
Semantic-aware Multi-tenancy Authorization System for Cloud
Architectures

Jorge Bernal Bernabea,b, Juan M. Marin Pereza,b, Jose M. Alcaraz Calerob,∗, Felix J. Garcia
Clementec, Gregorio Martinez Pereza, Antonio F. Gomez Skarmetaa

aDepartamento de Ingenieria de la Informacion y las Comunicaciones, University of Murcia, Spain
bCloud and Security Lab, Hewlett-Packard Laboratories, Bristol, UK

cDepartamento de Ingenieria y Tecnologia de Computadores, University of Murcia, Spain

Abstract

Cloud Computing is an emerging paradigm to offer on demand IT services to customers. The
access control to resources located in the cloud is one of the critical aspects to enable business
to shift into the cloud. Some recent works provide access control models suitable for the cloud,
however there are important shortages that need to be addressed in this field. This work presents a
step forward in the state-of-the-art of access control for cloud computing. We describe a high ex-
pressive authorization model that enables the management of advanced features such as role-based
access control (RBAC), hierarchical RBAC (hRBAC), conditional RBAC (cRBAC) and hierarchi-
cal objects (HO). The access control model takes the advantage of the logic formalism provided
by the Semantic Web technologies to describe both the underlying infrastructure and the autho-
rization model, as well as the rules employed to protect the access to resources in the cloud. The
access control model has been specially designed taking into account the multi-tenancy nature of
this kind of environments. Moreover, a trust model that allows a fine-grained definition of what
information is available for each particular tenant has been described. This enables the establish-
ment of business alliances among cloud tenants resulting in federation and coalition agreements.
The proposed model has been validated by means of a proof of concept implementation of the
access control system for OpenStack with promising performance results.

Keywords: Authorization system, cloud computing, multi-tenancy, trust model, semantic web.

1. Introduction

Businesses are adapting their IT systems towards the Cloud computing paradigm where flex-
ible and dynamic services and infrastructures are able to scale and be delivered on demand. This
new paradigm enables an efficient provisioning of virtual IT architectures to third-parties, where
resources are dynamically created and dismantled according to customer needs.

∗Corresponding author
Email addresses: jorgebernal@um.es (Jorge Bernal Bernabe), juanmanuel@um.es (Juan M. Marin Perez),

jose.alcaraz-calero@hp.com (Jose M. Alcaraz Calero), fgarcia@um.es (Felix J. Garcia Clemente),
gregorio@um.es (Gregorio Martinez Perez), skarmeta@um.es (Antonio F. Gomez Skarmeta)

Preprint submitted to Elsevier April 6, 2012

Cloud computing describes a logical stack divided into three different layers: Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). In summary, the
IaaS layer is in charge of providing the virtual infrastructure (virtual machines, volumes, networks,
routing capabilities, etc.). The PaaS layer is in charge of providing middleware services which may
be seen as added-value services. In turn, the SaaS layer exposes software features to be used by
end-users, making use of the underlying the added-value services provided by PaaS.

However, many potential businesses which would be interested in Cloud computing are still a
bit reluctant to adopt it due to security and privacy concerns. In particular, Cloud computing entails
the usage of a common IT infrastructure and services which are shared between different tenants.
This implies the design of strong security boundaries in order to isolate tenants when using these
shared resources. Thus, the system to control the access to the available resources becomes a
critical aspect in order to provide an efficient control over the usage of the cloud architecture.

Current cloud providers such as Rackspace 1 or Amazon EC2 2 only rely on simple authenti-
cation schemes which do not provide enhanced access control capabilities beyond full access as
administrator to the whole system. These authorization solutions for cloud computing (lately de-
scribed in section 2) usually lack of enough expressiveness to describe advanced authorization and
federation rules. The availability of advanced authorization capabilities can be a differentiating
feature for cloud providers, which demand the design of suitable authorization models to enhance
the access control to the cloud resources.

This paper presents an access control system suitable for cloud computing which manages
grants providing high expressiveness. This enables the adoption of an advanced authorization
model in which the following authorization features are supported: Role-based access control
(RBAC), hierarchical RBAC (hRBAC), conditional RBAC (cRBAC) and hierarchical objects (HO).
The system provides multi-tenancy support and federation capabilities allowing a fine-grained def-
inition of what resources are available for each particular tenant. The federation capabilities are
defined by means of a trust model. The trust model determines the business alliances (coalitions
and federation) among cloud tenants. Although the proposed access control system is potentially
suitable for all the layers of the cloud computing stack, its adaptation needs to consider some
specifics of each layer, such as: i) relationships with other layers, ii) multi-vendor support, iii)
information model, etc. Thus, we have decided to validate this research work over the IaaS layer.
This layer constitutes the first logical step of the cloud stack and there is also a clear lack of
advanced access control systems for this layer.

The remainder of this paper is organized as follows. Section 2 overviews related work about
access control systems for cloud computing, indicating what are the differentiating points of our
proposal. After that, section 3 describes the languages and models that are used to define the
underlying system infrastructure. Then, section 4 describes the capabilities provided by our pro-
posed authorization model. Afterwards, section 5 delves into the authorization architecture. The
proposed trust model is presented in section 6. The workflow carried out during the authoriza-
tion process is presented in section 7. Moreover, a proof of concept implementation and some
performance results are shown in section 8. Finally, section 9 provides some concluding remarks.

1Rackspace available at http://www.rackspace.com/index.php
2Amazon EC2 available at http://aws.amazon.com/es/ec2/

2

2. Related Work

There is an important number of contributions in the field of access control for distributed
systems. Rather than providing a complete historical review, this section is focused only in those
which provide multi-tenancy support, which is a required feature in order to fit cloud computing.
In essence, multi-tenancy is the ability to efficiently deal with multiple administrative domains
(tenants) that are using the same service which, in turn, has isolated resources belonging to par-
ticular tenants. Many distributed systems like Grid and Cloud computing demand multi-tenancy
support. Cloud computing is usually related to a single provider and homogeneous information
models whereas Grid computing is designed on the assumption of multiple providers with hetero-
geneous information models [1]. Thus, although there are several access control systems provided
for grid computing, they do not directly fit in cloud computing.

We proposed a semantic-aware access control system for grid computing that enables basic
coalitions and federation capabilities [2]. This work assumes heterogeneous tenants and enables
basic federation capabilities between them. This is achieved by means of the virtual organization
concept, which is articulated by the alignment of information available for tenants as homogeniza-
tion tool. In case the reader is interested, Marin et al. [2] provide a comprehensible overview on
grid-related authorization systems. However, they do not fit cloud computing for the same reason,
i.e. they are based on design principles different from cloud computing characteristics.

Marin et al. [2] is, in turn, the application to Grid computing of a previous contribution in
which we designed an authorization framework for distributed environments providing a multi-
tenancy authorization model with support for RBAC, hRBAC, cRBAC and HO [3]. This access
control model is the basis of the work available in both Marin et al. [2] and this contribution.
Although there are some similarities, there is a significant work done in order to achieve an access
control model which really fits cloud computing. In SECRYPT 2011 [4], we presented a short
paper in which we focus on describing an overview of an access control system based on the
design assumptions of cloud computing. It is mainly focused on providing the description of a new
information model to cope with cloud-related concepts like Virtual Machine or Hosted Operating
System. Now, we are significantly extending that contribution, mainly by providing the following
features: Firstly, a real implementation of the access control system which has been integrated in
the well-known Open Stack cloud platform. Secondly, a completely new trust management model
in order to provide fine-grained cloud federation capabilities. Finally, a complete performance
evaluation of the proposed prototype is also provided.

Regarding access control models for Cloud computing, Li et al. [5] provide a basic multi-
tenancy access control model with discretional access control (DAC) support. Li et al. [6] extends
this model providing support for role management (RBAC) for cloud computing. Shirisha and
Geetha [7] provide the next step supporting role hierarchies (hRBAC) in an access model designed
to control the invocation of methods available in cloud computing APIs. Tsai and Shao [8] provide
a semantic-aware multi-tenancy access control model with hRBAC and cRBAC support. Authors
use an ontology for building up the role hierarchy for a specific domain. Ontology transformation
operations algorithms are provided to compare the similarity of different ontologies.

