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Abstract. Within hybrid systems theory, o-minimal automata are often
considered on the border between decidability and undecidability. In such
classes of hybrid automata, the constraint of having only constant reset
upon discrete jumps is a strong limitation for their applicability: hence,
an important issue for both theoreticians and practitioners, is that of
relaxing the above constraint, while not fall into undecidability.

In this paper we start considering the problem of timed-bounded reach-
ability on o-minimal automata. This can be seen either as a reachability
problem paired with time-constraints or as a classical reachability prob-
lem for a class of hybrid automata which properly extends the o-minimal
one, with an extra variable representing time. Then, we directly face the
problem of extending o-minimal automata by allowing some variables to
retain their values upon a discrete jump, without crossing the undecid-
ability border.

1 Introduction

Hybrid automata [10] allow formal modeling and reasoning on systems in which
continuous and discrete dynamics mutually interact. A fundamental task, under-
lying automatic verification of hybrid systems, consists in solving a reachability
problem i.e. in checking whether the hybrid systems trajectories can evolve to
some (bad) region of the (infinite) state-space. The reachability problem is known
to be undecidable for a great variety of hybrid automata families [10, 11, 2]. In-
deed, the analysis of the border between decidability and undecidability stands
as one of the major questions in hybrid systems theory. So far, the results in
literature suggest that decidability can follow only from the imposition of strict
constraints, either to the continuous flow or to the discrete transitions of sys-
tems [2, 11, 1, 9, 13]. To this purpose, the recently introduced family of o-minimal
hybrid automata [13] is significant in that, on the one hand, it admits a great va-
riety of possible continuous evolutions but, on the other hand, it imposes a very
restrictive constraint on discrete transitions. Basically, upon each discrete jump
of an o-minimal system, all continuous variables must be (non deterministically)
reset to a constant. Stated in an other way, continuous and discrete dynamics are
completely decoupled. In [13], the entire family of o-minimal systems was shown
to admit finite bisimulation, and various classes of o-minimal automata were
proved decidable, being the corresponding bisimulation algorithm computable.
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Because of the above positive results o-minimal systems are a family of hybrid
automata having a great interest from a theoretical point of view; however, their
application is rather limited since any continuous variable is never admitted to
“remember” its value upon discrete transition.

Starting from the above considerations, in the first part of this paper we
consider a variant of reachability problem for o-minimal systems: the time-
bounded reachability problem (is a region reachable within a maximum time
t?). Such a problem can be seen either as a reachability problem paired with
time-constraints, or it can be reduced to a classical reachability problem for a
class of hybrid automata which properly extends the o-minimal one, with an
extra variable representing time. In order to show the decidability of our ex-
tended reachability problem, we use the first of the two above characterizations,
and we introduce a proof technique that does not require the construction of
a (finite) bisimulation abstraction. Basically, we build and solve an equivalent
minimum-path problem on a suitable weighted-graph.

In the second part of the paper, we directly face the problem of adjoining o-
minimal automata with variables that can maintain their value upon a discrete
jump. To this purpose we introduce the class of relaxed o-minimal automata that
we show to admit finite bisimulation. Finally, we rely on techniques introduced in
the first part of the paper to study and prove decidability for a further extension
of o-minimal automata, that we call MasterSlaves o-minimal automata. For space
sake, we include complete proofs of the claims in this paper in [8].

2 Preliminaries

We introduce here the basic notions and the notation we will need in the sequel.

Definition 1 (Hybrid Automata [2]). An Hybrid Automata is a tuple H =
(L, E, X, Init, Inv, F, G, R) with the following components:

– a finite set of locations, L;
– a finite set of continuous variables, X = {x1, . . . xn}, that take value on R;
– a finite set of discrete transitions (or jumps) E ⊆ L × L;
– F : L × R

n �→ R
n, assigning to each location � ∈ L a vector field F (�, ·) that

defines the evolution of continuous variables within �;
– an initial set of conditions: Init ⊆ L × R

n;
– Inv: L �→ 2R

n

, the Invariant location labelling;
– G : E �→ 2R

n

, the Guard edge labelling;
– R : E × R

n �→ 2R
n

, the Reset edge labelling.

We use the notation v to represent a valuation, (v1, . . . , vn) ∈ R
n, of the vari-

ables’ vector x = (x1, . . . , xn). ||x|| represents the usual euclidean vector norm,
whereas ẋ denotes the first derivatives of the variables in x. A state in H is a
pair s = (�,v), where � ∈ L is called the discrete component of s and v is called
the continuous component of s. An execution of H = (L, E, X, Init, Inv, f, G, R),
starts at any (�,v) ∈ Init and consists of continuous evolutions (within a loca-
tion) and discrete transitions (between two locations). Formally, an execution
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of H is a path in the timed transition system of H (cfr. Definition 2, below),
alternating discrete and continuous steps.

