q]]ν))}.

We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.
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We now apply the inverse alphabet translation of the failures/divergences domain
α̂N and using the induction hypothesis on traces⊥([[P]]ν), divergences([[P]]ν) and
divergences([[Q]]ν, we obtain:

{u a v | ∃ t ∈ α̂T (traces⊥([[ρ(P)]]ν̂)), q ∈ α̂T (traces⊥([[ρ(Q)]]ν̂))
u ∈ (t |[ α̂([[σS(s)]]ν̂) ]| q) ∩ α̂(Alph(M′)∗)
∧(t ∈ α̂∗(divergences([[ρ(P)]]ν̂)) ∨ q ∈ α̂∗(divergences([[ρ(Q)]]ν̂)))}.

Here, we can pull out α̂ from the above divergence set. This is thanks to
t1 |[ α̂([[σS(s)]]ν̂) ]| t2 = α̂(t1 |[ [[σS(s)]]ν̂ ]| t2) (see proof in the traces model).

Consequently, we obtain α̂∗(divergences([[ρ(P |[ s ]|Q)]]ν̂)). Thus,

divergences([[P |[ s ]|Q]]ν) = α̂∗(divergences([[ρ(P |[ s ]|Q)]]ν̂)).

• P \ s : We need to prove the following:

divergences([[P \ s]]ν) = α̂∗(divergences([[ρ(P \ s)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences([[P]]ν \ [[s]]ν).

We then calculate the divergence set:

{(p \ [[s]]ν) a t | p ∈ divergences([[P]]ν)}⋃ {(u \ [[s]]ν) a t | u ∈ Alph(M′|σ)w ∧ (u \ [[s]]ν) finite
∧∀ p < u . p ∈ traces⊥([[P]]ν)}

We now unfold the definition of the variable evaluation, i.e., [[s]]ν = [s]∼M′ |σ
. Apply-

ing the alphabet translation α we obtain α([s]∼M′ |σ
) = [σS(s)]M′ , which is equal to

[[σS(s)]]ν̂.

We now apply the inverse alphabet translation of the failures/divergences domain
α̂N and using the induction hypothesis on traces⊥([[P]]ν) and divergences([[P]]ν), we
obtain:

{(p \ α̂([[σS(s)]]ν̂)) a t | p ∈ α̂∗(divergences([[ρ(P)]]ν̂))}⋃ {(u \ α̂([[σS(s)]]ν̂)) a t | u ∈ α̂(Alph(M′)w) ∧ (u \ α̂([[σS(s)]]ν̂)) finite
∧∀ p < u . p ∈ α̂T (traces⊥([[ρ(P)]]ν̂))}

Here, we can pull out α̂ from the above divergence set. This is thanks to
α̂(t) \ α̂([[σS(s)]]ν̂) = α̂(t \ [[σS(s)]]ν̂).

Consequently we obtain α̂∗(divergences([[ρ(P \ s)]]ν̂)). Thus, divergences([[P \ s]]ν) =
α̂∗(divergences([[ρ(P \ s)]]ν̂)).
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• P[[p]] We need to prove the following:

divergences([[P[[p]]]]ν) = α̂∗(divergences([[ρ(P[[p]])]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences([[P]]ν[[[[p]]ν]]).

We then calculate the divergence set:

{t | ∃ s ∈ divergences([[P]]ν) . s[[p∗]]νt}.

We now unfold the definition of the variable evaluation [[p∗]]ν:

[[ps1s2]]ν = {([s1, x]∼M′ |σ
, [s2, x]∼M′ |σ

) | (x, y) ∈ (ps1s2)M′|σ}.

Applying the alphabet translation α we obtain:

{([[σS(s1), x]]ν̂, [[σS(s2), y]]ν̂) | (x, y) ∈ (pσS(s1)σS(s2))M′}

We now apply the inverse alphabet translation of the failures/divergences domain
α̂N and using the induction hypothesis on divergences([[P]]ν), we obtain:

{t | ∃ s ∈ α̂∗(divergences([[ρ(P)]]ν̂) . s α̂([[p∗]]ν̂) t}.

Here, we can pull out α̂ from the above divergence set. This is thanks to
α̂(s) α̂([[p∗]]ν̂) α̂(t) = α̂(s [[p∗]]ν̂ t).

Consequently we obtain α̂N (divergences([[ρ(P[[p]])]]ν̂)). Thus, divergences([[P[[p]]]]ν) =
α̂∗(divergences([[ρ(P[[p]])]]ν̂)).

• if ϕ then P else Q: We need to prove the following:

divergences([[if ϕ then P else Q]]ν)
= α̂∗(divergences([[ρ(if ϕ then P else Q)]]ν̂)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences(if [[ϕ]]ν then [[P]]ν else [[Q]]ν).

We then calculate the divergence set:{
divergences([[P]]ν); [[ϕ]]ν if evaluates to true
divergences([[Q]]ν); [[ϕ]]ν if evaluates to false.

We now unfold the definition of the variable evaluation [[ϕ]]ν:

[[ϕ]]ν :=
{

true if ν  ϕ

false if not ν  ϕ
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In [Rog06] (Theorem 6 – Generalized satisfaction condition) proves that:

ν  σ(ϕ) iff ν̂  σ.

Applying the alphabet translation α we obtain:

α([[ϕ]]ν) = [[σ(ϕ)]]ν̂ :=
{

true if ν̂  ϕ

false if not ν̂  ϕ

We now apply the inverse alphabet translation of the failures/divergences domain
α̂N and using the induction hypothesis on divergences([[P]]ν) and divergences([[Q]]ν),
we obtain: {

α̂∗(divergences([[ρ(P)]]ν̂)); if ν̂  ϕ

α̂∗(divergences([[ρ(Q)]]ν̂)); if not ν̂  ϕ.

