
Model-Driven Reverse Engineering of
Legacy Graphical User Interfaces

Óscar Sánchez Ramón
osanchez@um.es
University of Murcia

Murcia, Spain

Jesús Sánchez Cuadrado
jesusc@um.es

University of Murcia
Murcia, Spain

Jesús García Molina
jmolina@um.es
University of Murcia

Murcia, Spain

ABSTRACT
Businesses are more and more modernizing the legacy sys-
tems they developed with Rapid Application Development
(RAD), so that they can benefit from the new platforms and
technologies. In these systems, the Graphical User Interface
(GUI) layout is implicitly given by the position of the GUI
elements (i.e. coordinates). However, taking advantage of
current features of GUI technologies often requires an ex-
plicit, high-level layout model. We propose a Model-Driven
Engineering process to perform reverse engineering of RAD-
built GUIs, which is focused on discovering the implicit lay-
out, and produces a GUI model where the layout is explicit.
Based on the information we obtain, other reengineering ac-
tivities can be performed, for example, to adapt the GUI for
mobile device screens.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Reverse engineering and reengineering ;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical User Interfaces

General Terms
Algorithms

Keywords
Graphical User Interfaces, Layout, Modernization, Model
Driven Engineering, Reverse Engineering, Reengineering.

1. INTRODUCTION
A great many information systems dating from the 90’s

were built using Rapid Application Development environ-
ments (RAD’s), such as Oracle Forms or Delphi. They
shorten development times by facilitating GUI design and
coupling data access to GUI components. These systems are
difficult to evolve, and fewer and fewer RAD environment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

vendors are supporting them, which motivates that a large
number of businesses are migrating their legacy systems to
other platforms that better meet their needs.

The migration of a legacy application to a new technology
must deal with several aspects, such as data access, bussiness
logic and GUI. Some works have dealt with the migration of
RAD-based legacy systems [7][1], but user interface migra-
tion has been typically regarded as a straightforward topic,
where the only concern is establishing mappings between
source and target widgets. However, dealing with current
technologies and devices requires a thorough analysis of the
user interface, so it can be suitably reengineered.

On the other hand, Model Driven Engineering (MDE)
have arisen as a new software development paradigm in
which models, which are abstract representations of systems,
drive the whole development process. In this setting, meta-
models describe the structure of models, and model transfor-
mations are used to convert models between different levels
of abstraction by establishing mappings between metamod-
els, which enables automation. MDE techniques are not
only applicable to the creation of new software systems, but
can also be used to evolve existing systems, by automating
evolution activities, such as reverse engineering.

In this paper we explore the concerns involved in the dis-
covery of layout relationships among user interface elements.
We focus on GUIs built with RAD environments, where the
layout is implicitly represented by means of the explicit po-
sition of widgets. We propose an MDE approach to perform
reengineering, which uses models to represent the informa-
tion gathered, and model transformations to implement the
algorithms in charge of deriving a representation of the GUI
to a higher-level of abstraction. Algorithms to analyze the
GUI have been implemented, since reverse engineering the
layout of the user interface (i.e. getting an explicit model
of the spatial relationships among widgets) is central for ac-
complishing subsequent reengineering activities. By using
MDE techniques we have also been able to automate the
process and make the approach reusable for different legacy
source platforms and target platforms.

The paper is organized as follows. Next section describes
the challenges posed by the reverse engineering of RAD-built
GUIs. Section 3 presents our reverse engineering approach.
Section 4 presents the related work, and Section 5 concludes.

2. LAYOUT REVERSE ENGINEERING
CHALLENGES

In this section we present the main challenges that must
be tackled. First of all, we will comment on some features

RecordWindow

NameLabel SurnameLabel

AddressLabel MailButton

CardLabel DiscountLabel

AddButton DelButton ExitButton

NameBox SurnameBox

AddressBox

CardCombo

R1

R2

R3

PaymentFrame

Figure 1: View for entering personal information.
Widgets are placed with explicit coordinates.

RecordWindow: Canvas

CardLabel: Label

CardCombo: ComboBox

DiscountLabel: Label

DiscountCheck: CheckBox
PaymentFrame: Frame
. . .

RecordWindow: Canvas

CardLabel: Label

CardCombo: ComboBox

DiscountLabel: Label

DiscountCheck: CheckBox

PaymentFrame: Frame

. . .a) b)

Figure 2: (a) Fragment of the original GUI tree. (b)
The expected GUI tree.

shared by the GUIs which were built with a RAD environ-
ment, as they are the basis to understand them.

• GUI builder. GUIs are built using a GUI builder (or
designer), by dragging and dropping widgets from a
palette. The definition of the interfaces is serialized in
files which often use a non-standard format.

