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Abstract: 
In this article, we construct a general model, which considers the borrower’s financial and 

non-financial termination behavior, to derive the closed-form formulae of the mortgage 

value for analyzing the yield, duration and convexity of the risky mortgage. Since the risks 

of prepayment and default are reasonably expounded in our model, our formulae are more 

appropriate than traditional mortgage formulae. We also analyze the influence the 

prepayment penalty and partial prepayment have on the yield, duration and convexity of a 

mortgage, and provide lenders with an upper-bound for the mortgage default insurance rate. 

Our model provides portfolio managers a useful framework to more effectively hedge their 

mortgage holdings. From the results of sensitivity analyses, we find that higher interest-rate, 

prepayment and default risks will increase the mortgage yield and reduce the duration and 

convexity of the mortgage.  

 

Keywords: yield, duration, convexity, default insurance, prepayment penalty, partial 

prepaymen
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1. Introduction 

Mortgage-related securities are prevalent in the financial market as they satisfy investors’ 

demands for high yields and secure credit quality. Due to uncertain cash flows resulting from 

borrowers’ default and prepayment behaviors, investors require a premium to compensate for 

potential losses. Determining an appropriate premium is important for portfolio managers 

and financial intermediaries. Furthermore, hedging the interest-rate risk of mortgages is an 

extremely difficult assignment. Because borrower’s prepayment behavior influences the 

duration, the price sensitivity of mortgages to changes in interest rates becomes highly 

uncertain. Targeting duration and convexity can be one of the most momentous approaches 

to managing portfolios of mortgage-related securities.  

 

The intention of this article is to utilize the intensity-form approach to price a mortgage 

and then investigate the influence of interest-rate, prepayment and default risks on the yield, 

duration and convexity of a mortgage. Moreover, we also discuss how the yield, duration and 

convexity of a mortgage change under various situations—mortgages with a prepayment 

penalty, partial prepayment and default insurance.Mortgage yield spreads reflect premiums 

that compensate investors for exposure to prepayment and default risks. Most mortgage 

market practitioners and academic researchers are concerned with the impact of prepayment 

and default risks on mortgage yield, and how to measure the mortgage termination risk in 

deciding hedging strategies for their portfolios. Literature shows the premium and the 

termination risk of mortgages have typically been analyzed using the contingent-claim 

approach, intensity-form approach and empirical analysis.  
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Under the contingent-claim approach, researchers use the option pricing theory to 

investigate the premiums of prepayment and default. They argue that borrowers are endowed 

with the option to prepay (call) or default (put) the mortgage contract. The values of  

prepayment and default options are calculated through specifying relevant variable processes 

such as interest rates, house prices and so forth (see e.g., Kau et al., 1993; Yang, Buist and 

Megbolugbe, 1998; Ambrose and Buttimer, 2000; Azevedo-Pereira, Newton and Paxson, 

2003). Some studies use the option pricing theory to determine prepayment and default 

premiums. Furthermore, they investigate the effects of relevant variables (such as interest 

rate volatility, yield curve slope, etc.) on the values of prepayment and default options (see, 

Childs, Ott and Riddiough, 1997). The intensity-form approach evaluates the probabilities of 

prepayment and default based on hazard rates information (see e.g., Schwartz and Torous, 

1989, 1993; Quigley and Van Order, 1990; Lambrecht, Perraudin and Satchell, 2003; 

Ambrose and Sanders, 2003). Some researchers investigate mortgage risk premiums using 

the intensity-form approach. They insert the termination probability into the model and 

derive the equilibrium mortgage rate by calculating the risky mortgage yield. Comparing the 

mortgage rate of the risk-free mortgage and the risky mortgage can determine the risk 

premium required to compensate for expected losses (see e.g., Gong and Gyourko, 1998). 

Recent literature using mortgage market data demonstrates that individual characteristics are 

related to prepayment and default risks. Some studies use empirical analyses to express 

relationships between the mortgage risk premium and various observable variables specific 

to the borrower, such as loan-to-value ratio, income, pay-to-income ratio and so on (see, 

Berger and Udell, 1990; Chiang, Chow and Liu, 2002).  
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The duration, which simply reflects the change in price for a given change in yield, is 

widely applied in interest rate risk management. When prepayment or default occurs, cash 

flows of the mortgage contract are altered. Thus, the duration will be different at various 

price levels as the prepayment and default expectations change. Measuring mortgage 

duration is more complicated and increases the difficulty in hedging mortgage-related 

securities. Valuation of mortgage duration can be classified into two methods: theoretical and 

empirical.  

 

As for the theoretical aspect, Ott (1986) provided a foundation by deriving the duration of 

an adjustable-rate mortgage (ARM) under a discrete time framework. He revealed that the 

index used to adjust the mortgage rate tends to be more important than the adjustment 

frequency in determining the duration of an ARM. Haensly, Springer and Waller (1993) used 

a continuous payment formula to derive the fixed-rate mortgage duration. They found that 

duration monotonically increases with maturity when the market rate of interest is at or 

below the coupon rate. On the other hand, duration increases with maturity, peaks and 

subsequently declines as the market interest rate exceeds the coupon rate.  

 

Empirical measure is another way to derive duration. It describes the relationship 

between changes in mortgage prices and changes in market yields as measured by Treasury 

securities. This method argues there is a market consensus on the impact of yield changes 

reflected in the behavior of market prices (see e.g., Derosa, Goodman and Zazzarino, 1993).  

 

When considering hedging methods for mortgages, duration-matching is the most 
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commonly used strategy. However, this strategy does not properly reflect the interest rate 

risk if there is a great change in the interest rate. Thus, managers should make a hedging 

analysis by measuring the convexity of a mortgage. Previous literature seldom investigated 

the issue concerning the convexity of the mortgage, but is essential for the hedging analysis 

of the mortgage. We intend to construct a general model to derive the formulae for the 

duration and convexity of the risky mortgage, and to discuss the influence of interest rates, 

prepayments and default risks on them. 

 

Most studies examine the termination risk of the mortgage and evaluate the mortgage by 

the contingent-claim approach. Moreover, when investigating the mortgage under contingent-

claim models, terminations frequently occur when the options are not in the money (i.e., 

options are exercised under suboptimal conditions) (see e.g., Dunn and McConnell, 1981a, b; 

Kau, Keenan and Kim, 1993). Suboptimal termination occurs as a result of trigger events. 

