

Enhancing and Optimizing a Data Protection Solution

Ludmila Cherkasova, Roger Lau, Harald Burose, Bernhard Kappler

HP Laboratories
HPL- 2009-175

Keyword(s):
Color tiles, 3D bar codes, security printing, payload density, color

Abstract:
Analyzing and managing large amounts of unstructured information is a high priority task for
many companies. For implementing content management solutions, companies need a
comprehensive view of their unstructured data. In order to provide a new level of intelligence
and control over data resident within the enterprise, one needs to build a chain of tools and
automated processes that enable the evaluation, analysis, and visibility into information assets
and their dynamics during the information life-cycle. We propose a novel framework to utilize
the existing backup infrastructure by integrating additional content analysis routines and
extracting already available filesystem metadata over time. This is used to perform data analysis
and trending required for adding performance optimization and self-management capabilities to
backup and information management tasks. Backup management faces serious challenges on its
own: processing ever increasing amount of data while meeting the timing constraints of backup
windows could require adaptive changes in backup scheduling routines. We revisit a traditional
backup job scheduling and demonstrate that random job scheduling may lead to inefficient
backup processing and an increased backup time. In this work, we use a historic information
about the object backup processing time and suggest an additional job scheduling, and automated
parameter tuning which may significantly optimize the overall backup time. Under this
scheduling, called LBF, the longest backups the objects with longest backup time) are scheduled
first. We evaluate the performance benefits of the introduced scheduling using a realistic
workload collected from the seven backup servers at HP Labs. Significant reduction of the
backup time(up to 30%) and improved quality of service can be achieved under the proposed job
assignment policy.

 External Posting Date: December 16, 2009 [Fulltext] Approved for External Publication
 Internal Posting Date: August 6, 2009 [Fulltext]

 Published in Proceedings of the 17th IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS'2009), London, UK, September 21-23, 2009.

© Copyright Proceedings of the 17th IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS'2009), 2009

Enhancing and Optimizing a Data Protection
Solution

Ludmila Cherkasova, Roger Lau
Hewlett-Packard Labs

Palo Alto, CA 94304, USA
{lucy.cherkasova, roger.lau}@hp.com

Harald Burose, Bernhard Kappler
Hewlett-Packard,Technology Solutions Group

Schickardstrasse 25, Boeblingen, Germany
{harald.burose,bernhard.kappler}@hp.com

Abstract— Analyzing and managing large amounts of unstruc-
tured information is a high priority task for many companies.
For implementing content management solutions, companies need
a comprehensive view of their unstructured data. In order to
provide a new level of intelligence and control over data resident
within the enterprise, one needs to build a chain of tools and
automated processes that enable the evaluation, analysis, and
visibility into information assets and their dynamics during the
information life-cycle. We propose a novel framework to utilize
the existing backup infrastructure by integrating additional con-
tent analysis routines and extracting already available filesystem
metadata over time. This is used to perform data analysis and
trending required for adding performance optimization and self-
management capabilities to backup and information management
tasks.

Backup management faces serious challenges on its own: pro-
cessing ever increasing amount of data while meeting the timing
constraints of backup windows could require adaptive changes
in backup scheduling routines. We revisit a traditional backup
job scheduling and demonstrate that random job scheduling may
lead to inefficient backup processing and an increased backup
time. In this work, we use a historic information about the object
backup processing time and suggest an additional job schedul-
ing, and automated parameter tuning which may significantly
optimize the overall backup time. Under this scheduling, called
LBF, the longest backups (the objects with longest backup time)
are scheduled first. We evaluate the performance benefits of the
introduced scheduling using a realistic workload collected from
the seven backup servers at HP Labs. Significant reduction of
the backup time (up to 30%) and improved quality of service
can be achieved under the proposed job assignment policy.

I. INTRODUCTION

Unstructured data is the largest and fastest growing portion
of most enterprise’s assets, often representing 70% to 80% of
online data. As companies implement enterprise-wide content
management (such as information classification and enterprise
search), and the volume of data in the enterprises continues
to increase, establishing a data management strategy requires
an insight into data trends that is currently unavailable. While
many CIOs are concerned solely with issues of information
management, such as classification and search, IT departments
must grapple with the difficult questions of data protection,
resource allocation, and management. Examples include:

• How many different types of data do we have and how
quickly are they growing?

• What are the most popular data types (and the applica-
tions that generate them)?

• How much new data is added/modified/deleted over time?

• What are the rates of growth? What are the overall storage
requirements and trends over time?

Currently, enterprises have little visibility into the historical
patterns and behaviors of their data, making it difficult (if
not impossible) to identify these trends. Yet, answering these
questions becomes essential for designing and configuring
the resources and application constraints that IT professionals
deal with: application consolidation, resource allocation, stor-
age sizing, quota management, backup system configuration,
and so forth. System administrators struggle to manage and
scale their backup infrastructure to protect their data and
increase data availability. Backup management faces serious
challenges: processing the ever increasing amount of data
while meeting the timing constraints of backup windows
requires adaptive changes in scheduling incremental and full
backups during 52 weeks a year. Analysis of the backup data,
data dynamics, and trends is useful to optimize the backup
management itself. Efficiency of solving capacity planning
problems, optimizing scheduling and resource allocation tasks
significantly depends on our ability to analyze historic data and
extract trends. Answering data trending questions requires a
historical summary of metadata that reflects sufficient aspects
and details of the data over time. Although we are currently
building a research prototype to collect metadata from all of
the information across enterprise [18], this information can
also be gathered from existing sources, such as enterprise
backups.