Definition 2. The timed transition system, T t
H , of the hybrid automata H =

(L, E, X, Init, Inv, F, G, R) is the labeled transition system T t
H = (Q, Q0, Σ, →),

with Q ⊆ L × R
n, Q0 ⊆ Q, Σ = R

+ ∪ E, where:

– (�,v) ∈ Q if and only if v ∈ Inv(�) and (�,v) ∈ Q0 if and only if v ∈
Init(�) ∩ Inv(�);

– for each δ ∈ R
+, there is a continuous transition (�,v) →δ (�,v′), if and only

if there is a differentiable function f : [0, δ] → R
n, with the first derivative

ḟ : [0, δ] → R
n such that:

1. f(0) = v and f(δ) = v′;
2. for all ε ∈ (0, δ), f(ε) ∈ Inv(�), and ḟ(ε) = F (�, f(ε)).

– there is a discrete transition (�,v) →e (�′,v′) if and only if e = (�, �′) ∈ E,
v ∈ G(�) and v′ ∈ R((�, �′),v)

A run of H will be denoted by the sequence (of continuous and discrete steps)
r = (�0,v0) t0→ (�0,w0) → (�1,v1) t1→ (�1,w1) → . . . (�n,vn) tn→ (�n,wn), where∑n

i=0 ti will be said the duration of r.
The time abstract transition system of H is the labeled transition system

TH = (Q, Q0, Σ →), where Σ = E ∪ {τ}, that is obtain from T t
H by replacing

each label δ ∈ R
+ with the label τ .

A fundamental tool for resizing transition systems, while preserving crucial
properties (such as reachability) is bisimulation reduction, that we introduce
below. Consider a labeled transition system T = (Q, Q0, QF , Σ, →), where QF

denotes the set of final states, and let ∼B to be an equivalence relation on Q.

Definition 3. ∼B is a bisimulation of T = (Q, Q0, QF , Σ, →) if and only if:

– both Q0 and QF are ∼B blocks (i.e. union of ∼B classes);
– for each ∼B block, B, for each label a ∈ Σ, the region Prea(B) = {q ∈

Q | ∃p ∈ B ∧ q →a p} is a ∼B-block.

2.1 O-Minimal Theories and O-Minimal Hybrid Automata

In this paper we consider a class of hybrid automata called o-minimal automata
[13, 14]. O-minimal theories, introduced below, play a central role in the defin-
ition of o-minimal automata. We refer to [19, 18, 20] for a more comprehensive
introduction to o-minimal theories.

Definition 4. A theory of the reals is o-minimal if and only if every definable
subset of R is a finite union of points and intervals (possibly unbounded).

The class of o-minimal theories over the reals is quite rich: the theories Li(R) =
(R, <, +, −, 0, 1) and OF(R) = (R, <, +, −, ∗, 0, 1) are both o-minimal. The ex-
tension of the above theories obtained by admitting, in the underlying language,
a symbol for the exponential function, OFexp(R) = (R, <, +, −, ∗, exp, 0, 1), is
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also o-minimal. Another important extension is obtained by introducing, in the
underline language, a symbol for each restricted analytic functions and more ex-
tensions are discussed in [13]. By Definition 6, below, such a variety of o-minimal
theories (over the reals) ensures that o-minimal automata is a large and impor-
tant family of hybrid automata, admitting powerful continuous evolutions. In
the following definitions, we will use the notation adopted in [13].

Definition 5. Let F : R
n �→ R

n a smooth vector field on R
n. For each v ∈ R

n,
let γv(t) to denote the integral curve of F which passes through v at t = 0, that is
γ̇v(t) = F (γv(t)) and γv(0) = v. We say that F is complete if, for each v ∈ R

n,
γv(t) is defined for all times t. For such an F , the flow of F is the function
φ : R

n × R �→ R
n, given by φ(v, t) = γv(t).

Definition 6 (O-Minimal Hybrid Automata [13]). The hybrid automaton
H = (L, E, X, Init, Inv, F, G, R) is said an o-minimal automata if and only if:

– for each � ∈ L the smooth vector field F (�, ·) is complete;
– for each (�, �′) ∈ E, the reset function R : E �→ R

n does not depend on
continuous variables ( constant resettings);

– for each � ∈ L and (�, �′) ∈ E, the sets Inv(�), R(�, �′), G(�), Init(�), and
the flow of F (�, ·) are definable in the same o-minimal theory

Given an o-minimal theory, T , we denote by o-minimal(T ) automata the class
of o-minimal automata induced by T .

