
www.elsevier.com/locate/parco

Parallel Computing 31 (2005) 544–562
On the parallelization of irregular and
dynamic programs

Oscar Plata *, Rafael Asenjo, Eladio Gutiérrez,
Francisco Corbera, Angeles Navarro, Emilio L. Zapata

Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain

Received 13 June 2003; received in revised form 19 April 2004; accepted 26 February 2005

Available online 9 June 2005
Abstract

Current compilers show ineffective when optimizing complex applications, both analyzing

dependences and exploiting data locality and extracting parallelism. Complex applications

may be characterized as irregular and dynamic. Irregular applications arrange data as multi-

dimensional arrays and memory is referenced through array indirections. Dynamic applica-

tions organize data as pointer-based structures (lists, trees, . . .) and memory is referenced

through pointers. In this paper we discuss a methodology we designed to develop efficient par-

allelization techniques for irregular and dynamic applications, that proceeds in three stages:

recognizing the complex program structure, data analysis and program parallelization based

on code/data transformations. Two case examples are analyzed in detail in the context of this

methodology: irregular reductions and shape analysis for dynamic data structures.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Irregular programs; Dynamic programs; Pointer-based data structures; Compilers
0167-8191/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2005.02.012

* Corresponding author.

E-mail address: oscar@ac.uma.es (O. Plata).

mailto:oscar@ac.uma.es

O. Plata et al. / Parallel Computing 31 (2005) 544–562 545
1. Introduction

Current automatic parallelizers obtain reasonably efficient parallel codes from

most of the regular applications. Such applications deal with data organized as mul-

tidimensional arrays, and most of the computations are arranged as uniform nested
loops. However, the compiler efficiency is generally much lower for other kind of

programs, those that include complex computation and/or data structures. In the

presence of such programming complexities compilers usually run into trouble both

analyzing dependences and exploiting data locality and extracting parallelism.

We may distinguish two important classes of complex applications: irregular and

dynamic. Irregular applications are characterized by the fact that data is structured

as multidimensional arrays, as in regular applications, but it is referenced through

array indirections. These applications are typically coded using procedural languages
like Fortran77. Dynamic applications, on the other hand, deal with data organized

as complex, pointer-based structures (lists, trees, . . .), and it is referenced through

pointers. Typical applications of this class are coded using languages like C/C++,

Java or Fortran90.

Fig. 1 shows example codes for irregular and dynamic computations. The first

piece of code represents an irregular histogram reduction, where a reduction array

(A) is updated at some points given by the indirection array (f). A key issue in the

parallelization of this loop includes solving the possible cross-iteration true data
dependences due to the indirection array. For instance, if array f is not a permuta-

tion we will have such dependences. The second code corresponds to a variable loop

where a pointer-based data structure is updated. Now, in the parallelization of this

loop we have to solve possible cross-iteration dependences due to cycles in the poin-

ter-based list.

In this paper we discuss our recent work about developing efficient parallelization

techniques for irregular and dynamic applications. Basically our techniques are en-

closed into a broad parallelization method, that can be broken down into several
phases: recognizing the irregular/dynamic structure of the code, data analysis, and

selection of an ad hoc parallelization technique fulfilling some performance

properties.

We present some of our recent advances in this field. In particular, we designed a

methodology to parallelize codes with irregular reductions exploiting data locality.
Fig. 1. Example of an irregular computation (a) and a dynamic computation (b).

546 O. Plata et al. / Parallel Computing 31 (2005) 544–562
From this methodology we derived a number of efficient locality oriented run-time

parallelizing techniques. On the other hand, we developed new shape analysis tech-

niques for pointer-based data structures to enable dependence analysis in dynamic

codes. Such techniques may be used to analyze memory references needed to develop

efficient optimization and parallelization methods for dynamic codes.
The rest of the paper is organized as follows. Section 2 discusses the methodology

we use to develop our optimization and parallelization compilation techniques for

irregular/dynamic codes. Next, specific techniques for a widely found irregular com-

putational structure, named irregular reduction, is described. Shape analysis tech-

niques for dynamic data structures are analyzed in Section 4. Finally, conclusions

are drawn.
2. Parallelization methodology for irregular/dynamic codes

This section describes a methodology for the efficient exploitation of the available

parallelism in programs with irregular and/or dynamic computation/data structures.

We developed techniques to discover certain program (code and data) properties

that are essential in the effective optimization, as well as parallelization methods that

take advantage of such properties. The parallelization methodology proceeds in sev-

eral stages, as follows:

(1) Program structure: Analysis of the computational structure of the program, as

well as the data structures used. As a result of this analysis we can recognize the

irregular and/or dynamic nature of the program.

(2) Data analysis: A complete data analysis is needed to determine whether paral-

lelism is exploitable, or to enable some optimizations. It is also needed to know

where and how such parallelization/optimization can be done. In case of irreg-

ular and dynamic programs, this stage becomes very complex. Two important
tasks included into this stage are both the analysis of the data structure and the

analysis of memory references. The first analysis determines how data is orga-

nized and the relationship among different data items. The second analysis dis-

covers how data is referenced and the relationship among these data references.

(3) Program parallelization: Information resulting from program structure and

data analysis allows to decide what specific parallelization method is best suited

to be used. We are especially interested in the development of methods that

optimize some important program properties, like data locality or communica-
tion overhead.

In the rest of the paper we describe two representative case studies in the context

of the considered parallelization methodology. The first case study, that constitutes

an important class of irregular programs, corresponds to codes with irregular reduc-

tions. For these codes the three stages in the parallelization methodology will be dis-

cussed. The second case study will focus on the second stage, data analysis, for

general dynamic codes processing pointer-based data structures.