HP Data Protector is HP’s enterprise backup offering.
Currently, Data Protector maintains course-grained metadata
of each backup period which can be used to provide data
points for initial metadata analysis and trending. Furthermore,
upcoming versions of Data Protector will include a robust
data analysis pipeline, providing hooks for more complex data
analysis and metadata collection. The backup infrastructure
is a promising place to integrate additional content analysis
routines as well as to extract already available filesystem
metadata and perform data analysis using historical filesystem
snapshots. Having visibility into the location of files in the
corporate network and machines will be very useful in legal
cases. Using the backup catalogue to prove which user had
access at which time to a file and who had a copy on their
desktop or laptop computer will become more important to
know. Understanding the type of data located on a computer
could also be used as a trigger of further investigating data on

a specific computer and performing additional content analysis
of the data. Analyzing the metadata allows the identification
of a suspect system and triggering a restore of old data to a
temporary (potentially even virtual system) for the analytics
to run without the employee noticing.

We revisit a traditional backup job scheduling and demon-
strate that random job scheduling traditionally used in the
backup tools may lead to inefficient backup processing and
an increased backup time. In this work, we use a historic
information about the object backup processing time and
suggest an additional job scheduling and automated parameter
tuning which may significantly optimize the overall backup
time. Under this schedule, called LBF, the longest backups
(the objects with longest backup time) are scheduled first.

In our performance study, we use a realistic workload
collected from seven backup servers at HP Labs. There are
significant time savings (40 min-212 min) achieved under the
new job scheduling for all seven backup servers under study.
The reduction of the backup time (5%-30%) depends on the
size distribution of objects the backup server is responsible
for. When a backup server has a significant portion of objects
with a long processing time, the proposed new job scheduling
is especially efficient and provides significant backup time
reduction.

Typically, a backup tool has a configuration parameter
which defines a level of concurrency, i.e., a number of concur-
rent processes (called disk agents) which can backup different
objects in parallel to the tape drives. The drawback of such
an approach is that the data streams from different objects
are interleaved on the tape, and when data from a particular
object needs to be restored there is a higher restoration time
for its retrieval such data compared with a continuous, non-
interleaved data stream written by a single disk agent. Using a
workload analysis of 7 backup servers in HP Labs, we observe
that the overall backup time is often limited by the longest
job duration, which can not be further improved. In such
situations, a tool can use a reduced number of disk agents to
avoid additional data interleaving (or recommend a decreased
number of tape drives) while still optimizing the overall
backup time. In this work, we provide a variety of additional
algorithms which help in automating system administrator
efforts and optimizing the backup tool performance.

The remainder of the paper is organized as follows. Section
II presents our framework for assessing dynamics of enterprise
information assets and provides a workload analysis of the
backup servers under study. Section III outlines a traditional
backup tool architecture, it explains potential performance
inefficiencies of the current approach, and provides a formal
problem definition. A new optimized backup scheduling is
introduced in Section IV accompanied by a performance
study to evaluate its performance benefits. An algorithm for
creating balanced backup groups is introduced in Section V.
Section VI proposes an approach to minimize data streams
interleaving while optimizing the backup time. A review of
related work is presented in Section VII. Finally, Section VIII
draws conclusions.

II. FRAMEWORK FOR ASSESSING DYNAMICS OF
ENTERPRISE INFORMATION ASSETS

To provide a “first-approximation” summary of unstruc-
tured information assets and their trends over time in the
enterprise, we exploit historical data available from backup
databases. Companies now store months to years of backup
metadata online, in order to provide the ability to quickly
find and recover files when they are needed. In this way,
companies’ backups already capture business-critical data and
their evolution over time. However, backup tools and utilities
are not designed to support file reporting and their metadata
analysis, classification, aggregation, and trending over time.
We believe that there is an excellent opportunity to fill this
void by extending the backup tools to provide valuable data
and metadata analysis services in an automated, representative,
and fast manner.

Conceptually, backup tool functionality is built around the
backup session and the objects (mount points or filesystems)
that are backed up during the session. Currently, there is no
direct and simple way to retrieve only the file metadata for
the entire filesystem and to perform a specific analysis of
these data over time. To extract the snapshot of filesystem
metadata at a particular moment of time, one needs to perform
a sequence of steps to retrieve a filesystem catalogue. This
procedure might take several hours for a large collection of
files (e.g., 1,000,000 files or more), which makes the whole
process very inefficient (time- and space-wise) when such
snapshots need to be extracted for analysis, building statistics
and trends over longer durations of 6-18 months. The existing
data structures in the backup DB do not support this large-
scale metadata retrieval and data analysis.

We propose creating representative, complementary filesys-
tem metadata snapshots during the backup sessions. The
format of such snapshots is specifically designed to derive de-
tailed statistics and trends, and to perform an efficient analysis
to answer all of the questions raised in the previous section.
Furthermore, these snapshots can be further folded into a very
compact filesystem metadata summary which uniquely reflects
filesystem evolution and dynamics over time.

Under this approach, there is an entry with metadata for
each file, link, or directory. This data includes file’s permis-
sions, owner, group, ACLs, size, date, time, and a file name
(with a full path). The entries are sorted in by the file name.
Additionally, there is a field in each entry that represents a
timestamp of the backup, denoted as the backup id.

When the next snapshot is generated for the same filesystem
(say, a week later), we combine them in a single summary in
the following way. We merge both tables and sort them in
the alphabetic order by the file name. In such a way, if a
file did not change between the backups, then there are two
identical entries in the table side-by-side (they only differ by
their backup ids). In a similar way, we can see which files got
modified, or deleted, or newly introduced to the system.

For each full consecutive backup, we create a set of metrics
that reflect the quantitative differences and dynamics of the
system over time (the same characterization is used for large

file subgroups of interest: office files, text files, PowerPoint
files, executables, etc):

• Total – the overall number of files Nt and their aggregate
size St;

• Cold – the number of unchanged (cold) files Nc and their
aggregate size Sc;

• Modified – the number of modified file Nm and their
aggregate size Sm;

• New – the number of newly added files Nn and their
aggregate size Sn;

• Deleted – the number of deleted files Nd and their
aggregate size Sd.

This set of metrics serve as a filesystem signature. It repre-
sents the system size, both the number of files and their storage
requirements, and efficiently reflects the system dynamics over
time. The introduced filesystem signature presents the fraction
of the files which are stable and do not change between
the backups, as well as the churn in the system which is
characterized by the percentage of files that are modified,
added, or deleted in the system. This data collected over time
is used in a regression model for trending analysis.