Pulling out the α̂ from the above divergence set, we obtain
α̂∗(divergences([[ρ(if ϕ then P else Q)]]ν̂)). Thus, divergences([[if ϕ then P else Q]]ν) =
α̂∗(divergences([[ρ(if ϕ then P else Q)]]ν̂)).

A.2 Binary calculator refinement proof

The following is the Isabelle proof script for the BCALC refinement proof. Specifically we
prove, BCALC0 ;F BCALC3.

theorem BCalcRefinement1 : " BCalc0 <=F BCalc3 "
(∗ unfolding ∗ )

apply ( unfold BCalc0_def BCalc3_def )
(∗ cms f ixed point induct ion ∗ )

apply ( r u l e c s p F _ f p _ i n d u c t _ l e f t [ of _ " BCalc3_to_BCalc0 " ] )
(∗ s i m p l i f i c a t i o n ∗ )

apply s imp_al l
apply simp

(∗ induct ion over process names ∗ )
apply ( indu ct_ tac p )

(∗ unwinding process names ∗ )
apply ( cspF_auto | auto )

(∗ |~|−ref inement law −− choose f i r s t l e f t branch of the |~| choice ∗ )
apply ( r u l e c s p F _ I n t _ c h o i c e _ l e f t 1 )

(∗ process r e w r i t in g and decomposition ∗ )
apply ( r u l e cspF_rw_right )
apply ( r u l e cspF_decompo )
apply simp
apply ( cspF_auto | auto | cspF_hsf | r u l e cspF_decompo )+

(∗ |~|−ref inement law −− choose second l e f t branch of the |~| choice ∗ )
apply ( r u l e c s p F _ I n t _ c h o i c e _ l e f t 2 )
apply ( r u l e cspF_rw_right )
apply ( r u l e cspF_decompo )
apply simp
. . .
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(∗ repeat the |~|−ref inement law 3 times ∗ )
. . .

done

A.3 Coloring a test case in CSP-CASL-PROVER

In this section we report proofs from the CSP-CASL based testing chapter. In particular we
report the proof script from the coloring of test case of the binary calculator example (see
Section 9.3) We now show how the four lemmas are proved.

• Parallel one:

lemma P a r a l l e l _ o n e : " P3 || T1 =T T1 "
apply ( unfold P3_def T1_def )
apply ( cspF_auto | auto simp add : c s p _ p r e f i x _ s s _ d e f

image_ i f f in j_on_def )+
apply ( auto simp add : l i f t i n g 1 Ax1 )
apply ( cspF_auto | auto )+

done

lemma Para l le l_one_But ton :
" ( Button ?x −> P ( Button x ) ) || ( Button y −> Q)

=T
Button y −> ( P ( Button y ) || Q) "

by ( cspT_auto | auto simp add : c s p _ p r e f i x _ s s _ d e f
image_ i f f in j_on_def )+

lemma Para l l e l_one_Disp lay :
" Display x −> P || Display x −> Q

=T Display x −> ( P || Q) "
by ( cspT_auto | auto )+

lemma Para l l e l_one_Stop : " SKIP || STOP =T STOP" by ( cspT_auto | auto )+

• Renaming:

lemma Renaming :
" T1 [ [ MyRenaming ] ] =T a −> a −> a −> a −> STOP"

apply ( simp add : T1_def )
apply ( cspT_simp Rename_Button | auto )+
apply ( cspT_simp Rename_Display | auto )+
apply ( cspT_simp Rename_Button | auto )+
apply ( cspT_simp Rename_Display | auto )+
apply ( cspT_simp Rename_STOP | auto )+

done

lemma Rename_Display : " ( ( Display z ) −> P ) [ [ MyRenaming ] ]
=T a −> ( P [ [ MyRenaming ] ] ) "

by ( simp add : MyRenaming_def | cspT_auto | auto )+

lemma Rename_Button : " ( ( Button z ) −> P ) [ [ MyRenaming ] ]
=T a −> ( P [ [ MyRenaming ] ] ) "
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by ( simp add : MyRenaming_def | cspT_auto | auto )+

lemma Rename_STOP : "STOP [ [ MyRenaming ] ] =T STOP"
by ( simp add : MyRenaming_def | cspT_auto | auto )+

• Parallel two:

lemma P a r a l l e l _ t w o :
" a−>a−>a−>a−>STOP | [ { a } ] | a−>a−>a−>a−>OK−> STOP"

=T a−>a−>a−>a−>OK−> STOP"
apply ( cspT_simp P a r a l l e l _ w i t h _ a | auto )+
by ( cspT_simp Parallel_with_OK | auto )

lemma P a r a l l e l _ w i t h _ a :
" ( a −> P ) | [ { a } ] | a −> Q =T a −> ( P | [ { a } ] | Q) " by ( cspF_auto | auto )+

lemma Parallel_with_OK :
"STOP | [ { a } ] | OK −> STOP =T OK −> STOP" by ( cspF_auto | auto )+

In order to prove the second parallel execution, we consider two basic generalized
parallel which synchronize on the event ’a’. In lemma Parallel with a we use the
process name ’P’ as a variable, which later can be instantiated with an arbitrary
process.