O. Plata et al. / Parallel Computing 31 (2005) 544–562 547
3. Programs with irregular reductions

Many common data organizations used in numerical applications involve irregu-

lar memory accesses, in which array elements are referenced by means of indirec-

tions. Reduction operations are often found in the context of irregular codes in
scientific and numerical applications, representing an important class of irregular

problems. Reduction operations are based in commutative and associative opera-

tors, like additions, multiplications, and so on. An example of a piece of code carry-

ing out multiple irregular reductions inside a nested loop is shown in Fig. 2 (it is also

known as histogram reduction). A() represents the reduction array (that could be

multidimensional), which is updated (the reduction operation is an addition in this

example) by means of the subscript arrays f1(), f2(), . . . Terms n1,n2, . . . represent
effective computation.

Considering the parallelization methodology described in the previous section, the

first stage corresponds to the recognition of the irregular reduction and what arrays

work as reduction array(s) and which ones as subscript arrays. This stage is com-

monly done in a compiler in two steps. The first step is the recognition of possible

reductions using a pattern-mathing or idiom recongnition approach [17]. After that,

a data dependence test analyses the potential reductions selected in the first step to

know if they are indeed reductions [2].

Once irregular reductions have been recognized, no further data analysis is needed
because all relevant data are arrays (Fig. 2). Due to the subscripted subscripts, loop-

carried data dependences may be present, and they cannot be detected at compile

time (due to the subscript arrays). However, because of the associative and commu-

tative properties satisfied by the reduction operator, the possible data dependences

may be overcome by code/data transformations. Such transformations corresponds

to the third stage in our methodology.
Fig. 2. Nested loop with multiple irregular reductions.

548 O. Plata et al. / Parallel Computing 31 (2005) 544–562
3.1. Locality and affinity: write affinity based parallelization

In order to optimize data locality through code/data transformations, we first

need to characterize it. Let us take the reduction loop shown in Fig. 2 as a working

example. We can distinguish two sources of data locality: read locality associated
with accesses to read-only and privatizable arrays, and write locality associated with

accesses to the reduction arrays. In (cache-coherent) shared memory multiproces-

sors, writes usually have a stronger impact on performance overhead than reads

(writes to shared data must propagate and serialize through the memory hierarchy).

So it is much important, from the performance viewpoint, to optimize writing local-

ity. We distinguish between two classes of write locality: intra-iteration and inter-

iteration. Intra-iteration locality corresponds to write locality inside the same nested

loop iteration. Inter-iteration locality, on the other hand, is due to writes on the
reduction arrays executed on different loop iterations. When parallelizing the reduc-

tion code, the class of locality we can exploit depends on the granularity of the par-

allelization method. It is usual that the minimum amount of partitionable code is one

full loop iteration. In such case, only inter-iteration locality can be exploited by code

parallelization. If we want to also exploit intra-iteration locality, we must resort to

data reorganizations [13] (basically the contents of the subscript arrays).

A simple method to exploit inter-iteration locality proceeds in two steps: first, we

state a data distribution of the reduction arrays among all threads that cooperate in
the parallel computation. Second, reduction loop iterations are assigned to threads

in such a way that the number of local writes (writes to owned reduction array ele-

ments) is maximized. Note that these iteration assignments not only exploit locality

but also avoid the need of run-time dependence analysis, as iterations from different

threads can be executed with no write conflicts. In what follows we will describe a

framework to define efficient locality-based loop iteration assignments.

Without loss of generality, let us consider the reduction loop in Fig. 2. A(1:ADim)

is the reduction array updated inside a nested loop, with~ı ¼ ði1; . . . ; inLoopsÞ being the
iteration vector. Also let P = {1,2, . . .,nThreads} be the set of threads identifiers that
cooperate in the computation, and let W:{A(1),A(2), . . .A(ADim)}! P be a distribu-

tion function of the array A on the threads.

The write access set of the iteration~ı is defined as the set of indices m such that

A(m) is written in such iteration. The write access set is denoted as Acc~ıðAÞ, and thus
Acc~ıðAÞ ¼ fm 2 ½1;ADim�jAðmÞ is written in iteration~ıg. Two iterations,~ı and~|, are
write affine if their write access sets are mapped to the same subset of threads, that is,

WðAcc~ıðAÞÞ ¼ WðAcc~|ðAÞÞ. Two iterations,~ı and~|, are write dissimilar if their write
access sets are mapped to disjoint subsets of threads, that is, WðAcc~ıðAÞÞ\
WðAcc~|ðAÞÞ ¼ ;.

Using the write affinity property we will derive an optimal method to parallelize

histogram reduction loops. Given a data distribution function of the reduction array,

a code transformation of the reduction loop will be defined such that some perfor-

mance issues are optimized: parallelism and data locality are maximized, and com-

putation replication, memory overhead, extra workload and synchronization

overhead are minimized.

O. Plata et al. / Parallel Computing 31 (2005) 544–562 549
Previous definitions stated a binary relation between two iterations, given a data

distribution function of the reduction array. Such relation will be called affinity rela-

tion. It is easy to see that the affinity relation is an equivalence relation, that is, it sat-

isfies reflexive, symmetric and transitive laws. So, equivalence classes can be defined.

An equivalence class is a subset of write affine iterations, that is, iterations with their
access sets mapped to the same subset of threads. For Q P, let CQ be an affinity

equivalence class, then CQ ¼ f~ı 2 SjWðAcc~ıðAÞÞ ¼ Qg, where S is the set of

iterations.

When using some locality-oriented data distribution function W, for example a

classical block distribution, it would be possible to exploit write inter-iteration local-

ity by considering those iterations belonging to a same affinity class. From the par-

allelization viewpoint, we need to distinguish data independent reduction iterations.