Instead of keeping multiple copies of file metadata in
different backup snapshots, we create a compact summary that
is representative of the overall filesystem and all its files over
time. The summary contains the latest file metadata (for each
file) and a set of additional fields that represent file dynamics:

• introduction date – the backup id of the earliest snapshot
that has the file;

• counter of modifications over time – this counter is set
to 0 when a file is introduced to the system, and gets
increased each time a modification to the earlier recorded
metadata is observed,

• modification date – the backup id that corresponds to the
last modification date (initialized to empty),

• deletion date – the backup id that corresponds to the date
when the file was deleted (initialized to empty).

This filesystem metadata summary is compact and detailed
at the same time: it characterizes (conveniently and uniquely)
the filesystem history and evolution over time.

We’ve implemented a prototype of our filesystem metadata
analysis module on the top of the HP Data Protector 6.0
tool [12]. Using seven backup servers in HP Labs, we per-
formed a detailed metadata and trend analysis of the backed
up filesystems over 1.5 years.

There were 570 objects1 in the set. We classified them using
the following three groups:

• Small objects: with less than 5,000 files. Typically (but
not always), the small objects are system files. The
object size (in bytes) in this category is quite diverse:
from 20 KB to 587 GB. This stresses the importance of
having both dimensions in the filesystem characterization:
number of files and their storage requirements.

1In this paper, we use the terms filesystem and object, interchangeably.

• Medium objects: with more than 5,000 files but less than
100,000 files. The object size in this group was in a broad
range from 202 MB to 1.2 TB.

• Large objects: with more than 100,000 files. The largest
object in the set had 4.5 million files. The object size in
this category was in a range 665 MB - 750 GB.

Table I summarizes the object characterization in the ana-
lyzed collection. While each object group constitutes about one
third of the overall collection, the impact of the large objects is
clearly dominant: the large objects are responsible for 93.2%
of all the files and 66% of all the bytes in the collection.

Object % of All % of All % of All
Type the Objects the Files the Bytes
Small 41% 0.3% 8%

Medium 31% 6.5% 26%
Large 28% 93.2% 66%

TABLE I
OBJECT CHARACTERIZATION IN THE ANALYZED COLLECTION.

When we compared weekly (full) backups aiming to char-
acterize dynamics of the collection under study, we found
that almost 50% of all the objects did not change between
the backups. For the remaining objects the modifications are
relatively small: for 95% of the objects the cold files are
dominant and they constitute 90-99% of the files and the rates
of modified and newly added files are in the range 1-10%. By
grouping the filesystems in cold, slow-changing, and dynamic
collections, one can optimize how often full versus incremental
backups are performed for different type collections.

Figure 1 shows the profiles of the analyzed 570 objects over
time. There are two lines in the figure: first line represents the
object profile in the beginning of February 2009, while the
second line reflects the March profile. Figure 1 (a) shows the
number of files per object (sorted in increasing order) on a
logarithmic scale. Figure 1 (b) presents the size of the objects
in MBytes (sorted in increasing order) on a logarithmic scale.
Both lines are very close reflecting a very gradual change in
the studied file collection over time.

We believe that the results of the proposed workload anal-
ysis can address a broader spectrum of performance and data
management optimizations. The automated analysis of the
filesystem “life span” (e.g., identifying filesystems and infor-
mation sources that became “cold”) is useful for automated
file migration in multi-tier storage systems. The analyzed file
metadata and their summaries provide useful views about man-
aged enterprise information assets, their dynamics and trends
based on available file attributes and organization structure.
We are experimenting on how to better present these statistics
and summaries, visualize and organize trends and “highlights”,
as well as to provide convenient interface for additional data
mining. We envision a few storage-related and information-
management applications which will consume this data.

III. TRADITIONAL BACKUP TOOL AND ITS POTENTIAL
PERFORMANCE INEFFICIENCIES

The functionality of a backup tool is built around a backup
session and the objects (mount points or filesystems of the

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

 N
um

be
r o

f F
ile

s

Objects

February
March

(b)

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07

 0 100 200 300 400 500 600

Si
ze

 in
 M

B

Objects

February
March

Fig. 1. Object Characterization in the Analyzed Collection during February and March of 2009: (a) number of files per object; (b) object
size in MBytes.

client machines) that are backed up during the session. The
traditional architecture of a backup tool which uses a tape
library is shown in Figure 2.

Fig. 2. Traditional Architecture of a Backup Tool with a Tape Library.

Typically, there are 4 to 6 tape drives (each solution comes
with a fixed number of tape drives; it is not a parameter). Each
such tape drive has a configuration parameter which defines
a concurrency level, i.e., a number of concurrent processes
(called disk agents) which can backup different objects in
parallel to the tape drives. Traditionally, this is done because a
single data stream generated by a disk agent copying data from
a single object can not fully utilize the capacity/bandwidth
of the backup tape drive due to slow client machines. To
optimize the total backup throughput, a system administrator
can configure up to 32 disk agents for each tape drive to
enable concurrent data streams from different objects at the
same time. The drawback of such an approach is that the
data streams from 32 different objects are interleaved on the
tape, and when the data of a particular object needs to be
restored there is a higher restoration time for retrieving such
data compared with a continuous, non-interleaved data stream
written by a single disk agent.2

When a group of N objects is assigned to be processed by
the backup tool, there is no way to define a sequence or order

2In the HP Labs environment, each instance of the backup tool has 4
tape drives. Based on the results of performance tuning, each tape drive
is configured with 4 disk agents. From the performed experiments, further
increasing the number of disk agents per tape drive does not improve the
backup throughput while it does introduce redundant data interleaving.

in which these objects are processed by the tool. Typically,
any available disk agent may be assigned for processing
to any object from the set, and the objects (which might
represent different mount points of the same client machine)
can be written to different tape drives. Figure 2 shows a
typical configuration of a backup tool for processing a set
of objects. There is no way to define an order in which the
objects are processed by concurrent disk agents to the different
tape drives. Potentially, this may lead to inefficient backup
processing and an increased backup time.