• Hiding:

lemma Hiding : " ( a−>a−>a−>a−>OK−>STOP) −− { a } =T OK −> STOP"
apply ( cspT_simp Hide_a | auto )+
apply ( cspT_simp Hide_OK | auto )
by ( cspT_simp hide_STOP | auto )+

lemma Hide_a : " ( a −> P ) −− { a } =T P −− { a } " by ( cspT_auto | auto )+

lemma Hide_OK : " (OK −> P ) −− { a } =T OK −> ( P −− { a } ) " by ( cspT_auto | auto )+

lemma Hide_STOP : " STOP −− { a } =T STOP" by ( cspT_auto | auto )+

In order to prove the hiding lemma, we consider three basic cases: the hiding of ’a’,
the hiding of ’OK’ and hiding applied to STOP. In hide ’a’ we use the process name
’P’ as a variable, which later can be instantiated with an arbitrary process.



(APPENDIX . . . B )

Modelling ROLLS-ROYCE BR725 starting
system

In this appendix we report the full CSP-M specification of the ROLLS-ROYCE BR725 start-
ing system. Specifically we report the specification for the normal (automatic) ground
start functionality. Figure 2 illustrate the activity diagram for this specific functionality.

B.4 Normal (automatic) ground start

-- ***************** Cockpit Buttons **********************
channel press, release

-- general purpose buttons

ButtonOFF = press -> ButtonON
ButtonON = release -> ButtonOFF

-- Instantiate the general ButtonON ButtonOFF for the individual buttons:

channel mc_press, mc_release
MasterCrank = ButtonOFF [[press <- mc_press, release <- mc_release]]

channel ms_press, ms_release
MasterStart = ButtonOFF [[press <- ms_press, release <- ms_release]]

channel engineStartON
EngineStart = engineStartON -> EngineStart

channel fc_press, fc_release
FuelControl = ButtonOFF [[press <- fc_press, release <- fc_release]]

channel ci_press, ci_release
ContIgnition = ButtonOFF [[press <- ci_press, release <- ci_release]]

-- *********** All Buttons *************

231
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Figure 2: Activity diagram for normal ground start

Buttons = MasterCrank ||| MasterStart
||| EngineStart ||| FuelControl
||| ContIgnition

-- ******* Checking for the aircraft and engine condition *******
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channel aircraftCondition:Bool
channel engineCondition:Bool
channel inhibitStart, startOK

CheckConditions = aircraftCondition ? ac -> engineCondition ? ec
-> Checking(ac,ec)

[] engineCondition ? ec -> aircraftCondition ? ac
-> Checking(ac,ec)

Checking(ac,ec) = if (ac and ec)
then startOK -> SKIP

else InhibitStart

InhibitStart = inhibitStart -> Idle

--******** IDLE Process *************

channel idle
Idle = idle -> Idle

--********** Monitoring the Fuel Condition ****************

datatype SAVMode = open | close
channel sav:SAVMode

-- event indicating the start of the fuel on timer
channel fuelOnTimer

-- the fuel condition depends on the NH and the TGT values
channel readNH:{0..100}

-- TGT ranges between 1200 to 80
channel readTGT:{-80..1200}

channel fuelOnCondition: Bool
channel fuelCondSat

-- NH value for the fuel on condition monitor
NHFuelMonitor = 20

-- TGT value for the fuel on condition monitor
TGTFuelMonitor = 60

--**************** Light Up and schedule fuel ********

datatype Mode = ON | OFF

channel commandIgn : Mode.{1..2}
channel commandFuelON

--******** Monitor Starter disengagement Speed ***********

channel lhsTimer -- lightUp, hang and stall timer
SPEED1 = 15 -- this is the percentage of the max speed
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SPEED2 = 65 -- this is the percentage of the max speed

--************** Error Handling ********************

InterruptMS = ms_release -> AbortStart
InterruptFC = fc_release -> AbortStart
AbortStart = abort -> Idle

--*********** Time out Handling ***********

channel fuelTimerExp, lightUpTimerExp, startDutyExp, abort
channel ignAttempt:{1..2}

FuelTimer = fuelTimerExp -> AbortStart

LightUpTimer = ignAttempt ? x -> (if(x==1)
then LightUpBox

else lightUpTimerExp -> AbortStart)

StarterDutyTimer = startDutyExp -> AbortStart

--***************** Successful Starting **********************

-- event to indicate the successful start of the engine
channel started

StartCompleted = started -> Idle [] engineStartON -> StartCompleted

-- ****** Initiating Interaction with the EEC ***********

StartInteractionEEC = ms_press -> NowESpress
[] engineStartON -> NowMSpress

NowESpress = engineStartON -> InitStartOK
NowMSpress = ms_press -> InitStartOK

InitStartOK = startOK -> SKIP

--*****************************************
-- Main Process of the Normal Ground Start
--*****************************************

NormalGroundStart = (((CheckConditions [| {|startOK|} |] StartInteractionEEC)
) \ { startOK }; FuelBox

) /\ InterruptFC
[| { mc_press, mc_release,ms_press, ms_release, engineStartON,

fc_press, fc_release, ci_press, ci_release}
|] Buttons

--********** Monitoring the Fuel Condition **************

FuelBox = sav.open -> fuelOnTimer -> MonitorFuel
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[] engineStartON -> FuelBox
[] FuelTimer
[] StarterDutyTimer
[] InterruptMS

MonitorFuel = readNH ? x -> readTGT ? y ->
if (x>NHFuelMonitor and y>TGTFuelMonitor)

then fuelOnCondition.true -> FuelFlow
else fuelOnCondition.false -> MonitorFuel

[] FuelTimer
[] StarterDutyTimer
[] InterruptMS

SynchFuel = fuelCondSat -> SKIP

Fuel = fc_press -> fuelCondSat -> SKIP

FuelFlow = (((Fuel [|{|fuelCondSat|}|] SynchFuel) \ {fuelCondSat}
) ; LightUpBox)

