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Abstract—Hardware transactional memory is a promising
synchronization technology for chip-multiprocessors. It sim-
plifies programming of concurrent applications and allows for
higher concurrency than lock based synchronization. Standard
transactional memory is optimized for average case through-
put, but for real-time systems we are interested in worst-case
execution times. We propose real-time transactional memory
(RTTM) as a time-predictable synchronization solution for
chip-multiprocessors in real-time systems. We define the hard-
ware for time-predictable transactions and provide a bound
for the maximum transaction retries. The proposed RTTM is
evaluated with a simulation of a Java chip-multiprocessor.

I. INTRODUCTION

Computing is about to undergo, if not another revolu-
tion, then a vigorous shaking-up. Processor manufacturers
have essentially given up trying to increase clock speeds.
Moore’s law has not been repealed: each year, more and
more transistors fit into the same space, but clock speeds
cannot be increased without overheating. Instead, processor
manufacturers have focused on multicore architectures, in
which multiple processor cores reside on a single chip. As a
result of this sea change, parallel machines are becoming a
de facto standard. Unfortunately, programming such systems
safely and efficiently using classical concurrency abstrac-
tions is a severe burden. Yet with clock speeds stagnant,
programmers must increasingly use parallelism to enable
more ambitious applications. This adaptation will not be
easy. Programmers typically rely on locks and condition
variables for synchronization, which are implemented with
special processor instructions, such as compare-and-swap
(CAS). Multi-processor programming with locks is far from
trivial. Simple coarse grain locks limit the possible paral-
lelism; fine grain locking can introduce errors due to data
races and deadlocks. Avoiding locks and implementing lock-
free or wait-free data structures and algorithms is considered
art and not engineering [11]. This conventional approach
is known to be error-prone. Programmability remains the
key hurdle towards effectively utilizing these next-generation
computing systems. This is particularly true for embedded
systems which are often safety critical and where failures
can cause loss of life. The difficulties of programming
multiprocessor systems, such as data races, and deadlocks,
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are magnified in the context of embedded real-time programs
because there is still little support for multicore in terms
of theory and tools. Interestingly, shared memory is also
a scalability issue. Each core contains a local, first level
cache. Second and further levels of caches are usually shared
between the on-chip cores. The shared data in the local
caches is kept coherent and consistent by cache coherence
protocols between the cache controllers. However, keeping
caches coherent and consistent limits the scaling of CMP
systems.

Transactional Memory (TM) is a promising concur-
rency control solution for parallel and concurrent computing
systems. Transactional memory has been the subject of
significant interest in both academia and industry because
it offers a compelling alternative to existing concurrency
control abstractions, making it especially well-suited for
programming applications on scalable parallel platforms.
Because transactional memory implementations often sup-
port an optimistic concurrency model, they can be used to
safely allow speculative access to data by a large number of
processors without requiring global program analysis. TM
abstractions permit logically concurrent access to shared
regions of code, but ensure through some combination of
hardware, compiler, and runtime support that such accesses
do not violate intended serializability invariants. However,
while there has been a plethora of work exploring different
implementation techniques for transactional memory in both
hardware and software, there is no TM system that is ad-
equate for real-time applications running on multiprocessor
systems. Although first introduced as an extension of the
cache coherence protocol [8], TM can simplify caches with
transactional coherence and consistency [6]. The program-
ming model with TM is simpler than with locks; a mutual
exclusive section is marked as an atomic region. The TM
ensures, either in hardware or in software, that the marked
section is executed atomically. The atomic sections are
executed optimistically. On a conflict one of the transactions
is aborted and the atomic section is automatically reexecuted.

This paper proposes Real-Time Transaction Memory
(RTTM), a new concurrency control abstraction that is
geared towards time-predictability and evaluates the pro-
posal in the context of real-time Java programs running on a



simulation of a chip-multiprocessor (CMP). While, our work
targets the Java programming language and must thus deal
with some issues that are specific to that language, it is not
limited to it. Choosing Java does present some significant
advantages over low-level languages. Java is memory-safe,
that is, the language prevents memory accesses through
untyped pointers. This property enables the implementation
of copying and compacting real-time garbage collection
algorithms which simplify the task of writing concurrent
algorithms as programmers need not worry about memory
reclamation. The second benefit of Java is that compiler
transformations and program analysis techniques can rely on
declared properties of pointers and thus are easier to prove
sound.