Here is a simple example of such inefficiency. Let there be
ten objects O1, O2, ..., O10, in a backup set, and let the backup
tool have four tape drives each configured with 2 concurrent
disk agents as shown in Figure 2, i.e., with eight disk agents in
the system. Let these objects take approximately the following
times for their backup processing: T1 = T2 = 4 hours, T3 =
T4 = 5 hours, T5 = T6 = 6 hours, T7 = T8 = T9 = 7
hours, and T10 = 10 hours. If the disk agents randomly select
the following eight objects, O1, O2, O3, ..., O7, O8, for initial
backup processing then objects O9 and O10 will be processed
after the backup of O1 and O2 are completed (since backup
of O1 and O2 take the shortest time of 4 hours), and the disk
agents which became available will then process O9 and O10.
In this case, the overall backup time for the entire group will
be 14 hours as shown in Figure 3 (a).

Clearly, the optimal scheduling for this group is to process
the following eight objects instead: O3, O4, ..., O10 first, and
when processing of O3 and O4 is completed after 5 hours, the
corresponding disk agents will backup the remaining objects
O1 and O2. If the object processing follows this new ordering
schema then the overall backup time is 10 hours for the entire
group as shown in Figure 3 (b).

While we demonstrated the backup tool behaving ineffi-
ciently with a simple example, the traditional enterprise envi-
ronment might have hundreds of objects for backup process-
ing, and it will be beneficial to automate the object scheduling
process. In the next section, we introduce an additional job
scheduler in the backup solution which aims to optimize the

(a)

(b)

Fig. 3. The backup job assignment from the job list to concurrent processes
at the tape drives: (a) random, (b) optimized.

overall backup time and helps to avoid manual configuration
efforts by system administrators who try to achieve the same
performance goal.

IV. LBF SCHEDULING TO OPTIMIZE THE OVERALL
BACKUP TIME

Typically, backup tools record useful monitoring informa-
tion about the performed backups. In this work, we are mostly
interested in the efficient management of full backups (i.e.,
when the data of the entire object is processed during a
backup) and not incremental backups, which only process
modified and newly added files from the object and which
are typically short and light in nature.

For each backed up object, there is recorded information on
the number of processed files, the total number of transferred
bytes and the elapsed backup processing time. In our solution,
we use historic information on duration for processing of
backup jobs (the jobs which were successfully completed).
One of the main questions is whether past measurements
of backup processing time are good predictors of the future
processing time, and whether they can be used for backup job
assignment and scheduling processes.

Our historic data analysis shows that while different ob-
jects might have very different backup processing time, the
processing time of the same object is quite stable over time
because of gradual changes in the object size, as was shown
in the previous section. Figure 4 presents historic snapshots
of backup job durations from the three backup servers at
HP Labs. Each figure shows reported job durations (sorted in

increasing order using a logarithmic scale) of five consecutive,
full weekly backups performed in February - March, 2009.

(a)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

O
bj

ec
t B

ac
ku

p
Du

ra
tio

n
(m

in
)

Objects

Backup Server1

1
2
3
4
5

(b)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

O
bj

ec
t B

ac
ku

p
Du

ra
tio

n
(m

in
)

Objects

Backup Server6

1
2
3
4
5

(c)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

O
bj

ec
t B

ac
ku

p
Du

ra
tio

n
(m

in
)

Objects

Backup Server7

1
2
3
4
5

Fig. 4. Historic snapshots of the backup job durations from the five
consecutive, full weekly backups performed in February - March,
2009: (a) Server1; (b) Server6; and (c) Server7.

First of all, there is a significant diversity in durations of
the backup jobs as shown in Figure 4. This data is consistent
with the analysis of object sizes in the previous section.
There are three orders of magnitude in object processing time:
some objects take only 1 min for backup while other larger
objects take 10-14 hours for their backup. Another interesting
observation is that there a significant number of “long” backup
jobs. Figures 4 (a) and (b) show that about 25% of all the
jobs performed by these backup servers are in the range
of 2-14 hours. Intuitively, we expect that the additional job
scheduling will be useful for these servers. However, the job
duration distribution shown in Figure 4 (c) is quite different:

90% of the backup jobs processed by this server are short
(less than 2 hours), there are only a few jobs in the range
of 4-5 hours, and a single job that requires about 13 hours
for its backup processing. This server might have limited
opportunities for performance optimization via backup job
scheduling compared to the two backup servers with profiles
shown in Figures 4 (a) and (b).

Finally, there is a lot of stability in the historic shapshots
shown in Figure 4. All the five lines of each graph are very
close to each other, meaning that there is a good predictability
of job processing duration over time. This monitoring data sup-
ports the use of historic information for future job scheduling.

In this work, we assume that the system administrator
already uses tuned system parameters, such as the number
of concurrent disk agents per tape drive, to optimize the
server backup throughput. Our goal is to minimize the overall
backup time processing through additional job scheduling in
the backup system.

The optimization algorithms that will be introduced in this
and next two sections can also be used in a simulation mode.
When these algorithms are used in a simulation mode, they
help in assessing the potential performance benefits for a given
workload. Additionally, a simulation mode is useful for under-
standing the outcome of different what–if? scenarios. Often, a
system administrator is interested in estimating the outcome of
possible changes to the system. If a subset of client machines is
moved from BackupServer1 to BackupServer2, then what
would be new overall backup time for BackupServer1? How
does this change the overall backup time of BackupServer2?
We believe that the simulation mode of the proposed al-
gorithms can be useful for different capacity planning and
consolidation exercises.