[] engineStartON -> Fuel
[] FuelTimer
[] StarterDutyTimer
[] InterruptMS

--******************** Light Up and schedule fuel *******************

datatype Mode = ON | OFF

channel commandIgn : Mode.{1..2}
channel commandFuelON

LightUpBox = commandFuelON -> NowCommandIgnOn
[] commandIgn.ON.1 -> NowFuelOn
[] engineStartON -> LightUpBox
[] LightUpTimer
[] StarterDutyTimer
[] InterruptMS

NowCommandIgnOn = commandIgn.ON.1 -> MonitorSpeedBox
[] engineStartON -> NowCommandIgnOn
[] LightUpTimer
[] StarterDutyTimer
[] InterruptMS

NowFuelOn = commandFuelON -> MonitorSpeedBox
[] engineStartON -> NowFuelOn
[] LightUpTimer
[] StarterDutyTimer
[] InterruptMS

--*********** Monitor Starter disengagement Speed **************
MonitorSpeedBox = LHSTimer -> MasterSpeed

[] LightUpTimer
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[] StarterDutyTimer
[] InterruptMS

MasterSpeed = readNH ? x -> if (x>SPEED1)
then SpeedReached

else MasterSpeed

SpeedReached = sav.close -> NowIgnOFF
[] commandIgn.OFF.1 -> NowSAV
[] engineStartON -> SpeedReached
[] LightUpTimer
[] StarterDutyTimer
[] InterruptMS

NowIgnOFF = commandIgn.OFF.1 -> MasterIdle
[] engineStartON -> SpeedReached
[] LightUpTimer
[] StarterDutyTimer

NowSAV = sav.close -> MasterIdle
[] engineStartON -> SpeedReached
[] LightUpTimer
[] StarterDutyTimer

MasterIdle = (readNH ? x -> if (x>SPEED2)
then StartCompleted

else MasterIdle)
[] LightUpTimer

--***************** End **********************
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Modelling and testing of EP2 in CSP-CASL

In this appendix we report the modeling and testing of EP2 in CSP-CASL.

C.5 Modelling EP2 in CSP-CASL

The following is a complete specification in CSP-CASL of the get configuration functionality
of EP2.
l i b r a r y GetConfiguration
l o g i c CASL

%%=================================================
%% DATA SPECIFICATION
%%=================================================

%%−−−− Arch l e v e l −−−−−

spec D_Arch_GetConfig =
s o r t D_SI_Config

end

%%−−−−− ACL −−−−−

spec D_ACL_GetConfig =
s o r t s S e s s i o n S t a r t , SessionEnd , ConfigRequest , ConfigResponse ,

ConfigNotif , ConfigAck , TerminalClearNotif , TerminalClearAck ,
RemoveConfigNotif , RemoveConfigAck , Act ivateConf igNoti f ,
ActivateConfigAck < D_SI_Config

f o r a l l x : SessionEnd ; y : ConfigRequest . not ( x=y )
f o r a l l x : SessionEnd ; y : ConfigNotif . not ( x=y )
f o r a l l x : SessionEnd ; y : TerminalClearNoti f . not ( x=y )
f o r a l l x : SessionEnd ; y : RemoveConfigNotif . not ( x=y )
f o r a l l x : SessionEnd ; y : Act ivateConf igNot i f . not ( x=y )
f o r a l l x : ConfigRequest ; y : ConfigNotif . not ( x=y )
f o r a l l x : ConfigRequest ; y : TerminalClearNoti f . not ( x=y )
f o r a l l x : ConfigRequest ; y : RemoveConfigNotif . not ( x=y )
f o r a l l x : ConfigRequest ; y : Act ivateConf igNot i f . not ( x=y )
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f o r a l l x : ConfigNotif ; y : RemoveConfigNotif . not ( x=y )
f o r a l l x : ConfigNotif ; y : TerminalClearNoti f . not ( x=y )
f o r a l l x : ConfigNotif ; y : Act ivateConf igNot i f . not ( x=y )
f o r a l l x : TerminalClearNoti f ; y : RemoveConfigNotif . not ( x=y )
f o r a l l x : TerminalClearNoti f ; y : Act ivateConf igNot i f . not ( x=y )
f o r a l l x : RemoveConfigNotif ; y : Act ivateConf igNot i f . not ( x=y )

end

%%−−−−−−−−−−−−− Pair and Maybe −−−−−−−−−−−−−−

spec Pair [ s o r t S ] [ s o r t T ] =
s o r t Pair [ S , T ]
ops pai r : S ∗ T −> Pair [ S , T ] ;

f i r s t : Pa i r [ S , T ] −> S ;
second : Pa i r [ S , T ] −> T ;

axiom f o r a l l p : Pa i r [ S , T ] . e x i s t s s : S ; t : T . pa i r ( s , t ) = p
f o r a l l s1 , s2 : S ; t : T . pa i r ( s1 , t ) = pa i r ( s2 , t ) => s1 = s2 ;
f o r a l l s : S ; t1 , t2 : T . pa i r ( s , t 1 ) = pa i r ( s , t 2 ) => t1 = t2 ;
f o r a l l s : S ; t : T . f i r s t ( pa i r ( s , t ) ) = s ;
f o r a l l s : S ; t : T . second ( pa i r ( s , t ) ) = t

end

spec Maybe [ s o r t S ] = %mono
s o r t Maybe [ S ]
ops nothing : Maybe [ S ] ;

j u s t : S −> Maybe [ S ] ;
g e t J u s t : Maybe [ S ] −>? S

pred defined : Maybe [ S ]
axiom not ( def ( g e t J u s t ( nothing ) ) )
axiom f o r a l l x : S . ( g e t J u s t ( j u s t ( x ) ) ) = x
axiom f o r a l l x : Maybe [ S ] . defined ( x ) <=> def ( g e t J u s t ( x ) )

end

%%−−− CCL −−

spec D_CCL_GetConfig =
Pai r [ s o r t S t a t e f i t s o r t S |−> S t a t e ]

