
Dynamic Eye Movement Datasets and Learnt
Saliency Models for Visual Action Recognition

Stefan Mathe1,3 and Cristian Sminchisescu2,1

1 Institute of Mathematics of the Romanian Academy (IMAR)
2 Faculty of Mathematics and Natural Science, University of Bonn, Germany

3 Department of Computer Science, University of Toronto, Canada

Abstract. Systems based on bag-of-words models operating on image
features collected at maxima of sparse interest point operators have
been extremely successful for both computer-based visual object and ac-
tion recognition tasks. While the sparse, interest-point based approach
to recognition is not inconsistent with visual processing in biological
systems that operate in ”saccade and fixate” regimes, the knowledge,
methodology, and emphasis in the human and the computer vision com-
munities remains sharply distinct. Here, we make three contributions
aiming to bridge this gap. First, we complement existing state-of-the art
large-scale dynamic computer vision datasets like Hollywood-2[1] and
UCF Sports[2] with human eye movements collected under the ecological
constraints of the visual action recognition task. To our knowledge these
are the first human eye tracking datasets of significant size to be collected
for video (497,107 frames, each viewed by 16 subjects), unique in terms
of their (a) large scale and computer vision relevance, (b) dynamic, video
stimuli, (c) task control, as opposed to free-viewing. Second, we introduce
novel dynamic consistency and alignment models, which underline the re-
markable stability of patterns of visual search among subjects. Third, we
leverage the massive amounts of collected data in order to pursue stud-
ies and build automatic, end-to-end trainable computer vision systems
based on human eye movements. Our studies not only shed light on the
differences between computer vision spatio-temporal interest point image
sampling strategies and human fixations, as well as their impact for vi-
sual recognition performance, but also demonstrate that human fixations
can be accurately predicted, and when used in an end-to-end automatic
system, leveraging some of the most advanced computer vision practice,
can lead to state of the art results.

1 Motivation

Recent progress in computer-based visual recognition, in particular image clas-
sification, object detection and segmentation or action recognition heavily relies
on machine learning methods trained on large scale human annotated datasets.
The level of annotation varies, spanning a degree of detail from global image or
video labels to bounding boxes or precise segmentations of objects[3]. Such an-
notations have proven invaluable for performance evaluation and have also sup-
ported fundamental progress in designing models and algorithms. However, the
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annotations are somewhat subjectively defined, primarily by the high-level vi-
sual recognition tasks generally agreed upon by the computer vision community.
While such data has made advances in system design and evaluation possible, it
does not necessarily provide insights or constraints into those intermediate levels
of computation, or deep structure, that are perceived as ultimately necessary in
order to design highly reliable computer vision systems. This is noticeable in
the accuracy of state of the art systems trained with such annotations, which
still lags significantly behind human performance on similar tasks. Nor does ex-
isting data make it immediately possible to exploit insights from an existing
working system–the human eye–to potentially derive better features, models or
algorithms.

The divide is well epitomized by the lack of matching large scale datasets
that would record the workings of the human visual system, in the context of
a visual recognition task, at different levels of interpretations including neural
systems or eye movements. The human eye movement level, defined by image fix-
ations and saccades, is potentially the less controversial to measure and analyze.
It is sufficiently ‘high-level’ or ‘behavioral’ for the computer vision community to
rule-out, to some degree at least, open-ended debates on where and what should
one record, as could be the case, for instance with neural systems in different
brain areas. It can potentially foster links with the human vision community,
in particular researchers developing biologically plausible models of visual at-
tention, who would be able to test and quantitatively analyze their models on
common large scale datasets[4, 5].

Apart from linking the human and computer vision communities, human eye
movement annotations offer pragmatic potential: fixations provide a sufficiently
high-level signal that can be precisely registered with the image stimuli, for test-
ing hypotheses and for training visual feature extractors and recognition models
quantitatively. Some of the most successful approaches to action recognition
employ bag-of words representations based on descriptors computed at spatial-
temporal video locations, obtained at the maxima of an interest point operator
biased to fire over non-trivial local structure (space-time ‘corners’ or spatial-
temporal interest points[6]). More sophisticated image representations based on
objects and their relations, as well as multiple kernels have been employed with
a degree of success[7–9], although it appears still difficult to detect a large va-
riety of useful objects reliably in challenging video footage. The dominant role
of sparse spatial-temporal interest point operators as front end in computer vi-
sion systems raises the question whether computational insights from a working
system like the human visual system can be used to improve performance. The
sparse approach to computer visual recognition is actually consistent to the one
in biological systems, but the degree of repeatability and the effect of using hu-
man fixations in conjunction with computer vision algorithms in the context of
action recognition have not been yet explored.

