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NOTE ON THE RESULTS WITH
LOWER SEMI-CONTINUITY

Yuqing Chen, Yeol Je Cho, and Li Yang

Abstract. In this paper, we introduce the concept of lower semi-
continuous from above functions and show that many well-known
results, such as Ekland’s and Caristi’s theorems, remain also true
under lower semi-continuous from above functions.

1. Lower semi-continuous from above functions

In what follows, let (X, d) be a metric space. The lower semi-continuo
-us condition plays a key role and has been widely used in finding the
solution of minx∈X f(x). See, for example, [1]-[4] and [7]. First, we
recall the definition of lower semi-continuity here.

Definition 1.1. A function f : X → R is said to be lower semi-
continuous at x0 if, for any sequence (xn) in X with xn → x0,

f(x0) ≤ limn→∞f(xn).

Although the lower semi-continuous condition is important, it is not
essential for solving some minimization problems. A function which may
not be necessarily lower semi-continuous can still obtain its infimum.

The purpose of this paper is to give a generalization of lower semi-
continuous functions and to show that many well-known results, such
as Ekland’s and Caristi’s theorems ([5], [6]) are also true under the
condition of the lower semi-continuity from above. Let us introduce the
following definition:
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Definition 1.2. A function f : X → R is said to be lower semi-
continuous from above at x0 if xn → x0 and f(x1) ≥ f(x2) ≥ · · · ≥
f(xn) ≥ · · · imply that

f(x0) ≤ lim
n→∞

f(xn).

It is obvious that the lower semi-continuity implies the lower semi-
continuity from above. The following example shows that the reverse is
not true. Thus the lower semi-continuity from above is weaker than the
lower semi-continuity.

Example 1.3. Let f : R → R be defined as follows:

f(x) =
{

x + 1
2 if x < 0,

x2 + 1 if x ≥ 0.

It is easy to check that the function f is lower semi-continuous from
above at 0, but not lower semi-continuous at 0.

Example 1.3 also shows that the epi-graph of f (shortly, epi(f)) is
not closed. For definition of epi-graph, see [7]. It is well-known that the
lower semi-continuity of a function is equivalent to the closedness of its
epi-graph ([7]).

Proposition 1.4. Let D be a compact subset of X and a function
f : D → R be lower semi-continuous from above and bounded from
below. Then there exists x0 ∈ D such that f(x0) = infx∈D f(x).

Proof. Since D is compact and f is bounded from below, there exists
a sequence (xn) in D such that xn → x0 ∈ D, f(x1) ≥ f(x2) ≥ · · · ≥
f(xn) ≥ · · · and f(xn) → infx∈D f(x). By the lower semi-continuity
from above, we have

f(x0) ≤ lim
n→∞

f(xn) = inf
x∈D

f(x).

Hence f(x0) = infx∈D f(x). This completes the proof. ¤

In normed linear spaces, we can introduce the concept of the weak
lower semi-continuity from above.
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Definition 1.5. Let X be a normed linear space. A function f :
X → R is said to be weak lower semi-continuous from above at x0 if
xn ⇀ x0 and f(x1) ≥ f(x2) ≥ · · · ≥ f(xn) ≥ · · · imply that

f(x0) ≤ lim
n→∞

f(xn),

where ⇀ represents the weak convergence in X.

It is well-known that, for convex functions, the lower semi-continuity
is equivalent to the weak lower semi-continuity (see [7]), but we can not
prove that the lower semi-continuity from above is also equivalent to the
weak lower semi-continuity from above. We conjecture that this might
be true.

The following results can be viewed as generalizations of the corre-
sponding results for lower semi-continuous convex functions:

Theorem 1.6. Let X be a real reflexive Banach space and f :
D(f) → R be a proper lower semi-continuous from above and con-
vex function. Suppose that lim‖x‖→∞ f(x) = +∞. Then there exists
x0 ∈ D(f) such that

f(x0) = inf
x∈D(f)

f(x).

Proof. Take xn ∈ D(f) for n = 1, 2, · · · such that

f(x1) ≤ inf
x∈D(f)

f(x) +
1
2
,

f(x2) ≤ min
{

f(x1), inf
x∈D(f)

f(x) +
1
22

}
,

f(x3) ≤ min
{

min
x∈co{x1,x2}

f(x), inf
x∈D(f)

f(x) +
1
23

}
,

· · · ,

f(xn+1) ≤ min
{

min
x∈co{x1,x2,··· ,xn}

f(x), inf
x∈D(f)

f(x) +
1

2n+1

}
,

· · · .

By assumption, since lim‖x‖→∞ f(x) = +∞, the sequence (xn) is bound
-ed. Since X is reflexive, without loss of generality, we may assume
xn ⇀ y0 (otherwise, taking subsequence).
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In view of y0 ∈ co{xk, k ≥ n} for n = 1, 2, · · · , there exist a sequence
(nk) of positive integers with n1 < n2 < · · · and ynk

∈ co{xnik
, · · · , xnk

},
nk−1 < nik

≤ nk, k ≥ 2, such that ynk
→ y0. By construction of the

sequence (xn), we know that (f(ynk
)) is decreasing and so it follows

from the lower semicontinuity from above of f that

f(y0) ≤ lim
k→∞

f(ynk
) = inf

x∈D(f)
f(x).

This completes the proof. ¤

Theorem 1.7. Let X be a real normed linear space and f : X → R
be a lower semi-continuous from above and convex function. Suppose
that there exist x0 ∈ D(f) and r0 > 0 such that

inf
x∈B(x0,r0)

f(x) > −∞.