Pereira [9] and Xu et al. [10] provide access control systems for the Cloud with analogous
functionality. The main difference is that Pereira is focused on the IaaS layer whereas Xu et al

3

is focused on the SaaS layer. They provide not only a multi-tenancy access control model with
hRBAC and cRBAC support, but also a dynamic activation of roles in order to control a proper
separation of duties in the Cloud. Danwei et al. [11] delves into an access control system based on
the Usage CONtrol access model (UCON) [12] which includes negotiation techniques in order to
provide federation capabilities in Cloud computing. UCON model encompasses hRBAC, cRBAC,
and attribute-based access control (ABAC) support. Fall et al. [13] provide a similar access control
system for Cloud computing with the differentiating feature that federations between tenants are
dynamically stablished, according to a risk management model in charge of deciding if two ten-
ants can collaborate according to their previous interactions. Calero et al. [14] has provided an ad-
vanced multi-tenancy authorization model with RBAC, hRBAC, HO support for Cloud computing
based on authorization statements defined by means of paths. This approach provides efficiency
and performance making the system scalable. However, path-based representation could suffer of
expressiveness limitations when authorization information needs to be expressed over information
models that cannot be expressed using paths.

All the previously described models represent good attempts to provide access control models
adapted to cloud computing. However, there is still an important effort in the way of providing
efficient and highly expressive models. These models have been compared with respect to our
contribution presented in this paper in order to provide a clear overview about what is our main
contribution to the field.

1 RBAC Role-Based Access Control. It allows to assign users to roles and define authorization statements over roles.
2 hRBAC Hierarchical RBAC. It allows to manage sub-roles (children) which inherits the privileges of the parent roles.
3 PBAC Conditional RBAC (cRBAC) or Policy-based Access Control (PBAC). It allows to dynamically assign privileges only when some conditions are fulfilled.

This conditions are defined with information of the protected resources.
4 HO Hierarchical Objects. It allows to create object hierarchies and inherit the privileges defined for the object on top of the hierarchy to its children.
5 SoD Separation of Duties. It allows to define mutually exclusive role assignations to subjects.
6 CBAC Context-based Access Control. It allows to dynamically asign privileges only when some conditions are fulfilled. This conditions are defined with

contextual information of the system, for example, time.
7 ABAC Attribute-based Access Control. It allows to define authorization statements for attributes and when these attributes are assigned to users, they receive the

specified privileges.
8 SF Simple Federation. It allows to share authorization information between tenants in order to enable a tenant to define authorization statements using the

information of another tenant. It is simple because a tenant A trusts or does not trust another tenant B and it implies that A enables B to access all the
information model of A.

9 MT Multi-tenancy. It allows to manage different administrative domains using the same shared infrastructure.
10 FGF Fine-gain Federation. it allows a selective choice of the information that a tenant A wants to share with another tenant B (rather than sharing the complete

information as in SF).
11 CD Conflict Detection. It allows to detect inconsistencies in the authorization information in order to validate the information.
12 CCI Cloud Computing Integration. It determines if the proposed model has been designed to fit Cloud computing.
13 US Unified Semantics. A common problem in authorization systems is that there is usually a mismatch between the semantics used to define the authorization

model and the semantics used to define the information model. That can potentially cause security holes. An homogenization of such semantics bring an
added-value to the proposal.

14 VS Virtualization Support. It determines whether the proposed model has direct support to define the information model needed in a virtualized Cloud
computing environment.

15 PV Performance Validation. It indicates if the research work have empirical results or not.
16 AMC Authorization Model Comparison. It indicates whether the research work has a comparative analysis between the different authorization models which are

supported.

Table 1: Features compared across access control models

The aspects to be compared are described in table 1 and the comparison is shown in table 2.
Note that the columns of table 2 matches with the IDs specified in table 1. Note that Marin et al.
[2] provides a fine-grained federation model. However it is labelled as partial because it does not
fit cloud computing requirements at all.

As can be seen in table 2, The proposed access control model combines the previous proposals
in order to go a step forward by describing a multi-tenancy authorization model suitable for Cloud
computing, including several advantages with respect to its predecessors. The model provides a
high level of expressiveness, enabling advanced authorization features such as cRBAC, hRBAC,

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Li et al. [5] X X
Li et al. [6] X X X
Sirisha and Geetha [7] X X X X
Tsai and Shao [8] X X X X X X X X X
Pereira [9] X X X X X X X X
Xu et al. [10] X X X X X X X
Danwei et al. [11] X X X X X X X X X
Fall et al. [13] X X X X X X X X
Calero et al. [14] X X X X X X X X
Alcaraz et al. [3] X X X X X X X X X X X X X
Perez et al. [2] X X X X X X X X X *partially X X X
Bernabe et al. [4] X X X X X X X X X X X
Our proposal X X X X X X X X X X X X X X X X

Table 2: Comparison of the Different Access Control Models Analyzed

GTRBAC and hierarchical objects, as well as a fine-grained control over the definition of federa-
tions and coalitions between tenants. Moreover, it has been integrated in a real Cloud computing
system and its performance has been analyzed.

3. Information model

The proposed access control system uses a model to represent the resources that are managed
and protected by the system. This model is represented by means of an ontology defined in the
Ontology Web Language 2 (OWL 2) [15] and the Semantic Web Rule Language (SWRL) [16].
These languages are based on formal methods and they constitute a remarkable added value since
they enable the usage of reasoners to infer new knowledge. The reasoner is able to derive addi-
tional information not explicitly specified in the ontology, and to perform a formal validation and
verification of the model. The Description Logics formalism in which these languages are based
is kept within the decidability bounds, so that inference processes are performed in a finite time.

Several standard models like the Common Information Model (CIM) [17] and the Open In-
formation Model (OIM) [18] have been designed to model information systems. CIM, which was
created by the Distributed Management Task Force (DMTF), has been selected as base model
for our access control system due to its advantages. Namely, wide coverage of information sys-
tems, extensibility mechanisms, independency of the representation language, and widely used in
several research works like [19] and [20], as well as in a variety of large systems such as SAP,
Microsoft Windows and VMWare, among others. The representation of CIM into OWL results in
a semantically enriched information model.

For the shake of simplicity, only managed resources at the IaaS layer are exposed in this section
but the model is easily extensible to provide support for the PaaS and SaaS layers. Common con-
cepts managed in cloud infrastructures include virtual machines (VMs), virtual networks which
interconnect the VMs and volumes attached to the VMs. In conclusion, the model should con-
tain enough concepts and relationships to define the different elements supported by the virtual
infrastructure. Figure 1 shows a UML representation of the main CIM classes employed in our
information model.

Among others, VirutalComputerSystem is an important class which allows to manage the
virtual machines of the cloud. Thanks to the installedOS and runningOs associations, the model
is able to deal with the operating system of each virtual machine. VirtualSystemSettingData
defines the aspects of a virtual system through a set of virtualization specific properties (e.g.

5

System

Service

ManagedElement

serviceAvailableToElement

providesServiceToElement
serviceAffectsElement

LogicalDevice

VirtualComputerSystem

hostingCS

FileSystem

OperatingSystem

installedOSrunningOS

bootOSFromFS

AdminDomain

hostedService

ComputerSystem

ProtocolEndpoint

IPProtocolEndpoint

providesEndpoint

Network

SystemSpecificCollectionhostedCollection

AutonomousSystem

elementSettingData

SettingData

VirtualSystemSettingData StorageVolume

IPConnectivitySubnet

component

Figure 1: UML representation of the information model

SnapshotDataRoot, ConfigurationFile, AutomaticStartupAction, VirtualSystemType, SwapFile-
DataRoot...).