In this paper we make the following contributions:

1. We undertake a significant effort of data recording and analysis of human eye
movements in the context of computer vision-based dynamic visual action
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recognition tasks for two existing computer vision datasets, Hollywood 2[1]
and UCF-Sports[2]. This dynamic data, obtained by a significant, capture
and processing effort, is made publicly available to the research community
at http://www.imar.ro/clvp/datasets/eyetracking.

2. We introduce a number of novel consistency models and algorithms, as
well as relevance evaluation measures adapted for video. Our findings (see
§3) suggest a remarkable degree of dynamic consistency–both spatial and
sequential–in the fixation patterns of human subjects but also underline a
less extensive influence of task on dynamic fixations than previously believed,
at least within the class of the datasets and actions we studied.

3. By using our large-scale training set of human fixations and by leveraging
static and dynamic image features based on color, texture, edge distributions
(HoG) or motion boundary histograms (MBH), we introduce novel saliency
detectors and show that they can be trained effectively to predict human
fixations as measured under both average precision (AP), and Kullblack-
Leibler spatial comparison measures. See §4.1 and table 1 for results.

4. We show that training an end-to-end automatic visual action recognition
system based on our learned saliency interest operator (point 3), and using
advanced computer vision descriptors and fusion methods, leads to state of
the art results in the Hollywood-2 action dataset. This is, we argue, one of
the first demonstrations of a successful symbiosis of computer vision and
human vision technology, within the context of a very challenging dynamic
visual recognition task. It shows the potential of interest point operators
learnt from human fixations for computer vision. We describe models and
experiments in §4.3 and give results in table 2.

2 Related Work

Datasets containing human gaze pattern annotations of images have emerged
from studies carried out by the human vision community, some of which are
publicly available[10, 4, 11, 12] and some that are not[13]. Most of these datasets
have been designed for small quantitative studies, consisting of at most a few
hundred images or videos, usually recorded under free-viewing, in sharp con-
trast with the data we provide, which is large-scale, dynamic, and task con-
trolled. These studies[10, 5, 13, 11, 12, 14–16] could however benefit from larger
scale natural datasets, and from studies that emphasize the task, as we pursue.
See [17] for alternative work, published in this conference, on eye movement data
collection and saliency models for action recognition.

The problem of visual attention and the prediction of visual saliency have
long been of interest in the human vision community[16, 10, 18]. Recently there
was a growing trend of training visual saliency models based on human fixations,
mostly in static images (with the notable exception of [13]), and under subject
free-viewing conditions[4, 19]. While visual saliency models can be evaluated in
isolation under a variety of measures against human fixations, for computer
vision, their ultimate test remains the demonstration of relevance within an
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end-to-end automatic visual recognition pipeline. While such integrated systems
are still in their infancy, promising demonstrations have recently emerged for
computer vision tasks like scene classification[20] or verifying correlations with
object (pedestrian) detection responses[21, 11]. An interesting early biologically
inspired recognition system was presented by Kienzle et al.[13], who learn a fix-
ation operator from human eye movements collected under video free-viewing,
then learn action classification models for the KTH dataset with promising re-
sults.

In contrast, in the field of ‘pure’ computer vision, interest point detectors
have been successfully used in the bag-of-visual-words framework for action clas-
sification[6, 1, 7, 22], but a variety of other methods exists, including random field
models[23]. Currently the most successful systems remain the ones dominated
by complex features extracted at interesting locations, bagged and fused using
advanced kernel combination techniques[1, 7].This study is driven, primarily, by
our computer vision interests, yet leverages data collection and insights from
human vision. While in this paper we focus on bag-of-words spatio-temporal
computer-based action recognition pipelines, the scope for study and the struc-
ture in the data are far broader. We do not see this investigation as a terminus,
but rather as a first step in explaining some of the most advanced data and
models that human vision and computer vision can offer at the moment.