RTTM brings the benefits of transactional memories into
the real-time systems world. It simplifies the programming
model with atomic regions instead of correct selection of
locks. The execution time pessimism is reduced by analysis
tools instead of error prone implementation of lock-free
algorithms. The contributions of the paper are following:
(a) the design of a time-predictable hardware transactional
memory; (b) analysis of the worst-case number of retries
in a periodic thread model; (c) suggestions for analysis and
a programming discipline to reduce the number of possible
conflicting transactions; and (d), a first evaluation of RTTM
on a simulation within a Java based CMP.

II. BACKGROUND: REAL-TIME JAVA AND TM

This section presents some background on the use of
Java for real-time processing, presents existing APIs for
transactional memory in Java and overviews related work.

A. Real-Time Java

Java is increasingly being used in mission-critical systems
in fields such as avionics [23] and shipboard computing for
steering and control. To address the requirements of time-
critical applications, the Real-Time Specification for Java
(RTSJ) [4] was developed. While the first release of the
RTSJ appeared in 2000, it is only recently that production
implementations have become available. One of the notable
advantages of the RTSJ is that it is possible to implement
mixed-mode systems in which real-time and non-real-time
tasks can co-exist. The integration of the two programming
models, while not seamless, represents a pragmatic engi-
neering compromise. The real-time extensions are backward-
compatible with the rest of the Java programming language
and require no changes to the tool chain. Thus, adopting real-
time Java does not require forsaking libraries or legacy code.
Instead, it is possible to implement the real-time portion of
an application using the real-time extensions, and to use
standard Java for the rest.

Synchronization in Real-Time Java: Real-time threads
have to be scheduled carefully. Each thread may have a
length of time during which it must complete a given task

before it yields; this time is called the thread’s deadline.
In the RTSJ, the default scheduler is priority preemptive.
A priority preemptive scheduler releases a real-time thread
according to its priority. A thread can be released if and
only if it has higher priority than the currently executing
thread. If multiple threads have the same priority, they are
scheduled in FIFO order. We say that a set of threads is
schedulable if all threads can execute within their periods
without missing deadlines. In order to ensure schedulability,
it is necessary to bound both the time required to execute
the thread up to the end of the current period and the
thread’s blocking time. The requirement of schedulability is
complicated by a number of blocking issues. It is necessary
to estimate the longest time a thread may block. Thus,
bounds need to be provided for the length of any given
critical section. This is a standard assumption in real-time
systems. If a high priority thread blocks waiting for a low
priority thread to release a lock, and the low priority thread
is preempted by a medium priority thread, then the medium
priority thread may execute instead of the high priority
thread. This situation is called priority inversion, and can
result in unbounded blocking times, potentially causing the
high-priority thread to miss deadlines. Priority inversion has
a history as a particularly troublesome issue: in the Mars
Pathfinder mission, for instance, a priority inversion problem
caused frequent system resets. Real-time Java distinguishes
hard real-time threads from (softer) real-time threads: the
former are not allowed to read references to heap objects.
This restriction is meant to ensure that a hard real-time
thread will never block in order to wait for the garbage
collector.

One motivation for our work is to simplify the task of
reasoning about critical sections by providing a concur-
rency control abstraction that minimizes these problems and
attempts to avoid undue blocking delays and catastrophic
interference between the real-time and the non-real-time
parts of a RTSJ environment.

B. Example

This section introduces transactions and contrasts them
with lock-based concurrency control mechanisms. Figure 1
is a simplified extract from a queue-based thread pool im-
plementation. The method leaderExec() in the class Thread-
PoolLane places an incoming Request onto the queue re-
questBuffer (a.4). If a processor is free, it will dequeue (and
execute) the Request when it is next scheduled. The code
is taken from the Zen real-time ORB [13].

This example makes extensive use of synchronization. The
method leaderExec() is synchronized (a.l1) to ensure that
multiple threads cannot concurrently access the method of
the ThreadPoolLane on which it will be invoked. The second
use of locks is around lines a.4 and a.5; it ensures that the
length of the queue is consistent with numBuffered. This
cannot be accomplished with the lock on the ThreadPool-



class ThreadPoolLane {
synchronized leaderExec(Request task){
if (borrowThreadAndExec(task))
synchronized (requestBuffer) {
requestBuffer.enqueue(task);
numBuffered++;

AR

class Queue {
final Object sObject = new Object();
void enqueue(Object data) {
QueueNode node=getNode();
10. node.value=data;
11. synchronized (sObject) {
12. /I enqueue the object

(a) With Monitors.
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class ThreadPoolLane {
@atomic leaderExec(Request task){
if (borrowThreadAndExec(task))
requestBuffer.enqueue(task);
numBuffered++;

PN~

class Queue {

@atomic void enqueue(Object data) {
QueueNode node=getNode();
node.value=data;

// enqueue the object

ONoOO

(b) With Transactional Memory.