Deng, Quigley and Van Order (1996) found the importance of trigger events, such as 

unemployment and divorce, in affecting mortgage borrower’s termination behavior. Dunn 

and McConnell (1981a, b) model suboptimal prepayment as a jump process and embody it 

into the process of the mortgage value to overcome the suboptimal termination under 

contingent-claim models. However, it is hard to deal with the prepayment risk as well as the 

default and interest-rate risks under this model. With this approach, it is also difficult to 

identify the critical region of early exercise and embody the relevant variables into the 

models. By applying the intensity-form approach, we not only avoid these problems, but also 

can consider optimal and suboptimal terminations about borrower’s prepayment and default 

behavior to more accurately measure the value, the duration and the convexity of the risky 
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mortgage.  

 

In this study, we use the backward recursion method to express an implicit mortgage 

value formula, and then derive the closed-form solution of the mortgage value, yield, 

duration and convexity under the continuous-time intensity-form model. The key point for 

accurately pricing the mortgage value and measuring the yield, duration and convexity of the 

mortgage is appropriately modeling the prepayment and default risks. In our model, the 

hazard rates of prepayment and default are assumed to be linear functions of influential 

variables such as interest rates. Furthermore, because trigger events, such as job loss or 

divorce, influence a borrower’s ability to fulfill monthly payment obligations and the 

mortgage termination incentive by prepayment or default, the likelihood of a borrower’s 

prepayment and default will change under these situations. To reasonably expound mortgage 

prepayment and default risks, we model the occurrence of non-financial events as jump 

processes into the specification of hazard rates of prepayment and default. We derive a 

general closed-form formula for risky mortgages, which considers the borrower’s non-

financial termination (i.e., suboptimal termination) behavior and can integrate relevant 

economic variables under this framework..  

 

Our yield formulae, duration and convexity are more appropriate than traditional 

formulae as our formulae are more sensitive to changes in prepayments and default risks. 

This point is very important for risk management strategies. Additionally, lenders can use 

loss avoidance strategies to protect themselves from prepayment and default risks. 

Prepayment penalties are widely used to eliminate the prepayment risk in a vast majority of 
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mortgages. Mortgage insurance is also usually required to reduce default losses (see, 

Riddiough and Thompson, 1993; Ambrose and Capone, 1998; Kelly and Slawson, 2001). 

Failure to consider the effects of these two factors could lead to an inefficient immunization 

strategy. We take into account the effects of the prepayment penalty, partial prepayment and 

default insurance on the risk-adjusted yield, duration and convexity of a risky mortgage. 

 

This article is organized as follows: Part two presents the valuation model, which 

identifies the mortgage contract components; defines the probabilities and recovery rates of 

prepayment and default; and derives the closed-form solution of the mortgage value. In part 

three, we develop the yield, duration and convexity of a mortgage; conduct a sensitivity 

analysis to investigate the impact of interest rates, intensity rates and loss rates of prepayment 

and default, and the intensity rate of non-financial termination on the yield, duration and 

convexity of the mortgage. Part four analyzes the influence of partial prepayment, 

prepayment penalty and insurance on the yield, duration and convexity of a mortgage. The 

final section is the conclusion. 

 

2. The Model 

2.1 A General Pricing Framework 

The focus of our investigation is on a fixed-rate mortgage (FRM)— the mortgage market’s 

basic building block. We consider a fully amortized mortgage, having an initial mortgage 

principal 0M , with a fixed coupon rate c  and time to maturity of T  years. The payment tY  

in each period can be written as follows: 

cTt e
cMYY −−

×=≡
10 .                  (1) 
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The outstanding principal at time t , tM , is given by 

cT

tTc

t e
eMM −

−−

−
−

×=
1

1 )(

0 .                             (2)  

We let tA  and tV  represent the value of the riskless mortgage and the value of a mortgage 

with prepayment and default risks at time t , respectively, Tt ≤≤0 . We have 

∫ ∫−=
T

t

u

t st dudsrYA
 

 

 

 
)exp( . From the risk premium point of view, the value of a risky 

mortgage is less than the riskless mortgage for the investor because the risky yield must be 

higher than the riskless yield. Thus, 
t

t

A
V

−1  represents a discounted proportion for the 

termination risk.  

 

We assume that the borrower is endowed with the options to prepay, default or maintain 

the mortgage. The optimal strategy can be decided by the option that provides the greatest 

benefit. If ttt VYM +> , a rational borrower will not prepay because there is no profit. 

However, under the condition of ttt VYM +<  (such as when the interest rate declines), 

borrowers will pay tM  to redeem their loan, as the benefit is greater to prepay the mortgage. 

The lender has a loss from prepayment because the present value of the balance of the 

mortgage is less than the present value of the mortgage loan.1 We define the prepayment loss 

rate at time t  to be tδ , 10 ≤< tδ , which is a random variable representing the fractional loss 

of the mortgage market value at prepayment.  

 

                                                 
1The loss of prepayment ( ttt MVY −+ ) is the opportunity cost of the lenders.  
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The bank requires that the value of the collateral must be greater than the value of the 

mortgage at the initial time of the mortgage in order to avoid a huge loss in the case of 

default. If ttt VYH +> , where tH  is the market value of collateral at time t , the rational 

borrower will not default since there is no profit. If the collateral value is less than the 

mortgage value ( ttt VYH +< , such as in a depressed market), the borrower will profit by 

defaulting on the mortgage. It also means that the borrower pays tH  to buy back the 

mortgage contract. Under this circumstance, the bank has a loss from default. We denote the 

loss rate of default at time t  as tη , 10 ≤< tη , which is a random variable representing the 

fractional loss of the mortgage market value at default.  

 

In our framework, the probabilities of prepayment and default exist at each time point 

prior to the maturity date. Let us denote random variables Pτ  and Dτ  as the time of 

prepayment and default during the period from t  to T , respectively. The conditional 

probabilities of prepayment, P
tP , and default, D

tP , can be expressed as follows: 

D
tP )|( tttttP DD Δ−><<Δ−≡ ττ  with initial probability 00 ≡DP .               (3) 

P
tP )|( tttttP PP Δ−><<Δ−≡ ττ  with initial probability 00 ≡PP .               (4) 

 

We use a discrete time approximation (see, Broadie and Glasserman, 1997) to calculate 

the value of the mortgage, and then derive the limiting form of the corresponding formula. 

Let 
t

Tn
Δ

= , the valuation is at the point of i , ni ,,1= , where i  represents the payment 

date. The risk neutral pricing method is used to evaluate the mortgage including the 

stochastic processes of interest rate, and default and prepayment risks. The mortgage value at 
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point i  under the risk-neutral measure is 

)]([ 11 ++ += iiii VYPVEV ,                                                   (5) 

where )(⋅PV  and ][⋅iE  represent the present value and expected value conditional on the 

information of point i  under the risk-neutral measure, respectively. 