Each cloud tenant in our model is represented by an AdminDomain. An AutonomousSystem
is used to segregate the system by routing into a set of separately administered domains, hav-
ing each one its own independent set of policies. LogicalDevice is an abstraction or emulation
of a hardware entity which enables the management of devices at the IaaS layer. We use the
StorageVolume class, which in turn extends LogicalDevice, for the representation and manage-
ment of volumes in the Cloud.

4. Authorization Model

The access control system must determine whether a given subject is granted with a privilege
over a given resource or not. The authorization decisions are based on the definition of authoriza-
tion statements. An authorization statement is defined by a 3-tuple (Sub ject,Privilege,Resource)
which establishes that a subject has a privilege on a resource. When a user attempts to access a
Cloud resource, the access control system seeks along the available authorization statements for
the requested user (Identity), action (Privilege) and resource (ManagedElement). By default,
if there is no matching authorization statement in the model, the access to the resource is de-
nied. These authorization statements can be represented in the ontological authorization model by
means of the set of CIM concepts and relationships depicted in Figure 2.

An Identity represents a user that can be validated during the authentication stage, whereas
a Role represents a set of responsibilities within an organization. Identities can be assigned to a
Role. Privilege is the base concept for all types of activities/actions which are granted or denied

6

Privilege

AuthorizedPrivilege ManagedElementManagedElement

Collection Identity

Role

authorizedSubject authorizedTarget

memberOfCollection

*

*

* * * *

Figure 2: UML diagram of authorization concepts

to a subject for a given resource. AuthorizedPrivilege extends Privilege to describe current
privileges in the authorization model. In order to increase the readability, AuthorizedPrivilege
class will be henceforth referred to as Privilege, indistinctly.

With the aim of clarifying the authorization capabilities supported by the access control sys-
tem, Figure 3 depicts an example where different cloud tenants share different resources. In this
example, a user of tenant A (belonging to the role Lab Head) tries to access resources (in this case
to the VMs) of tenant B. Likewise, a Lab Head user of tenant B tries to access to the network of
tenant A.

Tenant A Tenant B

Admin

Lab Head Lab Head

Testing
 Head

Developer Developer

Admin

Developer Developer

+ Role
Privileges

- Rol
Privileges Testing Developer Testing Developer

Cloud IaaS

Admin

Lab Head Lab Head

Developer Developer

Admin

Developer Developer

+ Role
Privileges

- Rol
Privileges

Authz
Trust

Model

NetworksVirtual Machines

Volumes

Networks

Virtual Machines

Volumes

Volumes

Virtual Machines

Networks

Tenant ATenant BTenant C

Physical Infrastructure

Figure 3: Cloud authorization example

To support Role-based Access Control (RBAC) in the authorization model, the Sub ject de-
fined in the 3-tuple can be either represented by an Identity or a Role. In Figure 3, tenant A

7

describes different roles such as Admin, Lab Head and Developer in order to assign later different
privileges to the role as a whole. Role-based Access Control (RBAC) capability is supported in
the authorization model by means of a rule (expressed in SWRL language) which propagates the
privileges assigned to a role to the identities belonging to that role. This rule is depicted in Rule 1.

Role(?r)∧AuthorizedPrivilege(?p)∧authorizedSub ject(?p,?r)∧ (1)

Identity(?i)∧memberO fCollection(?i,?r) (2)

→ (3)

authorizedSub ject(?p,?i) (4)

Rule 1: Role privileges propagation meta-rule

The rule selects any role having some associated privileges. It also selects any identity which
is member of that role (line 2). As a result, any privileges granted to the role is also granted
to the identities belonging to such role. Notice the power of using this ontological approach for
the authorization model, since just one rule is enough to provide RBAC capabilities to the whole
access control system.

Multi-tenancy is an important aspect which characterizes a cloud environment. It implies
a new extension to the authorization statements, adding the concept of Issuer. This concept is
introduced to represent the tenant who defines the statement. It is required in order to recognize
the owner of the statement and therefore to limit the information model that is taken to perform
the authorization decision. Thus, authorization statements are now represented by the 4-tuple
(Issuer,Sub ject,Privilege,Resource). This tuple can be read as ’The tenant Issuer states that the
user or role Subject has the permissions defined by Privilege over the element Resource’. The
Issuer is represented using the CIM AdminDomain class in the information model.

Conditional RBAC (or Generalized RBAC) is an advanced capability rarely supported by cur-
rent cloud access control systems. This feature supports the assignment of privileges to environ-
ment roles. These environment roles are activated according to the changes specified in envi-
ronmental conditions defined by the administrators. Thus, the permissions defined in the autho-
rization statements only apply when the specified conditions are fulfilled, which usually refer to
context information of any nature. It requires the extension of the authorization statements to a
5-tuple (Issuer,Sub ject,Privilege,Resource,Conditions). Note that conditional RBAC includes
many previous research work in authorization models such as attribute-based accessing control
(aBAC) - using user attributes as conditions - or Generalized spatial time RBAC (GST-RBAC)
- using temporal and spatial context information as conditional -, including all the proposals in
which authorization statements are granted when certain conditions are fulfilled.

The usage of SWRL to represent the authorization statements enables to cope with this capa-
bility in the access control system. The antecedent of the SWRL rule represent the Conditions of
the tuple. It includes references to elements of the information model as conditions. This means
that only when the conditions are fulfilled, the consequent is triggered granting the privileges.
When the administrator does not provide Conditions in the authorization statement, it means that

8

the rule will have an empty antecedent. Thus, the rule will be always triggered since no conditions
have been specified and the permissions defined by the statement always apply. This is the way in
which the authorization statements are stored in the model.

The enablement and disablement of roles is achieved by adding and removing identities asso-
ciated to the Role. This approach allows that two users with the same role can keep it activated
or deactivated in different periods of time. For instance, a given user can keep the Admin role
activated only from Monday to Friday, while another user can keep it activated on weekends. If
the role needs to be completely deactivated, it is just required to remove all the users associated to
the Role. The antecedent of a SWRL rule describes the activation conditions and the consequent
creates or removes the memberOfCollection association between Subjects and Roles to activate or
deactivate them.

In the example represented in Figure 3, a user Bob acting as Developer of tenant A tries to
perform an action on one of the virtual machines of his own organization. Listing 1 shows a
fragment of the model managed by the access control system using RDF/XML [21] syntax, which
is the primary exchange format for OWL 2 ontologies.

<rdf:RDF>
...
<Identity rdf:about="#Bob">
<instanceID>Bob</instanceID>
...

</Identity>
<Role rdf:about="#Developer">

<instanceID>Developer</instanceID>
...

<Role>
<memberOfCollection rdf:about="#BobDeveloper">
<collection>Developer</collection>
<member>Bob</member>
</memberOfCollection>
<VirtualComputerSystem rdf:about="#VM1">
<name>VM1</name>
<operatingStatus>In Service</operatingStatus>
...

</VirtualComputerSystem>
</rdf:RDF>

Listing 1: Sample model fragment

In this context, the administrator may decide the following authorization statement: “Devel-
opers are allowed to stop VM1 only if that machine is not performing a snapshot”. This statement
can be represented by the 5-tuple (CompanyX ,Developer,Stop,V M1,V M1.OperatingStatus 6=
Snapshotting). Rule 2 shows the representation of this authorization rule in SWRL abstract syn-
tax.

The first two lines of Rule 2 specify the corresponding virtual machine (VM1) and check the
condition that it is not performing a snapshot. Line 3 selects the subject of the authorization state-
ment, i.e. the role Developer. The consequent of the rule establishes the corresponding privilege
in terms of user concepts and relationships.

Since the status of the virtual machine VM1 described in Listing 1 is “In Service” - which is
different from “Snapshotting” - the conditions of the statement are fulfilled. Thus, Rule 2 grants
the stop privilege to the role Developer.