LBF Scheduling Algorithm:
For an upcoming full backup, we use information about the

job durations from the previous full backup. At this phase,
an ordered list of objects sorted in decreasing order of their
backup durations is created:

OrderedObjectList = {(Ob1, Dur1), ..., (Obn, Durn)}

where Durj denotes the backup duration of object Obj , and

Dur1 ≥ Dur2 ≥ Dur3 ≥ ... ≥ Durn.

Let there be N tape drives: Tape1, ..., TapeN , and each
tape drive be configured with k disk agents. We observe the
following running counters per each tape drive Tapei:

• DiskAgenti – a counter of available (not busy) disk
agents of tape drive Tapei; and

• TapeProcT imei – a counter of overall processing time
assigned to tape drive Tapei.

For each tape drive Tapei (1 ≤ i ≤ N) these counters are
initialized as follows:

DiskAgenti = k

TapeProcT imei = 0

Now, we describe the iteration step of the algorithm. Let
(Obj , Durj) be the top object in the OrderedObjectList,
and let

TapeProcT imem = min
1≤i≤N&DiskAgenti>0

(TapeProcT imei),

i.e., the tape drive Tapem has the smallest assigned pro-
cessing time, and it still has an available disk agent that can
process the object Obj .

Then object Obj is assigned for processing to the available
disk agent at the tape drive Tapem, and the running counters
of this tape drive are updated as follows:

TapeProcT imem ⇐ TapeProcT imem + Durj

DiskAgentm ⇐ DiskAgentm − 1

Intuitively, under this algorithm, we assign the longest jobs to
be processed first. In addition, we suggest the job assignment
to concurrent disk agents in such a way that it balances the
overall amount of processing time assigned to different tape
drives.

Once the disk agents are assigned some objects, the backup
processing can start. When a disk agent at a tape drive Tapem

completes the backup of the assigned object, the running
counter of this tape drive is updated as follows:

DiskAgentm ⇐ DiskAgentm + 1.

Then the disk agent of this tape drive is assigned the next avail-
able object from the OrderedObjectList, and the running
counters are updated again, and the backup process continues.

Performance Evaluation of the LBF Scheduling Algo-
rithm:

In our performance study, we use available historic infor-
mation on the duration of backup jobs collected from seven
backup servers at HP Labs. Table II shows the absolute
and relative reduction of the overall backup times when the
proposed scheduling algorithm is used for the seven backup
servers under study. First of all, significant time savings are

Backup Absolute and Relative Reduction
Server of the Overall Backup Time

week1 week2 week3
Server1 211 min (20%) 208 min (22%) 185 min (19%)
Server2 78 min (9%) 77 min (9%) 53 min (6%)
Server3 39 min (5%) 39 min (5%) 41 min (5%)
Server4 89 min (25%) 99 min (26%) 96 min (23%)
Server5 203 min (29%) 212 min (30%) 202 min (29%)
Server6 146 min (26%) 145 min (25%) 149 min (21%)
Server7 49 min (5%) 48 min (5%) 49 min (5%)

TABLE II
ABSOLUTE AND RELATIVE REDUCTION OF THE BACKUP TIME
UNDER PROPOSED SCHEDULING ALGORITHM ACROSS SEVEN

BACKUP SERVERS UNDER STUDY.
achieved across all the seven backup servers when using the
new job scheduling. The absolute time savings range from
39 min to 212 min. Moreover, these results are very consistent
for the three consecutive weeks used in the study, as shown
in Table II.

The relative performance benefits and reduction of the
backup time (5%-30%) depends on the size distribution of

objects the backup server is responsible for. When a backup
server has a significant portion of objects with a long process-
ing time ((e.g., the ones shown in Figures 4 (a) and (b) for
Server1 and Server6) the time savings are significantly higher
than in the case of only a few long running jobs (e.g., the
distribution shown in Figure 4 (c) for Server7).

Often, the duration of the longest job defines the overall
backup time, and therefore it can not be improved further.
However, in such situations, one can potentially reduce the
number of concurrent disk agents to avoid redundant data
stream interleaving while still achieving the same backup time,
as will be shown in Section VI.

V. CREATING BALANCED BACKUP GROUPS WITH BBG
ALGORITHM

Under the traditional approach, when a group of N objects
is assigned for backup processing, there is no way to define
a sequence or order in which these objects are processed by
the tool. Typically, any available disk agent may be assigned
for processing to any object from the set, and the objects that
represent different mount points of the same client machine
might be written to different tapes. This situation can be
especially annoying for smaller client machines when the
backed up client data are spread across multiple tapes.

Often, system administrators manually create the so-called
backup groups, which are assigned to different tape drives for
processing in order to control the number of tapes that are
used per server. Figure 5 shows four backup groups Backup1,
Backup2, Backup3, and Backup4, where each group is assigned
a single tape drive.

Fig. 5. Backup groups are often created for better control and
manageability.

The backup group approach could provide a better man-
ageability iff the created groups are well balanced and take
approximately the same time for processing. However, even
if manually created groups are well balanced, there is no
way to define an order in which the objects are processed
within the groups by concurrent disk agents. Potentially, this
approach may still lead to an inefficient backup processing
and an increased backup time. We apply ideas similar to
those described in previous section to automate the creation of
balanced backup groups with the so-called BBG algorithm by
using a historic information about the backup time of different
objects representing different mount points of the same client

machines. This helps to avoid manual configuration efforts
by system administrators trying to achieve the same goal. We
also introduce an additional job scheduling within each backup
group for optimizing the overall backup time.

BBG Algorithm:
First, we create an ordered list of client machines3 (each

might have multiple objects for backup processing) sorted in
decreasing order of their backup durations from the previous
full backup:

OrderedServerList = {(S1, Dur1), ..., (Sn, Durn)}

where Durr denotes the backup duration of client server Sr,
and

Dur1 ≥ Dur2 ≥ Dur3 ≥ ... ≥ Durn.