 

Figure 1 shows the composition of the mortgage value in each period. If the mortgage 

contract is not terminated before the payment, the lender will receive the promised amount, 

iY , and the mortgage value is ii VY + . The probability is D
i

P
i PP −−1 . Otherwise, in the event 

of prepayment or default, the cash flow is assumed to be )( iii VY +α  or )( iii VY +β , where 

iα  and iβ  represent the recovery rates of prepayment and default at point i , respectively. 

Let ii δα −= 1  and ii ηβ −= 1 . Considering the termination probability, and the losses of 

prepayment and default in the model, the mortgage value can be written as 

iV ))(exp()1[( 11111 +++++ +Δ−−−= iii
D

i
P

ii VYtrPPE )()exp( 11111 +++++ +Δ−+ iiii
P

i VYtrP α  

)]()exp( 11111 +++++ +Δ−+ iiii
D

i VYtrP β ,                                                               (6) 

where 1+ir  is the annualized riskless interest rate between i  to 1+i .  

 

In Equation (6), the first term is the expected value of a mortgage contract, which does 

not terminate until point 1+i . The second term is the expected value of a mortgage that is 

prepaid between points i  and 1+i . The third term is the expected value of a mortgage that 

defaults between points i  and 1+i . Equation (5) can also be rewritten as 

iV )exp()1)[([( 11111 trPPVYE i
D

i
P

iiii Δ−−−+= +++++ )exp( 111 trP ii
P

i Δ−+ +++ α  

)]]exp( 111 trP ii
D

i Δ−+ +++ β .                                                                            (7) 
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t=i                                    t=i+1 
 

11 ++ + ii VY  
D

i
P

i PP 111 ++ −−        
                              

                            
P

iP 1+  

iV                                   )( 111 +++ + iii VYα  
               

 
            D

iP 1+  
)( 111 +++ + iii VYβ  

 
 

Figure 1: Evolution of the mortgage value 

 

Replacing 1+iα  and 1+iβ  with 11 +− iδ  and 11 +− iη , we have  

iV ])[( 111 +++ += iiii QVYE ,                                                  (8) 

where 1+iQ )exp()1( 111 trPP i
D

i
P

i Δ−−−= +++ )exp()1( 111 trP ii
P

i Δ−−+ +++ δ  

)exp()1( 111 trP ii
D

i Δ−−+ +++ η . 

For small time periods, using the approximation of )exp( c−  with c , given by c−1 , we can 

rewrite the expression of 1+iQ as 

1+iQ )1([1 1111 trPtr ii
P

ii Δ++Δ−≅ ++++ δ )]1( 111 trP ii
D

i Δ++ +++ η  

)1([exp( 1111 trPtr ii
P

ii Δ++Δ−≅ ++++ δ )])1( 111 trP ii
D

i Δ++ +++ η .               (9) 

The mortgage value at any time, tiT Δ−− )1( , is equal to its discounted expected value at 

time tiT Δ− , so that 

)]([)1()1( tiTtiTtiTtiTtiT VYQEV Δ−Δ−Δ−Δ−−Δ−− += .              (10)  
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According to Equation (10), the mortgage value at time tT Δ−  can be expressed as 

)]([ TTTtTtT VYQEV += Δ−Δ− .                                            

At time tT Δ− 2 , the mortgage value is  

)]([22 tTtTtTtTtT VYQEV Δ−Δ−Δ−Δ−Δ− += .              (11) 

Since the FRM is a fully amortized and fixed-rate, we have 0=TV  and YYi = . Thus, we 

substitute tTV Δ−  into Equation (11) and obtain  

tTV Δ−2 ][2 YQYQE
T

tTj
jtTtT ∏

Δ−=
Δ−Δ− += .  

Iterated backwards until the initial time and using an iterated condition, i.e. ][]][[ ⋅=⋅+ titt EEE , 

we obtain the initial value of mortgage as follows: 

])([
1 1

00 ∑ ∏
= =

=
n

i

i

j
jQYEV .                                               (12) 

Therefore, substituting Equation (9) into Equation (12), we obtain the mortgage pricing 

formula as follows:  

0V ∑ ∑∑
= ==

Δ++Δ−=
n

i
j

i

j
j

P
j

i

j
j trPtrYE

1 11
0 )1((exp([ δ ))])1(

1
∑
=

Δ++
i

j
jj

D
j trP η .             (13) 

 

When the time interval Δt  approaches 0, the discrete time series is transformed into a 

continuous time process, thus allowing us to appraise the mortgage in a continuous time 

framework. We define the intensity rate of prepayment and default as P
tλ  and D

tλ . The 

conditional probabilities of prepayment and default are then represented as dtP P
t

P
t λ=  and 

dtP D
t

D
t λ= , respectively. We can obtain the mortgage pricing formula as follows:  
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∫ ∫∫ ++−=
→Δ

T t

uu
P
u

t

ut
durdurEYV

 

0 

 

0 

 

0 000
)1(([exp(lim δλ dtduruu

t D
u ))])1(

 

0 
++ ∫ ηλ .            (14) 

 

According to our foregoing definition for the loss rates of prepayment and default, the 

loss rates are random variables. Since the loss rate can be estimated by using market data, it 

is usually assumed to be an exogenous variable and treated as a constant or a deterministic 

variable in reduced-form models within studies (see e.g., Jarrow and Turnbull, 1995; Duffie 

and Singleton, 1999). Moreover, some empirical evidence shows it causes no significant 

difference on pricing mortgages no matter if the loss rate is assumed to be a stochastic 

variable or a constant (e.g., Jokivuolle and Peura, 2003). Therefore, the loss rates have been 

simplified and treated as a constant in our model to derive a closed-form solution of the 

mortgage. Under the assumptions of δδ =t , ηη =t , letting 0≅duruu
P
uδλ  and 0≅duruu

D
uηλ  

(since they are quite small in the real world), the mortgage value can be expressed as follows: 

YV =0 dtdurE
T 

 

t 

 

D
u

P
uu ]))(([exp(

0 00∫ ∫ ++− ηλδλ .                             (15)  

 

According to this formula, the value of the mortgage can be expressed as the present 

value of the promised payoff Y discounted by the risk-adjusted rate D
u

P
uur ηλδλ ++ . This is 

similar to the formula obtained in Duffie and Singleton (1999). 