Two affinity classes, CQ and CR, are defined dissimilar if two iterations,~ı 2 CQ and
~| 2 CR, are write dissimilar. Two classes, CQ and CR, are dissimilar if and only if

Q \ R = ;. In a reduction loop the only true data dependences are caused by writes

in the reduction array, thus two write dissimilar iterations are assured to be data

independent. Hence iterations belonging to dissimilar equivalence classes can be exe-

cuted fully in parallel, with no write conflicts. That means that it would not be any

parallelization overheads, like extra memory, synchronizations or computation rep-

lication. These are precisely the issues that we want to minimize in the parallelization

of the reduction loop. In addition, if we can find large sets of dissimilar classes, we
would have a lot of exploitable parallelism.

Using the affinity classes as vertices, we defined the dissimilarity graph (DG) con-
necting not dissimilar classes. This graph relates potentially data dependent reduc-

tion iterations, for a given data distribution. Non-directly connected vertices in

that graph corresponds to dissimilar equivalence classes. Therefore, if we want to

maximize exploitable parallelism, we have to find the maximum number of non-

directly connected vertices in the dissimilarity graph. This can be done by applying

a vertex coloring algorithm to it.
As an example, consider a reduction loop with two reductions (indirections), one

reduction array and 4 threads. In this case, the maximum possible number of equiv-

alence classes is 10. The resulting dissimilarity graph is shown in Fig. 3(a), and after
Fig. 3. Vertex coloring of a dissimilarity graph (a), and a pseudocode for the parallel reduction loop based

on affinity classes (b).

550 O. Plata et al. / Parallel Computing 31 (2005) 544–562
applying the vertex-coloring algorithm we obtain the sets of classes that can be exe-

cuted concurrently (vertices with the same color): DG ¼ ffCf1g;Cf2g;Cf4g;Cf4gg;
fCf1;2g;Cf3;4gg; fCf1;3g;Cf2;4gg; fCf1;4g;Cf3;2ggg. We can schedule a parallel execution

of the loop following an inspector/executor scheme. An inspector builds the affinity

equivalence classes, the corresponding dissimilarity graph and color it. After the
inspection, computations are scheduled by the executor as shown in Fig. 3(b).

Iterations in equivalence classes with the same color are executed in parallel, while

a synchronization point is placed between execution of sets of classes with different

colors.

3.2. Compiler implementation

Although the general approach described previously could be used in parallelizing
reduction loops, some serious difficulties arise in practice. To maximize the available

parallelism the minimum number of colors in the dissimilarity graph has to be found.

This minimum number of colors is called the vertex-chromatic index of the graph,

and it is known that this problem is NP-hard. Nevertheless some simplifications

can provide a non-optimal coloring with a polynomial complexity. In addition, to

reduce the number of colors certain restrictions would be desirable, like maximizing

the size of the equivalence classes with the same color, or considering conditions for

workload balance. Such operations, however, would increase significantly the over-
head of the inspection stage. Other difficulty is the fact that the number of possible

non-empty affinity classes grows rapidly with the number of indirections in the

reduction loop.

For example, in Fig. 4 it is shown the results for the dissimilarity graph color com-

putation when two indirections are considered. A greedy coloring algorithm [9] has

been applied, using different initial vertex orders. An important fact is that an opti-

mum number of colors is obtained if the number of threads is a power of two. For

these cases the number of colors is equal to the number of threads. As it is seen in
Fig. 4 the coloring time follows a complexity OðnThreads4Þ, being nThreads the num-
ber of threads.

In order to make practical the implementation of the method in a compiler, the

inspection phase must be lightened. This can be achieved by simplifying the equiva-

lence class building process. We have developed an approach called Data Write

Affinity with Loop Index Prefetching (DWA-LIP) [10] that is based both on a block

data distribution function and on a restricted definition of the affinity relation. In-

stead of using a generic subset of threads, Q, to characterize an affinity equivalence
class, CQ, DWA-LIP uses a pair of parameters (Bmin,DB), being Bmin = min(Q) and

DB = max(Q) � min(Q). The dissimilarity test with the new affinity relation is sim-

pler since two iterations will be write dissimilar when their pairs (Bmin,DB) do not

correspond to overlapped areas of the reduction array.

This simplification in the definition of the affinity relation has a negative effect be-

cause there are pairs of write dissimilar iterations that no longer are recognize as such

with the new definition. This reduces the detected parallelism to be exploited in the

execution phase. Nevertheless the simplified affinity relation allows the inspector to

1 2 4 8 16 32
0

10

20

30

40

C
ol

or
s

in
di

ss
im

ila
rit

y
gr

ap
h

Number of threads

1 2 4 8 16 32
0

5

10

15

20

A
ve

ra
ge

 n
um

be
r

of
cl

as
se

s
pe

r
co

lo
r

Number of threads

1 2 4 8 16 32
1

10

100

1000

Number of threads

N
or

m
al

iz
ed

 c
ol

or
in

g
tim

e

Fig. 4. Computation of dissimilarity graph coloring for a loop with two indirections.

O. Plata et al. / Parallel Computing 31 (2005) 544–562 551
be lighter and makes possible an efficient schedule of dissimilar classes during the

execution phase [10,11].

