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Abstract Recent advances in turbulence modeling brought
more and more sophisticated turbulence closures (e.g. k-ε,
k-ε -v2- f , Second Moment Closures), where the governing
equations for the model parameters involve advection, diffu-
sion and reaction terms. Numerical instabilities can be gen-
erated by the dominant advection or reaction terms. Classical
stabilized formulations such as the Streamline–Upwind/Pet-
rov–Galerkin (SUPG) formulation (Brook and Hughes, com-
put methods Appl Mech Eng 32:199–255, 1982; Hughes and
Tezduyar, comput methods Appl Mech Eng 45:
217–284, 1984) are very well suited for preventing the numer-
ical instabilities generated by the dominant advection terms.
A different stabilization however is needed for instabilities
due to the dominant reaction terms. An additional stabiliza-
tion term, called the diffusion for reaction-dominated (DRD)
term, was introduced by Tezduyar and Park (comput methods
Appl Mech Eng 59:307–325, 1986) for that purpose and im-
proves the SUPG performance. In recent years a new class of
variational multi-scale (VMS) stabilization (Hughes, comput
methods Appl Mech Eng 127:387–401, 1995) has been intro-
duced, and this approach, in principle, can deal with advec-
tion–diffusion–reaction equations. However, it was pointed
out in Hanke (comput methods Appl Mech Eng 191:2925–
2947) that this class of methods also need some improve-
ment in the presence of high reaction rates. In this work we
show the benefits of using the DRD operator to enhance the
core stabilization techniques such as the SUPG and VMS
formulations. We also propose a new operator called the
DRDJ (DRD with the local variation jump) term, targeting
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the reduction of numerical oscillations in the presence of both
high reaction rates and sharp solution gradients. The meth-
ods are evaluated in the context of two stabilized methods: the
classical SUPG formulation and a recently-developed VMS
formulation called the V-SGS (Corsini et al. comput methods
Appl Mech Eng 194:4797–4823, 2005). Model problems and
industrial test cases are computed to show the potential of the
proposed methods in simulation of turbulent flows.

Keywords Finite element · Variational method ·
Discontinuities

1 Introduction

The objective in this paper is to provide improved finite
element formulations capable of dealing with advection–
diffusion–reaction equations. For advection-dominated prob-
lems, a number of stabilized formulations such as the SUPG
method [3,16] are available, which are quite effective in
preventing the spurious numerical oscillations. Reaction-
dominated problems, on the other hand, still need improved
methods that are more effective in preventing the numer-
ical oscillations, and, as stated in [1], this is so even in the
context of the recently-developed variational multi-scale
(VMS) methods. Thus there is still need for good numer-
ical techniques for equations appearing in advanced turbu-
lence models, combustion and chemistry. The diffusion for
reaction-dominated (DRD) formulation was proposed in [2],
which involves adding diffusion where reaction is dominant
with respect to advection or diffusion.

The work here is based on using the DRD concept as a
discontinuity-capturing tool, so that diffusion is added only
when the reaction rates and solution gradients are both high.
This is accomplished in the context of the Streamline–
Upward/ Petrov–Galerkin (SUPG) [3] and V-SGS [4] for-
mulations. The objective in the approach we take here is to
accomplish the additional stabilization without affecting the
accuracy in advection-dominated zones and in zones where
the solution is smooth. The main application area in the pres-
ent work is turbomachinery CFD, with emphasis on advanced
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turbulence closure models within the Reynolds-averaged Na-
vier–Stokes (RANS) approach. We are focusing on address-
ing the numerical challenges posed by the reaction terms
appearing in the closure equations of eddy viscosity models,
such as the k-ε or k-ε-v2- f models [5].

Reaction-dominated zones are not uncommon in turbu-
lent flows and in turbomachinery. For example, in stagnating
and re-circulating flow zones the flow velocity approaches
zero and the reaction effects dominate the advection and
diffusion effects. Recent studies [6] have shown that appli-
cation of a reaction-dependent residual scheme to the RANS
equations with eddy-viscosity closures enables a realistic rep-
resentation of turbulence in turbomachinery flows.

In Sect. 2, we provide an overview of the original DRD
method and the DRDJ method as a version that takes into
account the local “jump” in the solution. We also describe in
that section how the DRD and DRDJ methods are applied to
advection–diffusion–reaction problems. In Sect. 3, by using
the model problem proposed in [2], the numerical perfor-
mances of the DRD and DRDJ methods are assessed in con-
junction with the SUPG and V-SGS formulations. In Sect. 4,
we apply the DRDJ method, again in conjunction with the
SUPG and V-SGS formulations, to 2D flow computation in a
compressor cascade with controlled-diffusion blade profile,
where we use the k-ε-v2- f turbulence model [5].