 

2.2 A Closed-Form Formula for Mortgage Values under Some Specific Assumptions  

To obtain the closed-form solution of the mortgage valuation presented in Equation (15), we 

need to specify the stochastic processes of the interest rate and hazard rates in our model. We 
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use the extended Vasicek (1977) model for the term structure.2 The extended Vasicek interest 

rate model is a single-factor model with deterministic volatility and can match an arbitrary 

initial forward-rate curve through the specification of the long-run spot interest rate tr  

(Vasicek (1977), and Heath, Jarrow and Morton (1992)). Under the risk-neutral measure, the 

term-structure evolution is described by the dynamics of the short interest rates 

)()( tdZdtrradr rrttt σ+−= ,                                        (16) 

where  

a  is the speed of adjustment, a positive constant; 

rσ is the volatility of the spot rate, a positive constant; 

tr  is the long-run spot interest rate, a deterministic function of t ; and 

)(tZ r  is a standard Brownian motion under a risk neutral measure. 

 

The spot interest rates follow a mean-reverting process under a risk-neutral measure 

based on Equation (16). As shown in Heath et al. (1992), to match an arbitrary initial 

forward-rate curve, one can set 

)
2

)1(),((1),()(
)(22

a
e

u
utf

a
utfur

tua
r

−−−
+

∂
∂

+=
σ .         

Combining the above two equations, the evolution of the short interest rate can be shown as 

∫ −−
−−

+
−

+=
u

t r
vua

r

tua
r

u vdZe
a

eutfr
 

 

)(
2

2)(2

)(
2

)1(),( σ
σ

,                         (17) 

where ),( utf  is the instantaneous forward rate. Let ∫≡Θ
t

u
r
t dur

0
, the evolution of the r

tΘ  

can be written as 
                                                 
2 Some research has shown that the Vasicek model (and hence the extended Vasicek model) performs well in the 
pricing of mortgage-backed securities (Chen and Yang (1995)). 
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∫ ∫ ∫ ∫++=Θ
t t t u

r
r
t duvdZuvduubduuf

 

0 

 

0 

 

0 

 

0 

2

)(),(
2

),0(),0( ρ .                           (18) 

The following expressions show the expected value and variance of r
tΘ  (see, Appendix A): 

][ r
t

r
t E Θ≡μ ))1(

2
1)1(2(

2
),0( 2

2

2
atatr e

a
e

a
t

a
ttf −− −+−−+=

σ
,                      (19) 

and         

)( r
t

r
t Var Θ=Σ ))1(

2
1)1(2( 2

2

2
atatr e

a
e

a
t

a
−− −+−−=

σ
.                              (20) 

 

Most empirical models show that the prepayment and default intensity rates are highly 

significant to the change in interest rates (see, Schwartz and Torous, 1989; Collin-Dufresne 

and Harding, 1999). According to the specification in Collin-Dufresne and Harding (1999), 

intensity rates of prepayment and default are designated to depend on the particular variable 

in the model that is related to the termination risk, such as the interest rate. Moreover, 

prepayment and default events occur for both financial reasons (such as a change in the 

interest rate) and non-financial reasons (such as job change, divorce and seasoning). Previous 

studies demonstrate that trigger events (non-financial states), such as employment and 

divorce, can affect the probabilities of a borrower’s termination decision (e.g., Deng, Quigley 

and Van Order, 1996). In order to make this model more reasonable without loss of generality, 

we not only assume that the hazard rates of prepayment and default are linear functions of 

short interest rates, but also use the Poisson processes to model the random arrivals of non-

financial prepayment and default events. Our specification of hazard rates for prepayment 

and default reasonably depicts the termination risk because it is readily recognized that 

prepayment and default occur in both financial and non-financial circumstances. When a 
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non-financial termination event occurs, there is a jump for the hazard rate of prepayment or 

default. We allow the jump size to be a random variable because trigger events result in an 

uncertain change in the termination intensity rate. The hazard rates of prepayment and default 

are set as follows:  

u
PPP

u r10 λλλ += )(udNPξ+ ,                (21) 

and    

u
DDD

u r10 λλλ += )(udNDξ+ ,               (22) 

where )(uN  represents the random arrival of non-financial prepayment and default, which is 

a Poisson process with intensity rate of ϑ ; Pξ  and Dξ  respectively, representing the random 

jump magnitudes of prepayment and default that are assumed independent of the Poisson 

process )(uN .  

 

As mentioned in Collin-Dufresne and Harding (1999), the restriction of the right hand 

side of Equations (21) and (22) to only a single financial variable simplifies the finding of a 

closed-form solution. However, other time dependent variables can be added to the model. 

The Poisson process )(uN  counts the number of jumps that occur at or before time u . If 

there is one jump during the period ],[ duuu +  then 1)( =udN , and 0)( =udN  represents no 

jump during this period. We assume the diffusion component, )(udZ r , and the jump 

component, )(udN , are independent. In addition, the random variable l
iξ , DPl ,= , 

represents the size of the thi  jump, ,2,1=i that is a sequence of identical distributions 

assumed to be independent of each other.  
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According to the above specifications of P
uλ  and D

uλ , we obtain 

P
t

P
t

t P
u Jdu +Θ=∫

 

0 
λ , and                                      (23) 

D
t

D
t

t D
u Jdu +Θ=∫

 

0 
λ ,                          (24) 

where ∫ +=Θ
t

u
lll

t dur
 

0 10 λλ  and ∑
=

=
)(

1

tN

i

l
i

l
tJ ξ , DPl ,= . The l

tJ  is defined as a compound 

Poisson process. As mentioned in Shreve (2004), the jumps in l
tJ  occur at the same time as 

the jumps in )(tN . However, the jump sizes in )(tN  are always 1 in each jump; the jump 

sizes in l
tJ  are of random size.  