• Implicit layout. The position of GUI elements (e.g.
widgets) is stated by means of coordinates that are rel-
ative to the main window or another container. The
size of a widget is also given explicitly by the designer.
This means that, for example, when a window is re-
sized the widgets are not resized or rearranged.

• Standard widgets. RAD environments share a com-
mon set of standard widgets, such as text boxes, but-
tons, combo boxes, tables, and so forth. There are
container widgets intended to group and/or highlight
semantically-related widgets, frequently by means of a
border or other kinds of graphical attributes.

• Overlapping. Widgets are often loosely contained
into a container widget, that is, instead of having ex-
plicit containment relationships, they are often over-
lapped. Containers could also be overlapped on other
containers. This means that a container may not con-
tain any widget, although there may be some widgets
that would be expected to be contained. For example,
in Figure 1, the CardLabel element is not actually con-
tained in the PaymentFrame element, as we can see
in the GUI tree in Figure 2. Instead, it is overlapped
over the region occupied by PaymentFrame.

Discovering view layout is central in our approach to per-
form reengineering. Our aim is to capture the visual arrange-
ment of elements in such a way that both replicating the
layout and redesigning it for a different technology would
be easy. Transforming an implicit, coordinate-based layout
into an explicit, high-level layout poses the following chal-
lenges. The example view in Figure 1 and its partial GUI
tree shown in Figure 2 are used to support the explanation.

1. Region identification. A view can be seen as a com-
position of parts or regions (maybe implicit) that give
a structure to the widgets that are in the view. Re-
verse engineering the structure of a view by identifying
regions is needed for layout redesign. In the example
we can make out three regions in the window. Region
R2 contains the widgets that are surrounded by the
frame PaymentFrame, and regions R1 and R3 contain
the widgets above and below the PaymentFrame re-
spectively (notice that both R1 and R3 are implicit).

2. Explicit containment. As explained before, in some
cases elements are not actually contained in a con-
tainer, but they are overlapped. In the example, Pay-
mentFrame surrounds CardLabel, CardCombo, Discount-
Label and DiscountCheck, but these widgets are only
visually contained in the frame, that is, in the model
their parent element is not PaymentFrame, but Record-
Window (see Figure 2). Both, region identification and
explicit containment enable matching the layout ’phys-
ical’ and visual structure, what greatly simplifies the
reverse engineering algorithms.

3. Widget structure recognition. While region iden-
tification aims at recognizing parts that structure the
view, widget structure recognition is focused on how
spatially-close widgets are arranged. For example, the
widgets inside the PaymentFrame form a line. Wid-
gets are not often perfectly aligned, so heuristics are
needed. Following with the example, NameLabel, Name-
Box, SurnameLabel and SurnameBox could form a
line, but it is not clear whether MailButton forms a
part of this line.

4. Coordinate abstraction. A coordinate-based posi-
tioning system is not desirable, since coordinates are
technology-dependant and are not well displayed across
technologies. Moreover, they are not flexible enough to
perform beautification-wise actions, such as dynamic
resizing. A relative positioning-system that represents
relationships between elements would be preferable.
For example, it is needed to know that NameLabel is
above AddressLabel and on the left of NameBox.

5. Hole detection. With the term hole we refer to an
area of a remarkable size that does not contain wid-
gets but is surrounded by them. In the example view, a
hole between DelButton and ExitButton can be found.
Capturing layout holes is needed to be able to repro-
duce a similar layout in a different technology.

In the following section we will deal with these problems
by means of an MDE approach.

3. REENGINEERING ARCHITECTURE
A model-based architecture to support the reengineering

of a GUI built with a RAD has been devised. It is shown
in Figure 3. The process is split in four stages: injection,
reverse engineering, restructuring and forward engineering.

3.1 Injection
The first stage in a model-driven reengineering process

consists of injecting models from source artefacts, that is,
bridging the source technology formalism used to describe
the system’s artefacts and the modelware technical space.

Legacy
artefact

Source
technology

model

RAD
model

Target
code

Target
technology

model

CUI
model

Other
UIDL

Injection Reverse
Engineering

Forward
Engineering

Restructuring

Region
model

Tile
model

Figure 3: Model-based architecture to perform
reengineering of GUIs built with a RAD. Rounded
boxes are models and arrows are transformations.

In our architecture, a model-based representation of the
legacy GUI is obtained in the form of a Source Technology
Model. Such models conform to a metamodel that depends
on the specific RAD technology.

There are different tools to inject models from source arte-
facts. The choice will be given by the nature of the artefacts.
In our case, we have currently experimented with two source
technologies: Oracle Forms and Borland Delphi. In the first
case, the GUI description can be obtained in XML format,
and injection was performed by means of the EMF [5] tools
which generate models (and the corresponding metamodel)
from XML conforming to a XML schema. In the second
case, GUI source code is written in a simple Delphi-like lan-
guage, and we used Gra2MoL [3] to inject models based on
source code that conforms to a grammar.

