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Executive Summary 

Assessing sustainability is more and more becoming a common practice in products, policies and institution 

appraisals. However, increasing concern has been recognized in the scientific community regarding whether 

the various available examples of sustainability assessment are really comprehensive and able to judge in a 

robust and reliable way if new developments “meet the needs of the present without compromising the ability 

of future generations to meet their own needs”. Concerns are mainly related to intrinsic vagueness of the 

sustainability concept itself (sustainable development is, like social justice, a value-laden concept that has 

many different perceptions) and to the capability of addressing environmental, economic and social issues and 

their interactions with robust and meaningful measures. 

In a sustainability assessment framework, the main sources of uncertainty can be: i) the “sustainable 

development” concept and the definition of boundaries (physical, economic and social) to assess it, ii) the 

intrinsic subjectivity of many assessment tools, and iii) the incapability of many available modelling activities to 

mimic our world. In order to deal with them, it is necessary to identify a suitable conceptual framework able to 

guide the analysts through a path aimed at increasing their capability to understand the main drivers of their 

analysis. Only in this way they will be able to quantify the robustness of the results of any assessment.  

The problem is that uncertainties behind the comprehension of our world are probably too high to 

allow us presuming always to provide clear and certain answers on what is sustainable and what is not. All we 

can do now is trying to find the main sources of uncertainty and to deal with them, so that our answers can 

include also how confident we might think to be on them. 

 

This report defines a conceptual framework centred upon the phases of sensitivity and uncertainty 

analysis. The former tries to individuate how the uncertainties in the outputs of the assessment can be 

apportioned into its inputs. The latter tries to understand how the uncertainty in the inputs affects the outputs 

of the assessment. In this way the analysts have all the instruments to comprehend to which extent the 

conclusions of their study are jeopardised by possible errors in the hypotheses made during the assessment 

itself. 

For both sensitivity and uncertainty analysis, different techniques can be adopted. Some of these 

techniques have been here discussed and applied to field specific models to test their powerfulness in dealing 

with uncertainty. The report shed light also on some properties of the two modelling framework tested: i) two 

microscopic traffic simulation models and ii) a site specific spatially resolved model for calculating the fate of 

contaminant in the environment at a global scale. In this way it also represents a useful guide for the 

application of sensitivity and uncertainty analysis techniques. 
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The report is organized as follows: in the first section the main sources of uncertainty and a suitable 

conceptual framework to deal with them while assessing sustainability are presented. In section 2 and 3 some 

of the most widely adopted techniques sensitivity and uncertainty analysis are described. Sections 4 and 5 

present the results of the application of variance-based sensitivity analysis techniques to i) microscopic traffic 

simulation models and ii) site specific spatially resolved model for calculating the fate of contaminant in the 

environment at a global scale. Section 6 reports on the application of uncertainty analysis techniques to a 

sustainability assessment case-study. In section 7, the intrinsic difference between uncertainty and fuzziness 

and possible implications for sustainability assessment are introduced, whereas in section 8 the concluding 

remarks of the work carried out are reported. 
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1. Introduction  

Assessing sustainability is more and more becoming a common practice in products, policies and institution 

appraisals. However, increasing concern has been recognized in the scientific community regarding whether 

the various available examples of sustainability assessment are really comprehensive and able to judge in a 

robust and reliable way if new developments “meet the needs of the present without compromising the ability 

of future generations to meet their own needs” (WCDE 1987). Concerns are mainly related to intrinsic 

vagueness of the sustainability concept itself (sustainable development is, like social justice, a value-laden 

concept that has many different perceptions) and to the capability of addressing environmental, economic and 

social issues and their interactions with robust and meaningful measures (Bohringer and Jochem 2007). 

Furthermore, there is a lack of both science-based and policy-based boundaries able to define 

thresholds between what does contribute to a sustainable development and what does not. As a matter of 

fact, in the common practice, the option selected after a sustainability assessment has no guarantee to 

contribute to a sustainable development in the sense previously defined. 

This issue can be seen under the following light: sustainability assessment should aim at providing a 

clear answer about the impact on the development of “our” world caused by a certain element of the world 

itself. This is therefore connected with our capability to foresee this impact. So the real question appears to 

be: are we able to give such an answer? Is our knowledge sufficient to judge what will help “our” world (here 

“world” it is not necessarily referred to as ecosystem but more as the way in which we live) to survive like it is 

now (or even to improve its conditions) and what will instead cause devastating changes? 

The answer is, probably, not. Uncertainties behind the comprehension of our world are probably too 

high to allow us presuming always to provide clear and certain answers on what is sustainable and what is not. 

All we can do now is trying to individuate the main sources of uncertainty and to deal with them, so that our 

answers can include also how confident we might think to be on them. 

In the present work we have tried to identify and describe the main sources of uncertainties 

connected with a sustainability assessment. Then, we have proposed a conceptual framework to deal with 

these uncertainties considering the experience carried out in different scientific fields. Sensitivity and 

uncertainty analysis are the key components of this framework. The former tries to individuate how the 

uncertainties in the outputs of the assessment can be apportioned into its inputs. The latter tries to 

understand how the uncertainty in the inputs to the assessment affects its outputs. In this way the analysts 

have all the instruments to comprehend to which extent the conclusions of their studies are jeopardised by 

possible errors in the hypotheses made during the assessment itself. 

For both sensitivity and uncertainty analysis, different techniques can be adopted. Some of these 

techniques have been here discussed and applied to field specific models to test their powerfulness in dealing 

with uncertainty. 

Dealing with uncertainty is a big issue especially for policy makers. It can confuse them, but it can be 

made policy relevant if results are translated into the likelihood that policy targets will be met. Policy makers, 
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then, have the choice to either accept the risks, or to take actions that increase the certainty that targets will 

be met. Basically there are two types of policy risks, i) doing too much (and spoil public money) or, ii) doing too 

little (and be confronted with irreversible environmental problems later). The acceptance of the different 

types of policy risks will depend on the preference of the chosen politicians and the priorities they will give to 

environmental, social and economic stakes. The careful politician will easily realize that policies can be made 

more robust when risks are acknowledged and adaptations are made to minimize the risks (or to define a 

strategy on how to respond when risks would really occur).  

1.1. Uncertainty sources in sustainability assessment and strategies to deal with them  

Given the previous definition of sustainability assessment, it is possible to identify three main sources of 

uncertainty:  

1. the “sustainable development” concept and the definition of boundaries (physical, economic 

and social) to assess it; 

2. the intrinsic subjectivity of many assessment tools; 

3. the incapability of many available modelling activities to mimic our world. 

The first source of uncertainty is so painful that almost all sustainability assessment studies end up 

comparing different alternative scenarios, with the assessment trying to individuate which alterative may lead 

to a more sustainable development. The problem is that, even if some global boundaries may exist (scientists 

are proposing some environmental boundaries for our planet, see, e.g. Rockstrom et al. 2009, Sverdrup and 

Ragnarsdottir, 2011), it is very difficult to assess how much a certain product, policy or institution can 

contribute to its fulfilment. The only possibility would be if thresholds are defined at a political level, with 

policy makers taking the responsibility of deciding each sector how much has to contribute to the 

achievements of global goals. It is basically what initiated by European Commission with the Europe 2020 

strategy (http://ec.europa.eu/europe2020/index_en.htm), but that should have been further specified by the 

governments of the members states in order to direct the national development strategies in a more effective 

way. Thresholds approach in decision theory (sometimes also known as “what to” approach) is very important 

when there are boundaries that can lead to major consequences if crossed (Polasky et al., 2011). This is the 

case of climate change: if we will maintain the CO2 concentration in atmosphere above the safety threshold of 

350ppm (Rockstrom et al. 2009) for long time, we are not able to foreseen towards which new equilibrium 

configuration our ecosystem is moving. Our ecosystem is, indeed, a complex system, and a new equilibrium 

configuration can result to be very different from the present one, with many, unexpected, mechanisms 

activated without any possibility of control. At the same time focussing only on thresholds can give the 

misleading impression that “degradation below the threshold level is safe and improvements beyond it are of 

no value” (Polasky et al., 2011). In addition, most of the thresholds hide considerable and difficult to quantify 

level of uncertainty and, thus, only relying on some fixed values may turn not to be worthwhile. For this reason 

any threshold should always be coupled to the level of confidence that has been assumed in its definition (and 
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preferably also to its probability distribution). It is worth noting that some threshold can also assume “fuzzy” 

values at the beginning of the decision process (e.g. considerations like “concentration of pollutant in urban 

cities has to be reduced” is a typical example). This has not to be confused the concept of uncertainty. The 

decision process acts as de-fuzzyfying filter in the sense that takes the fuzzy information as input and produces 

the clear threshold as output (Boschetti, 2011). The uncertainty has to be searched in this latter. Further 

details on this will be provided in section 7. 

Alternative to the thresholds approach is the scenario planning (also known as “what if” approach). 

Scenarios are set of possible futures that are evaluated on the basis of different criteria. In sustainability 

assessment, scenarios need to be evaluated using criteria pertaining to the three different pillars of the 

sustainability. In this way it is unlikely to find a scenario that outperforms all the others over all the criteria 

adopted. For this reason, even with different approaches, in most cases, a single indicator is evaluated as a 

weighted combination of the criteria (e.g. multi-criteria assessment). In this way it is possible to rank the 

different options, but, depending on how the criteria are aggregated the order may be very different. This 

represents the second source of uncertainty that has be considered for sustainability assessment. 