In Table 1 experimental results for different methods are shown (see related
work). A code that implements Euler differential equations has been used. It contains

some reduction loops with 2–4 indirections, carrying out magnitude computations

over edges, faces and tetrahedra, respectively. The input data correspond to a mesh

description of 800Knodes and connectivity 18. We have tested a privatization-based

method, in particular Array Expansion [15], and two affinity-based methods, Local-

Write and DWA-LIP. The speedup has been calculated as the quotient between the

execution time of the parallel privatization version but using only one thread and the

parallel time of the corresponding version.
Table 1

Speedups for the EULER code using privatization, Local-Write and DWA-LIP

2 Indirections 3 Indirections 4 Indirections

8 Threads Privatization 4.5 1.9 2.4

Local-Write 10.6 6.4 1.9

DWA-LIP 11.5 7.2 5.0

16 Threads Privatization 7.8 2.0 2.5

Local-Write 11.3 11.8 4.9

DWA-LIP 12.5 12.6 7.7

552 O. Plata et al. / Parallel Computing 31 (2005) 544–562
We can highlight two important aspects about these experiments. First, the reason

of the better behavior of the affinity-based methods is that a data set with low inter-

iteration locality was chosen. This behavior was expected because privatization-

based methods do not take into account any locality consideration at all. The second

observation is that the performance of all methods decreases when the number of
indirections grows. Having more indirections causes a poorer intra-iteration locality

because the probability to access distant reduction array elements inside an iteration

is higher. Thus the performance of all methods decreases: The privatization-

based one because it does not exploit locality and those based on affinity due to

the parallelism loss paid by restricting the affinity relation in practice. Nevertheless,

in general, methods exploiting locality are able to keep better performance in

parallel.

3.3. Related work

One of the most popular methods to parallelize reduction loops is based on the

privatization of the reduction arrays [1]. This way, iterations become data indepen-

dent (no write conflicts) allowing a free scheduling of iterations in the threads.

Although several versions and optimizations of these methods were proposed [15],

privatization-based techniques have important drawbacks, like a large extra memory

requirement (reduction arrays must be replicated on all threads) and no exploitation
of data locality.

Instead of distributing loop iterations, another group of techniques uses distribu-

tion of the reductions arrays. This approach avoids the extra memory overhead dis-

cussed previously, and makes possible to take data locality into consideration. In

these methods iterations are partitioned and assigned to the threads on the basis

of a previously chosen data distribution for the reduction arrays. However, some

specific technique must be used to solve data dependences due to write conflicts in

the reduction arrays [12,10,11].
The approach called Local-Write [12] parallelize reduction loops exploiting write

locality, as with DWA-LIP. However, this method is based on applying loop-split-

ting to those iterations belonging to affinity classes CQ with Card(Q) > 1 (that is,

Q has two or more threads). For these split iterations the computations are repli-

cated, which implies an effective loss of parallelism.
4. Analysis of dynamic programs

4.1. Motivation of the shape analysis

Programming languages such as C, C++, Fortran90, or Java are widely used for

non-numerical (symbolic) and numerical applications. All these languages allow the

use of complex data structures usually based on pointers and dynamic memory

allocation. The use of complex data structures is very helpful in order to speedup

code development and, besides this, it also may lead to reducing the program execu-

O. Plata et al. / Parallel Computing 31 (2005) 544–562 553
tion time. However, compilers are not able to successfully optimize codes based on

these complex data structures for current computers or multicomputers. This is due

to current compilers are not able to capture, from the code text, the necessary infor-

mation to exploit locality, automatically parallelize the code, or carry out other

important optimizations in pointer-based codes.
With this motivation, the goal of our research line is to propose and implement

new techniques that can be included in compilers to allow for the automatic optimi-

zation of real codes based on dynamic data structures. As a first step, we have se-

lected the shape analysis subproblem, which aims at estimating at compile time

the shape the data will take at run time. Given this information, subsequent analysis

(not implemented yet) would focus on particular optimizations, for example, to ex-

ploit the memory hierarchy or to detect whether or not certain sections of the code

can be parallelized because they access independent data regions. Therefore, this
work is part of the first step (program structure analysis) of our parallelization

methodology.

There are other open research lines dealing with the analysis of codes in the pres-

ence of pointers, such as alias analysis or points-to analysis. Basically, these analysis

are designed to determine the superset of locations to which a pointer must or may

point (points-to sets) [7]. These kinds of pointer analysis provide enough information

to allow for some scalar optimizations, such as common subexpression elimination,

loop invariant removal, or location invariant removal [8]. However, the information
provided by the points-to sets is not accurate enough to enable more ambitious opti-

mizations such as loop-level automatic parallelization, automatic data distribution,

and locality exploiting. Currently, the majority of research groups rely on manual

annotations when dealing with such complex code optimizations in the presence of

pointers, due to points-to analysis is not sufficient. For instance, Chilimbi et al.

ask the programmer to annotate the code to exploit cache locality [4] or a previous

execution profile is needed in order to exploit cache prefetching [3]. In the area of

distributed memory locality exploitation and communication optimization, Zhu
and Hendren [21] also rely on code annotations with special compiler directives. Sim-

ilarly, Rogers et al. [18] propose a thread-level parallelism in codes annotated with

directives such as futurecall and touch.

However, some groups are trying to automatically extract more information from

the code text to optimize codes based on pointers. For example, Ghiya [8] have

implemented the McCAT compiler to put pointer analysis to work. Basically, this

compiler uses points-to analysis to deal with stack-directed pointers and connection

analysis and shape analysis to deal with heap-directed pointers. This analysis is used
for exploiting two parallelism patterns in codes based on recursive data structures

which do not change their shape while they are traversed: at the function level when

routines traverse disjoint sub-tree structures; and at the loop level in two cases:

tree-like traversing and DAG structures that are navigated acyclically (although a

manual assertion is needed in this case). However, their shape analysis is too simple

and conservative leading to a serious lack of parallelism exploitation. This is mainly

due to it does not keep information about the topological structure of the links

between heap locations.