3 Human Eye Movement Data Collection in Video.
Static and Dynamic Consistency Analysis

An objective of this work is to introduce additional annotations in the form
of large-scale eye movement recordings for two popular video datasets for ac-
tion recognition: Hollywood-2[1] and UCF Sports[2]. The datasets span approx-
imately 21 hours of video (around 500k frames) and cover 12, respectively 9
action classes. Our study includes two subject groups, an active group (12 sub-
jects), asked to perform an action recognition task and a free viewing group (4
subjects), which was simply instructed to watch the video clips. More details
on the recording protocol and environment can be found in our companion re-
port[24]. Studies in the human vision community[25, 18] have advocated a high
degree of agreement between human gaze patterns for subjects queried under
static stimuli. We now investigate whether this effect extends to dynamic data.

Static Consistency Among Subjects: In this section, we investigate how
well the regions fixated by human subjects agree on a frame by frame basis, by
generalizing the procedure used in [11] for static stimuli to video data.
Evaluation Protocol : For the task of locating people in a static image, one can
evaluate how well the regions fixated by a particular subject can be predicted
from the regions fixated by the other subjects on the same image[11]. This mea-
sure is however not meaningful in itself, as part of the inter-subject agreement
is due to bias in the stimulus itself (e.g. shooter’s bias) or due to the tendency
of humans to fixate more often at the center of the screen[18]. One can address
this issue by checking how well the fixations of a subject on one simulus can be
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predicted from those of the other subjects on a different, unrelated, stimulus. We
expect fixations to be better predicted on similar compared to different stimuli.

We generalize this protocol for video, by evaluating inter-subject correlation
on randomly chosen frames. We consider each subject in turn. For a video frame,
a probability distribution is generated by adding a Dirac impulse at each pixel
fixated by the other subjects followed by blurring with a Gaussian kernel. The
probability at the pixel fixated by the subject is taken as the prediction for
its fixation. For our control, we repeat this process for pairs of frames chosen
from different videos and predict the fixation of each subject on one frame from
the fixations of the other subjects on the other frame. Differently from[11], who
consider several fixations per subject for each exposed image, we only consider
the single fixation, if any, that our subject made on that frame, since our stimulus
is dynamic and the spatial positions of future fixations are influenced by changes
in the stimulus itself. We set the width of the Gaussian blur kernel to match a
visual angle span of 1.5o and draw 1000 samples for both similar and different
stimulus predictions. We disregard the first 200ms from the beginning of each
video to remove the bias due to the initial central fixation.

consistency measure agreement control

static consistency 94.8% 72.3%

temporal AOI alignment 70.8% 51.8%

AOI Markov Dynamics 70.2% 12.7%

Hollywood2

consistency measure agreement control

static consistency 93.2% 69.2%

temporal AOI alignment 65.4% 30.4%

AOI Markov Dynamics 55.5% 12.9%

UCF Sports
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Fig. 1. (a) Static and dynamic inter-subject eye movement agreement for the
Hollywood-2 and UCF Sports datasets. (b) ROC curves used to evaluate static inter-
subject consistency. Fixations of one subject are predicted using data collected from
the other subjects on the same video frame (blue) or on a frame coming from a different
video (green) randomly selected from the dataset.

Findings: The ROC curves for inter-subject agreement and cross-stimulus con-
trol are shown in fig.1b. For the Hollywood-2 dataset, the area under the curve
(AUC) is 94.8% for inter-subject agreement and 72.3% for cross-stimulus con-
trol. For UCF Sports, we obtain values of 93.2% and 69.2%. These values are
consistent with the results reported for static stimuli by [11], with slightly higher
cross-stimulus control. This indicates that shooter’s bias is stronger in artistic
datasets (movies) than in consumer photographs.