3 Related Work

The reachability problem for an hybrid automaton H , consists in the problem of
determinimg, given a location � and V ⊆ R

n, if there exists a run of H ending at
(�,v) with v ∈ V . In general, the latter problem is not decidable [11, 10]. So far,
according to the results in the litterature, it seems that its decidability can be
obtained only by imposing strict constraints either on the discrete transitions,
or on the continuous evolution of hybrid automata [2, 11].

In timed automata [1] and multirate automata [11, 12], for example, the flow
of continuous variables must be of constant slope one and general constant slope,
respectively. In both cases, the reachability problem is decidable because the cor-
responding time-abstract transition systems can be (algorithmically) reduced to
finite by bisimulation reduction [11]. Initialized rectangular automata [12] allow
to specify derivatives of the continuous variables flows by means of a conjunc-
tion of inequality of the form ẋ ≈ c, where ≈∈ {<, >, =} and c ∈ Q. Moreover
they impose an initialization constraint on discrete transitions. Given a discrete
transition (�, �′), all the variables that have a different flow in � and �′ must be
reset to an interval over R; The reachability problem is decidable for initialized
rectangular automata, since the corresponding time abstract transition systems
can be (algorithmically) reduced to finite by simulation reduction [9, 11].

O-minimal hybrid systems [13] are considered on the border between decid-
ability and undecidability for the reachability problem. If H is an o-minimal
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automata, then TH admits finite bisimulation [13, 14, 7]. This result does not
guarantee the decidability of the entire family [14], because the bisimulation re-
duction is not computable, in general, for o-minimal automata. In order to decide
reachability relying on bisimulation reduction, it is necessary to effectively:

1. represent sets of states;
2. perform set intersection, set complement, and check set emptiness;
3. given a set of states, Y , compute the set of states that can reach an element

in Y following a discrete/continuous step.

The computability of the above operations depends on the o-minimal theory in
which the flow of the hybrid automata, the Inv sets, the Guard sets, the Reset
sets, and the Initial conditions are defined. In [14] it is proved the decidability of
o-minimal(OF(R)) automata. Decidability depends on the fact that the theory
(OF(R)) admits quantifier elimination [17, 4] i.e. each formula in the theory is
equivalent to a quantifier free one that can be algorithmically determined. Thus,
for example, checking set emptiness corresponds to first performing quantifier
elimination, and then checking if the resulting formula is equivalent to false.
The results in [13, 14] show that o-minimal(OF(R)) automata constitute a class
of decidable hybrid systems admitting powerful coupled continuous dynamics.
For example, the flow of continuous variables whose first derivatives is given by
ẋ = Ax, with A nilpotent (that is ∃n An = 0), is OF(R) definable [13]. On
the converse, o-minimal(OF(R)) automata define the class of decidable hybrid
systems with the strongest constraints on discrete transition: each variable must
be nondeterministically reset to a constant upon each location switch.

In the next section we show how the above constraints on discrete transitions
leave open the following decidability question for o-minimal automata.

Is it possible to decide if a region is reachable within a time interval?

The answer of such a question is positive for the other families of decidable hybrid
automata (timed, multirate and initialized rectangular automata). We enclose
the circle giving a positive answer also for o-minimal(OF(R)) automata. The
construction we will give is interesting in itself, because it allows establishing an
alternative proof that reachability is decidable for o-minimal(OF(R)) automata.
Such a proof does not make use of bisimulation or simulation reduction and,
in our opinion, allows to better understand the link relating the constraints
defining both discrete and continuous components, in o-minimal automata, and
the decidability of the reachability problem. Moreover, our proof is constructive
and gives, as a free byproduct, an optimal reachability run i.e. a run whose
duration is minimal. The problem of determining optimal runs, assuming both
time constraints and discrete switches costs has been previously considered for
the class of timed automata in [16, 5, 3].

We conclude this section citing the works in [15, 6] where the issue of ex-
tending o-minimal automata relaxing the constant reset constraint is taken into
consideration, and some extensions leading to undecidability are presented.
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4 Time Bounded Reachability Problem and O-Minimal
Hybrid Automata

We start by formally defining the time bounded reachability problem on hybrid
automata.

Definition 7. The timed bounded reachability problem for an hybrid automata
H, consists in determining, given a location �, V ⊆ R

n, and a time value t ∈ Q,
if there exists a run of H having duration t′ ≤ t and ending at (�,v), with v ∈ V .