Note, that if server Sr comprised of multiple objects
(Obj

r, Durj
r), (1 ≤ j ≤ Mr) then

Durr =
∑

1≤j≤Mr

Durj
r

Let there be N tape drives: Tape1, Tape2, ..., TapeN .
Let TapeProcT imei be a running counter of the overall

processing time assigned to tape drive Tapei (1 ≤ i ≤ N).
The server assignment to different backup groups is defined

by the following iteration step of the algorithm.
Let (Sr, Durr) be the top server in the

OrderedServerList, and let
TapeProcT imem = min

1≤i≤N
(TapeProcT imei),

i.e., tape drive Tapem has the smallest assigned processing
time.

Then Sr is assigned for processing to the backup group at
the tape drive Tapem, and the running counter of this tape
drive is updated as follows:

TapeProcT imem ⇐ TapeProcT imem + Durr

After that the next server from the ordered list
OrderedServerList is considered for the assignment.

After all the servers from the list are assigned to backup
groups, there is a second stage of the algorithm for object
scheduling within the created backup groups.

To avoid processing inefficiency within the backup group,
we create an ordered list of objects for this backup group
(sorted in decreasing order of their job durations) and schedule
them in a similar way as described in previous Section IV.

The proposed algorithm automates the creation of balanced
backup groups to limit the number of tapes the client data
are written to, while also achieving a significant backup
time reduction. The performance results with seven HP Labs
backup servers are identical to ones shown in Table II (we omit
repeating this table here). This outcome is very interesting: the
algorithm was able to create the four balanced groups such that
all the smaller client servers are written to a single tape, while
still achieving the same backup time reduction as in the case
without the grouping constraints.

3This approach might be not useful or needed for large servers. In this case,
different mount points of large servers are treated as different client machines.

VI. MINIMIZING DATA INTERLEAVING AND TAPE DRIVES
FOR A GIVEN WORKLOAD

The LBF scheduling algorithm introduced in Section IV has
a number of concurrent disk agents per tape drive as the algo-
rithm parameter. However, a fixed number of concurrent disk
agents per tape drive might be not a very useful requirement.
On the contrary, it might lead to additional interleaving of
data streams on the tape. Here is a simple example of this
situation. Let there be twenty objects O1, O2, ..., O20 in the
backup set, and let the backup tool have four tape drives each
configured with 2 concurrent disk agents as shown in Figure 2.
Let these objects take approximately the following time for
their backup processing: T1 = T2 = ... = T18 = 1 hour,
T19 = 9 hours, T20 = 10 hours. If we use the new scheduling
algorithm proposed in Section IV then it will enforce the job
scheduling as shown in Figure 6 (a).

(a) (b)
Fig. 6. The job assignment in the backup tool: (a) according
to the new LBF scheduling algorithm with a fixed number (two)
of concurrent disk agents per each of the four tape drives; and
(b) according to the optimized scheduling algorithm with tuned,
minimum number of disk agents.

However, as shown in Figure 6 (a), the overall backup
time is defined by the duration of the longest job, T20 = 10
hours, and most of the disk agents in the backup system
are idle at least half of the time. Figure 6 (b) shows that
all these jobs can be scheduled without interleaving, while
completing the overall backup in the same amount of time. If
some interleaving is desirable for achieving a higher tape drive
throughput then the same idea can be used for minimizing the
number of tape drives used for processing a given workload.
Freed resources can be used for some dedicated tasks like
database backup, etc.

In this section, we introduce a useful analysis routine that
determines the minimum required number of disk agents
(DA) in the backup system for optimizing the overall backup
time. This routine (called DA-analysis) aims to automate tool
configuration with either a minimum number of disk agents
or a minimum number of tape drives in the backup system
required for efficient processing of a given workload.

DA-Analysis Algorithm:
The idea behind this algorithm is to first simulate the

achievable backup processing time under the default system
parameters. Then we repeat the simulation cycle for estimating
the backup processing time under a decreased number of disk
agents in the system. We stop the simulation once a decreased

number of disk agents in the system leads to a worse system
performance, i.e., an increased backup processing time for a
given workload.

In the simulation, we use information about the job dura-
tions from the previous full backup. At this phase, an ordered
list of objects sorted in decreasing order of their backup
durations is created:

OrderedObjectList = {(Ob1, Dur1), ..., (Obn, Durn)},

where Durj denotes the backup duration of object Obj , and

Dur1 ≥ Dur2 ≥ Dur3 ≥ ... ≥ Durn.

Let there be N tape drives: Tape1, Tape2, ..., TapeN , and
each tape drive be originally configured with k default disk
agents. Hence,

NumGr = N × k

defines a default value of overall number of disk agents
available in the system with a default configuration.

First, we simulate the backup processing by assigning the
backup jobs from the ordered list OrderedObjectList to
Group1,, GroupNumGr according to the LBF scheduling
algorithm. The object assignment is simulated using the fol-
lowing iteration step.

Let GroupProcT imei (1 ≤ i ≤ NumGr) be a counter for
overall processing time assigned to group Groupi, and which
is initialized as GroupProcT imei = 0.

Let (Obj , Durj) be the top object in the
OrderedObjectList, and let

GroupProcT imem = min
1≤i≤N

(GroupProcT imei),

i.e., Groupm has the smallest assigned processing time.
Then object Obj is assigned for processing to group

Groupm, and the running counter of this group is updated
as follows:

GroupProcT imem ⇐ GroupProcT imem + Durj

After the assignment of all the objects from the list is
completed, we compute

MaxProcT imeNumGr = max
1≤i≤NumGr

(GroupProcT imei).

The computed time MaxProcT imeNumGr defines the over-
all backup processing time under the default system parame-
ters. Then we decrease number of disk agents in the system:

NumGr ⇐ NumGr − 1,

and repeat the backup processing simulation for the decreased
number of groups NumGr − 1.

If MaxProcT imeNumGr = MaxProcT imeNumGr−1, then it
means that the same backup processing time can be achieved
with a decreased number of disk agents in the system. We
repeat the DA analysis routine until we find a minimum num-
ber of disk agents in the system that guarantees the optimized
backup time while avoiding unnecessary interleaving of data
streams at the tape drives.