9

VirtualComputerSystem(?vm)∧name(?vm,?n)∧ equal(?n,′V M1′)∧ (1)

operatingStatus(?vm,?st)∧notEqual(?st,′ Snapshotting′)∧ (2)

Role(?r)∧ instanceID(?r,?id)∧ equal(?id,′Developer′) (3)

→ (4)

AuthorizedPrivilege(?p)∧activities(?p,′ Stop′)∧ (5)

auhtorizedSub ject(?p,?r)∧auhtorizedTarget(?p,?vm) (6)

(7)

Rule 2: Sample authorization statement rule

Thanks to the usage of Rule 1, the access control system also infers the authorization fragment
which allows Bob - as identity belonging to the Developer role - to access the virtual machine.
The inferred fragment of the model is depicted in Listing 2.

<rdf:RDF>
...
<AuthorizedPrivilege rdf:about="#StopPriv">
<instanceID>example:stopPriv</instanceID>
<activities>Stop</activities>
...

</AuthorizedPrivilege>
<auhtorizedSubject rdf:about="#DevelopersStop">
<privilege rdf:resource="#StopPrivilege"/>
<privilegedElement rdf:resource="#Developers"/>

</authorizedSubject>
<authorizedTarget rdf:about="#StopVM1">
<privilege rdf:resource="#StopPrivilege"/>
<targetElement rdf:resource="#VM1"/>

</authorizedTarget>
...
<auhtorizedSubject rdf:about="#Bob">

<privilege rdf:resource="#StopPrivilege"/>
<privilegedElement rdf:resource="#Bob"/>

</authorizedSubject>
</rdf:RDF>

Listing 2: Inferred information example of an authorization rule

Hierarchical Role-based Access Control (hRBAC) extends RBAC with the aim of defining role
hierarchies. These hierarchies establish privilege inheritance between roles, making a child role
to inherit all the privileges defined for parent roles in the hierarchy. The major motivation for
adding role hierarchy to RBAC is to simplify role management. A child role A can be defined as
member of another parent role B. Privilege inheritance is achieved by the definition in OWL of the
memberOfCollection property as transitive. It makes the system to consider instances belonging
to any parent role, to be also belonging to its child roles in the hierarchy. In the example depicted in
Figure 3, this feature allows any new privilege assigned to a role, for instance Testing Developer,
to be automatically propagated to the upper role and so on. Thus the privilege is automatically
assigned to the Testing Head role, the Lab Head role and the Admin role, respectively.

Hierarchical objects (HO) capability allows the privileges applied to a given object to be also
applied to all its children objects in the hierarchy. This enables to achieve a high-level management

10

of the access control system. In the example shown in Figure 3, the access control to the virtual
network of tenant A can be effectively managed using this capability. A network represents an
inherent hierarchical structure. In our domain model, different levels of networks and subnetworks
can be defined as parents or children. So that, privileges affecting to a given network can be
applied to its subnetworks and even to the virtual resources located in such subnetworks. The
CIM allows the representation of parent-children relationships between resources by means of
the Component association. This association is defined in the model as transitive, enabling the
authorization system to recognize all subcomponents and dependent objects of another object
through the whole hierarchy. A SWRL rule can be easily established to propagate the privileges
throughout these objects.

Separation of duties (SoD) enables the protection of the fraud that might be caused by users.
Since it is possible that two given privileges should not be associated to the same role at the
same time and in the same place, the Static Separation of Duty feature is quite important in any
access control system. This situation can be detected in our access control system by looking for
a provoked inconsistency in the knowledge Base (KB).

The reasoning capabilities available in the Semantic Web enable advanced features like conflict
detection and even conflict resolution. The usage of OWL and SWRL as modeling languages for
information systems provides different ways to detect conflicts that may appear in the KB. A
customized set of SWRL rules can be used to include conflictive privileges in the antecedents
and force a conflict by including contradictory facts in the KB. Since our models are described in
OWL, a reasoner can be used to detect an inconsistence in the KB. When two contradictory facts
are hold on the KB, it becomes inconsistent and reasoners are able to detect this situation. Thus,
the consistency checking process of DL reasoners can be used to detect semantic conflicts. For
more detailed information regarding semantic conflict detection refer to [22].

4.1. Authorization Models comparison
The previous section has defined different authorization capabilities that are supported by the

access control system. This subsection provides some experimental results to evaluate and com-
pare the authorization models which result from the application of the capabilities explained above,
i.e. DAC, RBAC, hBAC and HO. These authorization capabilities can be compared since all of
them can represent the same scenario and system behavior. However, conditional RBAC (cRBAC)
can not be analyzed because the absence of that capability in the system can not be replaced by
static definitions. That is, it affects not only to the ontology system definition but rather to the
behavior of the authorization system.

As explained before, the authorization capabilities are implemented by means of SWRL rules.
Since the time required to evaluate the SWRL rules varies according to the nature and number of
the statements, the results depend on the selected scenario. Thus, the obtained results can change
substantially according to different factors. Among them, the depth in the hierarchical system
structure (e.g. Subnets and AdminDomains), the number of Roles and its levels of hierarchical
depth or the number of Identities and privileges defined.

Nevertheless, describing a generic scenario can be useful to figure out the time required by the
system to evaluate the rules, and therefore to support certain authorization capabilities. The chosen
reference scenario is composed of 100 Identities, 21 Roles, 30 Authorization Privileges and 200

11

Managed Elements. Roles are arranged in a three tier fashion where 3 of them are declared on top
of the hierarchy, 6 in the medium level and 12 in the bottom. The Managed elements are composed
of 6 AdminDomains, 24 Subnets associated to them and 170 virtual machines associate to these
subnets. The 100 identities are assigned to the different Roles. Finally, authorization statements
are defined to grant the privileges to both Roles and Identities.

Privileges are assigned to the upper level in the system hierarchy i.e. to AdminDomains.
Thus, after executing the HO SWRL rule, all the identities obtain the grants to access to the
virtual machines defined in the bottom of the hierarchy. If hRBAC and RBAC are used, privileges
assigned to the upper level Roles are inherited by the identities in the bottom of the hierarchy.

Five different configurations with five different populations have been made up to compare the
authorization models. All the populations represent the same described scenario. Differences lie
in the amount of rules as well as the ontology model statements hold at each one. Although the
amount of statements at each population is different, executing the SWRL rules lead populations
to be equivalent to each other. This is due to the fact that SWRL rules derive the equivalent
statements as if they were created beforehand in the ontology model.

The first population is envisaged to evaluate HO in an isolated way. This population initially
includes all the required model statements of the scenario as if they were generated by rules of
hRBAC and RBAC. The second population is used to evaluate HO, hRBAC and RBAC autho-
rization capabilities all together. This population requires a minimum initial amount of statements
since many of them are derived by the rules. The third population is used to evaluate the behavior
of hRBAC and RBAC. Notice that statements that may be generated by the HO rule are included
beforehand in the population to make it comparable. The fourth population is used to evaluate
RBAC independently. Similarly, the statements generated by the SWRL rules of hRBAC and HO
are previously included in the population. The fifth population represents a reference population
without any rule, where all the statements have been previously generated. This population is
equivalent to having a Discretionary Access Control (DAC) system without hRBAC, RBAC nor
HO.

Figure 4 shows the achieved results. There are three different data series in the graphic. Initial
Statements represents the percentage of statements, with respect to the total, that are required to
evaluate the authorization capabilities depicted in the x-axis. The total amount of statement in
the scenario is 8600. This number coincides with the amount of Initial Statements in the DAC
configuration, where everything is statically defined in the model and nothing is derived by rules.
Derived statements represents the amount of statements which are inferred by SWRL rules. It
should be noticed that Initial Statements plus Derived statements always sum up to the 100% of
the statements, regardless the authorization configuration.

The configuration (HO + hRBAC + RBAC) provides the authorization system with the max-
imum level of expressiveness, so that it requires the highest computational time to be enforced.
For this reason, this Execution time has been taken as reference (100% value in the chart) to be
comparable with the rest of configurations. As can be seen from the figure, the evaluation of HO
alone, requires a lot of time to be completed when compared with RBAC or HRBAC. It can be
explained because it is a complex SWRL rule that derivates a lot of statements, more than 50% of
the total. In DAC, since there is no SWRL rule, there is nothing to evaluate, and the amount of
derived statements is 0.