The Influence of Task on Eye Movements: Next, we evaluate the impact of
task on eye movements from our data. For a given video frame and for each free
viewing subject, we compute the p-statistic at the fixated location with respect
to the probability distribution derived using fixation data from our active sub-
jects. We repeat this process for 1000 randomly sampled frames and compute
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Fig. 2. Illustration for our automatic AOI generation method. Areas of interest are
obtained automatically by clustering the fixations of subjects. Left: Heat maps illus-
trating the assignments of fixations to AOIs. The colored blobs have been generated
by pooling together all fixations belonging to the same AOI and performing a gaussian
blur with σ = 1o visual angle. Right: Scan path through automatically generated
AOIs for three subjects. The horizontal axis denotes time. Colored boxes correspond
to the AOIs generated by the algorithm. Arrows illustrate saccades which landed in a
different AOI than the fixation preceeding them. Drawn according to scale. Semantic
labels have been manually assigned, for visualization purposes. This figure illustrates
the existence of cognitive routines centered at semantically meaningful objects.

the average p-value for each subject. Somewhat surprisingly, we find that fixa-
tion patterns of our free viewers do not deviate significantly from those of active
subjects (p = 0.65 for Hollywood-2 and p = 0.58 for UCF Sports). Since in the
Hollywood-2 dataset several actions can be present in a video, either simultane-
ously or sequentially, this rules out initial habituation effects and further neglect
(free viewing) to some degree.4

Dynamic Consistency Among Subjects: Our static inter-subject agreement
analysis shows that the spatial distribution of fixations in video is highly con-
sistent across subjects. It does not however reveal whether there is significant
consistency in the order in which subjects fixate among these locations. To our
knowledge, there are no existing agreed upon dynamic consistency measures in
the community at the moment. In this section, we propose two metrics that
are sensitive to the temporal ordering among fixations and evaluate consistency
under these metrics. We first model the scanpath made by each subject as a
sequence of discrete symbols and show how this representation can be produced
automatically. We then define two metrics, AOI Markov dynamics and temporal
AOI alignment, and show how they can be computed for this representation.

4 Notice that our findings do not assume or imply that free-viewing subjects may not
be recognizing actions. However we did not ask them to perform a task, nor where
they aware of the purpose of the experiment, or the interface presented to subjects
given a task. While this is one approach to analyze task influence, it is not the only
possible. For instance, subjects may be asked to focus on different tasks (e.g. actions
versus general scene recognition), although this type of setting may induce biases
due to habituation with stimuli presented at least twice.
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After we define a baseline for our evaluation we conclude with a discussion of
the results.

Scanpath Representation: Human fixations tend to be tightly clustered spatially
at one or more locations in the image. Assuming that such regions, called areas
of interest (AOIs), can be identified, the sequence of fixations belonging to a
subject can be represented discretely by assigning each fixation to the closest
AOI. For example, from the video depicted in fig.2-left, we identify six AOIs: the
bumper of the car, its windshield, the passenger and the handbag he carries, the
driver and the side mirror. We then trace the scan path of each subject through
the AOIs based on spatial proximity, as shown in fig.2-right. Each fixation gets
assigned a label. For subject 2 shown in the example, this results in the sequence
[bumper, windshield, driver, mirror, driver, handbag ]. Notice that AOIs are se-
mantically meaningful and tend to correspond to physical objects. Interestingly,
this supports recent computer vision strategies based on object detectors for
action recognition[7, 9, 8, 26].

Automatically Finding AOIs: Defining areas of interest manually is labour in-
tensive, especially in the video domain. Therefore, we introduce an automatic
method for determining their locations based on clustering the fixations of all
subjects in a frame. We start by running the k-means algorithm with 1 cluster
and we successively increase their number until the sum of squared errors drops
below a threshold. We then link centroids from successive frames into tracks, as
long as they are closely located spatially. For robustness, we allow for a temporal
gap during the track building process. Each resulting track becomes an AOI, and
each fixation is assigned to the closest AOI at the time of its initiation.

AOI Markov Dynamics: In order to capture the dynamics of eye movements, we
represent the transitions of human visual attention between AOIs by means of a
Markov process. We assume that the human visual system transitions to the next
AOI conditioned on the previously visited AOIs. Due to data sparsity, we re-
strict out analysis to a first order Markov process. Given a set of human fixation
strings fi, where the jth fixation of subject i is encoded by the index f ji ∈ 1, A
of the corresponding AOI, we estimate the probability p(st = b | st−1 = a) of
transitioning to AOI b at time t given that AOI a was fixated at time t − 1 by
counting transition frequencies. We regularize the model using Laplace Smooth-
ing to account for data sparsity. The probability of a novel fixation sequence g
under this model is

∏
j p(st = gj | st−1 = gj−1) assuming the first state in the

model, the central fixation, has probability 1. We measure the consistency among
a set of subjects by considering each subject in turn, computing the probability
of his scanpath with respect to the model trained from the fixations of the other
subjects and normalizing by the number of fixations in his scanpath. The final
consistency score is the average probability over all subjects.