554 O. Plata et al. / Parallel Computing 31 (2005) 544–562
Thus, we have to emphasize that our final goal is to allow for the automatic opti-

mization of codes based on recursive data structures, but it is clear that, first of all,

better shape analysis techniques have to be proposed. That is, new approaches to

automatically capture the essential characteristics and properties of heap-allocated

data structures are essential.
4.2. Method overview

Basically, our method is based on approximating by graphs all possible memory

configurations that can appear after the execution of a statement in the code. We call

a collection of dynamic structures a memory configuration. These structures comprise

several memory chunks, that we call memory locations, which are linked by refer-

ences. Inside these memory locations there is room for data and for pointers to other
memory locations. These pointers are called selectors.

Note that due to the control flow of the program, a statement could be reached by

following several paths in the control flow. Each ‘‘control path’’ has an associated

memory configuration which is modified by each statement in the path. Therefore,

a single statement in the code modifies all the memory configurations associated with

all the control paths reaching this statement. Each memory configuration is approx-

imated by a graph we call Reference Shape Graph (RSG). So, taking all this into ac-

count, we conclude that each statement in the code will have a set of RSGs
associated with it.
4.2.1. RSGs and node properties

The RSGs are graphs in which nodes represent memory locations which have sim-

ilar reference patterns. To determine whether or not two memory locations should be

represented by a single node, each one is annotated with a set of properties. Now, if

several memory locations share the same properties, then all of them will be repre-

sented by the same node. This way, a possibly unlimited memory configuration
can be represented by a limited size RSG, because the number of different nodes

is limited by the number of properties of each node. These properties are related

to the ‘‘reference pattern’’ used to access the memory locations represented by the

node. Hence the name Reference Shape Graph. These properties are briefly described

here, but a more detailed description can be found in [6]:

1. Type: This property states the data type of the memory locations represented by a

node.
2. Structure: This information avoids the summarization into the same node of

memory locations belonging to non-connected data structures (i.e. both data

structures do not share any element).

3. Simple paths (SPATH): This property avoids the summarization of memory loca-

tions near pointer variables. Since data structures are accessed and modify via

pointer variables, by keeping a precise description of the memory location near

the pointer variables the compiler will carry out a more accurate shape analysis.

O. Plata et al. / Parallel Computing 31 (2005) 544–562 555
4. Reference patterns: For each node, this property is represented by two sets:

SELINset contains the selectors which reference the node from other nodes and

SELOUTset contains the selectors which point from this node to others. For

example, in a doubly linked list, a node representing the last item of the list has

SELINset = {next} and SELOUTset = {prev}, because next is an ‘‘input’’ selector
reaching the node and prev is an ‘‘output’’ selector leaving the node. Only nodes

with similar reference patterns can be summarized into a single one.

5. Share information: This property can tell whether at least one of the locations rep-

resented by a node is referenced more than once from other memory locations.

We use two kinds of attributes for each node: SHARED(n) states if any of the

locations represented by the node n can be referenced by other locations by differ-

ent selectors, and SHSEL(n, sel) points out if any of the locations represented by n

can be referenced more than once by following the same selector sel from other
locations.

6. Touch information: This property is taken into account only inside loop bodies to

avoid the summarization of already visited locations with non-visited ones.

7. Cycle links: This information is introduced to increase the accuracy of the data

structure representation by avoiding unnecessary edges that can appear during

the RSG updating process. The cycle links of a node, n, are defined as the set

of pairs of references hseli, selji such that when starting at node n and consecu-

tively following selectors seli and selj, the node n is reached again.

As we have said, all possible memory configurations which may arise after the

execution of a statement are approximated by a set of RSGs. We call this set Reduced

Set of Reference Shape Graphs (RSRSG), since not all the different RSGs arising in

each statement will be kept. On the contrary, several RSGs related to different mem-

ory configurations will be fused when they represent memory locations with similar

reference patterns. This union of RSGs greatly reduces the number of RSGs and

leads to a practicable analysis.

4.2.2. Generating the RSRSGs: the symbolic execution

In our approach, we consider six simple instructions that deal with pointers:

x = NULL, x = malloc, x = y, x! sel = NULL, x! sel = y, and x = y! sel. More

complex pointer instructions can be built upon these simple ones and temporal

variables.

To move from the ‘‘memory domain’’ to the ‘‘graph domain’’, the calculation of

the RSRSGs associated with a statement is carried out by the symbolic execution of
the program over the graphs. In this way, each simple statement transforms the

graphs to reflect the changes in memory configurations derived from statement exe-

cution. The abstract semantic of each statement states how the analysis of this state-

ment must transform the graphs. The abstract interpretation is carried out iteratively

for each statement until we reach a fixed point in which the resulting set of RSGs

associated with the statement does not change any more.

Let us illustrate this with an example. In Fig. 5 we can see a simple code with

seven pointer statements. Our analyzer symbolically executes each statement to build

+

3. z = malloc();
2. y = malloc();

4. x.nxt := z

5. y.nxt := z

6. z = NULL

7. h = malloc();

if (cond1)

if (cond2)

1. x = malloc(); x
RSG RSG RSG

RSG

x

y

x

y

z

RSG

x

y

z

RSG
x

y

z
x

y

RSRSGRSRSG

RSRSG

RSG1
x

y

z

h

RSG2
x

y

nxt nxt

nxt

nxt

nxt

nxt

nxt

nxt
nxt

nxt

nxt

nxt

nxt

nxt

nxt

nxt
nxt

nxt

RSRSG

RSRSG
RSRSG

nxt

nxt

nxt

RSRSG

h

Fig. 5. Building an RSRSG for each statement of an example code.