Both for the thresholds definition and the appraisal of the different scenarios, sophisticated analyses 

are required. Independently if they adopt modelling/simulation based approaches or experience based 

approach (e.g. by means of time series analysis) such analyses require an in-depth understanding of how our 

world behaves, especially in reaction to the pressure imposed by our society. This is more significant as we 

consider the world in which we live as a complex system, involving many sub-systems closely interrelated 

among each other. This is the third source of uncertainty, which rises as soon as we try to understand the 

system ("What makes modelling and scientific inquiry in general so painful is uncertainty. Uncertainty is not an 

accident of the scientific method, but its substance", Saltelli et al., 2008). In this case it is not occasional to 

have the uncertainty used to hide or neglect a problem. A typical example is the Climate Change. Even if the 

problem is now widely accepted and has rapidly reached the attention of the broader audience, this was not 

exactly the case up to few years ago. Many sources of uncertainties indeed exists, such as the uncertainty of 

the likelihood of adverse effects, the uncertainty over the consequences of change, the uncertainty over the 

speed of changes, the uncertainty about discontinuities, the uncertainty over the effectiveness of policy 

instruments and so on (Mabey et al. 2011). As it usually happens, focussing the attention on the possible 

sources of uncertainty has been the way to delay policies able to reduce greenhouse gas emissions (Hansen 

2009). It is straightforward that, in this case, all the sources of uncertainty arise from the attempt of modelling 

several complex processes, like the climate response to the natural and anthropogenic forces and its impact of 

our society, often mixed in a complex way. To this aim, different kind approaches can be used in order 

facilitate the public debate (considering again the Climate Change problem, please refer to Boschetti 2011). 
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In any case, in this third source of uncertainty, part can be directly imputed to the (in)adequacy of the 

models to reproduce the reality, while another part depends on the (uncertain) model inputs1. 

Uncertainty due to the inadequacy of models arises from a number of sources. First of all, any kind of 

model is developed based on the human comprehension of the modelled phenomena. This comprehension is 

always limited. Though evident and clear since Socrates (“I only know that I know nothing”) this seems not 

always to be clear nowadays in modelling practice (Kay 2011). In any case we should never expect to have 

model being able to predict the world’s evolution under all the possible conditions. Further to this, other 

sources of uncertainty can be the modelling basic assumptions, the structural equations, the level of 

discretization, the numerical resolution method, etc. Such sources of uncertainty can be reduced by 

'improving' the model concerning one or more of these aspects. As the cost of reducing such uncertainties 

often results in the increasing of computing time, the choice of the most appropriate modelling framework 

depends on the specific application and stems from a trade-off between model adequacy and computing time.  

As regards the uncertainty in the model inputs, we must distinguish between those inputs which are 

observable and those which are not. Such distinction is crucial as it affects the possibility, or the cost, of 

reducing the uncertainty they are responsible for: 

 As observable we intend those model inputs which have a measurable equivalent in the reality. Thus 

they can be directly estimated and used to feed the models.  

 Unobservable inputs are those which either are hardly measurable2, or have not an actual equivalent 

in the reality. Many model parameters, for example, either do just not have a physical interpretation 

(i.e. they are simply model constants), or they are deliberately considered uncertain by the modeller. 

In facts, as models are necessarily only coarse representations of the real system, considering 

modelling parameters as uncertain inputs is commonly taken to cover both the epistemic uncertainty 

regarding the un-modelled details of the phenomena and the ontological (or aleatory) uncertainty not 

predicted by the average models3 (e.g. the variability in time of driver's behaviour). Such parameters 

can be therefore only indirectly estimated by means of inverse analysis, calibration, etc. (see also 

section 5.2) 

Since the uncertainty in both the model and the inputs is propagated into the outputs, such 

uncertainty has to be assessed and, whenever possible, reduced. In facts, a model encompassing a 

disproportionate amount of uncertainty and thus returning unreliable results, turns out to have no practical 

utility for the analyst. 

                                                 
1
 Also in this case several authors have proposed different classifications of the possible typology of uncertainty. The 

reader can for example refer to van Asselt et al. (1999) 
2
In this context the immeasurability is intended practical rather than theoretical. Some quantities may be not measurable 

because of operational or economic constraints.  
3
 Epistemic, or reducible uncertainty, refers to types of uncertainty which can be directly reduced by an increase in 

available data. Ontological, or irreducible uncertainty, refers to events which remain unpredictable whatever the amount 
of data available. The difference is clear when looking at the failure rate of an industrial component (epistemic) against its 
instant of failure (ontological). 
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In the field of environmental assessment, considerable efforts for quantifying and managing 

uncertainty have been carried out by many research Institutes. 

In the present work we adopt the conceptual framework presented by de Rocquigny et al. (2008) and 

reported in Figure 1. 

 

FIGURE 1. Conceptual framework for sensitivity and uncertainty analysis (copyright JRC) 

 

The first step consists in the problem's specification, which involves the definition of the input and the 

output variables, the model specification and the identification of the quantity of interest for measuring the 

uncertainty in the outputs. Input variables may be uncertain or fixed mainly being a choice of the analyst. 

Depending on the problem setting the uncertain model inputs may include all the sources of uncertainty like 

the parametric or the model uncertainty. Other variables may be fixed, for example, in risk scenarios for 

comparative studies or, more in general, when the uncertainty of such variable is deemed negligible with 

respect to the output variables of interest. 

The second step is the quantification of the uncertainty sources (uncertainty modelling). In a 

probabilistic setting this phase implies defining the joint probability density function (pdf) of the uncertain 

inputs or their marginal pdf with simplified correlation structures or even independence assumptions. It 

involves gathering information via direct observations, expert judgements, physical arguments or indirect 

estimation (as for the unobservable inputs in table 5.1) and it is often the most expensive phase of the 

analysis. 

The propagation of the uncertainty is necessary to map the uncertainty in the inputs into the 

uncertainty measures in the outputs (this is usually referred to as uncertainty analysis, UA). A Monte Carlo 

simulation framework is often adopted to this aim. In a probabilistic framework the propagation entails the 
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estimation of the pdf of the output variables of interest, given the pdf of the uncertain inputs, the values of 

the fixed inputs and the model. 

The sensitivity analysis (SA) or importance ranking represents the feedback process in the complex of 

the uncertainty management, and aims at understanding "how uncertainties in the model outputs can be 

apportioned to different sources of uncertainties in the model inputs" (Saltelli et al., 2004). In other words the 

objective of the sensitivity analysis is to instruct the modeller with regards to the relative importance of the 

uncertain inputs in determining the variable of interest. In this way the modeller is aware of which model’s 

components deserve more attention in the estimation phase and which can be fixed without affecting too 

much the results of the assessment. As already pointed out, however, the modeller has few chances to nullify 

the uncertainty in the model inputs. Therefore, at the end of the analysis, he may fruitfully use an uncertainty 

analysis to determine the effect of this residual uncertainty on the results of the assessment study. 

In conclusion, sensitivity and uncertainty analysis play a fundamental role for increasing the quality 

and the robustness of the answer provided by a sustainability assessment. In the following the report is 

providing some details on how to perform them. 
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2. Model sensitivity analysis. Background 

In the present section, we deal with the issue of model sensitivity analysis. Our principal source on this topic is 

Saltelli et al. (2008) to which the reader who would like to go deep to heart of the subject is suggested to refer. 

Also the notations used hereafter are the same than those reported in Saltelli et al. (2008) for the sake of 

simplicity. The sensitivity analysis is an important step to deal with the uncertainties hidden behind the 

modelling activities. This task is of fundamental importance in order to fight the scepticism that in the recent 

years the application of models to forecast the effect of policies and measures is attracting (being brought to 

the attention of a wider audience even by novelists like M. Crichton, Crichton 2004).  

Econometricians have been among the first adopting techniques for sensitivity analysis to deal with 

the uncertainty in their models. Leamer (1983) proposed to use “Global sensitivity analysis” to investigate 

what happens in the neighbourhood of alternative assumptions and concluded that only if the neighbourhood 

is wide enough the results of the analysis can be really credible and useful. 

Today, sensitivity analysis practices are highly recommended in many guidelines for assessments (e.g. 

in the 2002 Guidelines for Ensuring and maximizing the Quality, Objectivity, Utility and Integrity of Information 

Disseminated by Federal Agencies of the U.S. Office of Management and Budget4, in the 2009 Impact 

Assessment Guidelines by the European Commission5 or in the 2009 Guidance on the Development, Evaluation 

and Application of Environmental models by U.S. Environmental Protection Agency6). 

Despite their popularity, it is worth mentioning from the beginning that their use requires a thorough 

knowledge of the model and of the different techniques that one can think to apply. A non careful application 

of such techniques to the specific case study may indeed lead to three types of errors: i) assessing as 

important a non important factor (type I error), ii) assessing as non important an important factor (type II 

error) and iii) analysing the wrong problem (type III error). For this reason, in the following, different 

techniques for sensitivity analysis are first described and then, some of them are applied to field specific 

models, also showing the possible errors one can incur into when performing sensitivity analysis. 