For most families of decidable hybrid automata (but not for classes of o-
minimal systems), the above problem can be reduced to a classical reachability
problem on an augmented automata of the same family. In fact, assume for ex-
ample to work with a timed, a multirate, or an initialized rectangular automata,
H , and suppose that you want to state if the region (�, V ) is reachable within
time t ∈ Q. You can obtain a new automata of the same family, H ′, by aug-
menting the set of continuous variables with a new (time) variable xt, where
ẋt = 1 in all locations and R(vt) = vt for all discrete transitions. Trivially, (�, V )
is reachable within the time t in H if and only if (�, V ×{t′ | t′ ≤ t}) is reachable
in H ′. The construction does not work for o-minimal(OF(R)) automata, since
o-minimal automata do not allow a variable to always maintain the same value
upon a discrete transition.

In order to prove that time bounded reachability is still decidable for o-
minimal(OF(R)) automata, we shall define an equivalent weighted graph mini-
mum-path problem. The graph manipulated will be a labelling of the control
graph of H , instead of a simulation or a bisimulation abstraction of TH . The
following lemma establishes a general property of o-minimal systems and will be
central in the correctness of the encoding.

Lemma 1. For each run of H,
r = (�0,v0) t0→ (�0,w0) → (�1,v1) . . .

tn−1→ (�n−1,wn−1) → (�n,vn),
there is a run of H,
r∗ = (�′

0,v
′
0) t0→ (�′

0,w
′
0) → (�′

1,v
′
1) . . .

tm−1→ (�′
m−1,w

′
m−1) → (�′

m,v′
m), where:

• �0 = �′
0, v0 = v′

0, �n = �′
m, and vn = v′

m
• ∀ 0 ≤ i, j < m, it holds (i �= j) → (〈�′

i, �
′
i+1〉) �= (〈�′

j , �
′
j+1〉)

• the duration of r∗ is less or equal to the duration of r.

Lemma 1 can be used to build, given an o-minimal automata H , an o-minimal
automata H ′ with the following property: (�, V ) is reachable in H if and only if
V is reachable (in a suitable location of H ′) through a path that passes at most
once on each H ′-location. More precisely, we define the guard-expansion of an
o-minimal automata H , as below:

Definition 8. The guard-expansion of H = (L, E, X, Init, Inv, f, G, R) is the
o-minimal automata H ′ = (L′, E′, X ′, Init′, Inv′, f′, G′, R′) where:
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– L′ = {�j
i | (�j, �i) ∈ E} ∪ {��

i | �i ∈ L has not incoming edges};
– (�j

i , �
i
p) ∈ E if and only if (�i, �p) ∈ E;

– for all �j
i ∈ L′ we have Init′(�j

i )=Init(�i), Inv′(�j
i )=Inv(�i), G(�j

i , �
i
p)=G(�i,

�p), f ′(�j
i ,x)=f(�i,x);

– for all (�j
i , �

i
p) ∈ E, R′(�j

i , �
i
p) = R(�i, �p).

The result in Lemma 2 follows directly by Definition 8 and by Lemma 1.

Lemma 2. If (�i, V ) is reachable in the o-minimal automata H within time t,
then there exists j such that (�j

i , V ) is reachable in the guard-expansion of H,
through a run of duration t′ ≤ t that never pass twice in the same location.

5 An Algorithm for Time Bounded Reachability on
Classes of O-Minimal Hybrid Automata

We prove here the decidability of time bounded reachability for o-minimal(OF
(R)) automata. As anticipated, we will make use of the results in Section 4 to
map the problem onto a weighted graph minimum-path problem.

Given an o-minimal(OF(R)) automata, H , the first step in the construction
consists in obtaining the guard-expansion of H (cfr. Definition 8), H ′. By Lemma
2, checking if H admits a run to a region R, of duration at most t, is equivalent
to checking if there is a suitable acyclic run of duration at most t in H ′. We
represent in Figure 1 an o-minimal(OF(R)) automata and its guard-expansion1.
In the rest of this section we will use exactly the automata of Figure 1 to illustrate
the overall procedure.
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Fig. 1. An o-minimal(OF(R)) automaton and its guard-expansion

5.1 Phase 1: Labelling Scheme

Our next task is that of opportunely labeling the control graph of the guard-
expansion automata H ′, obtaining a weighted graph G. The set of nodes in G
consists of the set of locations of H ′ plus an auxiliary final node F .
1 Note that the continuous dynamics of the hybrid automata depicted in Figure 1 can

be expressed within (OF(R)) theory because the matrices involved in the underlying
differential equations systems are nilpotent (see [14]).
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If the target region, in our process, is in the location li of H , then F is linked
to all the locations of H ′ into which li gets split. Hence, for example, if we would
like to check time-bounded reachability of a region in the location �0, then G
would have the structure depicted in Figure 2.