[ s o r t Trigger f i t s o r t T |−> Trigger ]
and Maybe [ s o r t ACD] and Maybe [ s o r t AISD ] and Maybe [ s o r t CAD]
and Maybe [ s o r t CPTD] and Maybe [ s o r t CAD] and Maybe [ s o r t TACD]
and Maybe [ s o r t TCD] and Maybe [ s o r t AcqID ] and Maybe [ s o r t AID]
and Maybe [ s o r t RID ] and D_ACL_GetConfig

then
{ s o r t s AcquirerID , AID , RID , TerminalRangeID , TerminalUnitID ,

ServiceCenterID , Time , Date
f ree type ConfigObj : : = ACD | AISD | CPTD | CAD | TACD | TCD
f ree type TerminalID : : = ter ID ( range : TerminalRangeID ; un : TerminalUnitID )
f ree type ConfigDownloadMode : : = 0 | 1

ops get_TerminalID : S t a t e −>? TerminalID ;
get_ServiceCenterID : S t a t e −>? ServiceCenterID ;
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get_AISD : S t a t e −>? AISD ;
set_AISD : S t a t e ∗ AISD −> S t a t e ;
get_TCD : S t a t e −>? TCD;
set_TCD : S t a t e ∗ TCD −> S t a t e

vars s : S t a t e ; a isd : AISD ; tcd :TCD
. get_AISD ( set_AISD ( s , a isd ) ) = aisd
. get_AISD ( set_TCD ( s , tcd ) ) = get_AISD ( s )
. get_TCD ( set_AISD ( s , a isd ) ) = get_TCD ( s )
. get_TCD ( set_TCD ( s , tcd ) ) = tcd

f ree type ConfigRequest : : =
mk_ConfigRequest (

get_AcqID : Maybe [ AcqID ] ;
get_AID : Maybe [AID ] ;
get_req : ConfigObj ;
get_RID : Maybe [ RID ] ;
get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

axiom f o r a l l cdr : ConfigRequest . get_req ( cdr ) = ACD =>
defined ( get_AcqID ( cdr ) ) /\
not ( defined ( get_AID ( cdr ) ) ) /\
not ( defined ( get_RID ( cdr ) ) ) %[ACD_Arguments]%

axiom f o r a l l cdr : ConfigRequest . get_req ( cdr ) = AISD =>
defined ( get_AcqID ( cdr ) ) /\
not ( defined ( get_AID ( cdr ) ) ) /\
not ( defined ( get_RID ( cdr ) ) ) %[AISD_Arguments]%

axiom f o r a l l cdr : ConfigRequest . get_req ( cdr ) = CPTD =>
not ( defined ( get_AcqID ( cdr ) ) ) /\
defined ( get_AID ( cdr ) ) /\
not ( defined ( get_RID ( cdr ) ) ) %[CPTD_Arguments]%

axiom f o r a l l cdr : ConfigRequest . get_req ( cdr ) = CAD =>
not ( defined ( get_AcqID ( cdr ) ) ) /\
not ( defined ( get_AID ( cdr ) ) ) /\
defined ( get_RID ( cdr ) ) %[CAD_Arguments]%

axiom f o r a l l cdr : ConfigRequest . get_req ( cdr ) = TACD =>
not ( defined ( get_AcqID ( cdr ) ) ) /\
defined ( get_AID ( cdr ) ) /\
not ( defined ( get_RID ( cdr ) ) ) %[TACD_Arguments]%

axiom f o r a l l cdr : ConfigRequest . get_req ( cdr ) = TCD =>
not ( defined ( get_AcqID ( cdr ) ) ) /\
not ( defined ( get_AID ( cdr ) ) ) /\
not ( defined ( get_RID ( cdr ) ) ) %[TCD_Arguments]%

type ConfigResponse : : =
mk_ConfigResponse (
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get_SCID : ServiceCenterID ;
get_TrmID : TerminalID ;
get_ACD : Maybe [ACD] ;
get_AISD : Maybe [ AISD ] ;
get_CAD : Maybe [CAD] ;
get_CPTD : Maybe [CPTD ] ;
get_TACD : Maybe [TACD] ;
get_TCD : Maybe [TCD]

)

f ree type D_SI_Init_SessionEnd : : =
mk_sessionEnd (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID ;
get_LocDate : Date ;
get_LocTime : Time

)

f ree type D _ S I _ I n i t _ S e s s i o n S t a r t : : =
mk_sess ionStar t (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID ;
get_ConfDlMode : ConfigDownloadMode

)

f ree type ConfigNotif : : =
mk_configNotif (

get_AISD : Maybe [ AISD ] ;
get_SCID : ServiceCenterID ;
get_TCD : Maybe [TCD ] ;
get_TrmID : TerminalID

)

f ree type ConfigAck : : =
mk_configAck (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

f ree type TerminalClearNoti f : : =
mk_terClearNotif (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

f ree type TerminalClearAck : : =
mk_terClearNotif (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

f ree type RemoveConfig : : =
mk_removeConfig (

get_AID : Maybe [AID ] ;
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get_RID : Maybe [ RID ] ;
get_AcqID : Maybe [ AcqID ]