12

HO HO+RBAC+HRBAC RBAC+HRBAC RBAC DAC

Initial Statements 47,55 25,73 75,88 77,00 100

Derived Statements 52,45 74,27 24,12 23,00 0,00

Execution Time 98,53 100,00 1,82 1,37 0

0

10

20

30

40

50

60

70

80

90

100

Authorization Models Comparison

Figure 4: Authorization Models Comparison

5. Architecture

The proposed architecture is illustrated in Figure 5. It has been designed to be placed at the
IaaS layer of the cloud stack. It takes authorization decisions for cloud resource access attempts
according to the authorization statements described by both tenants and cloud providers.

The IaaS API is the API already provided by all current IaaS cloud solutions like Eucalyptus,
OpenStack, Amazon EC2 or RackSpace, among others. The Interceptor module captures the
requests coming from users through the IaaS API in order to redirect them to the access control
system. The Interceptor component is also responsible for returning the request back to the
IaaS API, according to authorization decision carried out by the access control system.

The access control system is implemented by means of the SemanticAuthzService. The
main aim of this component is to evaluate whether user requests have enough grants to per-
form the requested actions on the resources. It is composed of two main different submodules:
the Authorization Engine and the Trust Manager. The Authorization Engine performs
authorization reasoning based on the SWRL rules and the OWL ontology. In turn, the Trust
Manager manages the privacy of tenants information according to established trust relationships.

The Authorization API component extends the IaaS API by enabling the description and
insertion of authorization statements in the system. Such an API translates the statements to
authorization rules in SWRL format in order to be later stored in the Knowledge Base. This
component keeps the authorization information needed to carry out the authorization decisions. It
includes both the authorization rules and the information model instances that represent the virtual
infrastructure being managed.

Note that customers using the Authorization API do not require to understand neither OWL
nor SWRL. The API helps to deal with rule definition, abstracting users from these languages.
The concepts of the ontology are presented to the user so that he is able to define the conditions of
the rules based on these concepts.

13

Cloud Virtual Infrastructure

NetworksVirtual Machines

Volumes

Networks

Volumes

Virtual Machines

Tenant NTenant BTenant A

Interceptor

IaaS API

Monitoring

IaaS API
Authorization

API

SemanticAuthzService

Trust
Manager

Authz
Engine

Networks

Volumes

Virtual Machines

Physical Infrastructure

PaaS

SaaS

IaaS
KBKBKBₐ

Figure 5: Semantic Authorization Architecture for cloud.

The access control system requires being up to date with the events that take place in the virtual
infrastructure in order to achieve proper authorization decisions. Thus, the Monitoring compo-
nent obtains information about the underline virtual environment and updates the KB accordingly.
This update is done thanks to a subscription mechanism enforced in the cloud IaaS API. The mod-
ule translates the source event messages into our ontological information model representation
which is maintained in the KB.

6. Trust Management

A collaboration agreement between two tenants can be represented by means of a trust relation-
ship. Trust relationships define the level of security and privacy that should be ensured between
tenants. Our solution provides a fine grained trust model where tenants can describe which spe-
cific information from its information model is shared with other tenants. If a tenant A trusts
another tenant B - denoted as A ≺ B -, it implies that B has available certain information of A
to describe its authorization rules. Thus, a trust relationship can be seen as a 3-tuple (Trustor,
Trustee, ContextIn f o) describing that a Trustor trusts a Trustee by exposing the ContextIn f o
information. Then, the trustee is able to use that context information belonging to the trustor in

14

order define its authorization statements. This mechanism enables tenants to control the access to
their the resources from other tenants.

A common situation is a tenant B allowing another tenant A to use its subjects (indicating the
subjects in the ContextIn f o). It would permit A to describe authorization rules taking into account
subjects of B. This approach enables A to grant subjects of B to access to A’s resources.

It could also happen that the trust relationship A≺ B implies that B allows A to use objects and
resources (not only subjects) in A’s authorization rules as context information, i.e. as conditions.
To do so, B only needs to specify that information in the ContextIn f o of the trust relationship. As
an example of this situation, a tenant A could describe an authorization rule stating that a user of
tenant B could access some of A’s resources only if B’s virtual machines of a given network are
not available. It is important to remark that this feature does not imply that A can grant privileges
for his users to access B’s resources. This can only be specified by B. In other words, a tenant is
the only one which can determine its permissions over its resources.

Trust relationships are not transitive, i.e. if A≺ B and B≺C, it does not imply that A≺C. We
decided to not automatically manage such a feature in order to keep the federation model simple.
Obviously, this is supported just by explicitly inserting such trust relationships. Moreover, trust
relationships are not symmetric, i.e. if A ≺ B, it does not imply that B ≺ A. This enables more
control over the definition of federation scenarios. Analogously, in case this feature is needed, the
inclusion of the corresponding symmetric trust relationship is enough to support it into the system.
Finally, by default nobody trusts anyone else unless there is an explicit statement for this.

The trust information is used by the TrustManager module available in the architecture. Upon
a request, this module is in charge of providing only the knowledge of those organizations which
trust each other to take the authorization decision. It controls the privacy of all the information
stored in the Knowledge Base. The module selects the information to be used to make the au-
thorization decision taking into account the issuer requesting authorization in order to provide
multi-tenancy in the cloud environment.

Our architecture keeps a different KB for each tenant. Each of these KBs contains the infor-
mation model and the authorization statements for a particular tenant. Each KB also keeps the
knowledge allowed by its trusted tenants according to the trust models defined with the afore-
mentioned 3-tuple. This approach is safer and more secure than having just one KB for all the
information since it allows to physically isolate sensitive information from different tenants.

The TrustManager module also manages the life cycle of the different KBs keeping them
up-to-date according to the changes in the trust relationships between tenants. This update implies
removing knowledge from the KB when a tenant cancels a trust relationship or updating the KB
when a new trust relationship is established. Holding different KBs with information for different
tenants implies that the Monitoring component also has to be aware of these relationships in order
to update the KBs according to the information coming from the virtual infrastructure.

7. Authorization Process

Considering a symmetric trust relationship between two tenants A and B defined by A ≺
B and B ≺ A, when a user of A tries to access to a resource belonging to B, the request first
reaches the IaaS API. Then, the Interceptor takes the incoming request and forwards it to the

15

SemanticAuthzService. The Trust Manager chooses the proper KB according to the organi-
zation to which the request resource belongs. When the Authorization Engine is aware of the
KB which should be used, it reasons using the information model and authorization statements
and derives the authorization decision. Finally, the authorization response is sent back to the
Interceptor which forwards it to the IaaS API, granting or denying the access to the resource.

The AuthzEngine makes authorization decisions based on the reasoning process performed by
an OWL and SWRL reasoner. The underlying information model and the authorization statements
are specified as SWRL rules and an OWL ontology stored in the KB. The reasoner uses this KB
together with the semantic rules and the authorization model information to carry out the reasoning
process.

Three main operations are available in the reasoner. Firstly, the reasoner performs an Inference
process that allows new knowledge to be derived using the information available in the ontology.
Note that the SWRL rules which compose the authorization model derive new information that is
used to make the authorization decision. An example of inferred knowledge is shown in Listing
2. Secondly, the reasoner also performs a Validation process to detect possible violations of the
constraints expressed in the ontology. It mainly consists of a global checking across the schema
and the current instances looking for inconsistencies. Thirdly, the reasoner allows to Query the
ontology, what includes instance recognition and inheritance recognition. The former consists in
testing if an individual is an instance of a class and the latter if a class is a subclass of another class
- or if a property is a sub-property of another one. This enables the formulation of generic queries
referring to abstract concepts, being the system able to recognize instances belonging to concrete
subclasses or sub-properties of such a concept.