 

Then, the mortgage value that contains relevant variable and non-financial factors can 

be described as follows: 

0V ]))1(([exp())((exp(
 

0 

 

0 11000∫ ∫++−×+−=
T t

u
DPDP durEtY ηλδληλδλ  

dtJJE DP ))])([exp(0 ηδ +−× .                                                             (25) 

Since r
tΘ  is normally distributed with mean r

tμ  and variance r
tΣ , we can use the moment 

generating function method to obtain the value of ]))1(([exp(
 

0 110 ∫++−
t

u
DP durE ηλδλ . That is 

]))1(([exp(
 

0 110 ∫++−
t

u
DP durE ηλδλ  

r
t

DP μηλδλ )1(exp( 11 ++−= dtr
t

DP )))1(
2
1 2

11 Σ+++ ηλδλ .                 (26) 

 

The closed-form solution of a mortgage contract can be obtained when given the 

distribution of lξ , such as a normal distribution (see, e.g., Merton, 1976) and a double 



 18

exponential distribution (see, e.g., Kou and Wang, 2001). In our model, we assume that Pξ  

and Dξ  follow a normal distribution with mean P
ξμ  and D

ξμ , variances P
ξΣ  and D

ξΣ  and 

covariance DP,
ξΣ . Thus, we can obtain the following results (see, Shreve, 2004): 

)).1))2(
2
1)((exp(exp()][exp( ,22 −Σ+Σ+Σ++−=−− DPDPDPDP tJJE ξξξξξ ηδηδημδμϑηδ     (27) 

Substituting Equations (26) and (27) into Equation (25), we have 

0V ∫ ++++−=
T r

t
DPDP tY

 

0 1100 )1()(([exp( μηλδληλδλ r
t

DP Σ++− 2
11 )1(

2
1 ηλδλ   

)((exp( DPt ξξ ημδμϑ +−− dtDPDP ))]1))2(
2
1 ,22 −Σ+Σ+Σ+ ξξξ ηδηδ .             (28) 

The above equation is the closed-form solution of the mortgage. According to this result, we 

calculate the yield, duration and convexity of the mortgage, and discuss the influence of 

interest rates, prepayments and default risks on them.  

 

3. Yield, Duration and Convexity Analyses of Risky Mortgages 

3.1 Yield Measure for Risky Mortgages 

The yield of a fixed-income security is the discount factor that equates the present value of a 

security’s cash flows to its initial price. Thus, in order to calculate the yield, one needs to 

know the amount and the timing of the cash flow of the mortgage and the probabilities of 

prepayment and default. These variables lead to different yield spreads and random changes 

of the yield over time, since a mortgage has different degrees of risk over time.  

 

Defining R  as the risk-adjusted yield of a risky mortgage required by the mortgage 

holders at time 0, the mortgage value at time 0 can be expressed as 
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∫ −=
T

dtRtYV
 

0 0 )exp( .                                                  (29) 

According to Equations (28) and (29), under the assumption of no arbitrage opportunities 

(see, Jacoby, 2003), the yield of a risky mortgage is  

),0()1()( 1100 tfR DPDP ηλδληλδλ ++++= Ar
DPDP 2
1111 ))(1( σηλδληλδλ +++−  

         )((exp( DP
ξξ ημδμϑ +−− )1))2(

2
1 ,22 −Σ+Σ+Σ+ DPDP

ξξξ ηδηδ ,                            (30) 

where =A ))1(
2
1)1(21(

2
1 2

2
atat e

at
e

ata
−− −+−− , 0>A  and 

a
A
∂
∂ 0< .3 

 

The above formula gives the lender a better understanding of mortgage analysis. Note 

that when the probabilities of prepayment and default are zero (i.e., 0=== ϑλλ D
u

P
u ), there 

is no risk premium to the lender. Otherwise, if positive termination probabilities exist but 

recovery rates are full (i.e. 0==ηδ ), the risk premium is also zero.  

 

 We conduct the sensitivity analyses to investigate how different variables (such as the 

interest rate, the probabilities of prepayment and default including financial and non-financial 

states) influence the yield of a mortgage. The partial derivative of the instantaneous yield 

with respect to different variables can be shown as 

DP

tf
R

111
),0(

ηλδλ ++=
∂
∂ ,                                                                                                         (31) 

2
r

R
σ∂
∂ ADPDP ))(1( 1111 ηλδληλδλ +++−= ,                                                                                 (32) 

                                                 
3 According to Equation (20), we have 0>A . With regard to the result of 0<

∂
∂

a
A

, we checked these results 

by conducting numerical analyses. 
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a
R
∂
∂

a
A

r
DPDP

∂
∂

+++−= 2
1111 ))(1( σηλδληλδλ ,                                                                            (33) 

δ
λ

=
∂
∂

P

R

0

,                                                                                                                                (34) 

η
λ

=
∂
∂

D

R

0

,                                                                                                                                (35) 

P

R

1λ∂
∂ ),0(( tfδ= ))221( 2

11 Ar
DP σηλδλ ++− ,                                                                           (36) 

D

R

1λ∂
∂ ),0(( tfη= ))221( 2

11 Ar
DP σηλδλ ++− ,                                                                           (37) 

)),0(( 2
10 AtfR

r
PP σλλ

δ
++=

∂
∂ ))1(2 2

111 Ar
DPP σηλδλλ ++−             

P
ξμϑ(+ ),DPP

ξξ ηδ Σ−Σ− )(exp( DP
ξξ ημδμ +− ))2(

2
1 ,22 DPDP

ξξξ ηδηδ Σ+Σ+Σ+ ,              (38) 

),0((10 tfR DD λλ
η

+=
∂
∂ )2 Arσ+ ))1(2 2

111 Ar
DPD σηλδλλ ++−             

D
ξμϑ(+ ),DPD

ξξ δη Σ−Σ− )(exp( DP
ξξ ημδμ +− ))2(

2
1 ,22 DPDP

ξξξ ηδηδ Σ+Σ+Σ+ ,             (39) 

and  

ϑ∂
∂R )(exp(1 DP

ξξ ημδμ +−−= ))2(
2
1 ,22 DPDP

ξξξ ηδηδ Σ+Σ+Σ+ .                                              (40) 

 

By observing the above partial derivative, one cannot entirely judge whether the impact 

of the parameter on the mortgage yield is positive or negative. Thus, we discuss the direction 

regarding the influence of the parameter on the mortgage yield based on some conditions. 

We analyze the influence of the interest rate on the mortgage yield based on Equations (31) 

to (33). Common knowledge suggests there is negative relation between the mortgage value 
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and the forward rate. Thus, the forward rate positively influences the mortgage yield resulting 

in 01
),0( 11 >++=

∂
∂ DP

tf
R ηλδλ . Empirical results from some previous literature demonstrate 

that the influences of interest rates on prepayment and default probabilities are negative (see, 

Schwartz and Torous, 1993). Thus, we can infer that 01 <Pλ  and 01 <Dλ , obtaining 

1
),0(

0 <
∂
∂

<
tf

R . This result shows that if we consider the prepayment and default risks in 

pricing a mortgage value, the influential magnitude of a forward rate on yield will decrease. 

According to the results of 01 11 >++ DP ηλδλ  and 011 <+ DP ηλδλ , we can also infer that 

2
r

R
σ∂
∂ 0>  and 

a
R
∂
∂ 0< . The variance (the speed of adjustment) of a short interest rate has a 

positive (negative) effect on the mortgage yield.  

