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Abstract

With the progress of miniaturization the size of electronic devices is presently scaling down into the nanometer
region, where quantum mechanical effects play an important role. Appropriate technology computer-aided design tools
are essential to explore the physics of nanoscale devices and to find methods to optimize their functionality and
performance. In this work we review the approaches to quantum mechanical modeling of carrier transport in nanoscale
electronic devices. Numerical analyses for graphene nanoribbons are presented as a case study.

I. INTRODUCTION

For more than four decades the progress of integrated circuit technology has been based upon the down-scaling

of Si-MOSFETs. The number of devices contained on a single chip has approximately doubled every three years.

The continued miniaturization of Si integrated devices has approached the nanometer region. Novel structures, such

as multiple gate MOSFETs, and novel materials beyond Si, such as compound semiconductors and graphene, are

expected to be utilized to meet the requirements for further scaling [1]. On the other hand novel devices based on

quantum mechanical effects, such as tunneling FETs [2], have been introduced in recent years.

Rapid changes in technological solutions and device architectures can be anticipated by employing technology

computer-aided design (TCAD) tools which assist in device development and engineering at practically all stages

from process definition to circuit optimization. TCAD tools help to reduce costs of research and development of new

processes and devices [3]. The classical drift-diffusion model of carrier transport in electronic device has been widely

employed in TCAD tools. However, the concern is increasing about how quantum effects will impact electronic

device operation as down-scaling of electronic devices continues along the road-map and, in addition, the demand for

numerical analysis and optimization of novel devices which are based on quantum effects is increasing. Therefore,

modern TCAD tools based on quantum transport models are indeed required [4].

In Section II different semi-classical and quantum mechanical transport models are briefly introduced. In Section III

the non-equilibrium Green’s function fornalism (NEGF), which is widely used for the analysis of nanoscale devices,

is discussed in moderate detail. In Section IV the NEGF method is applied to study graphene nanoribbons. Finally,

conclusions are drawn in Section V.

II. THE HIERARCHY OF TRANSPORT MODELS

Table I sketches the hierarchy of different transport models for device modeling. There are two fundamental

equations for semi-classical device simulation, the Poisson equation and the Boltzmann equation. While the Poisson

equation takes care of the electrostatic description of any device structure, the Boltzmann equation describes the

propagation of a particle distribution function f(r,k, t) within the device. These two equations have to be solved

in a self-consistent manner and can be exploited as a reference for numerous models which are derived from the

Boltzmann transport equation [5]. The distribution function f(r,k, t) is a classical concept which holds, when the

characteristic length of the device is much larger than the De Broglie wavelength of carriers, L≫ λ.
A direct solution of the Boltzmann equation is possible only for a few rather pathological cases. The Boltzmann

equation can be solved by using the Monte Carlo method [6]. An approximate solution can be obtained by expressing

the distribution function as a series expansion which leads to the spherical harmonics approach [7]. The method

of moments is also a very efficient way to derive approximate solutions of the Boltzmann transport equation [5].

By multiplying the Boltzmann transport equation with a set of weight functions and integrating over k-space one

can deduce a set of balance and flux equations coupled with the Poisson equation. Via this formalism an arbitrary

number of equations can be generated. One has to truncate the equation system at a certain point and complete the

system by an additional condition [8]. For example, the drift-diffusion model can be gained by assuming thermal

equilibrium between the charge carriers and the lattice [5]. However, when the device size is scaled down, the

carriers’ non-equilibrium properties caused by a high electric field become important. The hydrodynamic transport

model addresses this issue by assuming a heated Maxwellian distribution for the carriers [9].

The Poisson equation and the Schrödinger equation are the basis of all quantum transport models. However,

solving the Schrödinger equation for a many particle system is very difficult. To address the many body problem

different techniques and methods have been introduced. Among them the NEGF formalism, see Section III, appears

to be appropriate for nanoscale devices [10, 11]. In coordinate representation the Green’s function, G(r1, t1; r2, t2),
depends on two position arguments r1, r2 and two time arguments t1, t2, representing the non-locality in space and

time.
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TABLE I
The hierarchy of semi-classical and quantum transport models.

Transport Regime
Quantum Mechanical Semi-classical

L ∼ λ L ≫ λ

Fundamental Equation Schrödinger Boltzmann

Transport Model
Non-equlibrium Wigner Quantum Corrected Boltzmann Boltzmann Hydrodynamics Drift-Diffusion

Green’s Function Quantum Hydrodynamics (Monte Carlo)

-

Device Characteristic Length (L)

The equation of motion for the Green’s function is given by the integro-differential Dyson equation [12]. On the

other hand, starting from the Dyson equation, the quantum Boltzmann equation can be derived [13]. When independent

variables are changed to the center of mass coordinates (r, t) = (r1 + r2, t1 + t2)/2 and the relative coordinates

(u, τ) = (r1−r2, t1−t2), a quantum mechanical distribution function G(k, ω, r, t) is defined as the Fourier transform

of G(u, τ, r, t) with respect to the relative coordinates. The quantum Boltzmann equation is in fact a kinetic differential

equation for the Green’s function [13].