To make the authorization decision, the SemanticAuthzEngine queries the reasoner to look
for OWL instances in the KB which compose the authorization statement. Listing 3 shows the au-
thorization query in SPARQL that examines the KB looking for a privilege that allows an identity
to perform a certain action on a given resource.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?privilege
WHERE {

?privilege rdf:type AuthorizedPrivilege .
?privilege AuthorizedPrivilege_activity #action# .
?identity rdf:type Identity
?identity Identity_name #identity# .
?privilege authorizedSubject ?identity .
?privilege authorizedTarget ?target .
?target ManagedElement_ID #target# .
}

Listing 3: SPARQL authorization query

Listing 3 searches an AuthorizedPrivilege instance which is associated with the given iden-
tity, target and action. It can be applied to the example of inferred knowledge provided in rule 2.
The query has three input parameters: the identity that is performing the request, which in the
example is Bob; the target that is being accessed, which in this case is the virtual machine VM1;
and the action performed against the target, which in this case is a Stop operation over the vir-
tual machine VM1. In case the query does not return any privilege, the AuthzEngine denies the
identity to perform the requested action over the resource.

16

8. Implementation and Performance

A proof of concept prototype of the SemanticAuthzService has been developed (see figure
5). It has been integrated into an OpenStack [23] IaaS cloud provider. OpenStack is an open
initiative to provide an IaaS stack for cloud computing. It is becoming one of the most widely
used IaaS stacks solutions, with an important and increasing list of companies and organizations
involved, such as Rackspace, Nasa, Citrix, AMD, Intel, NEC or Hewlett Packard, to name a few.
This is the main reason for which we have chosen OpenStack for our research work.

OpenStack provides three main components to enable an IaaS platform. Namely, the Open-
Stack Compute (Nova), the OpenStack Image Service (Glance) and the OpenStack Object Storage
(Swift). Nova is the cloud fabric controller, in charge of controlling virtual machine instances and
networking. Glance can be seen as an image repository which enables lookup and retrieval of
virtual machine images. Swift provides a high capacity, scalable and reliable storage system for
the cloud infrastructure. It can also be used by Glance as storage service.

Currently, some of these Open Stack components have their own authentication and autho-
rization mechanisms (e.g. swauth for Swift). Leveraging the access control to the IaaS in several
different modules increases the complexity of authorization management. This may result in in-
consistencies, conflicts or even security flaws. The implementation developed in our proposal is
offered to the rest of system components as an autonomous service. This approach enables the
use of this service not only by the Nova component, but also by Glance or Swift. These compo-
nents can be adapted to make use of the SemanticAuthzService. Thus, providing it as a service
enables a unified authorization mechanism.

The access control system (SemanticAuthzService) has been developed in Java JDK 7, us-
ing the Java API for XML Web Services (JAX-WS) stack to provide a Web service interface. This
component uses a DL reasoner (i.e. a reasoner using Description Logics). There are several suit-
able implementations, such as Pellet [24], Jena [25], and the one proposed by FaCt++ [26], among
others. Pellet has been chosen as reasoner due to the fact that it supports high expressiveness deal-
ing with OWL 2 ontologies and it is also able to perform incremental consistency checking. All
the rules described in the section 4 are loaded in the reasoner as part of the bootstrapping process.
Jena is also used to perform ontology operations and to manage the knowledge base since it is
nowadays the de facto standard Java library to manage ontologies. The Trust Manager component
described in our architecture uses Jena to enforce the trust relationships in the KB. Concretely,
Jena version 2.6.2 and Pellet version 2.0.0 have been used. The trust relationships are specified
using an external API that enables to define such relationships. They are stored in a trust database
managed by the Trust Manager component itself.

For the proof of concept implementation, an interceptor has been placed in the EC2 IaaS
API interface of the OpenStack Nova component. This IaaS API is the entry point to the IaaS
services and receives all the requests to be served by the IaaS. Each request is checked against
the Authorizer class of the EC2 nova-api module in order to determine if the user is or is not
authorized to invoke the requested action in the IaaS. The Authorizer class has been modified
to intercept the authorization requests and to forward them to the SemanticAuthzService which
provides the authorization decision, accordingly. The modified python code of OpenStack modules
has been adapted in order to execute the Java Web-service client library provided to connect to the

17

SemanticAuthzService. We have used JPype 3 for this purpose. JPype allows python programs
to fully access java class libraries. Thus, we instantiate the Java Web-Service client library into
Python and then we execute the appropriate methods from the Python code, accordingly. It should
be noticed that we have adopted this approach for testing the client library purposes, as well as
for simplicity during the development to achieve the performance metrics. However, a native
Python client could be developed since the SemanticAuthzService interface is provided as a
Web service, which is platform independent and highly compatible.

The monitoring module conceptually keeps the KB up-to-date with the current state of the IaaS.
To do so, this module is continuously monitoring the IaaS to discover the status of the system
and then updates the information model into the KB. In this proof of concept implementation,
we have developed this module by attaching it to the message bus of Open Stack, which is the
communication middleware used to coordinate all the components of the Open Stack architecture.
This attachment enables to receive all the messages exchanged by Open Stack and update the KB
of the SemanticAuthzService accordingly.

8.1. Testbed description
A testbed scenario has been deployed to test the proposed architecture and obtain some per-

formance metrics. An OpenStack-based IaaS system has been deployed with 8 compute nodes to
run virtual machine instances. Each node runs in a Hewlett Packard xw8400 Workstation with an
Intel Xeon CPU at 3.00 GHz and 6 GB of RAM. The cloud controller, a Glance image service and
the authorization service have been placed in one of these nodes. The purpose of using this con-
figuration is to obtain tests for the worst case, in which the cloud controller and the access control
system have to deal with the overload produced by running instances in the same host. Having a
dedicated host for these components will result in lower execution times.

Three different operations have been considered in the tests. Namely, describe instances, run
instances and terminate instances. They have been chosen as they represent the main operations
related to virtual machine instance management. Moreover, they perform tasks with a different
level of complexity. Thus, the describe instances operation is a lightweight operation, while the
run and terminate instances perform some costly tasks, being the former even more costly. This
makes the test offering more significant and different results. The aforementioned operations have
been executed by invoking the corresponding euca2ools command, which uses the EC2 API to
interact with the cloud controller.

In order to obtain statistics significant results, operations have been performed in sets of 100
executions, whose average is used as result value. The tests simulate the following use case.
Firstly, a set of describe instances operations are executed, while the system is still not running
any virtual machine instance, i.e. without instance overload. This enables to obtain the overhead
produced by our authorization service in a dedicated system for the worst case, i.e. for the simplest
operation with no instances. Then, the system is driven to a status in which each node is executing
4 instances (virtual machines). The rest of operation sets are then executed. These operations are
executed alternating the set of run instances with another set of describe instances and the set of
terminate instances. Operations are alternated in such a way that the system keeps in average the

3JPype is available at http://jpype.sourceforge.net/

18

overload of 4 instances per node. These executions provide results considering a constant system
overload for the considered operations.

!"#$%$&'

()*$%*"++$,-

.'+/0123
4/+$,2'*5)2674/8#'*/

9"+&)2/0:);:<:2/+

()*$="">:0
*"++$,-02'+/

(9=05?@0
A402'+/

4/+$,2'*5)267
4/8#'*/0A402'+/

B/$:",',C02'+/9"++$,-0
/D/*)2'",02'+/

@,2/8*/&2"8

(9=
8/E)/:2

5)26"8'7$2'",
8/E)/:2

4/+$,2'*5)267
4/8#'*/0A402'+/

9"++$,-0
/D/*)2'",02'+/

()*$="">:0
*"++$,-02'+/

(9=05?@0
A402'+/

F&/8$2'",0
*"+&>/2/02'+/

(9=
8/:&",:/

5)26"8'7$2'",
8/:&",:/

Figure 6: Operation execution workflow

Figure 6 shows the workflow followed by every operation and the average times taken for the
entire executions. Firstly, the corresponding euca2ools command is executed. It accesses the EC2
API of the nova-api module, which is offered as a Web service. The authorization method is in-
voked in the nova-api and the interceptor redirects the request to the SemanticAuthzService. It
performs the authorization decision and returns an access response to the interceptor. The inter-
ceptor enforces the authorization decision by allowing or forbidding the request in the nova-api
module. Finally, the rest of the command is executed and a response is provided to the euca2ools
command. At this point, some operations may still be pending due to its asynchronous nature. This
is the case of the run instances and terminate instances. For these operations, the corresponding
command finalizes just after launching the request to the compute system, but before the actual
operation has been completed. For instance, the run instances command will trigger the operation
and return before the instance is actually in the running state. For this reason, another time has
been included in the test, which considers the time when the operation goal is achieved (e.g. the
virtual machine is running).