Several techniques can be fruitfully exploited to analyze the sensitivity of a model. Among the other 

we have, i) input/output scatter-plots, ii) Sigma-normalized derivatives, iii) standardized regression coefficient, 

iv) elementary effects, v) variance-based techniques, vi) Monte Carlo filtering and vii) meta-modelling. In the 

following some elements of each technique are presented. 

2.1. Input/output scatter-plots 

Let the model considered be in the form  

 (1) 

                                                 
4
 http://www.whitehouse.gov/omb/inforeg/ 

5
 http://ec.europa.eu/governance/impact/index_en.htm 

6
 http://www.epa.gov/nscep/index.html 
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being Zi (i:1,...,r) the model’s input and Y its output. Let’s perform a Monte Carlo experiment with our model. 

This means that, given the statistical distribution of the model inputs, we sample N possible combination of 

them in order to achieve the following matrix: 

 (2) 

Computing Y per each row of the matrix in equation 2 we obtain the vector of model outputs Y. 

 (3) 

If we now plot the elements of Y against the correspondent elements of each column of M, we obtain 

r scatter-plots. From the visual analysis of the different scatter-plots it is possible to identify those parameters 

which have an influence on the model outputs and those parameters which do not. For the parameters able to 

influence the model outputs, the cloud of points of the scatter plot will have a more or less defined shape. For 

the others it will approximately resemble a circle. In this way it represents the simplest way to perform 

sensitivity analysis. The problem is that increasing the variables number, this method becomes unpractical. In 

addition it does not allow for the sensitivity of group of variables to be investigated. 

As an example, let consider the well-known Ishigami test function (Ishigami and Homma 1996): 

 (4) 

with . The scatter-plots of the Ishigami model resulting from 104 samplings from the parameters 

distributions are reported in Figure 2. From them it is possible to argue that the most important parameter is 

, being that parameters impacting the most on the shape of the scatter-plot.  does not account for any 

share of the output variance (it was purposefully added to the model).  and  have some impacts on the 

model outputs (  more than ). These considerations are confirmed by the analysis of the model 

formulation as in equation 4. However the scatter-plots do not allow understanding that  has an impact on 

the model outputs only for its interaction with . At the same time  has a per se impact on the outputs and 

also with its interaction with  and this is not taken into account by the scatter-plots. 
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FIGURE 2. Scatter-plots of the Ishigami function 

 
2.2. Sigma-normalized derivatives 

Function’s derivatives seem to be the most natural way to perform sensitivity analysis, especially for analytical 

models. In truth derivatives are not always suitable (Saltelli et al. 2008) for this aim. In their place, sigma 

normalized derivatives are used instead. Considering the previous example, the formulation for sigma-

normalized derivatives is the following: 

 (5) 

in which  represents the sensitivity index for the variable  and  the standard deviation. It is worth noting 

that, sensitivity index as in equation (5) is recommended for sensitivity analysis by the Intergovernmental 

Panel for Climate Change (IPCC, 1999). 

The main shortcoming of this approach is for the application with black-box models (like simulation). 

In this case the derivatives’ computation can be very expensive in terms of time. For this reason, in this case, 

they are usually evaluated only in the middle of the distribution of the single variables and then some 

hypothesis on the function is made to extrapolate the results obtained to the entire function. When the 

hypotheses result false, the results achieved may be misleading. 
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2.3. Standardized regression coefficient 

Another possibility for black-box models is to create a regression model on the basis of the evaluations of the 

function. If we consider again elements of equation 2 and 3, a linear regression model can be written in the 

form: 

 (6) 

in which  are the coefficient of the regression model. Normalizing these coefficients with the standard 

deviations of input and output, we obtain the sensitivity index 

 (7) 

For linear models the sensitivity index in equation (7) coincides with that of equation (5). This holds 

only in this case. In general standardized regression coefficients are more robust and reliable than sigma-

normalized derivatives, resulting from the exploration of the entire space of the input variables. Their 

precision is however connected with the size of the Monte Carlo experiment, N.  

2.4. Elementary Effect Test 

It basically consists of an average of derivatives over the space of factors. If the r input variables vary across p 

levels, the elementary effect of the i-th input variable at the level j is given by: 

 (8) 

In which  is the width of the level j. 

The sensitivity index for the i-th variable is then evaluated by the following: 

 (9) 

which allows for the variables to be ranked. In this way, it can be considered as a screening method, to be 

preferably used before the application of a more sophisticated method in order to reduce the number of input 

variables to consider. 

2.5. Monte Carlo filtering 

When one is not interested at studying the specific value of Y, but if Y is above or below a certain threshold 

(that is to say if Y creates or not a certain effect), a Monte Carlo filtering can be used. Indeed using a Monte 

Carlo setting to produce matrix and vector of equations 2 and 3, and then applying the filter of interest to the 

values of Y, it is possible to divide the matrix M in two groups, one for the variables’ values producing one 

effect and the other for those which not produce it. At this point a statistical test can be carried out to check 

whether each of the inputs is statistically responsible for the effect to be produced. 
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2.6. Meta-modelling 

A possible way to perform sensitivity analysis of complex black-box models is to use a meta-model able to 

approximate the output of the model itself. In this way the time required is used to create the meta-model, 

while the analysis can be then easily performed using its analytical formulation. This topic is attracting the 

interest of researchers, in particular for some interesting properties of some meta-models. An interested 

reader can refer to the Chapter 5 of Saltelli et al. (2008).  

2.7. Variance-based methods 

Variance-based methods have been left to the end of the list since this is the method chosen in our 

application. For this reason they deserve some more details. Variance-based methods for sensitivity analysis 

were first employed by (Cukier et al., 1973) and generalize by Sobol to provide a Monte Carlo-based 

implementation of the concept. 

Let us consider again the general model of equation (1). We want to see what happens to the 

uncertainty of Y if we fix one of the input variables Zi to a specific value zi*. The resulting variance of Y, that we 

call conditional variance, will be . In which the symbolism in  means that we are 

considering the variance across all the variables but the i-th. It is expected that the conditional variance will be 

as lower than the total variance of Y as bigger is the influence of the variable . For this reason the conditional 

variance can be considered as an index of the sensitivity for . The problem with this formulation is that the 

sensitivity index would depend on the specific value  considered. For this reason, we consider the average of 

this measure over all possible points , . Furthermore it is known that 

 (10) 

Equation (10) shows that for  to be an important factor we need that  is small, that 

it is to say that the closer  is to the unconditional variance  the higher the influence of . 

Thus we may define our first order sensitivity index of  with respect to Y as: 

 (11) 

For a comprehensive physical interpretation of such index refer again to Saltelli et al. (2008). 

The first order sensitivity index is a very important measure to understand how much the correct 

definition of an input to the model may reduce the overall variance of the results. From equations (10) and 

(11) we have . It is possible to define a model as additive if  

 (12) 

In this case, indeed, the unconditional variance of the model can be decomposed in the sum of the 

first order effect of each single variable. Usually this is not the case, meaning that the joint combination of 

some variables can be responsible for a certain share of the unconditional variance, that is just the definition 
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of non-additive models. In this case, a low first order sensitivity index does not necessarily imply that the 

corresponding variable has scarce effect on the output variance, since it might considerably contribute to the 

total output variance, by means of its combination with the other variables. For this reason, using the so-called 

ANOVA-HDMR (Analysis of Variance-High Dimensional Model Representation) decomposition developed by 

Sobol (1993), it is possible to say that a full analysis of a model with r variables requires for all the elements of 

the following equation to be discovered (in number of ): 

 (13) 

However, the characterization of all the sensitivity indices in equation (13) would require a very 

expensive experimental work. In order to reduce the efforts required, a synthetic indicator to be coupled with 

the first order sensitivity index is the total effects index, defined as follows (Homma and Saltelli 1996, Saltelli 

2002): 

 (14) 

Total effects index of the input factor i provides the sum of all the elements in equation (13) in which 

the i-th is included. When the total index is  the i-th factor can be fixed without affecting the outputs’ 

variance. If  the approximation made depends on the value of  (Sobol et al. 2007). It is worth noting 

that while , , both being equal to one only for additive models. 

Using the definitions just provided to calculate the Sobol Indices for the parameters of the Ishigami 

function (equation 4), we obtain the values reported in the second column of the following table. 

Index Theoretical value Approximated value 

S1 0.3139 0.3189 
S2 0.4424 0.4459 
S3 0 0.0103 
S12 0 -- 
S13 0.2437 -- 
S23 0 -- 
S123 0 -- 
ST1 0.5576 0.5559 
ST2 0.4424 0.4429 
ST3 0.2437 0.2439 

Table 1. Sobol sensitivity indices for the Ishigami function (evaluated using both the definition and the approximated 
procedure) 

 

The values of the Sobol indices for the input have not been reported since they are always 

0. The results clearly show what anticipated previously. In addition the allow to prioritize the models 

inputs:  is the variable accounting for the highest variance of the outputs without considering second or 

third order interactions.  is the variable accounting for the highest share of the output variance considering 

all the interactions.  accounts for a good variance share, but only with its interaction with . 
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2.7.1. Variance-based methods. Implementation 

In the previous section we have presented the first order and total effects sensitivity indices which will be used 

in our application. Their simultaneous evaluation, however, is not straightforward. In the present work we use 

the methodology described in (Saltelli et al. 2008, 2010)and presented hereafter. 