556 O. Plata et al. / Parallel Computing 31 (2005) 544–562
the RSRSG associated with them. Actually, after the execution of the third state-

ment we obtain an RSRSG with a single RSG which represents three different mem-

ory locations by three nodes; all of them of the same type, with the same nxt selector,

but pointed to by different pointer variables (pvars). Now, this RSRSG is modified

in three different ways because there are three different paths in the control flow

graph, each one with a different pointer statement. All these paths join in statement
7, and after the execution of this statement we obtain an RSRSG with two RSGs.

This is because the RSGs coming from statements 4 and 5 are compatible and can

be summarized into a single one.
4.2.3. Dealing with arrays of pointers: multiselectors

We can view an array of pointers as a set of n selectors (links), all with the same

name. Our original method, briefly described before, only deals with single selectors

(which represent single links). Thus, the problem arising with the arrays of pointers is
that a single selector name represents several links, and all of them belong to the

same memory location (due to having been allocated by the same malloc instruction).

We illustrate all this with the following example. Fig. 6 shows an example of a

complex data structure definition comprising two arrays of pointers, and it also illus-

trates the corresponding memory configuration after the execution of the last ‘‘mal-

loc()’’ statement. As we note, sel is a single selector which can point to a single

memory location and which can be modified by statements like ‘‘x! sel = � � �’’.
These kinds of selectors can be managed by our previous analyzer. However, sel1
and sel2 represent arrays of selectors. The difference between sel1 and sel2 is that

we know the size of the sel1 array at compile time, but the size of sel2 is defined

at run time. In any case, we now want to deal with both types of arrays of selectors,

which now have to be modified by statements like ‘‘x! sel1[i] = � � �’’ or

‘‘x! sel2[i] = � � �’’.

Fig. 6. Example of data structure containing arrays of pointers.

O. Plata et al. / Parallel Computing 31 (2005) 544–562 557
Since sel1 and sel2 are not single selectors, we have called them multiselectors. In

order to take into account multiselectors in our method we have introduced in our

analyzer the following procedure: since our method is already able to deal with single

selectors our goal is now to include a previous step in the symbolic execution process

to focus on one of the selectors included in a particular multiselector. In other words,

a statement like ‘‘x! sel1[i] = � � �’’ is going to update a single selector (a particular

selector included in the multiselector sel1), but before applying the symbolic execu-

tion, our analyzer start by identifying the particular sel1[i] which is going to be up-
dated, to subsequently proceed with the abstract interpretation.

4.3. Experimental results

Our RSRSG analyzer has been written in C and can be fed with an input code to

generate the RSRSG associated with each statement of the code. The codes have to

be preprocessed in a first step to just keep the statements dealing with pointers. We

have implemented the analyzer to carry out a progressive analysis which starts with
fewer constraints to summarize nodes, but, when necessary, these constraints are in-

creased to reach a better approximation of the data structure used in the code. More

precisely, the analysis comprises three levels: L1, L2, and L3, from less to more com-

plexity as we explain in [6].

With this tool we have analyzed several codes: an artificial code that we call

‘‘working example’’, the sparse Matrix by vector multiplication, the sparse Matrix

by Matrix multiplication, the Sparse LU factorization, and the Barnes–Hut code.

These five codes have two implementations, one in which arrays of pointers are
implemented by doubly linked lists and the other in which arrays of pointers are

kept.

The first four codes were successfully analyzed in the first level of the analyzer, L1.

However, for the Barnes–Hut program the highest accuracy of the RSRSGs was

obtained in the last level, L3. All these codes where processed by our analyzer in a

Pentium 4 1.6 GHz with 128 MB main memory. The time and memory required

by the analyzer are summarized in Table 2. In this table we also show the number

of code lines after the preprocessing of the original C codes. The particular aspects
of these codes are described next.

Table 2

Time and space required to process several codes with different number of code lines

Working example Sparse Mat-Vec Sparse Mat-Mat Sparse LU Barnes–Hut

Level L1/L2/L3 L1/L2/L3 L1/L2/L3 L1/L2/L3 L1/L2/L3

Codes without arrays of pointers

Time 000300/000500/0 00600 0 00100/0 00200/0 00300 002000/0 03800/1 00000 705000/-/- 505600/0 03400/
200600

MBytes 2.11/2.78/3.02 1.37/1.85/2.17 8.13/11.45/12.68 99.46/-/- 37.82/8.82/8.94

Lines 213 104 156 164 216

Codes including arrays of pointers

Time 000500/000700/0 00800 0 00100/0 00100/0 00100 000400/0 00600/0 00600 100800/1 01200/- 23 008/2502700/
002100

MBytes 1.77/2.29/2.50 0.92/1.03/1.2 1.19/1.31/1.49 3.96/4.18/- 40.14/42.86/3.06

Lines 144 87 103 143 177

558 O. Plata et al. / Parallel Computing 31 (2005) 544–562
1. Working example�s RSRSG. This code generates, traverses, and modifies the data

structure presented in Fig. 7(a). A compact representation of the resulting

RSRSG for the last statement of the code can be seen in Fig. 7(b). The data struc-

ture is a doubly linked list of pointers to trees (header list). Besides this, the leaves

of the trees have pointers to doubly linked lists. All the trees pointed to by the

header list are independent and do not share any element. In the same way, the

lists pointed to by the leaves of the same tree or different trees are also indepen-

dent.This data structure is built by a C code that also traverses the elements of the
header list with two pointers and eventually can permute two trees. From the

properties associated with the nodes in the RSRSG represented in Fig. 7(b) we

can infer the actual properties of the real data structure. More precisely: (i) The

analyzer successfully detects the doubly linked list which is acyclic by selectors

nxt or prv; (ii) Two different items of the header list cannot point to the same tree;

(iii) Different trees do not share items; (iv) The same happens for the doubly

linked list pointed to by the tree leaves: all the lists are independent, there are
S list

Trees Doubly Linked Lists
Header

List

nxt prv

tree
rgh

lft

nxt

prv

S nxt
tree

nxt
tree

nxt
tree HEADER LIST

TREES

DOUBLYnxtnxtnxt

rgh
list

lft rgh
list

lft rgh
list

prv prv prv

lft

prv prv prv

LISTS
LINKED

n5

n6

n1 n2 n3

n4

n7 n8 n9

a b

Fig. 7. A complex data structure (a), and compact representation of the resulting RSRSG (b).