Temporal AOI Alignment : Another way to evaluate dynamic consistency is by
measuring how pairs of AOI strings corresponding to different subjects can be
globally aligned. Although not modeling transitions explicitly, a sequence align-
ment has the advantage of being able to handle gaps and missing elements. An
efficient algorithm having these properties due to Needleman-Wunsch[24] uses
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dynamic programming to find the optimal match between two sequences f1:n

and g1:m, by allowing for the insertion of gaps in either sequence. It recursively
computes the alignment score hi,j between subsequences f1:i and g1:j by con-
sidering the alternative costs of a match between f i and gj versus the insertion
of a gap into either sequence. The final consistency metric is the average align-
ment score over all pairs of distinct subjects, normalized by the length of the
longest sequence in each pair. We set the similarity metric to 1 for matching
AOI symbols and to 0 otherwise, and assume no penalty is incurred for inserting
gaps in either sequence. This setting gives the score a semantic meaning: it is
the average percentage of symbols that can be matched when determinig the
longest common subsequence of fixations among pairs of subjects.
Baselines: In order to provide a reference for our consistency evaluation, we
generate 10 random AOI strings per video and compute the consistency on these
strings under our metrics. We note however that the dynamics of the stimulus
places constraints on the sampling process. First, a random string must obey
the time ordering relations among AOIs (e.g. the passenger is not visible until
the second half of the video in fig.2). Second, our automatic AOIs are derived
from subject fixations and are biased by their gaze preference. The lifespan of
an AOI will not be initiated until at least one subject has fixated it, even if
the corresponding object is already visible. To remove some of the resulting bias
from our evaluation, we extend each AOI both forward and backwards in time,
until the image patch at its center has undergone significant appearance changes,
and use these extended AOIs when generating our random baselines.
Findings: For the Hollywod-2 dataset, we find that the average transition proba-
bility of each subject’s fixations under AOI Markov dynamics is 70%, compared
to 13% for the random baseline (fig.1a). We also find that, across all videos,
71% of the AOI symbols are successfully aligned, compared to only 52% for
the random baseline. We notice similar high gaps in the UCF Sports dataset.
These results indicate a high degree of consistency in the dynamics of human
eye movements across the two datasets.

4 Learnt Saliency Models for Visual Action Recognition

In this section, we show that it is possible to train an effective human fixation de-
tector on our dataset and present a state-of-the-art end-to-end automatic visual
action recognition system based on the saliency maps generated by our detector.

4.1 Human Saliency Map Prediction

We first show that we can effectively predict saliency maps, using several fea-
tures, both static and motion based. Our analysis includes many features derived
directly from low, mid and high level image information. In addition, we train our
own detector that fires preferentially at the locations fixated by the subjects, us-
ing the vast amount of eye movement data available in the dataset. We evaluate
all these features and their combinations on our dataset under two metrics, AUC
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and KL divergence, and find that our detector gives the best performance under
the KL divergence measure, which, we argue, is better suited for recognition.

Human Saliency Map Predictors: We run several saliency map predictors
on our dataset, which we describe below.

Baselines: We provide three baselines for saliency map comparison. First, the
uniform saliency map, which assigns the same probability to each pixel of the
video frame. Second, we consider the center bias (CB) feature, which assigns each
pixel with the distance to the center of the frame. This feature is intended to
capture both screen and shooter’s bias effects. At the other end of the spectrum
lies the human saliency predictor, which computes the saliency map derived
from the fixations made by half of our human subjects. This predictor is always
evaluated with respect to the rest of the subjects, as opposed to the entire group.

Static Features (SF): We consider several features used by the human vision
community for saliency prediction in the image domain[4], which can be classified
into three categories: low, mid and high-level. The four low level features used
are color information, steerable pyramid subbands, the feature maps used as
input in[10] and the output of the saliency model described in [27, 28]. We run a
Horizon detector[27] as our mid-level feature. Object detectors are used as high
level features, which comprise faces[29], persons and cars[30].