The Wigner distribution function is defined as the energy integral of the Green’s function [14]. A transport equation

for the Wigner distribution function including scattering effects can be obtained [15]. A practically used approximation

to incorporate realistic scattering processes into the Wigner equation is to utilize the Boltzmann scattering operator [16],

or by an even simpler scheme such as the relaxation time approximation[17]. Under this approximation, quantum

mechanical collisional effects, for example, collisional energy broadening [18], are neglected. One can continue by

rewriting the Wigner equation in the form of a modified Boltzmann equation with additional terms including quantum

correction [14]. Based on this equation the quantum corrected Boltzmann equation, the quantum hydrodynamic, and

the density gradient approximation can be achieved [19].

III. THE NON-EQUILIBRIUM GREEN’S FUNCTION FORMALISM

As discussed in the previous section, the NEGF method appears to be the most appropriate model for nanoscale

devices [11, 20, 21]. In this formalism quantum effects, such as tunneling, size quantization, and interference are

considered in the treatment of carriers. Quantum mechanical collisional effects in the scattering of carriers, such as

collisional energy broadening, are also properly modeled. This method has been successfully applied to study molecular

devices [22–24], Si-MOSFETs [25–28], nanowires [29–32] CNTs [33–37], GNRs [38–41], and spin transport [42–44]

The NEGF formalism initiated by Schwinger, Kadanoff and Baym [45], and Keldysh [12] allows to study the

time evolution of a many-particle quantum system. The many-particle information about the system is cast into

self-energies, which are part of the equations of motion. A perturbation expansion of the Green’s functions is the

key to approximate the self-energies. Green’s functions enable a powerful technique to evaluate the properties of a

many-body system both in thermodynamic equilibrium and non-equilibrium situations [46].

Four types of Green’s functions are defined as the non-equilibrium statistical ensemble averages of the single

particle correlation operator [12]. The greater Green’s function G> and the lesser Green’s function G< deal with the

statistics of carriers. The retarded Green’s function GR and the advanced Green’s function GA describe the dynamics

of carriers.

G>(1, 2) = −i~−1〈ψ̂(1)ψ̂†(2)〉

G<(1, 2) = +i~−1〈ψ̂†(2)ψ̂(1)〉

GR(1, 2) = θ(t1 − t2)[G
>(1, 2) −G<(1, 2)]

GA(1, 2) = θ(t2 − t1)[G
<(1, 2) −G>(1, 2)]

(1)

The abbreviation 1 ≡ (r1, t1) is used, 〈. . .〉 is the statistical average with respect to the density operator, θ(t) is the

unit step function, ψ̂†(r1, t1) and ψ̂(r1, t1) are the field operators creating or destroying a particle at point (r1, t1)
in space-time, respectively. The Green’s functions are all correlation functions. For example, G> relates the field

operator ψ̂ of the particle at point (r1, t1) in space-time to the conjugate field operator ψ̂† at another point (r2, t2).
Under steady state condition the Green’s functions depend only on time differences. One usually Fourier transforms

the time difference coordinate, τ = t1 − t2, to energy. For example, the lesser Green’s function is transformed as

G<(1, 2) ≡ G<(r1, r2;E) =
∫

(dτ/~)eiEτ/~G<(r1, r2; τ). Under this condition the equation of motion for the

Green’s functions can be written as [10]:

[E −H]GR,A(1, 2) −

∫

d3ΣR,A(1, 3)Gr,a(3, 2) = δ1,2 G≶(1, 2) =

∫

d3

∫

d4GR(1, 3)Σ≶(3, 4)GA(4, 2)

(2)

where H is the single-particle Hamiltonian operator, and ΣR, Σ<, and Σ> are the retarded, lesser, and greater

self-energies, respectively.
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Fig. 1. The structure of a GNR with armchair edges along the
transport direction. Each unit cell consists of N numbers of A and B

sublattices.
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Fig. 2. Spatial distribution of the normalized current amplitude along
a GNR with line-edge roughness. The ribbon’s length is 19nm and the
width is 5nm. An exponential auto-correlation for line-edge roughness
has been assumed. The roughness is described by a correlation length
of Lm = 3nm and an amplitude of ∆m = 2acc.

IV. ANALYSIS OF GRAPHENE NANORIBBONS

Graphene, a one-atomic carbon sheet with a honeycomb structure, has attracted significant attention due to its unique

physical properties [47]. This material shows an extraordinarily high carrier mobility of more than 2×105cm2/Vs [48]
and is considered a major candidate for a future channel material for high performance transistors [49, 50]. To induce

an electronic bandgap, a graphene sheet can be patterned into narrow ribbons [51]. In order to obtain an energy

bandgap larger than 0.1eV, which is essential for electronic applications, the width of the GNR must be scaled below

10nm [52]. In this regime line-edge roughness is the dominant scattering mechanism [53]. The tight-binding model

for GNRs [51], which is used in this work, is described first. Applying this model, the effect of linde-edge roughness

is studied next.