Once the minimum number of disk agents in the system
is found, it is used for tuning the default configuration. For
example, let the DA analysis routine recommend 9 disk agents
total for a backup server with four tape drives. It means, that
three tape drives can be configured with 2 disk agents, and
the remaining forth tape drive with 3 disk agents.

Note that the same recommendation can be used in a differ-
ent way. For example, if the DA analysis routine recommends
9 disk agents in total, the system administrator might use this
analysis to rather reduce the number of tape drives that are
needed for processing a given workload, i.e., only use 3 tape
drives, while allocating the fourth tape drive for processing
an additional workload (such as a database backup, which
typically requires a special setup).

In our performance study, we use available historic infor-
mation on duration of the backup jobs collected from seven
backup servers at HP Labs. Table III shows the minimum
number of disk agents in the system configuration that guaran-
tees the optimized backup processing time without sacrificing
service quality. Note that the default value of disk agents for
backup servers at HP Labs was set to 4 per each tape drive,
with 4 tape drives in the original system configuration, i.e., 16
disk agents total in the original backup system.

Backup Required Number of Disk Agents to
Server Avoid Redundant Data Interleaving

week1 week2 week3
Server1 10 10 10
Server2 5 6 5
Server3 8 8 8
Server4 9 9 8
Server5 15 14 14
Server6 10 10 8
Server7 10 10 8

TABLE III
REQUIRED MINIMUM NUMBER OF DISK AGENTS IN THE BACKUP

SYSTEM WHILE OPTIMIZING OVERALL BACKUP TIME.

The results shown in Table III are quite interesting: for six
out of seven backup servers there is a significant reduction
in the recommended number of disk agents in the system
compared to the default value of 16 disk agents: five servers
might operate with 8-10 disk agents in total, while Server2
might be configured with 5-6 disk agents in total. Only
for Server5 the default configuration parameters are close
to the ones which are required for efficient processing of
the given workload. For Server5 our algorithm was able to
reduce the number of disk agents only to 14-15 from the
original 16 agents. Note that this server had the largest backup
time reduction under LBF scheduling algorithm as shown in
Table II (with 30% reduction). This means that the workload
of this backup server is quite balanced under LBF scheduling
and can not be optimized much further.

The proposed DA-analysis routine can also be used for
achieving a slightly different performance objective set by
a system administrator. For example, suppose the system
administrator cares about completing the backup in time T
(where T might be longer than the optimal time). Then

the question for DA-analysis routine is: what should be a
minimum required number of disk agents in the backup system
(or respectively a minimum required number of tape drives)
to process a given workload within the time T ? The proposed
DA-analysis algorithm is well-suited to answer this question.

VII. RELATED WORK

Researchers have studied filesystem dynamics using differ-
ent system characterization while aiming to achieve different
performance/application objectives. There were several earlier
file-system metadata studies [10], [15], [16]. They include
studying file systems of different operating systems: Digital
PDP-10 at CMU in 1981 [15], a study of file systems in 46 HP-
UX systems at Hewlett-Packard in 1994 [16], and a large-scale
study of over ten thousand Windows systems at Microsoft [10].
The mentioned studies involve filesystem snapshots taken at
a single time, and static analysis of collected metadata. This
is different compared to goals of our study which involves
analysis of information evolution and dynamics over time.

There have also been longitudinal studies of file-system
metadata, such as 48 file systems on four file servers Harvard
over a period of ten months in 1994 [17] and a large-scale
study of over sixty thousand Windows systems at Microsoft
over five years [1]. Smith and Seltzer’ study includes daily
filesystem snapshots with the goal of correlating the issues
of file layout, space allocation, fragmentation and file sys-
tem performance over time. The large-scale study performed
in [1] had yearly filesystem snapshots (i.e., five snapshots
in total) with the goal of understanding general statistics,
metadata profiles, file size distribution, changes of application
popularity among Windows users, etc., over long period of
time. While this study and its findings are very interesting,
it does not provide visibility in file changes, file life span,
and filesystem evolution over a shorter time period of weeks
and months. In our work, we propose to utilize and enhance
the existing backup infrastructure and the backup catalogues
for understanding the filesystem dynamics, files evolution, and
performing trending analysis during the information life-cycle.

The current generation of commercial backup tools [11],
[12], [19] provides a variety of different means to system
administrators for scheduling designated collections of client
machines on a certain time table. However, within the created
collection a random job scheduling is used which can lead to
inefficient backup processing and increased backup time.

Scheduling of incoming jobs and the assignment of pro-
cessors to the scheduled jobs has been always an important
factor for optimizing the performance of parallel and dis-
tributed systems (see a variety of papers on the topic [2]-
[9], [14], [20]-[23]). Designing an efficient distributed server
system often assumes choosing the “best” task assignment
policy for the given model and user requirements. However,
the question of “best” job scheduling or task assignment
policy is still open for many models. Typically, the choice of
the scheduling/assignment algorithm is driven by performance
objectives. If the performance goal is to minimize mean
response time then the optimal algorithm is to schedule the
shortest job first [8], [13]. However, if there is a requirement of

fairness in jobs’ processing then processor-sharing or round-
robin scheduling [8], [21] might be preferable. For minimizing
the makespan, or schedule length, a promising approach is to
schedule the longest job first [22], [23]. The usefulness and
performance benefits of different approaches critically depend
on the system parameters and job distribution. Moreover, in
many cases the job processing time is not-known in advance,
and should be either approximated or derived from the past
experience. In such situations, one needs to justify the accu-
racy of the approximation or the model that is used to derive
the job processing time. In our work, the analysis of the job
size distribution as well as the observation on slow and gradual
system evolution over time have motivated and led us to the
choice of the optimization technique related to the “longest
job first” processing.