2 DRD and DRDJ techniques

The closure equations used in some turbulence models ex-
hibit an advection–diffusion–reaction form, which in a 1D
framework can be written as

Bφ + uφ,x − κφ,xx = 0. (2.1)

The discrete counterpart of the exact solution of the prob-
lem has an exponential behavior, characterized by two of the
following three dimensionless parameters:

Pe = uh

2κ
, (2.2)

β2 = B

κ

(
h

2

)2

, γ = B

u

h

2
, (2.3)

where h is the element length used in the calculations. The
dimensionless parameter given by Eq. (2.2) represents the
significance of the advection effects relative to the diffusion
effects. The two parameters given by Eq. (2.3) represent the
significance of the reaction effects relative to the diffusion and
advection effects, respectively. While the stabilization meth-
ods such as the SUPG and V-SGS formulations are effective
in addressing the numerical challenges encountered as Pe
tends to large values, a DRD-like stabilization enhancement
improves the solution when β2 or γ becomes large.

2.1 Diffusion for reaction-dominated method

The original DRD method [2] proposed for the diffusion–
reaction and advection–reaction equations involves numeri-

cal diffusion terms expressed as functions of, respectively, the
first and second dimensionless parameters given by Eq. (2.3).
In advection–reaction problems, the expression for the numer-
ical diffusivity is given in [2] as

κ̃AR(γ ) = 1

2
uh(− coth γ + γ (1/ sinh2 γ + 4r)), (2.4)

where r is determined by the integration rule used in integra-
tions over element domains (e.g. r = 1/6 for the two-point
Gaussian quadrature rule and r = 0 for the “lumped” case).

The multi-dimensional extension is obtained in [2] by
defining a numerical diffusivity tensor as follows:

κ̃ = κ̃AR(γ )ss + κ̃AR(∞)(tt + vv), (2.5)

where s is the unit vector along the streamline, t and v are unit
vectors orthogonal to s and each other, and (2.4) is calculated
with |u| instead of u. The element length scale h is defined in
[2] as

h = hUGN = 2

(∑
a

|s · ∇Na |
)−1

(2.6)

An expression for the numerical diffusivity in diffusion–reac-
tion problems is also given in [2]:

κ̃DR(β) = B(h/2)2(4r + 1/ sinh2 β − 1/β2)), (2.7)

with the multi-dimensional element length scale defined as
given by Eq. (2.6). In the multi-dimensional extension here,
however, we propose to use the diffusive length scale given
in [7]:

h = hRGN = 2(
∑

a

|r · ∇Na |)−1 (2.8)

with r defined as the unit vector in the direction of the solution
gradient:

r = ∇ ‖u‖
‖∇ ‖u‖‖ . (2.9)

It was pointed out in [2] that the reaction-dominated limits
of Eqs. (2.4) and (2.7) are the same:

κ̃AR(∞) = κ̃DR(∞) = 4r B(h/2)2. (2.10)

2.2 Diffusion for reaction-dominated term with local
variation, jump (DRDJ)

We propose a new version of the DRD, which we call the
DRDJ, that takes into account the local variation (“jump”) in
the solution. This concept is similar to the one used in discon-
tinuity-capturing directional dissipation technique [7]. The
DRDJ diffusivities for the advection–reaction and
diffusion–reaction equations are given as follows:

κ̃AR(γ, Je) = 1

2
uhUGN Je(− coth γ

+γ (1/ sinh2 γ + 4r)), (2.11a)
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κ̃DR(β, Je) = B(hRGN/2)2 Je(4r

+1/ sinh2 β − 1/β2)), (2.11b)

where Je is a normalized measure of the variation (“jump”)
in the solution over an element e.

In the multi-dimensional version of the DRDJ the diffu-
sivity tensor is given as:

κ̃ = κ̃AR(γ, Je)ss + κ̃DR(β, Je)(tt + vv). (2.12)

Remark 1 The parameter Je is defined as

Je = (φmax)e − (φmin)e

‖φ‖e
, (2.13)

with (φmax)e and (φmin)e denoting the maximum and min-
imum values of φ in element, respectively. Here ‖φ‖e rep-
resents the scaling associated with element e, which can be
calculated locally, or can be set globally, as it is done in
Sect. 3. Turbulent flows involve flow parameters with differ-
ent orders of magnitudes in different zones of the flow field.
Therefore in turbulent flow computations ‖φ‖e is calculated
locally. It can be set to the maximum value of φ in the ele-
ment, as it is done in the calculations reported in Sect. 4. For
φ >0 this choice assures that Je ranges from 0 to 1. We note
that in the t and v directions the numerical diffusivity is the
one associated with the diffusion–reaction case.