The weights in G are real numbers maintaining
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Fig. 2.

as much information as necessary to reduce our
time bounded reachability problem to that of de-
tecting a minimum weighted path in G. Such wei-
ghts are defined relying on the fact that OF(R) is a
decidable theory that admits quantifier elimination.
In fact, to label each edge of G, we build a suitable
OF(R) formula and we eliminate its quantifiers. As
a byproduct, we obtain a real number that we use
as a weight. More in detail, the labeling of G proceeds as follows:

• For each edge (lji , l
i
p) in G, we build the formula ψ(lji ,lip)(t0), that represents

the greatest lower bound of the (o-minimal) set of times allowing to pass
from a point in the reset region R(lj , li) of H , to a point in the guard region
G(li, lp) of H . The formula ψ(lji ,lip)(t0) is given by:

ψ(lji ,lip)(t0) = (Reach∆
(lji ,lip)

(t0) ∨ Reach(lji ,lip)(t0))∧
∧∀t(Reach(lji ,lip)(t) → t ≥ t0))

(1)

In ψ(lji ,lip)(t0), the subformula Reach∆
(lji ,lip)

(t0) characterizes the time-point t0

as the left extreme of an open interval, ∆ = (t0, t0 + ε), such that, for each
t0 < t < t0 + ε, the continuous components of H ′ can evolve from a value
in R(lj , li) to a value in G(li, lp) ∈ H , in time t. Similarly, the subformula
Reach(lji ,lip)(t) expresses the possibility to reach the guard-set G(li, lp) ∈ H

from the reset-set R(lj , li) ∈ H in time t. If φ denotes the flow of the vector
field F (�i, ·), then Reach∆

(lji ,lip)
(t0) and Reach(lji ,lip)(t) are the following OF(R)

first-order formulas:

Reach∆
(lji ,lip)

(t0) = ∃ε∀t[(t0 < t ∧ t < ε) → Reach(lji ,lip)(t)] (2)

Reach(lji ,lip)(t) = ∃x,y [x ∈ R(lj , li) ∧ y ∈ G(li, lp) ∧ φ(x, t) = y∧
∧∀t′(0 ≤ t′ ≤ t → φ(x, t′) ∈ Inv(li))]

(3)

If ψ(lji ,lip)(t0) is satisfiable, then there is a unique value that can be assigned
to t0 to have a true sentence. Hence, by using, for example, Collins cylindric
algebraic decomposition algorithm [6] we can eliminate the quantifiers in
ψ(lji ,lip)(t0) and obtain a real algebraic number witnessing (the unique) time-
value satisfying ψ(lji ,lip)(t0). We use the computed greatest lower bound, say

α, to label the edge (lji , l
i
p) in G. We also distinguish the case in which α is

the left extreme of an open interval of times, from the case in which α is the
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left extreme of a closed interval of times (allowing to pass from R(lj , li) to
G(li, lp))2. In the first case, we use a dotted edge to connect the vertex lji
to the vertex lip in G. Finally, if ψ(lji ,lip)(t0) is not satisfiable, the edge (lji , l

i
p)

is labeled with the value +∞, meaning that it is never possible to reach
location lip ∈ H ′ from lji ∈ H ′.

• For each edge (l#i , lip) in G, we derive the formula ψ(l#i ,lip)(t0), that represents
the greatest lower bound on the time required to pass from a point in the
initial region of �i ∈ H to a point in the guard region G(li, lp) of H . The
process of construction of formula ψ(l#i ,lip)(t0) is equivalent to that of building
formula ψ(lji ,lip)(t0), in Equation 1. The only difference is that we should use
the initial-set Init(li) in place of the reset-set R(lj , li), within the definition
of the subformula in Equation 3. The edge (l#i , lip) is finally labeled either
with +∞ or with the real number resulting from solving the expression
derived from quantifier elimination applied to ψ(l#i ,lip)(t0).

• We follow an analogous approach to label each edge leading to the node F
in G. In this case, however, in place of guard-sets we use the final region V
to define the formulae in Equations 1,2,3.

5.2 Phase 2: Time Bounded Acyclic Paths Detection

Since now we have never used the input information about the time bound.
This information is necessary in the last phase of our procedure. In such a
step we simply apply a classical algorithm for the (multiple sources) minimum-
path problem3 on G, where F plays the role of target node, and the sources
are the nodes associated with each initial location, l#i , in H ′. Then, we match
the weight, w, of such a minimum path with the time bound, tmax. Finally we
answer positively to our problem if and only if w < tmax or w = tmax and the
corresponding minimum path does not contain any dotted edge.

Theorem 1. Time-bounded reachability is decidable for o-minimal(OF(R)) hy-
brid automata.