O. Plata et al. / Parallel Computing 31 (2005) 544–562 559
no two leaves pointing to the same list, and these lists are acyclic by selectors nxt

or prv.The other implementation of this code is based on an array of pointers to

the trees instead of the header list. Again, the analyzer can extract the same con-

clusions commented in the previous paragraph.

2. Sparse matrix codes. Here we deal with some irregular codes which implements
sparse matrix operations: the sparse matrix by vector multiplication, r =M · v;
the sparse matrix-matrix multiplication, A = B · C; and the Sparse LU factoriza-

tion, A = LU.The sparse matrices are stored in memory as a header doubly linked

list (or an array of pointers) with pointers to other doubly linked lists which store

the matrix rows (if the matrix is row-wise) or columns (for column-wise matrices).

In Fig. 8(a) we show the sparse matrix data structure for a row-wise matrix where

the matrix header is implemented by an array of pointers. The sparse vectors, v

and r are doubly linked lists. After the analysis process, carried out by our ana-
lyzer, the resulting RSRSG accurately represents the data structures. In the result-

ing RSRSG for the last statement of these codes we can identify the main

properties of the data structures: (i) The rows of the matrix are pointed to from

different elements of the header list/array; (ii) The doubly linked lists which store

the rows of the matrices and the vectors are acyclic by selectors nxt and prv. A

subsequent analysis of the code and the RSRSG associated with each statement

would be able to state that several sparse matrix row can be traversed and

updated in parallel and, in addition, it is also possible to update each row in
parallel.

3. Barnes–Hut N-body simulation. The structure used in this code is basically an

octree where each leaf points to an element of a single linked list. In the implemen-

tation which avoids pointer arrays, each octree node which is not a leaf has a

pointer child pointing to the first of its eight children which are linked by selector

next, as we can see in Fig. 8(b). If pointer arrays are allowed, the pointers to the

eight children are stored in an array of pointers. The analysis of this code enable

the parallel traversal of the octree which is precisely captured by the obtained
RSRSG�s.
M

prv

HEADER
LIST ROWS VECTOR VECTOR

prvprv

v

nxt

row nxt

prv
nxt nxt

r

a

BODIES
LIST OF

Root Stack STACK

node

Lbodies

body
nxt

nxt

nxt

OCTREE child

b

Fig. 8. Data structure to store sparse matrices and vectors (a), and Barnes–Hut main data structure (b).

560 O. Plata et al. / Parallel Computing 31 (2005) 544–562
4.4. Related work

There are several ways the shape analysis problem can be approached. We have

focused on the graph-based methods in which the ‘‘storage chunks’’ are represented

by nodes, and edges are used to represent references between them. For example,
Plevyak et al. [16] have proposed the ‘‘Abstract Storage Graph’’ (ASG), while Sagiv

et al. [19] improved the ASG method with what they call ‘‘Static Shape Graphs’’

(SSG). In a previous work [5] we saw that ASG or SSG were not sufficient to deal

with the complex data structures we presented in the previous section. Basically,

ASG and SSG approaches were too imprecise and too conservative in many simple

cases, due to they associate just one graph with each statement in the code. Besides,

too much information is fused in a single node and then it is impossible to capture

the real properties of the data structures represented by the graphs. We have over-
come this drawback by considering several graphs per statement, while fulfilling

some rules to avoid an explosion in the number of graphs and nodes in each graph.

A more recent work that also allows several graphs per statement is the one

presented by Sagiv et al. [20]. They propose a parametric framework based on a

3-valued logic. To describe the memory configuration they use 3-valued structures

defined by several predicates. However, as far as we know the currently proposed

predicates do not suffice to deal with the complex data structures that we handle

in this paper. There are several differences between our shape analysis method and
that of Sagiv et al. [20]. The main one is that we join similar RSGs to build a reduced

set of RSGs for each program point, while in [20] they keep all the graphs (multiple

structure approach) or just one (single structure approach). We think that this may

explain why their Three-Valued-Logic Analyzer (TVLA) runs out of memory for

simple codes such as the singly linked list bubble sort using the multiple structure

approach [14]. Besides, they recognize that their TVLA engine is only useful to ana-

lyze small programs and report experimental results for small, singly linked list oper-

ations (insert, reverse, sort, etc.), as we can see in Table 3. However, they have not
published experimental results successfully dealing with real codes based on the
Table 3

Comparing RSRSG with TVLA

Code Lines RSRSG TVLA (s)

Time (s) Memory (KB) Single Multiple

Create 9 Included in all 0.51 0.40

Dellall 7 0.07 133 0.42 0.44

Delete 14 0.25 179 2.73 5.18

Fumble 10 0.09 146 1.40 1.47

Getlast + rot 11 0.14 163 .78 + .62 1.47 + .88

Insert 17 0.16 197 2.86 2.77

Merge 26 1.15 387 8.25 12.01

Reverse 10 0.15 159 1.21 1.46

Swap 8 0.09 152 0.7 0.61

Bublesort 32 2.52 389 186.60 Out of sp.