)

axiom f o r a l l rcd : RemoveConfig .
( defined ( get_AID ( rcd ) ) /\ not ( defined ( get_RID ( rcd ) ) )

/\ not ( defined ( get_AcqID ( rcd ) ) ) )
\/ ( not ( defined ( get_AID ( rcd ) ) ) /\ defined ( get_RID ( rcd ) )

/\ not ( defined ( get_AcqID ( rcd ) ) ) )
\/ ( not ( defined ( get_AID ( rcd ) ) ) /\ not ( defined ( get_RID ( rcd ) ) )

/\ defined ( get_AcqID ( rcd ) ) )

f ree type RemoveConfigNotif : : =
mk_removeConfigNotif (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID ;
get_remcfgdata : RemoveConfig

)

f ree type RemoveConfigAck : : =
mk_removeConfigAck (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

f ree type Act ivateConf igNot i f : : =
mk_actConfNotif (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

f ree type ActivateConfigAck : : =
mk_actConfAck (

get_SCID : ServiceCenterID ;
get_TrmID : TerminalID

)

ops msg_configResponse : ConfigRequest ∗ S t a t e −> ConfigResponse ;

axiom f o r a l l cdr : ConfigRequest ; s : S t a t e . get_req ( cdr ) = ACD =>
defined ( get_ACD ( msg_configResponse ( cdr , s ) ) ) /\
not ( defined ( get_AISD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CAD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CPTD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TCD ( msg_configResponse ( cdr , s ) ) ) )

axiom f o r a l l cdr : ConfigRequest ; s : S t a t e . get_req ( cdr ) = AISD =>
not ( defined ( get_ACD ( msg_configResponse ( cdr , s ) ) ) ) /\
defined ( get_AISD ( msg_configResponse ( cdr , s ) ) ) /\
not ( defined ( get_CAD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CPTD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TCD ( msg_configResponse ( cdr , s ) ) ) )
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axiom f o r a l l cdr : ConfigRequest ; s : S t a t e . get_req ( cdr ) = CPTD =>
not ( defined ( get_ACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_AISD ( msg_configResponse ( cdr , s ) ) ) ) /\
defined ( get_CAD ( msg_configResponse ( cdr , s ) ) ) /\
not ( defined ( get_CPTD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TCD ( msg_configResponse ( cdr , s ) ) ) )

axiom f o r a l l cdr : ConfigRequest ; s : S t a t e . get_req ( cdr ) = CAD =>
not ( defined ( get_ACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_AISD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CAD ( msg_configResponse ( cdr , s ) ) ) ) /\
defined ( get_CPTD ( msg_configResponse ( cdr , s ) ) ) /\
not ( defined ( get_TACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TCD ( msg_configResponse ( cdr , s ) ) ) )

axiom f o r a l l cdr : ConfigRequest ; s : S t a t e . get_req ( cdr ) = TACD =>
not ( defined ( get_ACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_AISD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CAD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CPTD ( msg_configResponse ( cdr , s ) ) ) ) /\
defined ( get_TACD ( msg_configResponse ( cdr , s ) ) ) /\
not ( defined ( get_TCD ( msg_configResponse ( cdr , s ) ) ) )

axiom f o r a l l cdr : ConfigRequest ; s : S t a t e . get_req ( cdr ) = TCD =>
not ( defined ( get_ACD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_AISD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CAD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_CPTD ( msg_configResponse ( cdr , s ) ) ) ) /\
not ( defined ( get_TACD ( msg_configResponse ( cdr , s ) ) ) ) /\
defined ( get_TCD ( msg_configResponse ( cdr , s ) ) )

ops msg_configAck : ConfigNotif ∗ S t a t e −> ConfigAck ;
st_conf igAck : ConfigNotif ∗ S t a t e −> S t a t e ;

f o r a l l cdn : ConfigNotif ; s : S t a t e .
get_TrmID ( cdn ) = get_TerminalID ( s ) /\
get_SCID ( cdn ) = get_ServiceCenterID ( s ) /\
defined ( get_AISD ( cdn ) ) =>

st_conf igAck ( cdn , s ) = set_AISD ( s , g e t J u s t ( get_AISD ( cdn ) ) )

f o r a l l cdn : ConfigNotif ; s : S t a t e .
get_TrmID ( cdn ) = get_TerminalID ( s ) /\
get_SCID ( cdn ) = get_ServiceCenterID ( s ) /\
defined ( get_TCD ( cdn ) ) =>

st_conf igAck ( cdn , s ) = set_TCD ( s , g e t J u s t ( get_TCD ( cdn ) ) )

ops msg_terClearNoti f : TerminalClearNoti f ∗ S t a t e −> TerminalClearAck ;
s t _ t e r C l e a r N o t i f : TerminalClearNoti f ∗ S t a t e −> S t a t e

ops msg_removeConfigAck : RemoveConfigNotif ∗ S t a t e −> RemoveConfigAck ;
st_removeConfigAck : RemoveConfigNotif ∗ S t a t e −> S t a t e ;
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ops msg_actConfAck : Act ivateConf igNot i f ∗ S t a t e −> ActivateConfigAck ;
st_actConfAck : Act ivateConf igNot i f ∗ S t a t e −> S t a t e ;

ops msg_sessionStartConf : Tr igger −> S e s s i o n S t a r t
}

end

%%======================================
%% CspCASL SPECIFICATION
%%======================================

l o g i c CspCASL

%−−− Arch −−−

ccspec Arch_GetConfig =
data D_Arch_GetConfig
channel

C_SI_Config : D_SI_Config
process

TerminalConfig : C_SI_Config ;
SC_Config : C_SI_Config ;
TR_Config : C_SI_Config ;