Figure 1. Example from the Zen ORB.

Lane because there may be other methods (not pictured)
that are not synchronized on the ThreadPoolLane object,
but that access the requestBuffer queue and numBuffered.
The final use of locking in this example occurs inside of the
implementation of the Queue class: the enqueue() method
relies on a private object (a.7) to protect the updates to the
queue (a.12).

We contrast this with an implementation that uses trans-
actional memory. Transactions are denoted with an @atomic
boundary as in [15]. A bytecode rewriting procedure trans-
forms annotated methods to add explicit calls to the lower-
level RTTM API. As mentioned above, an @atomic method
executes atomically. While it is executing, it records the
original contents of locations to which it writes; these values
are then restored if a conflict is detected the transaction ends
as if the code had not executed at all. Aborted atomic regions
are silently reexecuted until they successfully commit. The
programming model is intentionally simple; in most cases,
monitors can be exchanged for atomic regions with minimal
changes to the program. In Figure 1.b, we use two atomic
sections: one for the leaderExec() method (b.1) and another
for the enqueue() method (b.5). The first atomic is sufficient
to prevent all data races within leaderExec(); it is therefore
unnecessary to obtain a lock on the queue. If enqueue()
were only called from leaderExec(), it would not need to be
declared atomic; however, as mentioned above, it is declared

atomic to allow use in a non-atomic calling context. The so-
lution that uses atomic regions is simpler and easier to prove
correct, as it does not rely on multiple locking granularities.
A single atomic will protect all objects accessed within
the dynamic extent of the annotated method. Contrast this
with the lock-based solution, where all potentially exposed
objects must be locked. Furthermore, the order of lock
acquisition is critical to prevent deadlocks. On the other
hand, atomics cannot deadlock: they do not block waiting
for each other to finish.

C. Transactional Memory

The term transactional memory was coined by Herlihy
and Moss [8]. They realized that only a minor modification
of the available cache coherence protocol is needed to
implement transactional memory. Knight proposed hardware
support for transactions for mostly functional languages
[12]. The key elements are two fully associative caches:
the depends cache implements the dependency list (besides
acting as normal data read cache) and the confirm cache that
acts as local cache for uncommitted writes.

As computer architects where not convinced by the
transaction idea, no hardware implementation exists up to
date in commercial microprocessors. To solve this chicken-
egg problem, researchers started to investigate solutions in
software. Shavit and Touitou present software transactional
memory (STM) [25]. The proposed STM provides static
transactions. That means the data set has to be known in
advance. A number of later papers investigated the concept
of software transactional memory [10], [24], and provided
implementations with support for undoing operations. Her-
lihy et al. describe a software transactional memory ab-
straction [9] for Java that allows transactional objects to
be created dynamically. Harris and Fraser [7] described a
lightweight transactional model for Java. Their model is
more general than ours, but incurs overheads that are much
higher, and does not provide real-time guarantees. Anderson
et al. [3] described a language independent notion of lock
free objects in real-time systems. In contrast, our work
leverages its integration with the language and compiler to
achieve greater simplicity and efficiency. Saha et. al. propose
an ISA extension to provide architectural support for STM
[20]. The idea is based on additional mark bits for parts of a
cache line (e.g., for 16 byte blocks of a 64 byte cache line).

The Transactional memory Coherence and Consistency
(TCC) model is proposed in [6]. TCC combines the sim-
pler hardware for message passing and the simpler shared
memory programming model. The standard cache coherence
protocol with the latency issue on each load and store
instruction is substituted by the TCC hardware. The TCC
hardware broadcasts all writes from each transaction in a
single packet. Automatic rollback resolves any correctness
violation. TCC differs from other approaches as all instruc-
tions are part of a transaction. The code is just split into



transactions which can be done manually or automatically
by the hardware. Language extensions for loop and fork
based parallelization for TCC are presented in [5]. The
paper also contains detailed simulation results of speedup
and write set sizes. The speedup is reported in the range of
4.5 to 7.8 for a 8 processor CMP configuration. For most
applications a write buffer of 1 KB is sufficient. We assume
that applications in the real-time domain will need even less
on-chip memory.

Preemptible atomic regions (PAR) [15], was the first
proposal of TM for real-time systems. A PAR is aborted
when a higher priority task becomes ready and preempts the
lower priority task — independent whether the high priority
task executes an atomic region or not. The effects of a PAR
are undone at the interrupt. The concept of PAR is only valid
on uniprocessor systems. A first concept of TM for real-time
CMP systems is presented in [?].