 

As for the influence of the termination risk on mortgage yield, we find that changes in 

P
0λ  and D

0λ  affect the mortgage yield in the positive direction based on Equations (34) and 

(35). The impact of P
1λ  and D

1λ  on the mortgage yield depends on whether the value of 

),0( tf  is large or less than the value of Ar
DP 2
11 )221( σηλδλ ++ . Under the condition of 

r
t

r
t Σ>μ , we have ),0( tf Ar

DP 2
11 )221( σηλδλ ++> , resulting in P

R

1λ∂
∂ 0>  and D

R

1λ∂
∂ 0> . 

Observing Equations (38) and (39) one can note the affects loss rates of termination risk have 

on yield. Because the hazard rates are a positive value in practice, we have 

0))),0(((][ 2
10 >++=Θ tAtfE r
PPP

t σλλ . Therefore, we infer 0)),0(( 2
10 >++ Atf r
PP σλλ . If we 

reasonably assume that >P
ξμ

DPP ,
ξξ ηδδ Σ+Σ , then we have 0>

∂
∂
δ
R . By the same way, we 
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also have 0>
∂
∂
η
R . Thus, both loss rates of prepayment and default positively influence 

mortgage yield. Moreover, the result of 0>
∂
∂
ϑ
R  can be obtained under the condition of 

)2(
2
1 ,22 DPDPDP

ξξξξξ ηδηδημδμ Σ+Σ+Σ>+ .  

 

The above discussions show that when the forward rate goes up, the expected present 

value of the amount received will decrease requiring a higher yield. As long as there is a 

great degree of change in the short interest rate (i.e. 2
rσ  is large), the mortgage becomes risky. 

Lenders will require a higher yield. Furthermore, since an increase in the value of a will lead 

to stability in the short interest rate lenders will require a lower yield. No matter when the 

financial or non-financial intensity rates of prepayment and default go up, the mortgage 

becomes riskier. Lenders will then require a higher yield to compensate for the higher 

termination risk. If the loss rates of prepayment and default increase, the amount received 

when prepayment or default occurs will be lower and the lender will require a higher yield. 

Therefore, we conclude that there are positive relationships between the risk premium of a 

risky mortgage and the factors including the forward rate, the variance of short interest rate, 

the financial and non-financial intensity rates of prepayment and default, and prepayment and 

default loss rates. Moreover, a negative relationship exists between the risk premium of a 

risky mortgage and the speed of adjustment for the short interest rate. These results also 

conform to our economic institutions. 

 

3.2 Duration and Convexity Measure for Risky Mortgages  
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The main challenge for portfolio managers is determining the duration and convexity of their 

mortgage holdings. Because the hedge ratios in mortgages have to be adjusted for changes in 

relevant variables, portfolio managers also need to investigate how the sensitivity of duration 

and convexity. Since the influence of a borrower’s prepayment and default decisions has to 

be considered, quantifying durations and convexities in mortgage securities cannot be 

straightforwardly determined as in non-callable Treasury or corporate securities. To begin 

with we define the risk-adjusted duration for a risky mortgage as  

R
V

V
D

∂
∂

−= 0

0

1 .                                                      (41) 

The partial derivative of mortgage value with respect to the yield is: 

R
V
∂
∂ 0 ∫ −−=

T
dtRttY

 

0 
)exp( .                                       (42) 

 

The duration can be obtained as follows:  

D ∫=
T

t dttW
 

0 
,                          (43) 

where 
∫ −

−
== T

t
t

dtRt

Rt
V
F

W  

0 
0 )exp(

)exp( , which represents the weight of cash flows at time t . 

)exp( RtYFt −= . 

 

The termination intensity rate, loss rates of prepayment and default, and recovered 

amount should all be considered in order to measure the risk-adjusted duration of a risky 

mortgage. Equation (43) shows that any decrease in tF  will result in a reduced duration of 

the mortgage because the value of tW  becomes smaller as t  approaches the maturity date. 
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There is a positive relationship between tF  and duration. Apparently, the increase in the 

interest rate causes tF  to decrease; a decrease in the duration of the mortgage contract then 

follows. The influence of relevant variables on the duration of the mortgage is more 

complicated as the change in a factor incurs a trade-off between positive and negative effects. 

We therefore use sensitivity analysis to show how the change in duration will be affected by 

different variables. The partial derivatives of the duration with respect to variablesφ , which 

represents ),0( tf , a , 2
rσ , P

0λ , D
0λ , P

1λ , D
1λ , δ , η  and ϑ , can be developed as follows (see 

Appendix B): 

1GRD
φφ ∂
∂

=
∂
∂ ,                          (44) 

where =1G 0))((
 

0 
<−∫

T
dttDttW . 

 

The above partial derivative expressions show that the influences of variables φ  on the 

mortgage duration are contrast to the influences of φ  on the mortgage yield. Under the 

foregoing conditions, which are used for the mortgage yield discussion, we have the results 

as follows:  When the forward rate ( ),0( tf ), the variance of short interest rate ( 2
rσ ), and 

intensity rates of financial or non-financial prepayment and default ( P
0λ , D

0λ , P
1λ , D

1λ  and ϑ ) 

go up, the duration of the mortgage becomes smaller. Similarly, as the loss rates of 

prepayment and default (δ  and η ) increase, the duration of the mortgage will also decrease. 

Furthermore, an increase in the speed of adjustment of short interest rate (a) will cause the 

mortgage duration to become larger. These results infer that a higher risk of interest rate, 

prepayment or default will lead to smaller mortgage duration. This inference is similar to the 
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arguments in Chance (1990), and Derosa et al. (1993).  

 

The definition of the convexity for a risky mortgage is: 

2
0

2

0

1
R
V

V
C

∂
∂

= .                           (45) 

Since 2
0

2

R
V

∂
∂

∫ −=
T

dtRttY
 

0 

2 )exp( , we can obtain the convexity of the mortgage as 

C ∫=
T

t dtWt
 

0 

2 . Then, we have the following: 

2GRC
φφ ∂
∂

=
∂
∂ ,                           (46) 

 

where 0)(
 

0 

2
2 <−≡ ∫

T

t dttDWtG . 

 

According to Equation (46), one can find that the influences of variables φ  on the 

mortgage convexity are similar to the influences of variables φ  on the mortgage duration. 

Nevertheless, the affects of variables φ  on the mortgage convexity are less than the affects of 

variables φ  on the mortgage duration because 12 GG < . 