The bottom side of the figure shows the times taken into consideration for analysis purposes.
It should be noticed that the two times related to the same command execution or Web service
invocation have been added and considered as a single time in the results. This is the case of
the euca2ools and nova-api execution times, as well as the EC2 and Authorization request and
response times. It should be also mentioned that only positive authorizations are considered for
the tests. Otherwise, negative authorizations would not execute the command. This would distort
the statistics significance of the results due to the short time of the executions.

The above scenario takes into account the overload of the IaaS system. But, there is also an
internal overload the SemanticAuthzService should deal with. This is related with the number of
elements the system should take into account to make authorization decisions, i.e. number of roles,
users, permissions, objects, etc. These elements are contained in the KB used by the SemanticAu-
thzService. The elements contained in the KB are called individuals and the set of individuals for a
specific execution is referred to as population. In order to study the scalability of the proposal, the
above-described scenario has been executed 10 times using incremental populations. This allows
getting results with an increasing order of authorization elements. A simulated monitoring com-
ponent is in charge of producing different populations which represent different system statuses.

19

In order to quickly increment the number of individuals in the populations, this increment follows
an exponential distribution. Finally, each individual is represented in the KB by a set of statements
(not to be confused by authorization statements). Table 3 shows the number of individuals and its
corresponding statements for each population considered during the tests. Note that the real size
of the KB is determined by these statements and not by the number of individuals.

Population 1 2 3 4 5 6 7 8 9 10
Individuals 500 900 1,400 2,300 3,700 6,100 10,000 16,400 27,100 44,600
Statements 1,889 3,166 5,035 8,845 16,187 33,404 72,384 166,495 407,442 1,031,942

Table 3: Number of individuals and statements by population

8.2. Obtained results
Figure 7 shows the times obtained during the tests for each population. It shows times for the

execution of the first describe instances operation with no instances running and the times for the
three operations with 4 instances running in each node. Six different times are depicted in the
figure. They correspond with the times taken from the workflow exposed in Figure 6.

!""

!#"

$""

!"#$%&'"(&)#*+)$"#(,)-(&)#*+)$"#.

%&'()*+,-./,0&1'*'

"

#"

2""

2#"

2 ! $ 3 # 4 5 6 7 2"

/&
0
"(
,0

#.

1-234+*&-)

8,00)-9.':'/;*+,-

<')=,-+->

?'0)-*+/@;*AB?'(C+/'.D?

E8!.@FG.D?

E;/)!,,1=./,00)-9

!"""

#"""

$"""

!"#$%#&'(#)*&

%&'()*+,-./,0&1'*'

"

2"""

3"""

4"""

2 3 4 ! # $ 5 6 7 2"

+%
,
*$
-,

&.

/01"2('%0#

8,00)-9.':'/;*+,-

<')=,-+->

?'0)-*+/@;*AB?'(C+/'.D?

E83.@FG.D?

E;/)3,,1=./,00)-9

!""

!#"

$""

!"#$%&'"(&)#*+)$"#(,-(&)#*+)$"#.)/0"1

%&'()*+,-./,0&1'*'

"

#"

2""

2#"

2 ! $ 3 # 4 5 6 7 2"

2&
3
"(
,3

#1

4/567+*&/)

8,00)-9.':'/;*+,-

<')=,-+->

?'0)-*+/@;*AB?'(C+/'.D?

E8!.@FG.D?

E;/)!,,1=./,00)-9

!"##

!$##

!%##

!&##

!"#$%&'(")%&*('&+"*

'()*+,-./01.2(3),)

#

"##

$##

%##

&##

!###

! " 4 $ 5 % 6 & 7 !#

!%
$
")
,$

*-

./012'(%/&

8.22+/90):)1;,-./

<)+=./-/>

?)2+/,-1@;,AB?)*C-1)0D?

E8"0@FG0D?

E;1+"..3=01.22+/9

Figure 7: Operation execution times

As can be seen, the most part of the time is taken by the Command execution and Operation
complete times. The Reasoning time spent by the authorization service is also outstanding in the

20

describe instances operations. But it should be taken into account that these operations are quite
simple and the whole operation times are small. It should be noticed the different scales of the four
figures. Describe instances operations take around 250 milliseconds, while run instances are about
5,000 and terminate instances around 1,500. The fluctuations observed in the different executions
(and populations) are due to the fluctuating nature of the Cloud environment. Moreover, note that
populations are following an exponential trend whereas the reasoning times are almost following
a linear trend.

The figure also shows the difference between the Command execution and Operation complete
times. While the run instances command finishes near the 1,900 ms (the time it takes to process
the request), the underlying system takes around 3,000 ms more to actually get the virtual machine
running. At this point, it should be noticed that these times have been taken considering a running
system, i.e. discarding the first time an image is taken from the Glance image server, which takes
much longer. For the rest of executions, the image is already cached in the node’s hard disk and a
copy-on-write image is quickly deployed. On the other hand, it can be also seen that the describe
instances operation has no Operation complete time. That is because it is a get operation to retrieve
information. Thus, the operation ends at the same time that the command terminates (synchronous
execution), when it shows the requested information to the user.

In any case, it can be observed that the command and operation times are higher than the time
taken by the access control system to perform an authorization decision. Trying to measure this
difference, Figure 8 shows the overhead introduced by the access control system when compared
with command and operation times. That is, the portion of the whole command or operation
time that is due to the authorization process. Figure 8 on the left shows the overhead against the
command time, while the right side shows it against the whole operation. The authorization time
considered to calculate this overhead contains the SemanticAuthzService WS and Reasoning times.

!"

!#

$"

!
"#
$%
#&
'(
)*

+

,-..&/'(-"#$%#&'

"

#

%"

%#

% ! $ & # ' () * %"

!
"#
$%
#&
'(
)*

+

0-123&45-/

+,-./01,203-453.,-2637203-489 :;3203-453.,- +,-./01,203-453.,-26&203-489 <,/=0354,203-453.,-

!"

!#

$"

!
"#
$%
#&
'(
)*

+

!,#$&-./0(/"#$%#&'

"

#

%"

%#

% ! $ & # ' () * %"

!
"#
$%
#&
'(
)*

+

1/,23&-./0

+,-./01,203-453.,-2637203-489 :;3203-453.,- +,-./01,203-453.,-26&203-489 <,/=0354,203-453.,-

Figure 8: Overhead times

As can be observed, the overhead highly depends on the executed operation. This is due to the
different ending times for each operation, as noticed in the previous figures. The average overhead
is just around 2% and 5% for operations that manage the underlying infrastructure (5% and 9% if
considering just the command execution).

The describe instances command shows the worst case for our authorization mechanism. For
21

such a simple command - which just performs a single quick database query - the overhead is
still around 22%. The reason of this overhead is that this command takes very little time and it
makes the authorization time to be more significant. However, note that this percentage is with
respect to the total execution time which, in turn, is significantly lower for the describe instances
than for others commands as the reader can see in figure 8. This fact causes that bigger overhead
percentages can be tolerated in the system.

It can be observed that in an empty system with no instances running, the overhead trend is
linear whereas it is almost constant for the rest of the cases. This is due to the external overload
suffered by the host machine, which directly affects to the authorization service execution. Note
that the execution of rest of the command is done while the VMs are being executed and this causes
an important CPU overhead in the system which makes the overhead of the authorization system
almost neglected, causing the constant trend shown. However, the describe instances command
with no instances running do not suffer of this overhead and it causes a linear trend, according the
increasing of the population.