3.2 Reverse engineering
The reverse engineering process starts by transforming a

Source Technology Model into a RAD model. This is a
kind of normalization model for GUIs built with a RAD,
in order to make the rest of the process independent of the
source technology.

The result of the reverse engineering is a Concrete User
Interface (CUI) model (following the terminology of the
Reference Framework given in [8]), which is a technology-
independent representation of a GUI. Layout is expressed
in a CUI model in terms of explicit high-level structures.
CUI models can be restructured, and forward engineering
can also be applied.

A model-to-model transformation chain analyzes a RAD
model, gathering information and transforming it into a CUI
model. It is worth noting that both RAD and CUI models
allow the reverse engineering algorithms to be independent
of any technology or platform. The metamodels that define
RAD and CUI models (as well as other metamodels and
reverse engineering algorithms that will be mentioned later)
can be found at http://www.modelum.es/guizmo.

Implementation-wise, the reverse engineering algorithms
have been implemented in RubyTL [4], which is a rule-based
model-to-model transformation language. It provides pow-
erful query facilities, as well as a modularity mechanism,
called phasing, that have facilitated the implementation and
modularization of the solution.

Because of the wide semantic gap that exists between
RAD application concepts (included in the RAD metamodel)
and our CUI metamodel, we have included two stages prior
to the transformation from RAD to CUI models, which are

used to gather some information implicitly expressed in the
RAD model. The result of the first stage is a Region model,
and the result of the second stage is a Tile model. Both
models annotate a RAD model with additional layout infor-
mation that is useful to derive a CUI model in a final stage.
Next, we will outline these three stages.

3.2.1 Detecting regions and containers
This stage is intended to tackle challenges 1 and 2 com-

mented in Section 2. Given a RAD model, a Region model is
automatically derived by means of a model-to-model trans-
formation.

A Region Model is a model that annotates a RAD model
to make explicit the visual containment relationships be-
tween widgets. In a Region Model, every GUI element is
represented by a region, that is a rectangular area of the
GUI which is defined by means of coordinates. Moreover,
aditional regions are created to group spatially-related wid-
gets. Region models have three main features: i) every GUI
element is associated with a region defined by two pairs of co-
ordinates, ii) container and non-container widgets must not
exist at the same level (i.e. a region annotating a container
cannot be a sibling of a region annotating a non-container),
and iii) overlapped regions are not allowed.

3.2.2 Uncovering relative positions
This second stage is aimed at making the layout indepen-

dent of the coordinated-based system. It deals with chal-
lenges 3, 4 and 5 mentioned in Section 2. The input of this
stage is a Region model, and a Tile model is automatically
generated.

Tile models are mainly focused on representing how wid-
gets and containers are arranged, in terms of relative posi-
tions among them. In this model, regions are refined and
element position is no longer represented by coordinates.
We define a tile as a part of a view with spatial relation-
ships with other neighbour parts (i.e. up, down, left, right).
For example, a certain tile could have another tile above it
and a different tile below. This positioning system is useful
to identify high level layout patterns afterwards, as it will
be shown in the next section. Tile models also refine Re-
gion models by identifying sub-structures inside regions, for
example groups of widgets that form a line.

3.2.3 High level layout
A Tile model solves the layout problems mentioned in

Section 2. However, this relative positioning system does
not offer a high-level perspective of the layout. For example,
in the case of the set of tiles corresponding to the regions R1,
R2, R3 in Figure 1 (notice that tiles refine regions), where
R1 is above R2 and R3 is below R2, we would not know that
they form a pile of tiles unless we analyze the relationships
between them. Representing explicitly the structure of the
view parts (in terms of stacks, grids, and so forth) is one of
the main goals of the CUI Model. CUI models are generated
from RAD models by using the annotations included in the
Tile models to recognize such layout structures.

3.3 Restructuring and forward engineering
The CUI model is the result of the reverse engineering

process. From it, restructuring and forward engineering are
possible. Restructuring allows the GUI to be adapted and
redesigned (possibly in an automatic way), while forward

engineering allows new software artefacts such as web pages
or User Interface Language Descriptions (UIDL) to be au-
tomatically generated.

We briefly comment on three cases where it enables reengi-
neering activities to be performed:

• Layout-preserving migration. Sometimes users are
averse to change, hence the original GUI layout must
be kept in the new application. Another possible use is
to generate a mock application which tracks user input
in order to generate test cases [10].

• Reengineering for GUI adaption. Migrating to a
new GUI technology requires taking advantage of the
target technology features (e.g. usability standards,
high-level layout models of modern GUI toolkits, etc.),
and in some cases the kind of GUIs that are supported
is restricted by the visualization display.