6 Generalizing Issues

The strategy discussed in previous sections to answer the time-bounded o-
minimal reachability problem can be naturally translated into an approach to
decide general reachability problem for o-minimal automata. Such an approach
2 This can be done by simply checking if the sentence ∃t0(Reach(lji ,lip)(t0) ∧
∀t(Reach(lji ,lip)(t)→ t ≥ t0)) is equivalent to the free-quantifier sentence true.

3 Note that it is possible to carry on the computation of the overall minimum path
algorithm symbolically. This means that if α and α′ are two edge labelling reals,
represented by the two OF(R) quantifier free formulas φ(t) and φ′(t), then α + α′

can be obtained by eliminating the quantifiers in ∃t1, t2(φ(t1)∧φ′(t2)∧ t1 + t2 = t3).



Reachability Problems on Extended O-Minimal Hybrid Automata 171

is even simpler in the case of general reachability, in the sense that we only need
to solve an equivalent connectivity problem on a directed (unlabeled) graph G.
Moreover, building the edges of G involves the definition and evaluation of OF(R)
sentences simpler than the formulas in Equations 1, 2, 3. More in detail, con-
sider again the o-minimal automata in Figure 1 and the problem of detecting the
reachability of an OF(R) definable set of states within location �0. The directed
unlabeled graph built to solve such problem has exactly the same set of nodes of
the graph in Figure 2 (built for time-bounded reachability). The rule for defining
the set of edges in G, instead, changes: in particular, for each edge (lji , l

i
p) in the

guard expansion H ′, we build a corresponding edge (lji , l
i
p) ∈ G if and only if the

following sentence is equivalent to the quantifier free sentence true:

∃x,y, t(x ∈ R(lj , li) ∩ Inv(li) ∧ y ∈ G(li, lp) ∩ Inv(li)∧

∧φ(x, t) = y ∧ ∀t′ ≤ t(φ(x, t′) ∈ Inv(li)) (4)

The above sentence simply asserts the possibility of reaching a point in the guard
region G(li, lp), from a point in the reset region R(lj, li). Note that, if it is not
necessary to specify the invariant sets in our hybrid automata, then the sentence
in Equation 4 uses only the existential fragment of the underlying theory.

With respect to traditional decision procedures in the litterature [13, 14], for
deciding reachability in o-minimal automata, the above sketched strategy does
not require to build the whole state-space of the bisimulation abstraction of TH .
Thus, it is valuable with respect to the, often fundamental in the verification
field, space-efficiency parameter. Moreover, in our opinion, the outlined decision
procedure for reachability precisely localize the decidability of o-minimal hybrid
automata within the following two parameters:

– the constant resets imposed onto the discrete dynamics;
– the decidability of the (existential fragment) of the theory defining all rele-

vant sets in the automata.

7 Relaxing O-Minimal Automata Constant Resets

7.1 Relaxed O-Minimal Automata

In this section, we directly face the problem of adjoining o-minimal automata
with variables that can maintain their values upon a discrete jump. To this aim,
Definition 9, below, introduces the class of relaxed o-minimal automata. In a
relaxed o-minimal hybrid automata, say H , continuous variables can maintain
their values along discrete transitions. However, for each cycle in the control
graph of H , there must be at least one edge along which all variables are non
deterministically reset to a constant. Let T to be an o-minimal theory:

Definition 9 (Relaxed O-Minimal(T ) Automata ). A Relaxed o-minimal
(T ) Automata is an hybrid automata H = 〈L, E, X, Init, Inv, F, G, R〉 in which:
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– L, E, X, Init, Inv, F, G are defined as in o-minimal hybrid automata, inside
the same o-minimal theory T ;

– the reset function R = R1 × . . .×Rn=|X| : E×R
n ×2R

n

is defined as follows:
1. for each edge e ∈ E, for each 1 ≤ i ≤ n, Ri(e, ·) is either equal to the

identity function id : R �→ R, or it is a constant function mapping each
value of the continuous variable xi to an interval over R;

2. for each cycle (�1 . . . �k = �1) in the control graph of H, G = (L, E),
there exists an edge e = (�i, �i+1) upon which the reset function R =
R1 × . . . × Rn is composed only by constant functions.

Consider a (general) hybrid automata H = 〈L, E, X, Init, Inv, F, G, R〉 and
let TH = 〈Q, Q0, QF , Σ, →〉, were QF is a set of final states, to be the time-
abstract transition system of H . We represent in Figure 3 a well known partition-
refinement computational approach to determine the maximum bisimulation
over TH . The procedure in Figure 3 successively refines a partition onto Q coarser
than the bisimulation quotient, iterating until a (finite) partition stable with re-
spect to →= (

⋃
e∈E →e)∪ →τ is determined. It follows that Bisim(H) computes

the bisimilation quotient of TH if and only if TH admits a finite bisimulation.
Theorem 2, at the end of this section, shows exactly that this is the case for the
time abstract transition systems of relaxed o-minimal automata.