D. Time-predictable CMP

For the schedulability analysis of (hard) real-time sys-
tems the worst-case execution time (WCET) of all tasks
and critical sections needs to be known. WCET analysis
of complex architectures is far from trivial. Architectural
enhancements that dynamically extract instruction level par-
allelism are practically not analyzable. A multi-core chip
consisting of simpler pipelines is a possible solution for
high-performance, time-predictable systems [22].

For RTTM we assume a CMP system with a time-division
multiple access (TDMA) scheduled memory access. The
TDMA arbitration policy isolates the cores of the CMP in
the temporal domain and is therefore time predictable. The
WCET of memory accessing instructions can be calculated
when the TDMA schedule is known [19].

III. REAL-TIME TRANSACTIONAL MEMORY

We propose a hardware implementation of the RTTM
for a time-predictable CMP system. Only with hardware
support of transactions the desired efficiency of atomic
sections can be achieved. With TM we can solve two
issues of CMP systems: (1) synchronization and cache
coherence/consistency protocols are expensive; (2) exploring
the power of CMP systems needs multiprogramming, but
the programming model is complex. With TM we can relax
the memory coherence and consistency model [6]. This
results in simpler and more efficient hardware for shared
memory multiprocessing. Furthermore, avoiding cache co-
herence protocols simplifies the timing model of the memory
access for the WCET analysis. The use of generic atomic
primitives relieves the programmer from the headaches to
get the synchronization correct and provide the maximum
possible concurrency. For real-time systems we shift the
problem from the programmer to analysis tools to provide
safe and tight WCET estimates.

The main design goals for the RTTM are: (a) simple
programming model and (b) analyzable timing properties.
Therefore, all design and architecture decisions are driven by
their impact on the WCET. In contrast to other TM proposal
RTTM does not aim for a high average case throughput,
but for a time-predictable TM with a low WCET. RTTM is
intended to support small atomic sections with a few read
and write operations. Therefore, it is more an extension of
the CAS instruction to simplify the implementation of non-
blocking communication algorithms.

A. Transaction Buffering

Each core in the CMP is equipped with a small, fully
associative buffer to cache the changed data during the trans-
action. All writes go only into the buffer. Reads addresses
are marked in a read set — a simplification that uses only
tag memories. Read data can also be cached, but caching is
not essential for the correct operation of the RTTM.

The write buffer and tag memory for the read set are
organized for single word access. This organization ensures
that no false positive conflicts are detected. For the same
reason the transaction buffer has to be a fully associative
cache with a FIFO replacement strategy. Fully associative
caches are expensive and therefore the size is limited. We
assume that real-time systems programmers are aware of
the high cost of synchronization and will use small atomic
sections where a few words are read and written.

B. Transaction Commit

On a commit the buffer is written to the shared memory.
During the write burst on commit all other cores listen to
the write addresses and compare those with their own read
set. If one of the write addresses matches a read address
the transaction is marked to be aborted. The atomicity of
the commit itself is enforced by a single global lock — the
commit token.

The commit token can also be used on a buffer overflow.
When a transaction overflows the write buffer or the tag
memory for the read set the commit token is grabbed and the
transaction continues. The atomicity is now enforced by the
commit token. Grabbing the commit token before commit is
intended as a backup solution on buffer overflow. It effec-
tively serializes the atomic sections. The same mechanism
can also be used to protect I/O operations that usually cannot
be rolled back. On an I/O operation within a transaction the
core also grabs the commit token.

C. Conflict Detection

Conflict detection can be performed early, when the first
conflict really happens, or late on commit. From the analysis
point of view both approaches lead to the same WCET. Early
conflict detection is an average-case optimization.

Early conflict detection is very expensive in hardware
as the buffer local write traffic has to be observed by all



other cores. That means n — 1 cores have to listen to the
other n — 1 cores. This is the same effort that is needed for
a cache coherence protocol. Therefore we propose to use
late conflict detection during the commit phase. When one
transaction commits its write buffer to the shared memory
all other transaction units just need to listen to this write
burst — leading to maximum of n — 1 listeners to a single
writer.

When a conflict is detected the corresponding thread can
be notified to abort the transaction early or late. Early
notification can be represented by a thrown exception. Late
notification just marks the transaction for an abort and the
abort can be communicated at the end of the transaction.
Again from a real-time perspective the worst-case behavior
is the same and the implementation of the late notification
is simpler in hardware. It gives also a cleaner software
interface.

Transactions that are marked as aborted, but continue
to run their transaction, are called zombie transactions.
Zombie transactions can see a mix of old and committed
data. Therefore, the invariant of the atomic section is not
preserved. As those transactions will be aborted at the end of
the transaction they do not change the global state. However,
zombie transaction can throw unexpected exceptions (e.g.,
divide by zero) or run infinite loops. Thrown exceptions for
a transaction that is marked aborted can be safely ignored.
To avoid infinite loops the abort status has to be checked
on branches. A branch can simply be redirected to the abort
handler.