• Quality improvement. Perfective maintenance tasks
can be required to improve the system quality, such as
non-visible widget removal, GUI resizing and beautifi-
cation [9].

4. RELATED WORK
There are several works that deal with GUI reverse engi-

neering. An approach to migrate Windows applications to
Visual Basic .NET from runtime traces can be found in [6].
No high-level layout information is gathered, so restructur-
ing is not possible. In [11], authors perform static analysis
of the source code to identify widgets and recover the GUI
tree. In [9], it is shown how to extend hard-coded GUIs to
support perfective maintenance tasks. This proposal does
not use MDE and is not aimed at migrating applications,
but to perform perfective maintenance.

Some other works propose reverse engineering of web pages.
VAQUISTA [12] is a tool which performs reverse engineering
of web pages onto models described with a User Interface De-
scription Language (UIDL). In [2] an approach for extracting
web content structure based on visual representation is pro-
posed. It is worth noting that GUI reengineering approaches
for web pages work on a DOM tree, which are tree-based rep-
resentations of the HTML code, where the GUI structure is
explicitly expressed by means of HTML tags. In contrast, in
a GUI built with a RAD the layout is implicit in the widget
coordinates, which requires analyzing the whole GUI.

Some UIDL such as USIXML [8] have been proposed,
which model platform-independent user interfaces. Tools
and generators have also been developed for these languages.
Our architecture is able to generate code for these languages,
in order to reuse their generators.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an MDE approach to

deal with automatic reverse engineering of GUIs build with
a RAD environment. We have analyzed the problem, and
we have proposed a model-based architecture to support the
reengineering process. The implementation is available at
http://www.modelum.es/guizmo.

There are three main benefits derived from the use of this
architecture. Firstly, automation is highly promoted since
the generation of CUI models from RAD models is always
automatically performed by means of model-to-model trans-
formations, which is the most complex part of the process.

Secondly, reusability and extensibility are also promoted.
To support a new RAD technology, only the correspond-
ing injector plus the transformation to derive RAD models
are required. All reverse engineering and restructuring al-
gorithms (i.e. model transformations) and code generators
within the architecture are then automatically available.

Thirdly, it is maintenable because changes in the reverse
engineering algorithms are independent of the source and
target technologies (i.e. the RAD and CUI metamodels act
as facades).

As future work, we will include in our architecture some
other aspects related to GUI migration, such as event han-
dling and navigation flows. Moreover, we will deal with con-
figuring the modernization process. We are also interested
in exploring to what extent our architecture can be adapted
to deal with the migration of web-based GUIs. Finally, new
source and target platforms, and new restructuring algo-
rithms will be considered.

Acknowledgments
This work is partially supported by Consejeŕıa de Universi-
dades, Empresa e Investigación (grant 129/2009) and Fun-
dación Séneca (project 08797/P1/08).

6. REFERENCES
[1] L. F. Andrade, J. Gouveia, M. Antunes, M. El-Ramly,

and G. Koutsoukos. Forms2net - Migrating Oracle
Forms to .NET. In GTTSE, pages 261–277, 2006.

[2] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Vips: a
Vision-Based Page Segmentation Algorithm. Technical
report, Microsoft Research, 2003.

[3] J. L. Cánovas Izquierdo and J. G. Molina. A Domain
Specific Language for Extracting Models in Software
Modernization. In ECMDA-FA ’09, pages 82–97, 2009.

[4] J. S. Cuadrado and J. G. Molina. Modularization of
Model Transformations Through a Phasing
Mechanism. Software and System Modeling,
8(3):325–345, 2009.

[5] Eclipse. Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/modeling/emf/.

[6] J. Gerdes, Jr. User Interface Migration of Microsoft
Windows Applications. Journal of Software
Maintenance and Evolution, 21(3):171–187, 2009.

[7] J. V. Harrison and W. M. Lim. Automated Reverse
Engineering of Legacy 4GL Information System
Applications Using the ITOC Workbench. In
CAiSE’98, pages 8–12, 1998.

[8] Q. Limbourg and J. Vanderdonckt. Usixml: A User
Interface Description Language Supporting Multiple
Levels of Independence. In ICWE Workshops, pages
325–338, 2004.

[9] C. Lutteroth. Automated Reverse Engineering of
Hard-Coded GUI Layouts. In AUIC 2008, volume 76
of CRPIT, pages 65–73, 2008.

[10] A. Memon, I. Banerjee, and A. Nagarajan. GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. In WCRE ’03, page 260, 2003.

[11] S. Staiger. Static Analysis of Programs with Graphical
User Interface. In CSMR ’07, pages 252–264, 2007.

[12] J. Vanderdonckt, L. Bouillon, and N. Souchon.
Flexible Reverse Engineering of Web Pages with
Vaquista. In WCRE ’01, page 241, 2001.