O. Plata et al. / Parallel Computing 31 (2005) 544–562 561
combination of complex data structures such as doubly linked lists pointing to trees

or to other lists, etc. In Table 3 we also compare their Java-written TVLA running

on a Pentium II-400 MHz with our C-written analyzer on a Pentium III-500 MHz.
5. Conclusions

This paper addresses the problem of automatic parallelization of irregular and dy-

namic applications. From our work on this problem we may derive two main con-

clusions. First, a complete and powerful data analysis is fundamental. This

analysis must include, at least, two important tasks: Analysis of the data organiza-

tion, and analysis of the memory references. In irregular codes, data organization

analysis is not difficult as typically data is arranged as arrays. However, memory ref-
erences are dynamic and data dependent. In dynamic codes, however, both analysis

are very complex. In this line, we have developed shape analysis techniques to cap-

ture properties of complex pointer-based data structures.

The second conclusion is that we consider a promising way to obtain an effective

parallelization to design ad hoc techniques for specific complex computational struc-

tures. For instance, we discussed an efficient solution for irregular reductions. In a

similar way, once the data organization of a pointer-based code has been identified,

it is possible to develop efficient automatic techniques to traverse and update these
data structures (trees, linked-lists, . . .) in parallel.
Acknowledgements

This work was supported by ministry of education and culture (CICYT), Spain,

through grant TIC2003-06623.
References

[1] W. Blume, R. Doallo, R. Eigenmann, et al., Parallel programming with Polaris, IEEE Computers 29

(12) (1996) 78–82.

[2] W. Blume, R. Eigenmann, The range test: a dependence test for symbolic, non-linear expressions,

ACM International Conference on Supercomputing, 1994.

[3] T.M. Chilimbi, Efficient representations and abstractions for quantifying and exploiting data

reference locality, ACM SIGPLAN Conference on Programming Languages Design and Implemen-

tation, 2001.

[4] T.M. Chilimbi, M.D. Hill, J.R. Larus, Cache-conscious structure layout, ACM SIGPLAN

Conference on Programming Languages Design and Implementation, 1999.

[5] F. Corbera, R. Asenjo, E.L. Zapata, New shape analysis for automatic parallelization of C codes,

ACM International Conference on Supercomputing, 1999.

[6] F. Corbera, R. Asenjo, E.L. Zapata, Accurate shape analysis for recursive data structures,

International Workshop on Languages and Compilers for Parallel Computing, 2000.

[7] M. Das, Unification-based pointer analysis with directional assignments, ACM SIGPLAN Confer-

ence on Programming Languages Design and Implementation, 2000, pp. 35–46.

562 O. Plata et al. / Parallel Computing 31 (2005) 544–562
[8] R. Ghiya, Putting pointer analysis to work, Ph.D. thesis, School of Computer Science, McGill

University, Montreal, 1998.

[9] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1999.

[10] E. Gutiérrez, O. Plata, E.L. Zapata, A compiler method for the parallel execution of irregular

reductions in scalable shared memory multiprocessors, ACM International Conference on

Supercomputing, 2000.

[11] E. Gutiérrez, O. Plata, E.L. Zapata, Improving parallel irregular reductions using partial array

expansion, IEEE/ACM International Conference for High Performance Computing and Commu-

nications, 2001.

[12] H. Han, C.-W. Tseng, Efficient compiler and run-time support for parallel irregular reductions,

Parallel Computing 26 (13–14) (2000) 1861–1887.

[13] H. Han, C.-W. Tseng, Improving locality for adaptive irregular scientific codes, International

Workshop on Languages and Compilers for Parallel Computing, 2000.

[14] T. Lev-Ami, M. Sagiv, TVLA: A system for implementing static analysis, Static Analysis Symposium,

2000.

[15] Y. Lin, D. Padua, On the automatic parallelization of sparse and irregular fortran programs, 4th

Workshop on Languages, Compilers and Runtime Systems for Scalable Computers, 1998.

[16] J. Plevyak, A. Chien, V. Karamcheti, Analysis of dynamic structures for efficient parallel execution,

International Workshop on Languages and Compilers for Parallel Computing, 1993.

[17] W.M. Pottenger, R. Eigenmann, Idiom recognition in the Polaris parallelizing compiler, ACM

International Conference on Supercomputing, 1995.

[18] A. Rogers, M.C. Carlisle, J.H. Reppy, L.J. Hendren, Supporting dynamic data structures on

distributed-memory machines, ACM Transactions on Programming Languages and Systems 17 (2)

(1995) 233–263.

[19] M. Sagiv, T. Reps, R. Wilhelm, Solving shape-analysis problems in languages with destructive

updating, ACM Transactions on Programming Languages and Systems 20 (1) (1998) 1–50.

[20] M. Sagiv, T. Reps, R. Wilhelm, Parametric shape analysis via 3-valued logic, Symposium on

Principles of Programming Languages, 1999.

[21] Y. Zhu, L. Hendren, Locality analysis for parallel C programs, IEEE Transactions on Parallel and

Distributed Systems 10 (2) (1999) 99–114.

	On the parallelization of irregular and dynamic programs
	Introduction
	Parallelization methodology for irregular/dynamic codes
	Programs with irregular reductions
	Locality and affinity: write affinity based parallelization
	Compiler implementation
	Related work

	Analysis of dynamic programs
	Motivation of the shape analysis
	Method overview
	RSGs and node properties
	Generating the RSRSGs: the symbolic execution
	Dealing with arrays of pointers: multiselectors

	Experimental results
	Related work

	Conclusions
	Acknowledgements
	References