We start by observing that, in order to show bisimulation finiteness for o-
minimal hybrid automata in [13], Pappas et al. used a partition refinement bisim-
ulation algorithm simpler than the general one presented in Figure 3. Such an
algorithm is depicted in Figure 4, and reduces to perform only the first for-loop
of Bisim, splitting independently the state-space associated with each location
� ∈ L. This, in turn, means that the discrete transitions are never considered
within the splitting process. The correctness of the algorithm depends on the fact
that o-minimal systems are constrained to constant resets. More precisely, if G(e)

Bisim(H)

(1) Let P be the coarsest partition of L × R
n compatible with respect to each block

{�} × Z, where � ∈ L, Z ∈ A� and A� = {Inv(�), Init(�), F inal(�)}
(2) Repeat
(3) oldP ← P
(4) for each (� ∈ L)
(5) while (∃B, B′ ∈ P such that ∅ �= B ∩ Preτ (B′) �= B)
(6) B1 ← B ∩ Preτ (B′); B2 ← B \ Preτ (B′)
(7) P ← (P \ {B}) ∪ {B1, B2}
(8) for each (e = (�, �′) ∈ E)
(9) for each (�′ × V ′ = B′ ∈ P, � × V = B ∈ P such that ∅ �= B ∩ Pree(B′) �= B)
(10) B1 ← B ∩ Pree(B′); B2 ← B \ Pree(B′)
(11) P ← (P \ {B}) ∪ {B1, B2}
(13) until (P = oldP)

Fig. 3. The partition refinement bisimulation algorithm for general hybrid automata
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BisimLoc(H)

(1) define A� = {Inv(�), Init(�), F inal(�)} ∪ {G(�, �′), R(�, �′) | (�, �′ ∈ E)}
(2) Let P be the coarsest partition of L× R

n compatible with respect
to each block {�} × Z, where � ∈ L, Z ∈ A�

(3) for each (� ∈ L)
(4) while (∃B,B′ ∈ P such that ∅ 	= B ∩ Preτ (B′) 	= B)
(5) B1 ← B ∩ Preτ (B′); B2 ← B \ Preτ (B′)
(6) P ← (P \ {B}) ∪ {B1, B2}

Fig. 4. The partition refinement bisimulation algorithm for o-minimal automata in [13]

and R(e) are classes in the initial partition P0, for each edge e, constant resets
ensure that discrete transitions do not cause any partition refinement since:

Pree(B) =
{

∅, if B ∩ R(e) = ∅;
G(e), otherwise.

On the other hand, the termination of the refinement process within the bisim-
ulation procedure used by [13] in Figure 4, only depends on the form of the
following two components:

– the initial partition, which is a finite and composed by classes definable in
the o-minimal theory of H ;

– the smooth and complete vector field that defines the relation of the transi-
tion system, whose flow is definable in the o-minimal theory of H .

The above facts will be used within the following Lemmas, preliminary to the
main Theorem 2. Note that, since relaxed o-minimal automata allow identity
resets, the procedure in Figure 4 [13] does not allow to define a bisimulation
over the corresponding time-abstract transition systems. Consider a relaxed o-
minimal automata, H , and let P0 to be the partition built in the initialization
phase of Bisim(H).

Lemma 3. Each execution of the first for-loop within Bisim terminates leading
to a finite partition which refines P0.

Theorem 2. Relaxed o-minimal hybrid automata admit finite bisimulation.

The corollary below, follows immediately from Theorem 2 and from the fact that
the o-minimal theory OF(R) admits quantifier elimination.

Corollary 1. The reachability problem is decidable for Relaxed o-minimal(OF
(R)) automata.

7.2 MasterSlaves O-Minimal Automata

In Section 5, we exploited Tarski quantifier elimination to obtain a real value
that is a lower bound onto the time necessary to move among regions, within one
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o-minimal automaton location. Here we build up on this idea to define a further
extension of o-minimal automata which does not cross the undecidability border,
while relaxing the condition of having only constant reset on discrete jumps.

Briefly, this is achieved by endowing our automata with two classes of con-
tinuous variables. Precisely, MasterSlaves o-minimal hybrid automata will be
endowed with a set of variables that we call constant reset variables (or slaves
variables) plus a further variable that we call free variable (or master variable).
We impose the continuous evolution of the master variable, say xf , to be in-
dependent from slaves variables4: xf is allowed to maintain its value upon a
discrete transition if its flow does not change with the corresponding switch to
a new location. Otherwise, the free variable must be reset to a constant. As far
as slaves variables is concerned, we impose their discrete dynamics to be always
constrained to constant reset.