Then there exist g ∈ X∗and b ∈ R such that f(x) > g(x) + b for all
x ∈ X.

Proof. Since infx∈B(x0,r0) f(x) > −∞, there exists a ∈ R such that
f(x) > a + 1 for all x ∈ B(x0, r0). It is easy to see that (x0, a) /∈ epi(f).
Since epi(f) is closed convex, there exist g ∈ X∗ and l ∈ R such that

g(x0) + la < g(x) + lf(x)

for all x ∈ X. It is obvious that l > 0 and so

f(x) > −1
l
g(x) +

1
l
(g(x0) + la)

for all x ∈ X. This completes the proof. ¤

2. Ekland’s and Caristi’s theorems

In this section, we show that the well-known results of Ekland and
Caristi are also true under the condition of the lower semi-continuity
from above.
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Theorem 2.1 (Ekland’s Variational Principle). Let (X, d) be a com-
plete metric space, and let f : X → R be lower semi-continuous from
above and bounded from below. Then, for each ε > 0, λ > 0 and
f(u0) ≤ infx∈X f(x) + ε, there exists u1 ∈ X such that

(1) f(u1) ≤ f(u0),
(2) f(u) > f(u1)− ε

λd(u, u1) for all u 6= u1.

Proof. Put x0 = u0. We construct a sequence (xn) in X inductively
as follows: Assume that we have xn ∈ X satisfying (1). If f(u) >
f(xn) − ε

λd(u, xn) for all u 6= xn, then we put xn+1 = xn. Otherwise,
we set

Sn = {x : f(x) ≤ f(xn)− ε

λ
d(x, xn)}.

Take xn+1 ∈ S such that

f(xn+1)− inf
x∈Sn

f(x) ≤ 1
2
[f(xn)− inf

x∈Sn−1
f(x)].

It is easy to see that (f(xn)) is decreasing, and we have
ε

λ
d(xn, xn+1) ≤ f(xn)− f(xn+1).

Therefore, it follows that (xn) is a Cauchy sequence and so let u1 =
limn→∞ xn.

Next, we show that u1 satisfies our conclusions (1) and (2). In fact,
(1) is obvious. Now we prove (2). Since (f(xn)) is decreasing, by the
lower semi-continuity from above of f , we have

f(u1) ≤ lim
n→∞

f(xn).

If (2) is not true, then there exists x ∈ X such that

f(x) ≤ f(u1)− ε

λ
d(u1, x).

By construction of the sequence (xn), we have f(u1)≤f(xn)− ε
λd(u1, xn).

Therefore, it follows that

f(x) ≤ f(xn)− ε

λ
d(u1, xn)− ε

λ
d(u1, x) ≤ f(xn)− ε

λ
d(xn, x).

Thus we have x ∈ Sn for n = 1, 2, · · · and hence f(x) ≥ infy∈Sn f(y),
which contradicts

f(x) < f(u1) ≤ lim
n→∞

f(xn) = lim
n→∞

inf
x∈Sn

f(x).

Therefore, the conclusion (2) is true. This completes the proof. ¤
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Theorem 2.2 (Caristi’s Fixed Point Theorem). Let (X, d) be a com-
plete metric space and a function φ : X → R+ be lower semi-continuous
from above. Suppose that a mapping T : X → X satisfies the following:

d(x, Tx) ≤ φ(x)− φ(Tx)

for all x ∈ X. Then there exists x0 ∈ X such that Tx0 = x0.

Proof. Take ε < 1 and λ = 1. By Theorem 2.1, there exists x0 ∈ X
such that φ(x0) ≤ infx∈X φ(x) + ε and φ(x) > φ(x0) − εd(x, x0) for all
x 6= x0.

Now, we prove Tx0 = x0. If x0 is not a fixed point of T , then we
have

(1) d(x0, Tx0) ≤ φ(x0)− φ(Tx0),
(2) φ(Tx0) > φ(x0)− εd(Tx0, x0).

Therefore, we have

d(x0, Tx0) < εd(x0, Tx0),

which is a contradiction. This completes the proof. ¤

The proof of Caristi’s fixed point theorem actually shows the existence
of infinite fixed points of the mapping T if we know that φ does not
obtain its infimum on X, which is called Caristi’s infinite fixed points
theorem.

Now we state its precise form.

Theorem 2.3 (Caristi’s Infinite Fixed Points Theorem). Let (X, d)
be a complete metric space and a function φ : X → R+ be lower semi-
continuous from above. Suppose that φ does not obtain its infimum on
X and a mapping T : X → X satisfies the following:

d(x, Tx) ≤ φ(x)− φ(Tx)

for all x ∈ X. Then T has infinite fixed points in X.

Proof. Suppose that T only has finite fixed points. Let Fix(T ) denote
the set of all fixed points of the mapping T . By Theorem 2.2, Fix(T ) is
non-empty. Since φ does not obtain its infimum on X, we have

inf
x∈X

φ(x) < min
x∈Fix(T )

φ(x).
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Taking
ε < min{1, min

x∈Fix(T )
φ(x)− inf

x∈X
φ(x)}

and λ = 1, then, by Theorem 2.1, there exists x0 ∈ X such that

φ(x0) ≤ inf
x∈X

φ(x) + ε

and
φ(x) > φ(x0)− εd(x, x0)

for all x ∈ X with x 6= x0. It is obvious that x0 /∈ Fix(T ).
On the other hand, by the same argument as in Theorem 2.2, we

know that Tx0 = x0, which is a contradiction. Therefore, the mapping
T has infinite fixed points in X. This completes the proof. ¤
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