Motion Features (MF): We include five novel feature maps, in the context of
saliency prediction, which are derived from motion or space-time information.

Flow: We extract optical flow from each frame and compute the magnitude of
the flow at each location. We do this in order to investigate whether regions with
significant optical changes attract human gaze.

Pb with flow: We run the Pb edge detector with both image intensity and the flow
field as inputs. This detector fires both at intensity boundaries and at motion
boundaries, where both image and flow discontinuities arise.

Flow bimodality: We wish to investigate how often people fixate on motion edges,
where the flow field typically has a bimodal distribution. We design a feature
that measures optical flow bimodality around each location (for details see[24]).

Harris: This feature encodes the spatio-temporal Harris cornerness measure[6].

HoG-MBH detector: The models for saliency considered so far access higher level
image structure by means of pre-trained object detectors. That approach does
not prove effective on our dataset, due to high variability in pose and illumina-
tion. On the other hand, our dataset provides a rich set of human fixations. Our
analysis suggests that the image regions fixated by human subjects often con-
tain semantically meaningful objects or object parts (see fig.2). Inspired by this
insight, we exploit the structure present at these locations and train a detector
for human fixations, which uses both static (HoG) and motion (MBH) descrip-
tors centered at fixations. We build a saliency map from the confidence of our
HoG-MBH detector when run over each video in a sliding windows fashion.

Feature combinations: We also linearly combine various subsets of our feature
maps in pursuit of better saliency prediction. We investigate the predictive power
of static features and motion features alone and in combination, with and without
central bias. Details can be found in [24].
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Experimental Protocol: When training our HoG-MBH detector, we use 106

training examples, half of which are positive and half of which are negative. At
each of these locations, we extract spatio-temporal HoG and MBH descriptors,
with various grid configurations. These descriptors are concatenated and the
resulting vector is lifted into a higher dimensional space by employing an order
3 χ2 kernel approximation[31]. We train a linear SVM to obtain our detector.

Findings: We first evaluate our saliency predictors under the AUC metric (table
1a), which interprets saliency maps as predictors for separating fixated pixels
from the rest. Combining predictors always improves performance under this
metric. As a general trend, low-level features are better predictors than high
level ones. Low level motion features provide similar performance to static low-
level features. On the other hand, our HoG-MBH detector is comparable to the
best static feature, the horizon detector.

baselines

feature AUC KL divergence
(a) (b)

uniform baseline 0.500 18.63

central bias (CB) 0.840 15.93

human 0.936 10.12

static features (SF)

color features [4] 0.644 17.90

subbands [32] 0.634 17.75

Itti&Koch channels [10] 0.598 16.98

saliency map [27] 0.702 17.17

horizon detector [27] 0.741 15.45

face detector [29] 0.579 16.43

car detector [30] 0.500 18.40

person detector [30] 0.566 17.13

our motion features (MF)

feature AUC KL divergence
(a) (b)

flow magniture 0.626 18.57

pb edges with flow 0.582 17.74

flow bimodality 0.637 17.63

Harris cornerness 0.619 17.21

HOG-MBH detector 0.743 14.95

feature combinations

SF [4] 0.789 16.16

SF + CB [4] 0.861 15.96

MF 0.762 15.62

MF + CB 0.830 15.97

SF + MF 0.812 15.94

SF + MF + CB 0.871 15.89

Table 1. Evaluation of individual feature maps and their combinations for the problem
of human saliency prediction. Two metrics are shown, area under the curve (AUC) and
KL divergence. Notice that AUC and KL induce different saliency map rankings, but
for visual recognition measures that emphasize spatial localization are essential (see
also table 2 for action recognition results and [24] for visual illustrations).

We also use the Kullback-Leibler (KL) divergence measure for comparing
predicted saliency maps to the human ground truth. Interestingly, under this
metric, the ranking of the saliency maps changes (table 1) and in this setting
the HoG-MBH detector performs best. The only other predictor which performs
significantly higher than central bias is the horizon detector. Under KL, the lin-
ear combination method does not always improve performance, as it optimizes
pixel-level classification accuracy, and is not able to account for the inherent spa-
tial competition due to image-level normalization. We conclude that fusing our
trained HoG-MBH detector with our static and dynamic features gives the best
results under AUC metrics, while the HoG-MBH detector is the best predictor
of visual saliency from our candidate set, under the probabilistic measure (KL)
matching the spatial distribution of human fixations.