Remark 2 Typically the closure equations of turbulence mod-
els are in the form of advection–diffusion–reaction equations.
However it is not uncommon to also find diffusion–reaction
equations governing elliptic parameters such as the f̃ in the
k-ε -v2 -f model. In such cases the DRDJ expression is given
as follows:

κ̃e = κ̃DR(β, Je)I, (2.14)

where I is the identity tensor.

In this paper the DRD and DRDJ are used in conjunction
with the SUPG [3] and V-SGS [4] formulations. The V-SGS
formulation was developed starting from the VMS method
recently proposed by Hughes [8] and Hughes et al. [9]. The
VMS approach introduces the additional feature of control-
ling the reactive effects, but, as pointed out in [1], this class
of methods still need some improvement in the presence of
high reaction rates.

3 Scalar test problem

This test problem was first proposed in [2] to evaluate the
performance of the original DRD formulation. The govern-
ing equations are given as follows:

5φ + uφ,x = 0,

u(y) = umax(1 − y2), (3.1)

umax = 1.

The discretization is based on a nonuniform Cartesian grid
with 40 × 20 linear finite elements. Figure 1 shows the prob-
lem geometry, boundary conditions and the mesh.

Figure 2 shows the exact solution and the solutions ob-
tained with the following methods: SUPG, SUPG plus mass
lumping (SUPG+ML), SUPG plus DRD (SUPG+DRD),
SUPG plus DRDJ (SUPG+DRDJ), V-SGS, V-SGS plus DRD
(VSGS+ DRD), and V-SGS plus DRDJ (VSGS+DRDJ).

The SUPG formulation results in the largest oscillations,
while the V-SGS formulation, with its additional feature of
controlling the reaction effects, significantly reduces the oscil-
lations. Mass lumping results in a solution that is too diffu-
sive. The DRD and DRDJ enhancements do very well in
reducing the oscillations, especially when they are used in
conjunction with the V-SGS stabilization. Figures 3, 4 and
5, respectively show the solution profiles at the first, sec-
ond and third rows of nodes at and near the boundary where
y = 1, u = 0, and the reaction terms are most significant.

The SUPG solution profile exhibits a 57% undershoot
along the first row of nodes. That is reduced to less than 20%
in the SUPG+DRD and SUPG+DRDJ profiles. Mass lump-
ing yields a profile that is too diffusive. Along the same row of
nodes, the V-SGS, V-SGS+DRD and V-SGS+DRDJ profiles
all very comparable and also very close to the exact solution.
Along the second row of nodes, the SUPG profile contin-
ues to have some undershoot, which is reduced significantly
in the SUPG+DRD and SUPG+DRDJ profiles. Again, mass
lumping yields a profile that is too diffusive. The V-SGS pro-
file shows a 25% undershoot along this row nodes, but the
undershoot is completely eliminated in the V-SGS+DRD and
V-SGS+DRDJ profiles. The V-SGS+DRDJ profile is closer
to the exact solution. Along the third row of nodes, all profiles,
except for the one obtained with the SUPG+ML approach,
are very close to the exact solution. Mass lumping leads to a
profile that is too diffusive and far from the exact solution.

Fig. 1 Scalar test problem. Problem geometry, boundary conditions and
mesh (40×20 elements)
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a) b)

d) e)

c)

f) g) h)

Fig. 2 Scalar test problem. a exact solution, and solutions obtained with the following methods: (b) SUPG, (c) SUPG+ML, (d) SUPG+ DRD,
(e) SUPG+ DRDJ, (f) V-SGS, (g) V-SGS+ DRD, and (h) V-SGS+DRDJ

From this test problem we conclude that in advection–
reaction problems with reaction-dominated zones, the DRD
and DRDJ enhancements significantly improve the solutions
when used in conjunction with the SUPG and V-SGS stabi-
lizations. Although the V-SGS formulation without DRD or
DRDJ enhancements yields solutions better than the SUPG
formulation without such enhancements, it still benefits sub-
stantially from either of these enhancements. We also con-
clude that the mass lumping approach is far from being ideal.