The more immediate way for the evaluation of the sensitivity indices, would be the computation of 

the multidimensional integrals (in a Monte Carlo setting) in the space of the input variables. This would require 

N2 model evaluations, for each sensitivity index, being N, again, the size of the Monte Carlo experiment. 

This has been revealed to be not necessary (Saltelli 2002). The following procedure has been then 

adopted: 

- two (N, r) matrix of quasi-random numbers (Saltelli et al. 2010) are generated. Using the random 

numbers two matrices of values for the input variables of the model as in equation (1) are generated 

(called A and B in the following). The tool for quasi-random number generation is freely available on 

the internet (SIMLAB 2010). 

 (15) 

 (16) 

- a set of r matrices, C, is obtained assembling r matrices equal to A except for the i-th column (with i 

varying from 1 to r among the r matrices) that is taken from B.  

 (17) 

1. the model is evaluated for all the [N∙(r+2)] combinations of input variables as given by matrices A, B 

and C so as to produce the vectors of outputs ,  and  for i=1...r. These 

vectors are sufficient for the evaluation of all the first order and total effects indices. This is the reason 

why, the application of this technique for variance-based methods requires [N∙(r+2)] which is still a not 

negligible number for complex and expensive models, but anyway definitely lower than N2·r. 

Sensitivity indices can be then evaluated using the following formulations (Saltelli et al. 2010): 
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The choices of N and the input variables distribution are the last points to be discussed in this section. 

There are no universal recipes in both the cases. N can vary from few hundred to several thousands. A possible 

strategy to be adopted is to evaluate the indices per each  in the range [1,N], being N a “sufficiently” large 

number. Then, plotting the sensitivity indices against , it is possible to recognize if they have reached a stable 

value (i.e. a value in which they do not depend anymore from ) or not. In case they are not it is possible to 

increase again N. For this reason, in the following, the results of the sensitivity analysis will be shown in this 

graphical form. 

Instead for what concerns the distribution of the input variables, the only think one can do is to rely 

upon a priori information (physical meaning of the variables, previous studies, experts’ suggestion, etc.). In 

case they are not available, some preliminary tests should be performed to find the best settings. It is worth 

considering that an inappropriate definition of the distributions of the input variables may lead to misleading 

results from the sensitivity analysis. This is the reason why this phase of the study (also referred to as data-

assimilation) can be considered as the most crucial one, deserving a lot of attention and efforts. 

In Table 1, results of the application of equations (18) and (19) to the Ishigami function are also 

reported. As one may see, they produce a good approximation of the correct values. The Monte Carlo 

experimental size N was set to 3.000 and the previously mentioned check on the indices stability gave positive 

results. 
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3. Uncertainty analysis. Background 

In our report we refer to the uncertainty analysis considering those techniques allowing identifying how the 

uncertainty in the inputs and the parameters of the model propagates into the outputs. With the sensitivity 

analysis it is possible to individuate those parameters/inputs accounting for the highest share of the 

uncertainty in the outputs. In this way the analyst knows where to focus his attention in order reduce the 

uncertainty in the outputs. With the uncertainty analysis we are willing to know how uncertain is the answer 

that we will give based on the outputs of the model. In this phase, thus, the focus is not on the uncertainty 

reduction, but, rather, on its quantification (see, e.g. Muleta and Nicklow 2005). 

Uncertainty analysis of model outputs is becoming a common practice in many fields (see e.g. the 

indications reported by the Journal of Fluid Engineering Policy Editors to their authors, Rood and Telionis 1991 

and the critics to the authors who do not consider uncertainty analysis as an important phase reported in 

Pappenberger and Beven 2006). Many techniques have been developed over the last decades. However, all 

the techniques require an a priori knowledge of the uncertainty in the model inputs. This phase is crucial as 

this a priori knowledge is usually almost unknown or hardly quantifiable. In the last years, a technique which 

has become widely adopted is based on structured expert judgement. According to Kurovicka and Cook 

(2006), main features of the structured (in the sense that the experts are identifiable, the assessments are 

traceable and the computations are transparent) expert judgements are the following: 

2. expert are selected; 

3. experts are asked individually about the uncertainty in measurements and observations in their field 

of expertise; 

4. experts are tested to give values to measures within their field; 

5. experts are treated as statistical hypotheses and are scored “with regard to statistical likelihood and 

informativeness”; 

6. scores are used to create weights.; 

7. likelihood and informativeness scores are used to derive performance-based weighted combinations 

of the experts’ uncertainty distributions. 

According to Kurovicka and Cook (2006) this objective approach has proven its usefulness, in particular if 

compared with equal weight combinations of expert distributions. 

At the end of the survey with the experts, the analyst should have gathered an estimation of two 

important elements: the marginal distribution of each uncertain variable and the correlation structure among 

the different variables. Given such information, a Monte Carlo based approach can be fruitfully used to 

perform uncertainty analysis (see e.g. Thompson et al. 1992). 

As described in section 2.7.1, in a Monte Carlo setting N different model inputs combination are 

extracted from their estimated multivariate distributions, being N, again, the size of the Monte Carlo 

experiment (also in this case Sobol sequences can be adopted, Sobol, 1976). Per each inputs combination, the 

model is evaluated. At the end of the process, the analyst will have the results from N model evaluations. 
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From these evaluations he can draw inference about the (empirical) distribution of the uncertainty in the 

outputs. At this point, providing information about the confidence of the results achieved by the model is 

straightforward. 

Main issue of this approach is the specification of reliable multivariate distributions of the model 

inputs. Providing more details on this issue is, however, beyond the aim of the present study. In Section 6 we 

will present an application of Monte Carlo base Uncertainty analysis to the sustainability assessment case 

study reported in Dorini et al. (2011). 

 

Finally, as highlighted for sensitivity analysis in section 2.8, the correlation of the parameters may have a 

relevant and misleading role also for the uncertainty analysis. Let, for example, consider a model with two 

parameters with a strict correlation (e.g. a linear dependence between the two). Adopting a Monte Carlo 

approach to perform uncertainty analysis without considering this correlation means that we are extracting 

several combinations of the two parameters that do not satisfy their correlation structure (being therefore not 

admissible). In this way the model uncertainty would necessarily be overestimated (having been considered 

several meaningless parameters combinations) with the results of providing a misleading figure of the model 

performances. 

Dealing with correlations is, however, not a trivial task. For further details, please refer to Kurovicka 

and Cooke (2006). 
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4. Sensitivity analysis in traffic modelling 

The choice of considering traffic models as a case study for the application of sensitivity analysis techniques 

has basically two motivations. First of all, road traffic, and the transportation system in general, is a significant 

driver of impacts on our society. These impacts, such as, air pollution, global warming, people frustration, 

economic losses connected to delays, accidents, and so on, play an important role in the sustainability of the 

development of our society. For this reason traffic/transportation models are likely to be intensively used in 

sustainability assessment exercises. Secondly, the intrinsic nature of how traffic generates and evolves makes 

the assessment of uncertainty in the results of traffic/transport model outputs a very important issue. 

Nevertheless uncertainty and sensitivity analysis in traffic modelling is an almost novel topic. 

To understand how uncertainty enters traffic modelling is useful to make some reasoning on the 

sources and the nature of uncertainty in traffic systems/models.  

Following the distinction made in the introduction between observable and unobservable inputs, in a 

traffic microscopic model, observable inputs are the network characteristics, the traffic lights timing, the traffic 

composition, the distribution of vehicles size, etc. Unobservable inputs are instead, for example, the origin-

destination (OD) traffic demand, but also most of traffic model parameters that either do just not have a 

physical interpretation (i.e. they are simply model constants), or they are deliberately considered uncertain by 

the modeller.  

In this way, it is common practice to consider the model uncertainty alongside the parametric inputs. 

Calibrating the uncertain model parameters against real world outputs allows covering both the ontological 

(aleatory) uncertainty of the phenomenon and the inaccuracies of the model. 

The problem with reducing the parametric inputs uncertainty via inverse analysis – such as indirect 

estimation or calibration - mainly deals with three factors: 

 the scarceness, incompleteness or inconsistency of data as to the model complexity; 

 the data measurement errors; 

 the computational complexity of the analysis; 

 the asymmetry in the importance of uncertain inputs. 

The scarceness, incompleteness or inconsistency of data with respect to the complexity of a model 

may lead either to ill-posed inverse problems - such as the case of the OD matrix estimation - or to biased or 

not robust estimates of the parameters' pdf, as also in presence of measurement errors. In addition, a high 

number of parameters can make computationally unfeasible the analysis.  

Moreover, most of the models present a pronounced asymmetry in the influence of the parametric 

inputs on the model outputs, with a small subset of the input parameters accounting for most of the output 

uncertainty and the others playing little or no role. The calibration of parameters with scarce influence on the 

outputs and then flat objective functions, for instance, is a hard challenge for any optimisation algorithm. 