A. Tight-Binding Model

The structure of graphene consists of two types of sublattices A and B, see Fig. 1. In graphene three σ bonds

hybridize in an sp2 configuration, whereas the other 2pz orbital which is perpendicular to the graphene layer, forms

π covalent bonds [54]. Each atom in an sp2-coordination has three nearest neighbors, located acc = 1.42Å away.

It is well known that the electronic and optical properties of CNTs and GNRs are mainly determined by the π
electrons [55]. To model those π electrons, a nearest neighbor tight-binding approximation has been widely used.

Using this approximation the Hamiltonian can be written as:

H = t
∑

〈p,q〉

(|Ap〉〈Bq| + |Bq〉〈Ap|) , (3)

where |Ap〉 and |Bq〉 are atomic wave functions of the 2pz orbitals which are centered at lattice sites labeled as Ap

and Bq, respectively. 〈p, q〉 represents pairs of nearest neighbor sites p and q, t = −2.7 eV is the transfer integral, and

the on-site potential is assumed to be zero. For the structure shown in Fig. 1 the matrix elements of the Hamiltonian

are non-zero for p = q and p = q ± 1. This atomistic model produces a matrix whose size is the total number of

carbon atoms [56]. The advantage of this model is that it can describe the device in an atomistic way. In this method

the effect of lattice vacancies [57], roughness [39], impurities [58], and disorder [59] can be rigorously modeled by

changing the hopping parameter at respective atomic sites.

B. Line-Edge Roughness

The line-edge roughness can be perturbatively treated [53]. However, in a more accurate non-perturbative approach

one can consider the roughness as a stochastic phenomenon and adapt it by removing or replacing specific carbon

atoms located at the edges of the ribbon. In order to model roughness, an exponential auto-correlation function is

defined as [60]:

c(n) = ∆2
m exp

(

−
x

Lm

)

, x = n∆x (4)

where ∆m is the roughness amplitude, Lm is the correlation length, and ∆x = acc/2 is the sampling interval. The

stochastic roughness can be generated by applying a random phase to the power spectrum of the roughness auto-

correlation in the Fourier domain and inverse Fourier transforming in order to obtain roughness in the real space

domain [60]. Fig. 2 shows the spatial distribution of the current amplitude along a GNR with rough edges. Due to

multiple scattering of carriers between the two rough edges, a large circulating current is present at some locations

inside the channel. Furthermore, the atomistic tight-binding model can capture the granularity of the simulation domain,

which is essential for narrow GNRs. To investigate the effect of roughness on the current of GNRs, one can consider the

ratio of the GNR current in the presence of roughness to that of a GNR with perfect edges RRough = IRough/IPerfect.

Fig. 3-a shows RRough as a function of the roughness amplitude. As the roughness amplitude increases the current

decreases. The decrease of the current can be attributed to more coherent scattering by imperfect edges and also the

increase of the energy bandgaps. In fact as the roughness amplitude increases, the width of the ribbon decreases at
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Fig. 3. a) RRough as a function of the roughness amplitude. The roughness amplitude is normalized to the GNR width. The GNR has a width
of W = 2.36nm and a length of L = 20nm. The correlation length of the line-edge roughness is Lm = 3nm. b) RRough as a function of the
ribbon’s width. The roughness amplitude is ∆m = 4acc. The dashed line shows a W 4 term for comparison with semiclassical simulations [53].

some locations. Since the energy gap is inversely proportional to the ribbon’s width, the local decrease of the width

results in an increase of the local energy gap, which results in an exponential decrease of the current. This behavior

can not be captured by semi-classical simulations, where the mobility of GNRs due to roughness scattering is reported

to be proportional to W 4 [53]; W is the width of the ribbon. This can be observed in Fig. 3-b, where RRough is

shown as a function of the GNR width. The results indicate an exponential change of the current rather than a W 4

relation. The deviation is more pronounced for narrow ribbons.

V. CONCLUSION

A review of semi-classical and quantum mechanical transport models for the analysis of semiconductor devices is

presented. The approximations and the limitations of each model are discussed. The non-equilibrium Green’s function

formalism provides a self-consistent approach for the analysis of nanoscale devices. In this formalism scattering

processes and quantum mechanical phenomena can be rigorously modeled. As a case study we investigated the effect

of line-edge roughness on the electronic properties of GNRs. An atomistic tight-binding model, which captures the

granularity of the simulation domain, has been used. The results indicate the importance of employing non-continuum

quantum mechanical simulations for the accurate analysis of nanoscale devices.
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