IV. RTTM ANALYSIS

In order to make use of TM in real-time systems we
need to show that it is possible to calculate a bound for
the execution time of every thread in the given system. We
will show that the number of retries for any given transaction
is bounded and the WCET of a task can be calculated.

Definition 1. For the analysis we assume a real-time system
consisting of n threads 71 ... T, that each contain a single
atomic region, which is executed only once per period. Each
thread has a period T; and a WCET (in scheduling theory
often called cost) t.; that includes the execution time t,, of
the atomic section.

The preliminary WCET bounds the thread’s execution
time per period without TM conflicts, i.e., it does not account
for aborts and retries. However, the successful execution of
the atomic region is included. When the maximum number
of retries r is known, the final WCET t,,ce: 1S

twcet = te + 1tq (1)

Conflicts occurring at runtime are resolved by aborting
and restarting all but one of the involved transactions. Figure
2 illustrates this resolution process for mutually conflicting

Thread Il Sucessfull commit

I Abort/Retry

>

Retries

Figure 2. Conflict resolution in RTTM.

threads. In the worst-case phasing all threads start their
respective transaction at the same time and simultaneously
try to commit the transaction’s state to the shared memory.
Only one of the threads is allowed to commit its state, for all
others the transactions are aborted and restarted. In the next
round, the same situation repeats with the exception that the
previously winning thread does not participate in the race.
The number of competing threads thus decreases with each
round until all threads where able to commit.

Definition 2. The worst-case time for resolving any TM
conflict in a real-time system such that every thread was
able to commit its local transaction state is referred to as
ty

This resolution time ¢, is influenced by transactions of
other threads that conflict with the threads own transaction,
i.e., the completion of another transaction may cause the
threads running transaction to be aborted when the write set
of the former transaction overlaps with the read set of the
latter. To bound the conflict resolve time, two transactions of
thread 7; must be separated at least by the resolution time ¢,..
Therefore, one thread will influence the conflict resolution
only with a single transaction.

Lemma 1. Under the assumption that the deadline of a
thread T is not longer than its period T two transactions
are separated by at least the resolve time t,.

Proof: To meet the deadline following criterion must
be met:

te—ta+t, <T 2

With one transaction per period the worst case is a late
start of the transaction in period k£ and an early start at period
k + 1. Due to (2) the latest start time tfate, relative to the
period k start time th, is

thie =t +T -1, 3)
The earliest start time t’;;lly is at the begin of the period. The

period start times t* and t**! are separated by the period
T = t**1 — ¢* The minimum difference t,,;, of the start



times is
tmin = thariy = tate )
=ttt yT 1) 5)
= ¢FHl kT4, (6)
= T—-T+t, @)
= t, (®
||

Theorem 1. For n periodic threads that contain a single
transaction the maximum number r a single thread has to
reexecute that transaction is

r=n-—1 ®

Proof: We assume the critical instant where n threads
commit their atomic section at the same time. One thread
will commit and n — 1 threads will have to perform a retry.
We again assume a critical instant where now n — 1 threads
execute their atomic region and n—2 threads have to execute
their atomic region a 3rd time. The last thread that will
commit was aborted n — 1 times and had to reexecute the
atomic region n — 1 times. In that case r = n — 1.

|

With the simplification of equal' transaction times Vi €
{1,...,n} : tq, = t, the resulting resolve time is

tr = (r+ 1)t (10)

The above analysis can also be used to calculate the
retry bounds of compare-and-set (CAS) operations, which
are available on current CMP systems. To include several
transactions per period in the analysis, those transactions can
be modeled as several threads with the same period and a
single transaction. The resulting bounds will be conservative,
but safe.

Considering individual transactions times t,, and the
resulting individual resolve times ¢,, is considered future
work. Tightening the bound for a thread that contains more
than one transaction is considered future work.

A. Program Analysis

The use of transactional memory greatly simplifies the
programming model and has the potential to reduce typical
synchronization errors and deadlocks. However, it also de-
mands for accurate program analysis that allows to (semi-)
automatically infer the interdependencies between threads
and transactions. The analysis is required to accurately
derive the conflict sets and the size of the read and write sets
for each thread. Tight conflict sets result in lower bounds on
the maximum retry count.