In this picture, a key role is played by the sensitivity analysis which may serves to a number of useful 

purposes, depending on which different settings may be defined. The importance ranking of the inputs with 
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regards to their influence on the outputs uncertainty is the most common function of SA (factor prioritization 

setting). The analysis can be applied to identify which input parameters really need to be calibrated (factor 

fixing setting) and which are the observations that are really sensitive to the inputs and therefore useful for 

the estimation. Reducing the number of parameters to calibrate may make feasible an otherwise unfeasible 

problem while the definition of the most appropriate observations is crucial to guide in the allocation of 

resources for the collection of new data. Both are obviously crucial to succeed in the analysis and reducing the 

analyst' costs. 

A part from the importance ranking of the uncertainty sources the sensitivity analysis may be useful to 

identify the elements of the modelling process (inputs, assumptions, etc.) or the regions of the inputs which 

are most responsible for the model realizations in the acceptable region or, at the contrary, which cause the 

exceeding of specific thresholds (i/o mapping setting).  

For all these reasons sensitivity analysis may be viewed as a formalized and efficient space-exploring 

mathematical tool to understand upstream models. It is not surprising that the sensitivity analysis may allow 

technical errors in the model to be uncovered or may lead to the simplification of model. Often it guides in 

modifying the uncertainty model or in taking action on the system or design to reduce uncertainty. 

Despite of the importance of sensitivity analysis as a preliminary step for model use and analysis, very 

few examples exist in the literature on traffic modelling. In addition (commonly also to other fields), only a 

minority of sensitivity analysis practitioners make use of the most sophisticated techniques made available in 

the recent years. 

These few examples basically adopt two main categories of sensitivity analysis approaches: 

 One at time (OAT) sensitivity analysis; 

 Analysis of Variance (ANOVA) based on experimental design (DoE); 

In the first group, the effect of model inputs (parameters) on model outputs are evaluated one at 

time. This means that one studies the variation in the models outputs connected with the variation of one 

model input (parameter) at time, while the others are taken fixed to a certain value. This approach, however, 

completely hides the effect of parameters interaction on model outputs and thus can be used only for purely 

additive models. This approach has been used by Lownes and Mechemel (2006) and in Mathew and 

Radhakrishnan (2010) on the VISSIM model in order to prioritize model parameters in terms of effects on the 

model outputs (the former) and to select the parameters to calibrate (the latter). In Kesting and Treiber (2008) 

the authors follow the same approach in order to get additional insight on the meaning of the parameters 

values resulting from the calibration of two car-following models. 

In the second group ANOVA technique is used to derive the share of variance in the model output 

explained by each parameter (and their combinations). Models are evaluated on a certain number of 

parameters combinations resulting from a Design of Experiment (DoE). 

The adoption of this approach allowed Bartin et al. (2006) and Li et al. (2009) to draw inference about 

the first order effect of the parameters of the Paramics traffic model. The parameters' interaction effects were 
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not captured since the adopted a two levels (the number of levels represents the number of values considered 

per each parameter) factorial design. A three levels factorial design has been used in Beegala et al. (2005), in 

Ciuffo et al. (2007) and in Punzo and Ciuffo (2009) for the AIMSUN traffic model. In the former, however, a 

fractional factorial design has been considered (in a full factorial design all the parameters combinations at the 

defined levels are evaluated, while in a fractional factorial design, some of them are avoided, resulting in a 

weaker coverage of the input space and then in the impossibility to get information on some interactions), and 

therefore also in this case it was not possible evaluating the effect of parameters combinations. On the 

contrary, in the other two studies, a three levels full factorial design was used, allowing for the evaluation of 

the variance explained by the second order interactions between parameters (it is worth knowing that a full 

factorial design with k levels allows for the identification of all the interactions of order lower than k). 

The limitation of the variance based method previously described, mainly lies in the scarce capacity of 

commonly used DoE techniques in providing a satisfactory exploration of the inputs domain (the model is 

indeed evaluated for the inputs moving on the edges of the hypercube identified by their levels). A Montecarlo 

framework, like that presented in Section 2, might overcome this problem, allowing for a deeper exploration 

of the input space, not necessarily with an increase of models evaluations. For this reason, variance based 

sensitivity analysis techniques based on quasi-Montecarlo sampling in the parameters space have been used in 

the present study in order to prioritize the parameters of two car-following models with the purpose of 

reducing the complexity of the optimization problem connected to their calibration. The authors aim, on one 

hand, at presenting sufficient elements to demonstrate the usefulness of (variance-based) sensitivity analysis 

techniques for improving our capabilities of understating and using traffic simulation models, and, on the 

other hand, at providing some innovative insights into the two car-following models that have been chose as 

case studies. 

The  next section describes the two car-following models considered in this preliminary investigation. 

The description of the case study and of the result achieved will  follow. In section 4.4 the calibrations of 

different sets of parameters for the two models is presented, followed by the section 4.5 summarising the 

main findings of the study and offering  concluding remarks. 

4.1. Car-following models 

The car-following models selected in this study are the Gipps’ car-following model (Gipps 1981) and the 

Intelligent Driver Model (Treiber et al. 2000). In the following sections, a brief description is presented. 

4.1.1. Gipps’s car-following model 

The Gipps’ car-following model is the most famous model pertaining to the class of the “safety distance” or 

“collision avoidance” models. Models of this class aim to specify a safe following distance and to adapt the 

driver’s behavior in order to always keep it. In practice, the Gipps’ model assumes that the following driver 

chooses his speed such that he is able to keep the minimum distance at a standstill whenever the leader 
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brakes at its maximum deceleration rate. In case the driver has no vehicles in front, the model defines an 

acceleration profile able to make the vehicle reaching and maintaining his desired speed. 

According to Gipps’ model, then, the speed attained by a vehicle at a given time instant  (in 

which the delay  is the “apparent” driver’s reaction time (Gipps 1981)), is given by: 

 

 

(20) 

in which f and l indicate the follower and the leader, respectively, s is the space travelled by a vehicle and  its 

speed.  and  are, respectively, the follower’s maximum desired speed and maximum acceleration.  and 

 are, respectively, the “most severe braking that the driver of the following vehicle wishes to undertake” and 

his estimate of the leader’s most severe braking capabilities (in the formulation are considered with their sign). 

L is the leader’s vehicle length and  is a safety margin introduced by Gipps to avoid that the follower 

decelerates always at his maximum rate.  is the inter-vehicle spacing at a stop. ,  and  are model 

parameters that, in the original formulation by Gipps (1981), as well as in the following literature (e.g. Ossen 

and Hoogendoorn 2008, Wilson 2001, Punzo and Tripodi 2007), are assumed equal to 2.5, 0.025 and 0.5, 

respectively. As from a modelling point of view they are parameters like the others, in this context we do want 

understand the part of the total output variance that they explain and if their calibration is necessary in order 

to improve model performances. However, in order to consider only values which may be really used in the 

formula, we adopted the modified version presented in Ciuffo et al. (2012), in which =1 and = ( ). 

Finally, in order for equation (20) not to loose global existence, according to Wilson (2001), the 

following condition must hold: 

 (21) 

For this reason, in the Monte Carlo framework, we discarded all the parameters combinations, which 

did not respect equation (21). It has to be said that this potentially introduces correlation among parameters, 

which are the inputs of our sensitivity analysis. As anticipated, this condition imposes careful consideration in 

setting the analysis, as also mentioned in the presentation of results on Gipps’ model.  

4.1.2. Intelligent Driver Model (IDM) 

The Intelligence Driver Model developed by Treiber et al. (2000) is part of the class of social force models. It is 

developed by an analogy of the molecular-dynamics method (Helbing and Tilch 1998). The social force concept 

states that the driving behavior is driven by a sum of social forces, including both the force that pushes the 
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vehicle to reach the driver’s desired speed, and the interaction force that compels the vehicle to keep a 

suitable distance from the previous vehicle (Wang et al. 2010), definition which, however, does not highlight 

the theoretical difference with the Gipps’s model, for instance. 

It is a simple car-following model with descriptive parameters (Treiber et al. 2006), describing the 

acceleration of a driver as a continuous function of its speed, distance and relative speed with respect the 

vehicle it has in front (i.e. its leader). The model formulation is the following: 

 (22) 

where 

 (23) 

According to the original interpretation (Treiber et al. 2000), in equations (22) and (23), f and l, 

respectively, indicate the follower’s and leader’s vehicles, s is the space travelled by a vehicle and  and  its 

speed and acceleration.  is the desired distance between leader and follower.  and  and are, 

respectively, the follower’s free flow speed and maximum acceleration.  is the follower comfortable 

deceleration. Ll is the leader’s vehicle length. T is the minimum time headway and  the stopping distance. 

 and  are other model parameters. As for the Gipps’ model, also for the IDM, parameters  and  have been 

usually considered fixed at specific values. In particular in the original paper (Treiber et al. 2000),  was not 

fixed at a specific value, while  was set to the value of 2. According to the author this value (which is not 

derived from any physical analogy) allows for the “intelligent” braking strategy to be effective, that is critical 

situations are resolved by dynamically reverting to a "safe" driving defined by a required minimum 

deceleration that is at or below the comfortable deceleration (model parameter ). However, in Treiber et al. 