 

4. Application of the Model 

In the mortgage market, partial prepayment and mortgages subject to prepayment penalty 

clauses are common phenomena. When borrowers have surplus money, but not enough to 

prepay the whole amount of the mortgage loan, they often decide to make a partial 

prepayment in order to reduce interest expense. However, most literature often only focuses 
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on full mortgage prepayment. In this section, we analyze how partial prepayment risk 

influences the yield, duration and convexity of the mortgage. Furthermore, since the 

borrower owns the call option to prepay the mortgage, the lender always uses self-protection 

strategies to hedge the exercise of the option. Prepayment penalty clauses are appended to a 

vast majority of mortgages in order to reduce prepayment risk. Partial prepayment and the 

prepayment penalty alter both the termination time and the amount of cash flow promised to 

mortgage holders. Thus, accurately calculating the yield, the duration and the convexity of a 

mortgage is more difficult in these situations.  

 

In addition, mortgage insurance is usually required to reduce losses in case of default. 

Realistically, before issuing mortgage securities to investors and in order to enhance the 

credit of the contract, the originator of a mortgage may use insurance to reduce the default 

risk. What is a fair fee to pay insurance companies? How do relevant variables influence 

insurance rate levels? In this section, we investigate the influence of all these factors on the 

measure of mortgage yield, duration and convexity. 

 

4.1 Partial Prepayment 

We assume the borrower’s partial prepayment amount is 11 )1( −−− tt Mϕ  at the time 1−t , 

where 11 <−tϕ . Thus, the payment at every point and the outstanding mortgage principal at 

the next point will be ttYϕ  and tt Mϕ , respectively. If the lender reduces the value of the 

collateral to the same percentage as the mortgage principal, the collateral value tH  changes 

to tt Hϕ  simultaneously. The mortgage value changes from tV  to ttVϕ  under the assumption 

of the same probabilities of prepayment and default.  
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Moreover, since the borrower’s incentive for deciding to make a partial prepayment is 

different from the incentive to make a full prepayment, there will be a change in the 

prepayment probability. Thus, we assume that the intensity rate of prepayment changes from 

P
tλ  to P

tλ
~ , and then P

0λ , P
1λ and ϑ  become P

0
~λ , P

1
~λ and ϑ~ . Because the same proportional 

changes in tY , tH  and tV  leads to the identical incentive for the borrower’s default decision, 

(for the purpose of simplicity) we assume there is no change in the default intensity rate. 

Replacing P
0

~λ , P
1

~λ and ϑ~  into Equations (30), (43) and (46), we obtain the yield, the duration 

and the convexity of a mortgage that includes partial prepayment, R~ , D~  and C~ . 

 

According to the previous discussion, we know there are positive relations between the 

mortgage yield and the intensity rates of financial and non-financial prepayment, and also 

negative relations between the duration and the convexity of a mortgage and the intensity 

rates of financial and non-financial prepayment. If P
tλ

~ P
tλ> , the yield of a mortgage subject 

to a partial prepayment risk ( R~ ) is higher than the yield of a mortgage without partial 

prepayment risk ( R ). The duration and the convexity of a mortgage that includes a partial 

prepayment ( D~  and C~ ) must be smaller than the duration and the convexity of a mortgage 

with no partial prepayment ( D  and C ). Alternatively, if P
tλ

~ P
tλ< , the yield of a mortgage 

including partial prepayment ( R~ ) is lower than the yield of a mortgage without partial 

prepayment ( R ). The duration and the convexity of a mortgage that includes a partial 

prepayment ( D~  and C~ ) become larger than the duration and the convexity of a mortgage 

with no partial prepayment ( D  and C ). 

 



 28

It is worth noting that if the lender does not alter the collateral value to the same 

percentage as the mortgage principal (i.e., there is no change in the collateral tH ), the 

mortgage value under the condition of partial prepayment will be greater than ttVϕ  because 

of the increasing default recovery rate. Additionally, the default probability will decrease 

because the ratio of the value of collateral to the loan will increase. According to the 

analyzed results in the previous section, we found that a positive relationship exists between 

the yield of a mortgage and the default loss rate, and the intensity rates of financial and non-

financial defaults. There are negative relationships between the duration and the convexity of 

a mortgage and the default loss rate, and the intensity rates of financial and non-financial 

defaults. Thus, if P
uλ

~ P
uλ< , we can infer RR <~ , DD >~  and CC >

~ . However, if P
uλ

~ P
uλ> , 

the influence of the borrower’s partial prepayment on the yield, the duration and the 

convexity of a mortgage are difficult to estimate because the increase in prepayment risk and 

the decrease in default risk lead to two opposite effects on the yield, duration and convexity 

of a mortgage.  

 

4.2 Prepayment Penalty 

In general, prepayment penalty clauses will deter mortgage prepayments. Thus, prepayment 

penalties have the effect of reducing prepayment risk (see, Kelly and Slawson, 2000). This 

implies that the yield, duration and convexity must change due to the changes in prepayment 

probability and prepayment recovery rate.  

 

To analyze this problem, we introduce the fixed penalty into our model. Assume a 

constant fractional penalty, 1μ , for the preceding k  periods of the mortgage contract, then 2μ  
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fractional penalty for the remaining periods of mortgage contract, where 21 μμ > .  If k  is 

equal to the maturity date, then the fixed penalty becomes the permanent penalty which has a 

constant percentage penalty for the entire life of mortgage. If the mortgage is prepaid at point 

j , when kj ≤ , jM1μ  amount is charged. Alternatively, jM2μ  amount is paid if the 

borrower prepays at point j , when Tjk << . Then one can get the prepayment recovery 

rate 1α̂  and 2α̂ , which represent the recovery rate at the preceding k  periods and the 

remaining period respectively, where )1(ˆ 11 μαα += and )1(ˆ 22 μαα += . 

 

The prepayment penalty increases the borrower’s cost of eliminating the mortgage 

liability and should affect the incentive for the borrower’s prepayment decision. We assume 

that prepayment probability changes from P
uλ  to P

uλ̂ , and then P
0λ , P

1λ and ϑ  become P
0λ̂ , 

P
1̂λ and ϑ̂ . Because the prepayment penalty reduces the prepayment risk, it implies that 

<P
uλ̂

P
uλ .  Replacing 1α̂ , 2α̂ , P

0λ̂ , P
1̂λ  and ϑ̂  into Equations (28), (44) and (47), we obtain the 

yield, the duration and the convexity of a mortgage that includes prepayment penalty, 1R̂ , 1D̂  

and 1Ĉ  for Tkj <≤ , and 2R̂ , 2D̂  and 2Ĉ  for Tjk << . 