4 Turbulent flow test problem: controlled-diffusion
compressor cascade

4.1 k-ε -v2 -f turbulence closure

The turbulence closure used here is the k-ε -v2 -f model first
proposed by Durbin [10]. The inclusion of the variable v′2,

regarded as the turbulence stress normal to the streamlines,
brings improvements in simulation of turbomachinery flows.
This is because of the role turbulence fluctuations in the wall-
normal direction play in the transitional boundary layers. The
computations are carried out based on the code-friendly ver-
sion of the turbulence model [5], which uses on solid walls
homogeneous Dirichlet boundary conditions for a modified
elliptic relaxation variable, namely f̃ .

The equations for the turbulent kinetic energy k, homo-
geneous dissipation rate ε̃ = ε− D, turbulence stress normal
to the streamlines v′2, and the elliptic relaxation variable f̃
are written as follows:

ui k,i −
[(

ν + νt

σk

)
k,i

]
,i

+ Bkk = Pk + D, (4.1)

ui ε̃,i −
[(

ν + νt

σε

)
ε̃,i

]
,i

+ Bεε̃ = Cε1
ε̃

k
Pk, (4.2)
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Fig. 3 Scalar test problem. Solution profiles at the first row of nodes
(y=1)
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Fig. 4 Scalar test problem. Solution profiles at the second row of nodes
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Fig. 5 Scalar test problem. Solution profiles at the third row of nodes

uiv′2,i −
[(

ν + νt

σk

)
v′2,i

]
,i

+ Bv2v′2 = k f̃ , (4.3)

−
(

L2
s f̃,i

)
,i

+ B f f̃ = C2
Pk

k
+ (C1 − 1)

(
v′2
k

− 2

3

)
1

Ts

+v′2
k

5

Ts
, (4.4)

where an overbar denotes the Reynolds-averaged quantities
and a prime denotes the fluctuations. The Reynolds stress–
strain relation is modeled according to a linear Boussinesq
approximation:

u′
i u

′
j = 2

3
kδi j − νt Si j , (4.5)

where δi j is the Kronecker delta, Si j = (
ui, j + u j,i

)
is twice

the strain-rate tensor, and the eddy viscosity is expressed as

νt = cµv′2 k

ε̃
. (4.6)

Table 1 lists the closure coefficients for the code-friendly
version of the k-ε -v2 -f model [5].

4.2 Results

The test case is a 2D compressor cascade model with
controlled-diffusion blade profile, experimentally studied by
Elazar and Shreeve [11] using a two-component LDV sys-
tem. The blade profile has a 14.4◦ stagger angle, the cascade
solidity is 1.67, and the chord length lc = 127.3 mm. Only

Table 1 Closure coefficients for the k-ε-v2 -f model

Pk u′
i u

′
k ūi ,k

D 2ν(∂
√

k/∂xi )
2

Cµ 0.22
σk 1
σε 1.3
Bk ε̃/k
Bε Cε2 fε2(1/Ts )
Bv2 6ε̃/k
B f 1

Cε1 1.4(1+0.05
√

k/v′2)+0.4exp(-0.1 Ret )
Cε2 1.9

fε2 [1-0.3 exp(-Re2
t )]

Ret k2/νε̃

Ls CL max
(
k3/2/ε̃, Cην

3/4/ε̃1/4
)

Ts max
(

k/ε̃, 6
√

ν/ε̃
)

C1 1.4
C2 0.3
CL 0.23
Cη 70
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Fig. 6 Controlled-diffusion compressor cascade. a computational domain and grid with 27,324 nodes b Details of leading edge c Details of
trailing edge

Fig. 7 Controlled-diffusion compressor cascade. Leading-edge separation bubble computed with: (a) SUPG+DRDJ, (b) V-SGS+DRDJ

the off-design condition with inflow angle β = 46◦ is con-
sidered here. Under these conditions the suction side is sub-
jected to a strong adverse pressure gradient, which generates
a challenging transitional flow, with a pronounced boundary
layer thickening as the trailing edge is approached [12]. The
chord Reynolds number, based on the inflow velocity Uin
(=85 m/s), is 7 × 105 . The flow is isothermal and essentially
incompressible. Figure 6 shows the mesh used in the compu-
tations, which is an H topology grid made of 27,324 nodes,
with (�y+)max = 1.0.

The numerical strategy here includes the Pressure–
Stabilizing/Petrov–Galerkin formulation [13], which allows
equal-order interpolation functions for velocity and pressure.
Computations are carried out by solving the coupled equation
systems iteratively with the FGMRES technique [14]. The
DRDJ enhancement is applied in the context of an advec-
tion–reaction equation for k, ε̃ and v′2, and a diffusion–reac-
tion equation for f̃ . The need for an advanced closure model
in this problem was partially due to the complex flow struc-

ture, with a leading-edge separation bubble that could not
be resolved with a standard k-ε model and a strong adverse
pressure gradient characterizing all the boundary layer devel-
opment.