SC_Config = RUN( C_SI_Config )
TR_Config = RUN( C_SI_Config )
TerminalConfig = SC_Config [| C_SI_Config |] TR_Config

end

%−−− ACL −−−

ccspec ACL_GetConfig =
data D_ACL_GetConfig
channel

C_SI_Config : D_SI_Config
process

TerminalConfig : C_SI_Config ;
Ter_Config : C_SI_Config ;
Ter_ConfMgm : C_SI_Config ;
SC_Config : C_SI_Config ;
SC_ConfMgm : C_SI_Config ;

TerminalConfig = Ter_Config [| C_SI_Config |] SC_Config

Ter_Config = C_SI_Config ! s e s s i o n S t a r t : : S e s s i o n S t a r t −> Ter_ConfMgm
Ter_ConfMgm = C_SI_Config ? configMess : : D_SI_Config −>

( i f ( configMess in SessionEnd ) then
Ter_Config

e lse ( i f ( configMess in ConfigRequest )
then C_SI_Config ! resp : : ConfigResponse −> Ter_ConfMgm

e lse ( i f ( configMess in ConfigNotif )
then C_SI_Config ! ack : : ConfigAck −> Ter_ConfMgm
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e lse ( i f ( configMess in TerminalClearNoti f )
then C_SI_Config ! ackT : : TerminalClearAck −> Ter_ConfMgm

e lse ( i f ( configMess in RemoveConfigNotif )
then C_SI_Config ! ackR : : RemoveConfigAck −> Ter_ConfMgm

e lse ( i f ( configMess in Act ivateConf igNot i f )
then C_SI_Config ! ackA : : ActivateConfigAck −> Ter_ConfMgm

e lse STOP ) ) ) ) ) )
SC_Config = C_SI_Config ? s e s s i o n S t a r t : : S e s s i o n S t a r t −> SC_ConfMgm
SC_ConfMgm = C_SI_Config ! seM : : SessionEnd −> SC_Config

|~| C_SI_Config ! cdrM : : ConfigRequest
−> C_SI_Config ? response : : ConfigResponse−> SC_ConfMgm

|~| C_SI_Config ! cdnM : : ConfigNotif
−> C_SI_Config ? confAck : : ConfigAck −> SC_ConfMgm

|~| C_SI_Config ! tclearM : : TerminalClearNoti f
−> C_SI_Config ? tc learAck : : TerminalClearAck −> SC_ConfMgm

|~| C_SI_Config ! rcdnM : : RemoveConfigNotif
−> C_SI_Config ? rmConfAck : : RemoveConfigAck −> SC_ConfMgm

|~| C_SI_Config ! acdnM : : Act ivateConf igNot i f
−> C_SI_Config ? acknowledge : : ActivateConfigAck −> SC_ConfMgm

end

%−−− CCL −−−

ccspec CCL_GetConfig =
data D_CCL_GetConfig
channel
C_SI_Config : D_SI_Config
process
TerminalConfig ( Pa i r [ S ta te , Tr igger ] ) : C_SI_Config ;
Ter_Config ( Pa i r [ S ta te , Tr igger ] ) : C_SI_Config ;
Ter_ConfMgm ( Pai r [ S ta te , Tr igger ] ) : C_SI_Config ;
SC_Config : C_SI_Config ;
SC_ConfMgm : C_SI_Config ;

TerminalConfig ( p ) = Ter_Config ( p ) [| C_SI_Config |] SC_Config

Ter_Config ( p ) = C_SI_Config ! msg_sessionStartConf ( second ( p ) )
−> Ter_ConfMgm ( p )

Ter_ConfMgm ( p ) = C_SI_Config ? configMess : : D_SI_Config −>
( i f ( configMess in SessionEnd ) then

SKIP
e lse (

i f ( configMess in ConfigRequest )
then C_SI_Config ! msg_configResponse ( configMess as ConfigRequest ,

f i r s t ( p ) )
−> Ter_ConfMgm ( p )

e lse (
i f ( configMess in ConfigNotif )

then C_SI_Config ! msg_configAck ( configMess as ConfigNotif ,
f i r s t ( p ) )

−> Ter_ConfMgm ( pai r ( ( s t_conf igAck
( configMess as ConfigNotif , f i r s t ( p ) ) ) , second ( p ) ) )

e lse (
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i f ( configMess in TerminalClearNoti f )
then C_SI_Config ! msg_terClearNoti f ( configMess as TerminalClearNotif ,

f i r s t ( p ) )
−> Ter_ConfMgm ( pai r ( ( s t _ t e r C l e a r N o t i f

( configMess as TerminalClearNotif , f i r s t ( p ) ) ) , second ( p ) ) )
e lse (

i f ( configMess in RemoveConfigNotif )
then C_SI_Config ! msg_removeConfigAck ( configMess as RemoveConfigNotif ,

f i r s t ( p ) )
−> Ter_ConfMgm ( pai r ( ( st_removeConfigAck

( configMess as RemoveConfigNotif , f i r s t ( p ) ) ) , second ( p ) ) )
e lse (

i f ( configMess in Act ivateConf igNot i f )
then C_SI_Config ! msg_actConfAck ( configMess as ActivateConf igNoti f ,

f i r s t ( p ) )
−> Ter_ConfMgm ( pai r ( ( st_actConfAck

( configMess as ActivateConf igNoti f , f i r s t ( p ) ) ) , second ( p ) ) )
e lse SKIP
) ) ) ) ) )