4.2 Visual Action Recognition Pipeline

We next present an automatic end-to-end action recognition system based on
predicted saliency maps, together with several baselines. Both our recognition



Eye Movement Datasets and Saliency Models for Action Recognition 11

interest points trajectories + interest points
central predicted ground truth predicted ground truth

action Harris uniform bias saliency saliency trajectories uniform saliency saliency
corners sampling sampling sampling sampling only sampling sampling sampling

(a) (b) (c) (d) (e) (f) (g) (h) (i)

AnswerPhone 16.4% 21.3% 23.3% 23.7% 28.1% 32.6% 24.5% 25.0% 32.5%

DriveCar 85.4% 92.2% 92.4% 92.8% 57.9% 88.0% 93.6% 93.6% 96.2%

Eat 59.1% 59.8% 58.6% 70.0% 67.3% 65.2% 69.8% 75.0% 73.6%

FightPerson 71.1% 74.3% 76.3% 76.1% 80.6% 81.4% 79.2% 78.7% 83.0%

GetOutCar 36.1% 47.4% 49.6% 54.9% 55.1% 52.7% 55.2% 60.7% 59.3%

HandShake 18.2% 25.7% 26.5% 27.9% 27.6% 29.6% 29.3% 28.3% 26.6%

HugPerson 33.8% 33.3% 34.6% 39.5% 37.8% 54.2% 44.7% 45.3% 46.1%

Kiss 58.3% 61.2% 62.1% 61.3% 66.4% 65.8% 66.2% 66.4% 69.5%

Run 73.2% 76.0% 77.8% 82.2% 85.7% 82.1% 82.1% 84.2% 87.2%

SitDown 54.0% 59.3% 62.1% 69.0% 62.5% 62.5% 67.2% 70.4% 68.1%

SitUp 26.1% 20.7% 20.9% 29.7% 30.7% 20.0% 23.8% 34.1% 32.9%

StandUp 57.0% 59.8% 61.3% 63.9% 58.2% 65.2% 64.9% 69.5% 66.0%

Mean 49.1% 52.6% 53.7% 57.6% 57.9% 58.3% 58.4% 61.0% 61.7%

Table 2. Columns a-e: Action recognition performance on the Hollywood-2 dataset
when interest points are sampled randomly across the spatio-temporal volumes of video
from various distributions (b-e), with the Harris corner detector as baseline (a). Av-
erage precision is shown for the uniform (b), central bias (c) and ground truth (e)
distributions, and for the output (d) of our HoG-MBH detector. All pipelines use the
same number of interest points per frame. Columns f-i: Significant improvements over
the state of the art approach[22] (f) can be achieved by augmenting their method with
channels derived from the predicted saliency map (g) and ground truth saliency (h),
but not when using the classical uniform sampling scheme (e).

system and our baselines use the same processing pipeline, which we will describe
upfront. It consists of an interest point operator, descriptor extraction, bag of
visual words quantization and an action classifier.

Interest Point Operator: We experiment with various interest point opera-
tors, both computer vision based and biologically derived (see §4.3). Each inter-
est point operator takes as input a video and generates a set of spatio-temporal
coordinates, with associated spatial and temporal scales.5

Descriptors: We obtain features by extracting descriptors at the spatiotemporal
locations returned by of our interest point operator. For this purpose, we use the
spacetime generalization of the HoG descriptor as well as the MBH descriptor
computed from optical flow. We consider 7 grid configurations, fixed throughout
our experiments, and extract both types of descriptors for each configuration.
We end up with 14 features for classification.

Visual Dictionaries: We cluster the resulting descriptors using k-means into
vocabularies of 4000 visual words. For computational reasons, we use only 500k
randomly sampled descriptors as input to the clustering step. We then represent
each video by the L1 normalized histogram of its visual words.

Classifiers: From histograms we compute kernel matrices using the RBF-χ2 ker-
nel and combine them by means of a Multiple Kernel Learning (MKL) frame-
work. We train one classifier for each action label in a one-vs-all fashion. We
determine the kernel scaling parameter, the SVM loss parameter C and the reg-

5 Our studies indicate that the spatial distribution of Harris interest points differs
sharply from that of human fixations[24].
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ularization parameter σ of the MKL framework by cross-validation. We report
the average precision on the test set for each action class, in line with [1, 22].