The conflict sets can be computed efficiently using flow-
insensitive, context-sensitive points-to analysis. For every

1Or using the maximum value of ¢, = maz(ta; ).

instruction that is executed within an atomic section, the
set of possible pointers is calculated and combined to
summarize the possible memory locations referenced by the
transaction. Two transactions are considered to conflict if the
memory locations computed by the analysis overlap, such
that one thread potentially updates a location that the other
thread potentially reads from. The accuracy of the analysis
directly influences the number of retries that need to be
accounted for in the final WCET.

Context-sensitive points-to analysis has successfully been
applied on large programs in the context of various trans-
formations and optimizations [26], [14], [16] such as elim-
ination of type-checks for casts or receiver-type analysis
for virtual method invocations. Static detection of race
conditions in multi-threaded programs [17], [18] is an im-
portant application that is highly related to the problem of
determining conflict sets.

The internal buffers that hold the local state for each
transaction are limited in size. This can lead to buffer
overflows in the case when the set of referenced memory
locations grows too large. RTTM is able to handle such
overflows, at the expense of performance, by serializing
transactions. In case of an overflow the global commit token
is acquired and commit of all other transactions is blocked.

Identifying the size of the read and write set of a trans-
action cannot be done using points-to analysis. Instead, a
symbolic analysis is required that accurately models all
possible states of the internal buffers for every program
point. We consider abstract interpretation to be the best
approach to perform the desired analysis. Previous work on
cache analysis using abstract interpretation showed promis-
ing results [2]. In fact, the internal organization of the
transaction buffers is similar to fully associative caches. It
is thus likely that results on cache analysis can be applied
to identify transaction overflows.

We have used the WALA analysis library [1] for some
preliminary tests to get insights into the analysis problems
for RTTM. The results show that the required analysis is
feasible for real-world applications. Details are given in the
next section.

V. EVALUATION

For a first evaluation of RTTM we have implemented
RTTM within a simulation of the Java processor JOP [21].
The simulation is an interpreting JVM that can execute the
linked binaries for JOP. It contains emulations of JOPs I/O
devices, the memory system, and the caches. Furthermore,
the simulation has the same restrictions as JOP as is primar-
ily intended for debugging.

The simulation was extended to simulate a chip-
multiprocessor version of JOP. The interpreter loop executes
bytecodes of several JVMs and the switch between the JVMs
is at bytecode level. Therefore, we can simulate the fine grain
interaction of a real CMP system. The execution speed of



// The producer task
while (cnt<Const.CNT) {
RTTM.start();
if (!queue.full ()) {
++Cnt;
queue.enq((T) obj);

RTT%\/I.end();
}

// The consumer task
while (cnt<Const.CNT) {
RTTM.start();
Object obj = queue.deq();
if (objl=null) {
++cnt;

RTT}I,\/I.end();
}

// The mover task
while (cnt<Const.CNT) {
RTTM.start();
if (lin.full ()) {
Object obj = out.deq();
if (objl=null) {
in.enq((T) obj);
++CNt;

}
RTT%\/I.end();

Figure 3. The producer, consumer, and mover tasks

the simulation, when running on an actual PC, is similar to
the execution time on the real hardware — a JOP clocked
at 100 MHz. Within this simulation we are able to gather
some statistics on the RTTM behavior that will guide the
hardware implementation.

A. Examples

RTTM is evaluated with a few micro-benchmarks imple-
menting different configurations of the producer/consumer
pattern. We use two different buffers for the data exchange:
(1) the standard Java Vector, and (2) a bounded queue. Three
types of tasks exchange information: the task Producer, the
task Consumer, and the task Mover. All tasks run in a tight
loop and perform their operations 1000 times. Figure 3
shows the code for the three tasks for the queue version.
The Producer inserts 1000 objects into the buffer. The same
object is reused to provoke maximum transaction collisions
in the examples. The Consumer removes elements from the
buffer.

The Mover task is the classic example that does not
compose with traditional locks. An element shall be removed
from queue A and inserted into another queue B with the
invariant that the element has to be either in A or B.
When the queues use internal locks for the synchronization,

Address set

Thread Trans. Retries Write Read R & W
Producer 1000 0 654 673 1316
Consumer 1001 1000 4 15 15
Table 1
SINGLE VECTOR
Address set
Thread Trans. Retries Writet Read R & W
Producer 1000 0 654 673 1316
Mover 1001 501 7 23 23
Consumer 3502 1000 4 15 15
Table II
TwWO VECTORS
Address set
Thread Trans. Retries Write Read R & W
Producer 1 1000 0 654 673 1316
Consumer 1 1001 501 4 15 15
Producer 2 1000 0 654 673 1316
Consumer 2 1002 501 4 15 15

Table IIT
TWO INDEPENDENT VECTORS

the transfer needs to be protected by an additional lock.
However, other threads that operate on the queues are
usually not aware of the additional transfer lock. With atomic
sections this operation composes naturally.