SC_Config = C_SI_Config ? s e s s i o n S t a r t : : S e s s i o n S t a r t −> SC_ConfMgm
SC_ConfMgm = C_SI_Config ! seM : : SessionEnd −> SC_Config

|~| C_SI_Config ! cdrM : : ConfigRequest
−> C_SI_Config ? response : : ConfigResponse−> SC_ConfMgm

|~| C_SI_Config ! cdnM : : ConfigNotif
−> C_SI_Config ? confAck : : ConfigAck −> SC_ConfMgm

|~| C_SI_Config ! tclearM : : TerminalClearNoti f
−> C_SI_Config ? tc learAck : : TerminalClearAck −> SC_ConfMgm

|~| C_SI_Config ! rcdnM : : RemoveConfigNotif
−> C_SI_Config ? rmConfAck : : RemoveConfigAck −> SC_ConfMgm

|~| C_SI_Config ! acdnM : : Act ivateConf igNot i f
−> C_SI_Config ? acknowledge : : ActivateConfigAck −> SC_ConfMgm

end

C.6 Test verdict generated by TEV

In the following we report the complete test verdict generated by TEV for the test case T2.

We recall that the test case T2 experiments a communication between the acquirer and
the terminal in the context of payment transaction. Here, the terminal sends a message to
the acquirer to authorize a payment for a purchased goods. The acquirer authorize the
transaction by sending a message of type AuthResponse. This is a required behavior of the
system, as specified in the EP2 terminal (and acquirer) book [Con08].



Test Information
• result = resources/TestVerdict/PaymentTestResult.xml
• description = Test Case 7 - Authorization for process transaction
• name = Process TransactionTest

CSP-CASL Test Case
T7
T7 = C_FE_FrontEnd ! authreq:D_FE_FrontEnd_AuthReq

-> C_FE_FrontEnd ! authresp: D_FE_FrontEnd_AuthRes
-> STOP

PCO and TimeOut Information
• pcoFile = resources/PCO/PCO.xml
• SpecificationLevel = Abstract Component Level
• SpecificationFile = ACL_ProcessTransaction
• Timeout = 10ms

Test Case Evaluation Information
• ep2Dialogue = ProcessTransaction
• color = GREEN
• colorProofDir = resources/ColorProof/GREEN/T8

EP2 Components
Acquirer

• namespace = http://www.eftpos2000.ch
• templatePath = resources/template/FEFrontEnd/
• serverIp = 192.168.1.1
• encoding = 3
• AcqID = 00000000004
• prefix = ep2
• interfaceName = FEFrontEnd
• serverPort = 6625
• name = Acquirer
• communicationMode = server

Terminal
• namespace = http://www.eftpos2000.ch
• templatePath = resources/template/FEFrontEnd/
• encoding = 3
• TrmID = TERM1234
• prefix = ep2
• interfaceName = FEFrontEnd
• port = 6625
• ip = 192.168.1.2
• name = cCredit Terminal

Test Sequence



(source = Acquirer) --------------------------> (target = cCredit Terminal)

Conversation 1
receive message (Type: authreq)
<?xml version="1.0" encoding="UTF-8"?>
<ep2:message xmlns:ep2="http://www.eftpos2000.ch" specversion="0400">
<ep2:authreq msgnum="2910">
<ep2:AcqID>00000000004</ep2:AcqID>
<ep2:TrmID>TERM1234</ep2:TrmID>
<ep2:TrxDate>20100224</ep2:TrxDate>
<ep2:TrxTime>015553</ep2:TrxTime>
<ep2:TrxSeqCnt>24546</ep2:TrxSeqCnt>
<ep2:AmtAuth>50</ep2:AmtAuth>
<ep2:TrxCurrC>756</ep2:TrxCurrC>
<ep2:Track2Dat>CVeTmEkE8d7NO2FpLCCCTQ==</ep2:Track2Dat>
<ep2:TVR>AAAAgAA=</ep2:TVR>
<ep2:CVMRes>HgAA</ep2:CVMRes>
<ep2:POSEntry>90</ep2:POSEntry>
<ep2:TrxTypeExt>3</ep2:TrxTypeExt>
<ep2:AID>oAAAAVcAIA==</ep2:AID>

</ep2:authreq>
</ep2:message>

send message (Type: authrsp)
<?xml version="1.0" encoding="UTF-8"?>
<ep2:message xmlns:ep2="http://www.eftpos2000.ch" specversion="0400">
<ep2:authrsp msgnum="2911">
<ep2:AcqID>00000000004</ep2:AcqID>
<ep2:AmtAuth>50</ep2:AmtAuth>
<ep2:AuthC>009646</ep2:AuthC>
<ep2:TrxSeqCnt>24546</ep2:TrxSeqCnt>
<ep2:AuthRespC>00</ep2:AuthRespC>
<ep2:AuthReslt>0</ep2:AuthReslt>
<ep2:TrmID>TERM1234</ep2:TrmID>

</ep2:authrsp>
</ep2:message>

Test Analysis Between Expected Message and Received Message:
MATCH
Difference(s) : 3
1 Expected text value '20100223' but was '20100224'
2 Expected text value '130842' but was '015553'
3 Expected text value 'OZYbmsV8ODZ3EC3vY4z9yA==' but was

'CVeTmEkE8d7NO2FpLCCCTQ=='

ON THE FLY TEST VERDICT
On the fly test verdict result:
PASS
________________________________________________________________________
Timeout Information:
NO-TIMEOUT
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