(2000) it is only demonstrated that the  needs to be greater than 1 in order for the model to remain a 

collision free model. For this reason, in the remainder, we will consider it as a parameter, just imposing the 

condition . In Treiber et al. (2000) it is also showed that  represents a sort of threshold between 

normal and emergency braking conditions. This implies that its value can hardly be measured from real 

driving, but it has to be calibrated. 

Differently from the Gipps’s model, no constraints have to be imposed on the parameters’ values. 

All the considerations made concerning the meaning of the parameters for the two car-following 

models have the role of driving the successive phases in which the variance based sensitivity analysis 

techniques have been applied. 

4.2. Application 

4.2.1. Fixed input data 

The two car-following models described in the previous section have been fed with the vehicles’ trajectories 
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shown in Figure 3. 

Such trajectories were obtained from a series of experiments carried out along roads in areas 

surrounding Naples, Italy, under real traffic conditions between October 2002 and July 2003. Experiments 

were performed by driving four vehicles in a platoon along urban and extra-urban roads under different traffic 

conditions. All vehicles were equipped with kinematic differential GPS receivers that recorded the position of 

each vehicle at 0.1second intervals. More details on data, including the description of the experiments for 

their collection and the filter designed to process raw them, can be found in (Punzo et al. 2005 and Punzo and 

Simonelli 2005). 

The trajectory data used here are named in Figure 3 as 30C (on the left) and 30B (on the right). Set 30C 

is for one-lane urban road and is 6 minutes long, while Set 30B is for a two-lane rural high-way and is 4.2 

minutes long. In this study we considered only the trajectories of the first and the second vehicle of each 

platoon (as shown in the figure). In particular inputs to the models are the trajectory of the first vehicle and 

the initial position and speed for the second vehicle. The model has to reproduce the whole trajectory of the 

second vehicle. 

 

 

 
FIGURE 3. Trajectories used in the analysis and main kinematic characteristics. Diagram on the left refer to congested 
urban conditions (30C), while that on the right to extra-urban conditions (30B). For the two trajectory pairs maximum 
and minimum speed and acceleration, minimum time headway, minimum spacing and spacing at the beginning of the 
simulation are reported. 

 
4.2.2. Setting up the method for car-following models 

For all the model evaluations required to perform the sensitivity analysis, data described in section 4.1 are 

used always in the same way (they are fixed inputs). The inputs that will vary are instead the model 

parameters (that we have described in section 4.1). In this way, the analysis will inform the modeller only on 

the importance in influencing the outputs of those inputs that are left to vary, but neither of other parameters 

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350

S
p

e
e

d
 [

m
/s

]

Time [s*10]

LEADER

FOLLOWER
Trajectory 30C

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250

S
p

e
e

d
 [

m
/s

]

Time [s*10]

LEADER

FOLLOWER
Trajectory 30B

 Trajectory 
30B 

Trajectory 
30C 

𝑺 𝑙,𝑚𝑎𝑥  (m/s) 18.58 14.64 

𝑺 𝑙,𝑚𝑖𝑛  (m/s) 0.00 0.00 

𝑺 𝒇,𝑚𝑎𝑥  (m/s) 18.37 14.13 

𝑺 𝒇,𝑚𝑖𝑛  (m/s) 0.00 0.00 

∆𝑠𝑚𝑖𝑛  (m) 1.31 0.20 

∆𝑠 0  (m) 10.78 0.99 

 

 Trajectory 
30B 

Trajectory 
30C 

𝑺 𝑙,𝑚𝑎𝑥  (m/s2) 5.01 3.59 

𝑺 𝑙,𝑚𝑖𝑛  (m/s2) -4.72 -2.75 

𝑺 𝒇,𝑚𝑎𝑥  (m/s2) 4.11 5.21 

𝑺 𝒇,𝑚𝑖𝑛  (m/s2) -4.73 -3.06 

𝑇𝒎𝒊𝒏 (s) 0.44 0.29 
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kept fixed, nor of any other information fed into the model. Therefore results are conditional on the rest of 

information fed into the model, namely on the leaders’ trajectories. We will see if and how such fixed inputs 

influence results. Conversely, the analysis will inform us about the richness of trajectory data needed in order 

to perform a correct analysis and successive calibration. 

In general methodology to perform a sensitivity analysis consists of three steps: 

 Data assimilation 

 Uncertainty propagation 

 Computation of sensitivity indices 

Characterizing uncertainties in the inputs is the objective of the first phase. In our analysis we seek for 

the appropriate space of car-following parameters. “Appropriate” meaning that a too tight range for a 

parameter might fictitiously limit its influence on model outputs, whereas a too large space implies 

incorporating so much uncertainty to make model predictions of no practical use. To accomplish this task it is 

possible to rely on experimental observations, theoretical arguments, inverse analysis results (e.g. model 

parameter estimation) or expert opinions.  

The second step consists in propagating the uncertainty in the inputs into the outputs by means of the 

model, in order to be able to evaluate which portion of the output uncertainty each input factor accounts for. 

Such propagation may be done in a Monte Carlo framework which allows us to select quasi random 

combinations of the inputs assuring undistorted and wider coverage of the input space with respect to fixed 

grid approaches. This phase has been carried out following the method described in section 2.7.1, in 

particular, equations (15), (16) and (17). 

Finally the sensitivity analysis is here performed applying first order sensitivity indices and total effects 

as described by the formulas (18) and (19). 

It is worth noting that, in our setting, the output uncertainty resulting from each simulation is 

quantified through the distance between the follower’s trajectory simulated by the model and the one 

measured in the reality (the blue ones in Figure 2). Such distance has been evaluated by the Root Mean Square 

Error (RMSE): 

 (24) 

where x and y are, respectively, the simulated and observed measurements and H is the length of the time 

series (in this case the number of observations in the trajectory). In order to check also the influence of the 

measure adopted on the sensitivity analysis results, two different measures were considered: the vehicle’s 

speed and the spacing with respect to his leader. 

Table 1 presents the results of the data assimilation phase, commented below together with the 

results of the sensitivity analysis for each model.  
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Parameter 
IDM Gipps 

LB1 UB1 LB(B) UB(B) LB(C) UB(C) LB(B) UB(B) LB(C) LB(C) 

0.1 10.0 1.0 8.0 1.0 8.0 -- -- -- -- 

0.1 10.0 1.0 5.0 1.0 5.0 -- -- -- -- 

 0.5 2.5 1.0 8.0 1.0 8.0 4.7 8.0 3.4 8.0 

 0.0 2.5 0.5 7.5 0.5 7.5 2.0 8.0 2.0 8.0 

 5.0 25.0 0.1 2.0 0.1 1.0 0.1 2.0 0.1 1.0 

T 0.0 2.0 0.1 1.0 0.1 1.0 -- -- -- -- 

 20.0 60.0 18.4 2.05 14.1 25.0 18.4 25.0 14.1 25.0 

-- --   -- -- -4.0 4.0 -4.0 4.0 

 -- --   -- -- 2.0 8.0 2.0 8.0 

 -- --   -- -- 0.05 0.5 0.05 0.5 

-- --   -- -- 0.1 1.0 0.1 1.0 

Table 2. Input factors space adopted. Additional columns for IDM model derive from information reported in 
Hoogendoorn and Hoogendoorn (2010). Letters C and B among parentheses respectively refer to trajectories 30C and 

30B mentioned in section 4.1. 

 
4.2.3. Results – Intelligent Driver Model 

Data assimilation phase for the IDM was based on the results of the parameter estimation carried out in 

(Hoogendoorn and Hogendoorn 2010). In that work, the distributions of five model parameters (i.e. excluded 

 and ) were estimated on four datasets of different size (1, 10, 25 and 100 trajectories). With the increase of 

size it was observed an improvement of estimation results as well as a decrease of the input space amplitude. 

Not to have too tight ranges it was decided to take values from the estimation results on the sample of 25 

trajectories. Corresponding upper and lower bounds are reported in Table 1 as LB1 and UB1. For the sake of 

simplicity and to be fair with the other model, the parameters were assumed to be uniformly distributed over 

their domain.  

As the IDM model counts for seven input factors (parameters) the evaluation of the sensitivity indices 

required N·(7+2) model simulations. As previously stated, we considered increasing values of N, and then 

checked a posteriori if those values were sufficiently high to obtain stable indices (we stopped our analysis at 

N=10.000, that is after 90.000 model runs). 

Figure 4 shows the results are  for the model fed with the urban congested trajectory (30C). Results 

are presented in terms of total sensitivity indices of each parameter, for the speed and the spacing measures 

(left and right plots, respectively). 

Regarding to  the number of model evaluations, N=3000 proved to be sufficient for the indices to be 

stable. Results for both the measures were similar, that is, the maximum speed explaining (with all its 

interactions) around the 80% of the outputs’ variance, followed by the two exponents  and . All the other 

parameters resulted not significant. 
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FIGURE 4. Total sensitivity indices for IDM parameters based on speed (left) and spacing (right) measures. Model is fed 
with the 30C leader’s trajectory, and with parameter values sampled from the ranges defined by LB1 and UB1 in Table 
1. 