The low execution time of the describe instances command with no instances running, enables
to appreciate how increasing the population size affects the reasoning time. It can be seen that the
last populations with a higher number of statements, also produce a higher overload. The expo-
nential form of the graph is due to the population increments, which also follow an exponential
distribution. Note that the worst case (22%) is for systems in which hundreds of thousands of
VMs are being managed with a single instance of the access control system (more than 1 million
of statements). For this kind of scenarios we’d probably have to adopt a replication of the access
control system in order to balance the load. Anyway, for this big scenario, the authorization time
is still provided in terms of milliseconds, which is a clear sign of the scalability of the proposed
system.

It should be noticed that these overheads are provided without taking into account the time of
the current Nova authorization mechanism. The overhead produced by our access control system
when compared with a pure OpenStack deployment would be smaller, since just the increase over
the Nova authorization time should be considered.

Finally, a constant tendency can be observed in the majority of the results shown in these
figures. This tendency shows a good scalability of the proposed access control system, even if the
population is increased following an exponential distribution.

9. Conclusions and Future Work

An authorization model suitable for cloud computing has been presented. This authorization
model overcomes some of the limitations in expressiveness available in its predecessors and pro-
viding support for advanced authorization features such as RBAC, hRBAC, cRBAC, HO and au-
thorization policies. Semantic Web technologies have been demonstrated as useful for describing
authorization models. Moreover, the usage of the same language for expressing both information
and authorization models avoid any mismatch between the semantics of both models. This, in
turn, is a potential problem which appears in most of the current authorization proposals for Cloud
computing. Advanced federation capabilities among tenants have been successfully supported. A
fine-grained trust model for managing federations in Cloud computing environments has been also

22

provided. The complete architecture has been validated by means of a prototype implementation
for the OpenStack platform using both Java and Phyton technologies. A performance analysis has
provided prominent results.

As a future work, we expect to extend the integration with OpenStack in order to be more
complete, providing interceptors not only for Nova but also for the Glance and Swift components
of OpenStack. The idea is to achieve a complete authorization framework for OpenStack. An
intensive performance analysis of the proposed authorization model is also expected in order to
establish an analytical comparison of the trade-off between language expressiveness and system
performance. Moreover, another expected step is the analysis and comparison of further advanced
trust models and their suitability for Cloud computing.

References

[1] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud Computing and Grid Computing 360-Degree Compared, in: Grid
Computing Environments Workshop, IEEE, IEEE, 1–10, 2008.

[2] J. M. M. Perez, J. B. Bernabe, J. M. Alcaraz-Calero, F. J. G. Clemente, G. M. Perez, A. F. G. Skarmeta,
Semantic-aware Authorization Architecture for Grid Security, Future Generation Computer Systems 27 (2011)
40–55.

[3] J. M. Alcaraz-Calero, G. M. Perez, A. F. G. Skarmeta, Towards an Authorization Model for Distributed Systems
based on the Semantic Web, IET Information Security 4 (4) (2010) 411–421.

[4] J. B. Bernabe, J. M. M. Perez, J. M. A. Calero, F. J. G. Clemente, G. M. Perez, A. F. G. Skarmeta, Towards an
Authorization system for cloud infrastructure providers, in: Internacional Conference on Security and Cryptog-
raphy, 333–338, 2006.

[5] X.-Y. LI, Y. SHI, W. M. YU-GUO, MULTI-TENANCY BASED ACCESS CONTROL IN CLOUD, in: IEEE
(Ed.), 2010 International Conference on Computational Intelligence and Software Engineering, vol. 1, IEEE,
1–4, 2010.

[6] D. Li, C. Liu, Q. Wei, Z. Liu, B. Liu, RBAC-based Access Control for SaaS Systems, in: IEEE (Ed.), 2010 2nd
International Conference on Information Engineering and Computer Science, IEEE, 1–4, 2010.

[7] A. Sirisha, G. G. Kumari, API Access Control in Cloud Using the Role Based Access Control Model, in: IEEE
(Ed.), Trendz in Information Sciences & Computing, IEEE, IEEE, 135–137, 2010.

[8] W.-T. Tsai, Q. Shao, Role-Based Access-Control Using Reference Ontology in Clouds, in: IEEE (Ed.), Tenth
International Symposium on Autonomous Decentralized, IEEE, IEEE, 121–128, 2011.

[9] A. L. Pereira, RBAC for High Performance Computing Systems Integration in Grid Computing and Cloud C
omputing, in: IEEE (Ed.), IEEE International Parallel & Distributed Processing Symposium, IEEE, IEEE, 914–
921, 2011.

[10] J. Xu, T. Jinglei, H. Dongjian, Z. Linsen, C. Lin, N. Fang, Research and Implementation on Access Control of
Management-type SaaS, in: IEEE (Ed.), The 2nd IEEE International Conference on Information Management
and Engineering, IEEE, IEEE, 388–392, 2010.

[11] C. Danwei, H. Xiuli, R. Xunyi, Access Control of Cloud Service Based on UCON, LNCS Cloud Computing
5931 (2009) 559–564.

[12] J. Park, R. Sandhu, The UCON ABC usage control model, ACM Transactions on Information and System
Security 7 (2004) 128–174.

[13] D. Fall, G. Blanc, T. Okuda, Y. Kadobayashi, S. Yamaguchi, Toward Quantified Risk-Adaptive Access Con-
trol for Multi-tenant Cloud Computing, in: The 6th Joint Workshop on Information Security, 1–14, URL
https://sites.google.com/site/jwis2011/program, 2011.

[14] J. M. Alcaraz-Calero, N. Edwards, J. Kirschnick, L. Wilcock, M. Wray, Towards a Multi-tenancy Authorization
System for Cloud Services, IEEE Security and Privacy 8 (6) (2010) 48–55.

[15] W. O. W. Group, OWL 2 Web Ontology Language: Document Overview, W3C Recommendation, W3C, 2009.
[16] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. T. andB. Grosof, M. Dean, SWRL: A Semantic Web Rule

23

Language Combining OWL and RULEML, Tech. Rep., W3C, URL http://www.w3.org/Submission/SWRL/,
2004.

[17] W. Bumpus, J. W. Sweitzer, P. Thompson, A. Westerinen, R. C. Williams, Common information model: imple-
menting the object model for enterprisemanagement, John Wiley & Sons, Inc, 2000.

[18] T. Vetterli, A. Vaduva, M. Staudt, Metadata Standards for Data Warehousing: Open Information Model vs.
Common Warehouse Metadata, ACM SIGMOD Record 29 (3) (2000) 68 – 75.

[19] M. Debusmann, A. Keller, SLA-driven management of distributed systems using the common information
model, in: Proceeding of the 8th IFIP/IEEE International Symposium on Integrated Network Management,
1–14, 2003.

[20] H. Mao, L. Huang, M. Li, Web Resource Monitoring Based on Common Information Model, in: IEEE Asia-
Pacific Conference on Services Computing, 520–525, 2006.

[21] D. Beckett, RDF/XML Syntax Specification, Tech. Rep., W3C, 2004.
[22] J. M. A. Calero, J. M. M. Perez, J. B. Bernabe, F. J. G. Clemente, G. M. Perez, A. F. G. Skarmeta, Detec-

tion of semantic conflicts in ontology and rule-based information systems”, Data & Knowledge Engineering
69 (11) (2010) 1117 – 1137, ISSN 0169-023X, doi:10.1016/j.datak.2010.07.004, special issue on contribution
of ontologies in designing advanced information systems.

[23] OpenStack, Open Source Cloud Computing Software, http://openstack.org, 2011.
[24] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical OWL-DL reasoner, Journal of Web

Semantics 5 (2) (2007) 51 – 53.
[25] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, Jena: Implementing the Semantic

Web Recommendations, in: Proceedings of the 13th international World Wide Web conference, ACM Press,
74–83, 2004.

[26] D. Tsarkov, I. Horrocks, Automated Reasoning, vol. 4130 of Springer Lecture Notes in Computer Science, chap.
FaCT++ Description Logic Reasoner: System Description, Springer Berlin / Heidelberg, 292–297, 2006.

24