Tables I-VI show the transaction statistics for each worker
thread for the six examples. The tables show the number of
transactions committed, retried after an abort, and the size
of the write set, the read set, and the union of the read and
write set.

With the first experiment, the Vector based communication
with 2 threads (one producer and one consumer), shown in
Table I, we see large read and write sets. The consumer does
not keep up with the producer and the Vector is internally
resized to buffer the request. The experiment shows that this
kind of data structure is not ideal for real-time systems. The
Vector based communication with 3 threads (one producer,
one mover, and one consumer), shown in Table II, shows
the similar issue with the resizing of the internal array in
the first queue. As the code of the Mover takes longer to
execute than the code of the Consumer the Vector between
these threads does not grow. The last Vector example shows
two independent producer/consumer pairs. As the simulation
runs all cores in lock-step, the results of both pairs, shown
in Table VI, is almost identical.

We have run the same examples with bounded queues for
the communication. The results of the simulation are shown
in Tables IV-VI. As the queues are bounded we see only
small read and write sets. From the results in Table V we can
derive a few observations on the three thread example: (1)
The Mover task has the longest execution time and limits
the throughput. The other two tasks execute their atomic



Address set

Thread Trans. Retries Write Read R & W
Producer 1000 999 3 14 14
Consumer 5359 637 2 9 9
Table IV
SINGLE QUEUE
Address set
Thread Trans. Retries Write Read R & W
Producer 5317 208 3 14 14
Mover 1003 1006 4 21 21
Consumer 8420 269 2 9 9
Table V
TWO QUEUES
Address set
Thread Trans. Retries Write Read R & W
Producer 1 1000 999 3 14 14
Consumer 1 5360 636 2 9 9
Producer 2 1000 999 3 14 14
Consumer 2 5371 633 2 9 9
Table VI

TwO INDEPENDENT QUEUES

sections more often finding the queue either full (Producer)
or empty (Consumer). (2) As the test for full and empty
does no change the state of the queue the retry count for
the Producer and the Consumer is quite low. (3) The Mover
task is aborted as often as it successfully commits.

In summary, we evaluated the RTTM with examples
that stress the transaction system to observe some real
conflicts. All threads run in a tight loop executing an atomic
section. Even under this load no thread starved. For real-
world applications the atomic section is only a small part
of the workload and conflicts are seldom. We have run
some examples with periodic threads, but could not produce
enough conflicts to provide interesting results.

B. Preliminary Analysis Results

As discussed in Section IV-A, the program analysis is a
cornerstone for the successful identification of possible con-
flicts between threads and their corresponding transactions.
To gain some initial insights we have evaluated the feasibil-
ity of the proposed program analysis using the open source
analysis library WALA [1]. The existing flow-insensitive,
context-sensitive points-to analysis [26] was used to analyze
the sample programs. In particular, we were interested
in the memory locations referenced within transactions of
the worker threads. All touched memory locations were
summarized using points-to sets within functions of interest,
e.g., the queues internal implementation, that are intersected
in order to identify possible transaction conflicts.

The analysis builds an abstract representation of the
program’s heap based on allocation sites, i.e., program points
where new objects are allocated on the heap. Two live

Producer

Figure 4. Conflict sets represented as an interference graph for the two
queues example.
Producer
read set  Qo.wrPtr, Qo.rdPtr, QQo.buffer.length
write set  Qg.buffer[], Qo.wrPtr
Mover
read set  Qo.wrPtr, Qo.rdPtr, Qo.buffer.length, Qo.buffer[]
Q1.wrPtr, QQ1.rdPtr, Q)1 .buffer.length
write set  Qq.buffer[], Q1.wrPtr, Qo.rdPtr
Consumer
read set  @Qi.wrPtr, Q1.rdPtr, Q1.bufferlength, Q) .buffer[]
write set  Qq.rdPtr
Figure 5. Read- and write-sets computed by the points-to analysis.

objects allocated at different allocation sites may never
reside at the same memory location. Our results show that a
context-insensitive points-to analysis is not suited for our
purpose, as it is not able to distinguish allocation sites
within classes that are often reused. For example, the internal
buffers of queues, lists, and vectors are usually allocated
within the container’s constructor. Context information is
needed to be able to distinguish accesses to these internal
data structures.

We have found that analyzing the standard primitives of
the Java class library is considerable more complex with
respect to context-sensitivity. This is not surprising as the
standard library is not specifically intended to be analyzable
or to be used in real-time applications. Objects and buffers
are more frequently allocated and reallocated at various
program points within libraries, often combined with a large
depth of the call tree. This leads to a considerable higher
complexity for the points-to analysis and consequently vague
points-to relations. In addition, data structures are more
often copied resulting in large read and write sets and thus
pessimistic results for the analysis of transaction overflows.