 

FIGURE 5. Total sensitivity indices for IDM parameters based on speed (a-c) and spacing (b-d) measures. Model is fed 
with the 30C (a-b) and 30B (c-d) leader’s trajectories, and with parameter values sampled from the ranges defined by 
LB(C), UB(C), LB(B) and UB(B) in Table 1  

Given such results it was decided to repeat the analysis enlarging the parameters space. This was done 

considering the parameters physical meaning outlined in the previous section and the kinematic 

characteristics of the trajectories as reported in Figure 3. As a result we considered the ranges LB(C)-UB(C) and 

LB(B)-UB(B) reported in Table 1. In particular we considered a wider interval for  and , being their meaning 
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not as clear as one can imagine (as detailed in the previous section), and a narrower interval for  and  in 

order to be more in line with the trajectories peculiarities. 

Figure 5 shows the results, which are completely different both for what concerns the speed and the 

spacing. Actually the new pattern of results in Figure 5 confirmed the guess that results of the first data 

assimilation phase were not satisfactory. The excessive importance of the maximum speed, accounting for the 

most of the output variance (see Figure 4), suggests indeed that the problem was in the range adopted for the 

maximum speed (taken from Hoogendorn and Hoogendoorn 2010) which is clearly not consistent with 

trajectory 30C used to fed the model here (in Hoogendoorn and Hoogendoorn 2010 freeway trajectories were 

collected). This is a typical example of the type I and type II errors one can make when performing sensitivity 

analysis without a proper knowledge on the range in which the model inputs may really vary. 

With the second setting all the parameters turned out to be significant, apart from the stopping 

distance. This suggests that it is the only parameter for which the calibration might be avoided (but kept fixed 

at a reasonable value), as it does not account for a significant portion of the output uncertainty. 

The most influencing parameters turned out to be the minimum time headway for both trajectories 

and measure considered. Also the two exponents  and , accounted for a significant share of the output 

variance confirming the necessity to include them in any model calibration. Considering Figure 5(a-c), it 

resulted that also the maximum acceleration explained a significant share of the speed variance, while in 

Figure 5(b-d) it is shown that the maximum speed accounts for a certain share of the spacing variance. This 

also highlights the differences arising using different measures for the sensitivity analysis. 

The impact of choosing different fixed inputs to the model can be also investigated. Indeed comparing 

Figure 5(a-b) with Figure 5(c-d), it is possible to notice that the parameters’ prioritization, in terms of share of 

variance explained, does not change. However the share specific portion of the output variance explained by 

each single parameter may vary significantly (see for example the  that in Figure 5(a) results accounting for 

the 10% of the outputs’ variance while in Figure 5(c) for approximately the 40%). 

The impact of these considerations on model calibration will be analyzed in section 5. 

4.2.4. Results – Gipps’ car-following model 

As shown in Table 1, the Gipps’ model counts for 8 input factors (parameters). This means that the 

computation of the sensitivity indices requires N·(8+2) model evaluations. Also in this case N=10.000 was 

considered, thus requiring 100.000 evaluations. Parameters distribution was assumed to be uniform as in the 

IDM case. Upper and lower bounds of parameters were initially chosen basing on the authors experience and 

successively refined through some preliminary tests (in particular the values of  which is usually kept fixed). 

Final values are reported in Table 1 and purposefully consider the trajectories kinematic characteristics 

reported in Figure 3.  

In Figure 6 the first results are presented for the trajectory 30C. Besides the total sensitivity indices 

(Figure 6b-d), here also the first order sensitivity indices (a-c) for spacing (a-b) and speed (c-d) are shown. Also 
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in this case all the results are almost stable for N higher than 6000. 

From the picture it is possible to observe a slight difference between the results achieved using the 

spacing and those using the speed. In both the cases the most important parameter is . This was expected, 

being the trajectory characterized by frequent and intense acceleration and deceleration phases. Other 

parameters explaining a considerable share of the outputs’ variance are the apparent reaction time  and the 

follower’s estimation of the leader maximum deceleration . It is interesting to notice the difference between 

the first order and the total sensitivity indices. The outputs’ variance explained by  is indeed approximately 

constant, meaning that this parameter has few interactions with the others. On the contrary both  and  

increase the share of variance explained in combination with other parameters approximately of the same 

magnitude. It is therefore presumable that their interaction has an important role on the model outputs. This 

is of course confirmed by the model formulation and in particular by equation (20). Even more interesting, in 

this light, are the results for ,  and : looking at Figure 6(c), they appear to have negligible influence on the 

outputs, but looking at Figure 6(d) they reveal a high impact (with  scoring as second most influent 

parameter). This means that their combinations have an important role in the model. This can be clearly seen 

from equation (22) where they are all part of the second term of the equation.  

 

FIGURE 6. First order (a-c) and total (b-d) sensitivity indices for the parameters of the Gipps car-following model on the 
30C trajectory, considering the vehicle’s speed (c-d) and the vehicles’ spacing (a-b) 
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This is an important outcome of the present study, since it clearly demonstrates that all the studies 

where only the first order sensitivity indices are provided might lead to erroneous and misleading results. In 

Addition it further confirm the necessity of calibrating the ,  and  parameters of the acceleration portion of 

the Gipps’ model. 

 

FIGURE 7. First order (a-c) and total (b-d) sensitivity indices for the parameters of the Gipps car-following model on the 
30B trajectory, considering the vehicle’s speed (c-d) and the vehicles’ spacing (a-b) 

The previously outlined behaviour is less evident if we consider the results of the sensitivity analysis on 

the trajectory 30B. In this case, the parameters’ prioritization is the same as for trajectory 30C, apart from the 

total sensitivity indices using the speed as measure. Here the role played by the acceleration part of the model 

is less significant, being much less frequent and important the acceleration/deceleration phases. 

Before concluding the discussion, it is worth noting that the results for the Gipps model might require 

further investigations mainly because of the correlation introduced by equation (21) among parameters and of 

the approach adopted here for their generation. Indeed, not to incur in model solution existence problems 

and to assure a random coverage of the input space, a rejection approach was here adopted in the generation 

of the N·(r+2) combinations of inputs (that is discarding the quasi-random numbers that led to the violation of 

condition in equation 21). To the authors’ opinion this should not introduce real correlations, since equation 

(21) just introduce a discontinuity in the parameters’ domain. Outside this discontinuity, however, the 

parameters domains are equally covered by the experimental procedure. 
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4.3. Impact of sensitivity analysis on model calibration 

In this section we test the results of the sensitivity analysis for the two car-following model on their calibration 

against the two trajectories considered. In particular, we want to investigate what happens if those 

parameters showing a negligible impact on the outputs’ variance are considered fixed (to randomly extracted 

values) during the model calibration. It is worth underlying here, that with the present analysis, we do not yet 

intend to propose a methodological framework for calibrating car-following models, since many aspects are 

still under investigation and will be presented in future works. Here we want to use the calibrations just as a 

case study to show how useful can be the results of a model sensitivity analysis. 

To this aim, looking at the total sensitivity indices of both the models’ parameters on the different 

trajectories/measures combinations, we performed 40 calibration experiments as detailed in the following 

table. In the table, calibrations defined as “complete” consider all the parameters revealed by the models’ 

formulations, while those defined as “classic” consider only the parameters that in the classical version of the 

model are not considered as fixed (i.e. =2 in IDM classic and =2.5, =0.025 and =0.5 in Gipps classic). 

IDM Model Gipps’ model 

Calibration 
ID 

Calibration 
Reference 

Parameters involved Calibration 
ID 

Calibration 
Reference 

Parameters 
involved 

1 B_complete_S All 19 B_complete_S All 

2 B_classic_S All classic 20 B_classic_S All classic 

3 B_6_S , , , T, ,  21 B_3_S , ,  

4 B_4_S , T, ,  22 B_1_S  

5 B_3_S T, ,  23 B_1_S  
6 B_1_S T 24 B_1_S  
7 C_complete_S All 25 B_1_S   

8 C_classic_S All classic 26 C_complete_S All 

9 C_4_S , T, ,  27 C_classic_S All classic 

10 C_1_S T 28 C_3_S , ,  

11 B_complete_V All 29 C_1_S  

12 B_classic_V All classic 30 C_1_S  
13 B_4_V , T, ,  31 C_1_S  

14 B_2_V , T 32 C_1_S   

15 C_complete_V All 33 B_complete_V All 

16 C_classic_V All classic 34 B_classic_V All classic 

17 C_5_V , , T, ,  35 B_3_V , ,  

18 C_1_V T 36 B_1_V  

 37 C_complete_V All 

38 C_classic_V All classic 

39 C_5_V , , , ,  

40 C_1_V  

Table 3. Calibration experiment table. We refer to as “complete” those calibration involving all the parameters 
reported in the models formulation, while as classic those calibrations involving all the parameter considered in the 
original models’ formulations. “S” indicates those calibration performed using the spacing as model measure, while “V” 
those calibrations adopting speed. As before “B” indicates the trajectory 30B and “C” the trajectory 30C. 
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4.3.1. Formulation and solution of the calibration problem 

Calibrating a simulation model consists of finding the values of its parameters allowing the model itself to 

reproduce in the best possible way the behaviour of the real system simulated. It is equivalent to the solution 

of a constrained minimization problem in which the objective function expresses the deviation of the 

simulated measurements from those observed: 

 (25) 

possibly subject to the following constraints: 

 

 

and potentially also to other constraints: 

 

where i and i are, respectively, the vectors of continuous and discrete model parameters, potentially 

belonging to m different classes of simulation subjects;  is the objective function (or fitness or loss 

function) to be minimized, which measures the distance between the simulated and the observed traffic 

measurements,  and ; , , , , are model parameters lower and upper bounds. 

 is a scalar valued linear or non-linear function of the model parameters , that calculates the 

left hand side of the k-th constraint;  is a constant value equal to the right hand side of the k-th constraint 

and  is one the following relational operators: “ ”, “ ” or “ ”. 