 

According to the discussion in the previous section, we know that there is a positive 

relation between the mortgage yield and the intensity rates of financial and non-financial 

prepayments and the loss rate of prepayment. These conditions imply that either 1R̂  or 2R̂  is 

lower than the original yield ( R ). 1R̂  is less than 2R̂  because 21 μμ >  will lead to the greater 

decrease in the loss rate and the probability of prepayment for Tkj <≤  than for Tjk << .  
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Since the decrease in the intensity rates of financial and non-financial prepayments and 

the loss rate of prepayment will cause the increases in the duration and the convexity of a 

mortgage, the duration and the convexity of a mortgage with penalty ( D̂  and Ĉ ) must be 

larger than the duration of a mortgage with no penalty ( D  and C ). 2D̂  and 2Ĉ  are less 

than 1D̂  and 1Ĉ  because 21 μμ > . These results show that the risk premium decreases and the 

duration and the convexity of a mortgage are larger due to the prepayment penalty decreasing 

the loss rate and the probability of prepayment.  

 

4.3 Insurance Rate 

Since the mid-1990s, a growing number of countries have been interested in mortgage 

default insurance (see, Blood, 2001). Mortgage default insurance can protect lenders and 

investors against losses when borrowers default and their collaterals are insufficient to fully 

pay off the mortgage obligation. Numerous market practitioners and academic researchers 

focus their studies on how to decide an appropriate insurance rate.  

 

In our model, the insurance premium is calculated as an up-front fee defined as the 

difference between the value of the mortgage ( jV ) and the recovered amount ( jj Mβ ) in the 

event a default occurs at point j . Because the default risk is avoidable through insurance, the 

upper-bound insurance rate is the spread between the yield of the defaultable mortgage and 

the yield of the mortgage with no default risk. According to the derived mortgage yield 

(Equation (30)), the upper-bound insurance rate, I , is described as follows: 4 

                                                 
4 Equation (47) can be obtained by calculating the value of the yield without default risk minus the value of the 
yield with default risk. 
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),0(10 tfI DD ηληλ += Ar
DDP 2
111 )21( σηληλδλ ++−  

P
ξδμϑ −+ exp( )

2
1 2 P

ξδ Σ+ D
ξημ−− exp(1( ))2(

2
1 ,2 DPD

ξξ ηδη Σ+Σ+ .                   (47) 

 

Since the default risk is not entirely eliminated, it implies the fair insurance rate for 

partial mortgage default insurance is less than I . Alternatively, the fair insurance rate for full 

mortgage default insurance is I  as the default-free mortgage should have a zero default risk 

premium. Thus, the level of insurance rate paid depends on the degree of default risk 

eliminated by the mortgage default insurance. Moreover, in addition to the default risk, 

prepayment risk also influences the insurance rate, I . This is because we consider the 

correlation between the risks of prepayment and default in our model. Previous literature 

does not take into account the prepayment risk to investigate the mortgage default insurance. 

It implies that the mortgage default insurance that we provide should be more appropriate 

due to the consideration for the relationship between prepayment and default risks. Insurance 

institutions can decide an appropriate insurance rate through the rate that we provide. 

 

5. Conclusion 

Measuring yields, durations and convexities of mortgage contracts is quite complex due to 

the borrowers’ prepayment and default behaviors that cause uncertainty for both the 

termination time and promised cash flows. This causes uncertainty in the changes in the yield, 

duration and convexity of a mortgage. Therefore, the measure of a mortgage yield, duration 

and convexity should appropriately reflect prepayment and default risks in addition to the 

interest-rate risk. This paper provides a framework for investigating the effects of various 

factors on the yield, duration and convexity of a mortgage. These factors do not only include 
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the term structure of the interest rate, financial termination probability, and prepayment and 

default loss rates, but also include non-financial termination probability, prepayment penalty 

and partial prepayment risk. Thus, our formulae for yield, duration and convexity, which 

precisely accounts for prepayment and default risks, may help regulators and financial 

institutions reduce their solvency risk.  

 

Hedging a mortgage with termination risk is an extremely difficult endeavor. Therefore, 

the measure of a mortgage yield, duration and convexity should appropriately reflect 

prepayment and default risks, in addition to the interest-rate risk. Since our formulae for 

duration and the convexity more sensitively reflect the impact of prepayment and default 

risks, it is more appropriate in the management of interest rate risk than traditional duration 

and convexity. Therefore, our model can provide an appropriate framework for portfolio 

managers to more effectively hedge their mortgage holdings. 

 

According to the sensitivity analyses, we find that there are positive relationships 

between the yield and the intensity rates of financial and non-financial termination, the loss 

rates of prepayment and default, the forward rate and the variance of the short interest rate. 

Additionally, there is a negative relationship between the yield and the speed of adjustment 

of the short interest rate. These results confirm that securities with higher termination and 

interest-rate risks have a higher risk premium. Moreover, the influence of all these factors on 

the duration contrasts the influence they have on yield. We can infer that higher interest-rate, 

prepayment and default risks will reduce the mortgage duration. This assertion is also 

consistent with Chance (1990) and Derosa et al. (1993). Furthermore, to compare the 
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analyzed results for mortgage duration, the influence of these factors on the mortgage 

convexity have the same results. 

 

The facts that prepayment penalties and borrowers’ partial prepayment behavior 

significantly affect the yield, duration and convexity measures of a mortgage are well known 

in the mortgage market. However, few studies have investigated mortgage yield and duration 

with these phenomena. In this paper, we analyze the impact of prepayment penalty and 

partial prepayment on the yield and duration. Our model shows that yield decreases and 

duration increases when a mortgage has a prepayment penalty. Furthermore, the influence of 

a borrower’s partial prepayment behavior on the yield and duration of the mortgage are 

ambiguous due to the positive and negative effects of partial prepayment on risks of 

prepayment and default.  

 

Finally, we analyze the problem concerning mortgage default insurance and provide a 

reference upper-bound for lenders and investors. They can measure an appropriate insurance 

rate by the mortgage default insurance we provide because it considers the relationship 

between prepayment and default risks, lenders and investors.  
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Appendix A  

In this appendix, we provide the derivation of Equation (19). From Equation (17), one can 

obtain the following results (see, Heath et al., 1992): 
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Appendix B 
From Equation (44), we have 
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Substituting Equation (B2) into Equation (B1), we have 
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With regard to the analyses of convexity, by the same way, we have 
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Therefore, we have the results of Equations (44) and (46). 

 

 