Nevertheless, for all examples presented in the last section
the analysis was able to correctly identify the conflicts
between transactions. The resulting conflict sets for the
two queues example is shown as an interference graph in
Figure 4. The analysis correctly identifies 2 queues )y and
()1 that are accessed within the transactions of the Producer,
Mover, and Consumer threads. The internal buffers of these
queues are allocated in the queue’s constructor and are never
reallocated or copied. It is possible to distinguish them using
a minimum length of the call string of 2 in our example.



Figure 5 depicts the read and write set computed by the
points-to analysis. As can be seen the Producer thread may
conflict with the Mover thread via the write pointer and
the internal buffer of its queue (Qo.wrPtr, Qo.buf fer(]).
The conflict for the opposite direction is caused by the
corresponding read pointer (Qg.rdPtr). The same applies
to the conflicts between Mover and Producer, except for the
interchanged roles of the two threads. Most importantly the
read and write sets proof that the Producer and Consumer
threads may never interfere.

The analysis of the other examples yields similar results.
In particular, the examples with independent queues and
vectors are of interest. The read and write sets determined
by the points-to information show that only one producer
may conflict with its corresponding consumer and vice
versa. However, conflicts with the other running threads are
impossible.

An interesting problem arises for the benchmarks based
on the standard Vector implementation. The internal buffers
of theses vectors can dynamically grow over time and thus
need to be reallocated and copied. This poses two problems
to the analysis: (1) the size of the read and write sets is
virtually unbounded and (2) the minimum context required
for accurate points-to information grows. The first problem
arises from the fact that the current size of the vector
is not known statically — in fact it cannot be predicted
for the considered benchmarks at all. When the vector
needs to be expanded it is not clear how many elements
need to be copied, consequently all Producer threads of
the vector benchmarks potentially overflow. The second
problem arises from the programming style employed for
the implementation of the Java runtime library. Common
operations are factored out and (partially) distributed across
different classes and methods. This increases the minimal
call string length required to achieve accurate points-to
information and thus complicates the analysis. For large
programs this may lead to imprecise data, because a full
analysis is too expensive in terms of memory consumption
and computation time.

We conclude that the analysis techniques available today
are powerful enough to achieve accurate data on conflicts
between atomic sections and potential transaction overflows.
However, as can be seen for the implementation of the
standard Vector, programmers of real-time applications need
to take the limitations of the analysis and the underlying
hardware into account.

C. Hardware Implementation

We have implemented a first prototype of the transaction
buffer for the write set in a field-programmable gate array
(FPGA). As expected the high associativity of the transaction
buffer results in a high resource consumption and limits the
maximum clock frequency. Table VII shows the results for
a single buffer in a low-cost Altera Cyclone-I FPGA. The

associativity LC  Memory Fmax

16-way 528 0.5 KBit 137 MHz

32-way 937 1 KBit 121 MHz

64-way 1768 2 KBit 113 MHz

128-way 3425 4 KBit 103 MHz

256-way 6743 8 KBit 94 MHz
Table VII

IMPLEMENTATION RESULTS FOR A TRANSACTION BUFFER

resource consumption is given in logic cells (LC) and in
memory bits. The design was constraint to meet a maximum
clock frequency of 100 MHz.

To set the numbers in relation to a processor core: the cur-
rent version of JOP consumes 3590 LCs and the maximum
frequency in the Cyclone-I device is 93.6 MHz. Therefor,
a buffer for up to 256 words would be feasible without
restricting the maximum clock frequency. However, the
resource consumption for such a large buffer is prohibitive.
The table shows the resource consumption for the write set
buffer; the read set buffer will consume about the same
amount of hardware.

Due to the high hardware cost, the transaction buffer
should be reused as normal, high-associative data cache
outside of a transaction. Another option is to use a shared
tag memory for the read and write set. The results from the
simulation suggest a common tag memory as most write
addresses are also in the read set. In that case, the tag
memory is extended with a read and a write bit. On a commit
only the entries where the write bit is set are written back
to the memory.

VI. CONCLUSION

This work represents the first steps towards a new syn-
chronization paradigm for hard real-time systems. We have
introduced real-time transactional memory and explored
design issues on chip-multiprocessors. We showed that the
maximum number of retries of this optimistic concurrency
protocol can be bounded for periodic threads. Our simulation
results and first analysis results are encouraging and show
that a simplified programming model with bounds on the
number of transaction aborts and time predictability is
achievable.
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