At the inlet section of the computational domain uniform
profiles are used for the velocity components and turbulence
quantities. The experimental free-stream distribution is used
for the mean velocity profile. The turbulence intensity and
the characteristic length scale are:

TI =
√

u′2
Uin

= 1.5%, lε/ lc =
√

k3

ε̃lc
= 5.6% (4.7)

Homogeneous Neumann boundary conditions are imposed at
the outlet section, and the flow periodicity is imposed at the
lower and upper boundaries of the computational domain.

Figure 7 shows the leading-edge streamlines computed
with the SUPG+DRDJ and V-SGS+DRDJ formulations. Both
results show a separation bubble with a chord-wise length
of 6.3 and 6.5% for the SUPG+DRDJ and V-SGS+DRDJ
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Fig. 8 Controlled-diffusion compressor cascade. Suction-side streamwise velocity profiles at (a) 5.2%, (b) 64% and (c) 95% of the chord

Fig. 9 Controlled-diffusion compressor cascade. Suction-side streamwise turbulence intensity profiles at (a) 5.2%, (b) 64% and (c) 95% of the
chord

formulations, respectively, which are in fairly good agree-
ment with the experimentally observed [11] static pressure
distribution on the blade suction side. Figures 8 and 9 show
the suction-side boundary layer profiles obtained experimen-
tally and with the SUPG, SUPG+DRDJ and V-SGS+DRDJ
formulations.

The streamwise velocity and turbulence intensity profiles
show reasonably good agreement between the experimen-
tal and numerical data. Because of the limitation of the tur-
bulence model, the computed turbulence intensity near the
stagnation point at the leading edge is too high. For all three
formulations this limitation of the closure model causes the
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Table 2 Controlled-diffusion compressor cascade–chordwise evolutions of some of the integrated quantities of the boundary layer

x/ lc Experiment SUPG+DRDJ V-SGS+DRDJ
δ∗/ lc θ∗/ lc H δ∗/ lc θ∗/ lc H δ∗/ lc θ∗/ lc H

0.052 0.0213 0.0086 2.477 0.0206 0.0069 2.986 0.0184 0.0069 2.667
0.64 0.0491 0.0318 1.544 0.0374 0.0242 1.545 0.0421 0.0257 1.638
0.95 0.1051 0.0581 1.809 0.0594 0.0360 1.650 0.0682 0.0385 1.771

boundary layer to be a little bit thinner compared to the exper-
imental data. Nevertheless all three models are able to resolve
the leading edge separation well and capture the turbulence-
intensity peak with reasonably good accuracy prior to reach-
ing 64% of the chord.

Figure 9a shows that the V-SGS+DRDJ formulation re-
sults in a significant improvement in representing the bound-
ary layers developed under the influence of the leading-edge
separation and the induced transitional behavior caused by
the high reaction effects [15]. Moving downstream, as it can
bee seen in Fig. 9b and c, there is substantial agreement be-
tween the boundary layer profiles computed by using the
SUPG formulation with and without the DRDJ enhancement.
This confirms that the SUPG+DRDJ formulation is able to
adaptively recover the SUPG behavior where the reaction ef-
fects are lower, and thus function without affecting the accu-
racy where such stabilization enhancements are not needed.

To provide the reader with a more quantitative perfor-
mance assessment for the SUPG+DRDJ and V-SGS+DRDJ
formulations, we report the chord-wise evolutions of some
of the integrated quantities of the boundary layer. These inte-
grated quantities are the displacement and momentum thick-
nesses δ∗/ lc and θ∗/ lc, and the shape factor H. Table 2 shows,
for the experiment and the SUPG+DRDJ and V-SGS+DRDJ
formulations, these quantities at 5.2, 64 and 95% of the chord.

5 Concluding remarks

A new stabilization enhancement, which we call the DRDJ,
has been developed for reaction-dominated flows, starting
with the DRD formulation developed earlier. Both the DRD
and DRDJ formulations are intended to be used with a core
stabilized formulation, such the SUPG or V-SGS method.
With test computations for a model problem, we were able
to show that the DRD and DRDJ techniques significantly
enhance the performance of the SUPG and V-SGS formula-
tions in reaction-dominated flows. Because the closure
equations of some of the popular turbulence models involve
reaction terms, the stabilization enhancements we described
here can be used in more effective modeling of turbulent
flows. We demonstrated that by successfully applying the
SUPG and V-SGS formulations enhanced with the DRDJ
to 2D flow computation in a compressor cascade, where the
equations solved are based on the k-ε -v2 -f turbulence model.
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