VIII. CONCLUSION

For implementing content management solutions, compa-
nies need a comprehensive view of their unstructured data.
The existing commercial backup solutions do not provide any
data classification, data analysis, or trending information that
helps to improve user visibility to the nature and evolution of
backed up information assets. We propose a novel framework
to utilize the existing backup infrastructure by integrating
additional content analysis routines and extracting already
available filesystem metadata over time.

The analyzed file metadata and their summaries provide
useful views about managed enterprise information assets,
their dynamics and trends. We are experimenting on how
to better present these statistics and summaries, visualize
and organize trends and “highlights”, as well as to provide
convenient interface for additional data mining. We envision a
few storage-related and information-management applications
which will consume this data: e.g., the automated analysis
of the filesystem “life span” and identifying filesystems and
information sources that became “cold” is useful for automated
file migration in multi-tier storage systems and performing a
fewer full backups over time.

Backup management faces serious challenges on its own:
processing ever increasing amount of data while meeting the
timing constraints of backup windows. We revisit a tradi-
tional backup job scheduling and demonstrate that random
job scheduling traditionally used in the backup tools may
lead to inefficient backup processing and an increased backup
time. Our workload analysis of seven backup servers at HP
Labs shows that historic information on the object backup
processing time can be used as a good predictor in optimizing
future backup processing. We propose the additional backup
job scheduling, called LBF, and automated parameter tuning of
the backup configuration which may significantly optimize the
overall backup time and quality of service. The optimization
algorithms introduced in this paper can also be useful for
understanding the outcome of different what if? scenarios,
capacity planning and consolidation exercises.

A few unsolved problems for future work remain around
automating the parameter setting such as the optimal number
of concurrent disk agents per tape drive that optimizes the

tape drive throughput. Currently, system administrators need
to perform a set of manual tests to figure out this parameter
for their environment (it depends both on available network
bandwidth and servers I/O throughput). The goal is to “learn”
the best parameter value by observing the past performance
under different conditions. This might require introducing
additional measurement support by the DP tool.

Acknowledgments: The authors are grateful for useful
comments, suggestions, and discussions provided by our HPL
colleagues Joe Tucek, Alistair Veitch, Craig Soules.

REFERENCES

[1] N. Agrawal, W. Bolosky, J. Douceur, J. Lorch. A five-year study of
file-system metadata. Proc. of the 5th Conference on File and Storage
Technologies (FAST ’07), Feb 2007, San Jose, CA.

[2] G. Blelloch, P. Gibbons, and Y. Matias. Provably efficient scheduling
for languages with fine-grained parallelism. JACM, 46(2), 1999.

[3] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling
of multithreaded computations. SIAM J Computing, 27(1), 1998.

[4] R. Blumofe and C. Leiserson. Scheduling multithreaded computations
by work stealing. JACM, 46(5), September 1999.

[5] C. Chekuri and M. A. Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. Proc. of
the 6th Conf on Integer Programming & Combinatorial Optimization
(IPCO’98), Springer LNCS 1412, 1998.

[6] C. Chekuri and S. Khanna. Approximation algorithms for minimizing
average weighted completion time. In “ Handbook of Scheduling:
Algorithms, Models, and Performance Analysis”. CRC Press, 2004.

[7] L. Cherkasova, A. Davis, R. Hodgson, V. Kotov, I. Robinson, T. Rokicki:
Components of Congestion Control. Proc. of 8th ACM Symposium on
Parallel Algorithms and Architectures, SPAA’96, June, 1996.

[8] L. Cherkasova. Scheduling Strategy to Improve Response Time for Web
Applications. Proc. on High Performance Computing and Networking
(HPCN’98), LNCS, Springer-Verlag, vol. 1401, April 21-23, 1998.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Proc. of OSDI’2004, December 2004.

[10] J. Douceur, W. Bolosky. A Large-Scale Study of File-System Contents.
Proc. of the 1999 Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), May, 1999.

[11] EMC Backup Advisor. http://www.emc.com/products/detail/software/backup-
advisor.htm

[12] HP Data Protector. www.hp.com/go/dataprotector
[13] M. Harchol-Balter, B. Schroeder, N. Bansal, M. Agrawal. Size-based

Scheduling to Improve Web Performance. ACM Transactions on Com-
puter Systems (TOCS 2003) , vol. 21, no. 2, May 2003.

[14] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the design
and evaluation of job scheduling algorithms. Proc. of JSSPP’99, LNCS
1659, 1999.

[15] M. Satyanarayanan. A study of file sizes and functional lifetimes. Proc.
of the 8th ACM Symposium on Operating Systems Principles (SOSP),
Pacific Grove, CA, December 1981.

[16] T. Siencnecht, R. Friedrich, J. Martinka, P. Friedenbach. The implica-
tions of distributed data in a commercial environment on the design of
hierarchical storage management. Performance Evaluation, vol. 20, May,
1994.

[17] K. Smith, M. Seltzer. File layout and file system performance. Technical
Report TR-35-94, Harvard University, 1994.

[18] C. Soules, K. Keeton, C. B. Morrey. SCAN-Lite: Enterprise-wide
analysis on the cheap. Proc. of EuroSys’2009, Nuremberg, Germany,
March 31- April 3, 2009.

[19] Symantec: Veritas NetBackup. http://www.symantec.com/business/netbackup
[20] L. Tan and Z. Tari. Dynamic task assignment in server farms: Better per-

formance by task grouping. Proc. of the Int. Symposium on Computers
and Communications (ISCC), July 2002.

[21] A. Wierman, M. Harchol-Balter. Classifying scheduling policies with
respect to unfairness in an M/GI/1. Proc. of SIGMETRICS’03, June
2003.

[22] S-M. Yoo, H.Y. Youn. Largest-Job-First-Scan-All Scheduling Policy
for 2D Mesh-Connected Systems. Proc. of the 6th Symposium on the
Frontiers of Massively Parallel Computation, 1996.

[23] Y. Zhou, T. Kelly, J. Wiener, and E. Anderson. An extended evaluation
of two-phase scheduling methods for animation rendering. Proc. of
JSSPP’05, LNCS, Springer, 2005.