4.3 Visual Action Recognition Studies

We now configure our action recognition pipeline with an operator that ran-
domly samples interest points from the saliency map predicted by our HoG-
MBH detector. We choose this map because it best approximates the ground
truth saliency map spatially in a probabilistic sense, i.e. under a KL divergence
measure. We also provide 4 performance baselines. In order to compare with
classical action-recognition approaches, we consider the spatiotemporal Harris
corner operator [6] and an operator that randomly chooses interest point lo-
cations from the uniform distribution spanning spatio-temporal volume of the
video. Our third baseline is an operator that samples interest points using the
central bias saliency map, which was also shown to approximate to a reasonable
extent human fixations under the less intuitive AOI measure (table 1). Fourth,
we consider an operator that samples locations from the ground truth saliency
map, computed from human fixations by blurring their locations with a Gaussian
spatio-temporal kernel. This last baseline assumes that fixations are available at
test time and provides an upper bound on recognition performance. Finally,
we also investigate whether our end-to-end recognition system can be combined
with the state-of-the-art trajectory approach of [22] for better performance.

Experimental Protocol: We run our HoG-MBH detector over the entire data
set and obtain our automatic saliency maps, from which we sample interest
points. For our first baseline, we run the Harris corner operator on the input
video, while for the other baselines we compute uniform, central bias and ground
truth saliency maps from which we randomly sample interest points. All our
random sampling operators use the same number of interest points per frame as
generated by the Harris corner detector. In a final experiment, we also run the
pipeline of [22] and combine the 4 kernel matrices they compute with the ones
we obtain for our 14 descriptors, sampled from the saliency maps, using MKL.

Results: We note only a small drop in performance when comparing our auto-
matic pipeline to the one obtained by sampling from ground truth saliency maps
(table 2d,e). Average precision is also markedly superior to that of a pipeline
sampling interest points uniformly (table 2c). Although central bias is a relatively
close approximation of the ground truth saliency map under AOI measures, it
performs significantly worse when used for recognition. This further indicates
that approximations produced by the HoG-MBH detector are qualitatively dif-
ferent from a central bias distribution, focusing on local image structure that
frequently occurs in its training set of fixations, while at the same time being
agnostic (as it should be, modulo dataset bias) to image location.

Even though our pipeline is sparse, it achieves near state of the art perfor-
mance compared to a pipeline that uses dense trajectories. When the sparse
descriptors obtained from our automatic pipeline are combined with the kernels
associated to the dense trajectory features in [22] using MKL, we are able to
go beyond the state-of-the-art. This demonstrates that an end-to-end automatic
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system incorporating both human and computer vision technology can deliver
top performance in a challenging problem such as visual action recognition.

5 Conclusions

We have presented experimental and computational modelling work at the in-
cidence of human visual attention and computer vision, with emphasis on ac-
tion recognition in video. Inspired by earlier psychophysics and visual attention
findings, not validated quantitatively at large scale until now and not pursued
for video, we have collected, and made available to the research community, a
set of comprehensive human eye-tracking annotations for Hollywood-2 and UCF
Sports, some of the most challenging, recently created action recognition datasets
in the computer vision community. Besides the collection of large datasets, we
have performed quantitative analyses and introduced novel models for evaluating
the static and the dynamic consistency of human fixations across different sub-
jects, videos and actions. We have found good inter-subject fixation agreement
but, perhaps surprisingly, only moderate evidence of task influence.

We have also presented a large scale analysis of automatic visual saliency
models and end-to-end automatic visual action recognition systems. Our studies
are performed with particular focus on computer vision techniques and interest
point operators and descriptors. In particular we show that accurate saliency
operators can be effectively trained based on human fixations. Finally, we show
that such automatic saliency predictors can be used within end-to-end computer-
based visual action recognition systems to achieve state of the art results in some
of the hardest benchmarks in the field.

We hope that our work will foster further communication, benchmarks and
methodology sharing between human vision and computer vision, and ultimately
lead to improved end-to-end artificial visual action recognition systems.
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