Given a location �, it is possible to define a T formula representing the set
of times allowing to traverse5 �, using exactly the same techniques adopted in
Section 5. We guarantee that such a set admits a strictly positive lower bound for
MasterSlaves o-minimal automata. The above fact, together with closed bounded
invariant sets (cfr. condition f) in Definition 10, below), is strongly related to
the decidability results stated in Theorems 3 and 4, at the end of this section.

To equip the reader of some more intuition, before formally introducing Mas-
terSlaves automata, we anticipate that conditions f), g) in Definition 10, and
the form of continuous dynamics, allow to ensure the following properties:

1. ∀� ∈ L there exists a strictly positive lower bound to the time required to
traverse �;

2. there exists a finite upper bound on the time that the free variable can
spend evolving according to a given vector field, F f , and subject to identity
resetting, without violating invariants.

Definition 10 (MasterSlaves O-Minimal(T ) Automata). A MasterSlaves
o-minimal(T ) Automata is an Hybrid Automata H = (L, E, X, Init, Inv, F, G, R)
with:

continuous dynamics
a) X = Xc ∪ {xf}, xf /∈ Xc. Xc = {xc

1, . . . , x
c
m}, m ≥ 1, is said the set of

constant reset variables (or slaves variables), whereas xf is said the free
variable (or master variable);

b) ∀� ∈ L, F (�, ·) : R
m+1 �→ R

m+1 is a complete smooth vector field whose
flow is T -definable.

c) ∀� ∈ L, the continuous evolution of the free variables does not depend on
Xc, i.e. it can be represented as the solution of a complete smooth vector
field, F f (�) : R �→ R. Moreover, if v ∈ Inv(�) |xf , then ||F f (v)|| �= 0.

4 In other words, for each location of a MasterSlaves automata, the flow of the free
variable can be represented as the solution of a smooth vector field F f : R �→ R.

5 i.e. to reach a guard region in � departing from any guard region associated to a
discrete edge mapping to �.



Reachability Problems on Extended O-Minimal Hybrid Automata 175

discrete dynamics
d) ∀(�, �′) ∈ E, R(�, �′) = Rf × Rc, where Rf (�, �′) can be the identity

function id : R �→ R only if F f (�) = F f (�′) and Inv(�)|xf = Inv(�′)|xf ;
otherwise Rf(�, �′) is a constant T -definable function mapping to 2R.
Rc(�, �′) : R

m �→ 2R
m

is a constant T -definable function;
relevant sets
e) ∀(�, �′) ∈ E, � ∈ L, the guard-set G(l, l′), the invariant-set Inv(�), and

(if any) the initial set Init(�) are definable within T ;
f) ∀� ∈ L, Inv(�) is a closed and bounded set;
g) ∀� ∈ L, there exists a strict positive constant d > 0 such that:

∗ for each v ∈
⋃

�′|(�′,�)∈E R(�′, �)(G(�′, �)) ∪ Init(�)
∗ for each w ∈

⋃
�′′|(�,�′′)∈E G(�, �′′)

the distance between v and w is at least d, i.e. ||v − w|| ≥ d.

Lemma 4 states that it is possible to solve a reachability problem on a given
MasterSlave o-minimal automata, by checking only runs that traverse at most k
edges, where k is a proper constant. The proof of Lemma 4 is based exactly on the
two properties discussed before formalizing our automata.We rely on the same
properties, and on the o-minimality of the theory underlying the definition of
our systems, to prove Theorem 3, stating that MasterSlaves o-minimal automata
admit finite bisimulation.

Lemma 4. Let H be a partitioned o-minimal. There is a constant k such that
for each state of H, (�,w), (�,w) is reachable in H if and only if H admits a
run traversing at most k discrete edges and leading to (�,w).

Theorem 3. MasterSlaves o-minimal automata admit finite bisimulation.

The decidability of the reachability problem for MasterSlaves(OF(R)) automata
follows directly from Theorem 3 (or, equivalently from Lemma 4) and from
decidability of o-minimal OF(R) theory.

Theorem 4. The reachability problem is decidable for MasterSlaves(OF(R)) o-
minimal automata.

8 Conclusions

In this paper we study a number of problems related both to the understanding
and to the extension of the border between hybrid systems decidability and un-
decidability . Our starting point was the family of o-minimal automata, which is
largely considered layering on such a border. In particular, we develop some not
bisimulation-based proof techniques for showing decidability of (timed-bounded)
reachability problems for classes of o-minimal systems. We finally analyze the
possibility to explicitly introduce identity resetting variables in o-minimal au-
tomata, without crossing the undecidability border.
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