The problem in equation (25) cannot be solved analytically, since we are dealing with a simulation 

model. For this reason an optimization algorithm is used instead. In the present case we have used the 

Opt/Quest Multistart algorithm as implemented in the optimization package Lindo API (Lindo 2003). The good 

performances of this algorithm in dealing with similar problems have been tested in several studies (see for 

example Ciuffo et al. 2008 and Ciuffo et al. 2011). 

In the present study,  and  are respectively the simulated and observed trajectory data. A 

trajectory is defined as the time series of the positions or the speeds assumed by a vehicle during its path. In 

order to compare simulated and observed trajectories we need an appropriate measure of goodness of fit. 

(Punzo et al. 2011) has recently shown through an extensive experimental study that a car-following model 

should be calibrated using the Root Mean Squared Error (RMSE) of the time series of vehicle’s speeds or 

spacing. For this reason we adopted here the same approach. 

4.3.2. Results 

Calibration results are reported in Table 3 for the IDM model and Table 4 for the Gipps model. 

As it is possible to see, the number of algorithms iterations considerably decreases with the number of 

parameters. This is an important feature, especially when the number of parameters si higher than 10-15. 

Contextually the value of the objective does not increase considerably as the less sensitive parameters are 
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removed from the calibration set. Indeed if we consider the calibration number 5, the IDM model has been 

calibrated (using the spacing for the trajectory 30B) with just 3 (out of 7) parameters (T, , ) and the result 

both in terms of spacing and speed is not considerably worse that the other calibration. This is particularly 

relevant with the Gipps’ model. Indeed, if we compare calibrations 20 and 23 we have approximately the same 

result in terms of objective function value with more than three times less iterations (being just 1 parameter 

calibrated). 

Calibration number 6, instead, considers calibrating the model with just the maximum headway 

parameter. In this case the results are worse. This was however expected as the maximum time headway (and 

its combinations with the other parameters) accounts only for 70% of the output variance (and for the 40% 

considering the first order index). The same holds also for calibration 10, in which the maximum headway 

accounts together with its combinations accounts for the 90% of the variance, but alone it accounts for only 

the 70%.  

 
Table 4. Results of the calibrations for the IDM model. Calibration Ids refer to Table 2. In red italic the calibrated 
parameters. The other parameters are kept fixed to random values. In bold the measure used for the calibration. Red 
lines refer to calibration using trajectory 30C, while the others are with trajectory 30B. 

 
However, if we compare the results of calibrating only 1 non sensitive parameter, the results are not 

so bad. We made this attempt in calibration 25 and 32 where we only calibrated the maximum acceleration of 

the Gipps’ model (accounting for a negligible portion of the outputs variance). The results are much worse 

than in the previous case. It has to be said, that this also depends on how distant are the sensitive parameters 

from their “best” values, but the results we achieved allow to highlight also this point. 

CalibrationID numIter ObjV ObjS T

1 5,030 0.509 1.416 2.06 7.50 1.94 18.90 0.55 8.00 5.00
2 3,464 0.501 1.421 2.83 2.92 2.00 20.58 0.54 8.00 2.00
3 2,338 0.506 1.431 4.73 1.00 2.00 22.40 0.54 8.00 1.00
4 2,214 0.503 1.478 4.73 1.00 1.31 23.33 0.61 8.00 1.00
5 1,864 0.562 1.610 4.73 1.00 1.31 18.37 0.59 8.00 5.00
6 1,556 0.583 2.343 4.73 1.00 1.31 18.37 0.42 4.00 2.00
7 4,228 0.542 1.469 1.41 0.84 0.61 18.26 0.49 1.00 5.00
8 5,287 0.524 1.539 1.41 0.50 0.25 18.44 0.40 1.00 2.00
9 1,991 0.643 2.207 3.06 1.00 0.19 14.13 0.52 1.00 5.00
10 1,598 0.710 2.878 3.06 1.00 0.19 14.13 0.61 4.00 2.00

fS
fS fb 0S

11 3974 0.445 3.808 3.26 7.50 2.00 21.82 0.86 8.00 1.95
12 3732 0.445 3.799 3.17 7.50 2.00 21.73 0.86 8.00 2.00
13 2114 0.501 3.315 2.02 1.00 1.31 18.37 0.74 8.00 1.95
14 1504 0.518 3.509 2.03 1.00 1.31 18.37 0.62 4.00 2.00
15 3916 0.448 1.803 1.58 7.50 0.81 18.37 0.54 1.00 4.18
16 3652 0.458 1.909 1.57 3.79 0.24 18.97 0.40 1.00 2.00
17 3047 0.482 1.822 1.47 1.00 0.19 19.34 0.37 1.00 1.40
18 1344 0.683 3.653 3.06 1.00 0.19 14.13 0.86 4.00 2.00
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Table 5. Results of the calibrations for the Gipps’ model. Calibration Ids refer to Table 2. In red italic the calibrated 
parameters (the other parameters are kept fixed to random values). In bold the measure used for the calibration. Red 
lines refer to calibration using trajectory 30C, while the others are with trajectory 30B. 

 
For both the IDM and the Gipps’ model the calibration of the parameters usually considered as fixed 

leads to an overall improvement of the objective function. This is more evident in the Gipps’ model, where the 

results clearly confirm the outputs of the sensitivity analysis that, especially when the trajectory to reproduce 

has important acceleration phases (stop and go conditions). 

In addition, if we compare the results of the calibrations using speed and spacing, we may see that 

spacing provide a better fit also of the speed profile, while this is not true if we calibrate using speeds. This 

would suggest to calibrate car-following model using the time series of spacing between leader and follower. 

Finally, calibrations results also show that the introduction of the constraint of equation (21) has not 

affected the validity of the results of the sensitivity analysis, being the indications on the parameters 

importance widely confirmed. 

4.4. Discussion 

In this application variance-based techniques for model sensitivity analysis have been discussed and applied to 

two car-following models. Throughout the chapter it is argued that the application of such methods is crucial 

for a true comprehension and the correct use of these models. In particular, concerning the issue of model 

parameter estimation or calibration. 

26 27,889 0.553 1.490 1.00 1.00 -3.75 3.36 0.84 -8.00 -7.16 0.22 0.45 25.00
27 16,157 0.678 2.779 2.50 0.03 0.50 3.36 0.43 -3.55 -4.25 0.11 0.70 14.13
28 15,207 0.696 2.546 1.00 0.97 -0.75 5.83 0.63 -3.87 -5.00 0.32 0.36 19.90
29 5,774 0.677 2.525 1.00 0.97 -0.75 5.83 0.63 -5.79 -5.56 0.29 0.48 19.23
30 7,465 0.682 2.502 1.00 0.97 -0.75 5.83 0.63 -5.56 -5.31 0.29 0.48 19.23
31 1,761 0.665 2.623 1.00 0.97 -0.75 5.83 0.63 -5.56 -5.19 0.23 0.55 19.23
32 5,664 0.810 4.721 1.00 0.97 -0.75 4.35 0.58 -5.56 -5.56 0.29 0.48 19.23

CalibrationID numIter ObjV ObjS S0

19 14,012 0.533 1.363 1.00 1.00 -2.90 4.93 1.99 -4.38 -3.88 0.50 0.20 21.71
20 21,767 0.524 1.515 2.50 0.03 0.50 5.59 1.67 -3.34 -3.38 0.11 0.52 21.98
21 16,439 0.531 1.549 1.00 0.97 -0.75 6.47 1.23 -3.50 -3.45 0.32 0.41 21.89
22 4,743 0.527 1.636 1.00 0.97 -0.75 6.47 1.23 -6.10 -5.56 0.29 0.48 21.48
23 5,594 0.529 1.590 1.00 0.97 -0.75 6.47 1.23 -5.56 -5.14 0.29 0.48 21.48
24 1,837 0.552 3.177 1.00 0.97 -0.75 6.47 1.23 -5.56 -5.19 0.23 0.55 21.48
25 3,931 0.657 7.128 1.00 0.97 -0.75 6.20 1.11 -5.56 -5.56 0.29 0.48 21.48

fS
fS fb b



37 12,879 0.493 2.107 1.00 1.00 -3.32 3.50 0.58 -5.71 -5.50 0.09 0.81 25.00
38 5,846 0.622 4.317 2.50 0.03 0.50 3.59 0.74 -5.75 -7.55 0.05 0.90 19.60
39 3,942 0.423 2.262 1.00 1.00 -0.58 1.34 0.81 -7.64 -7.77 0.29 0.13 20.60
40 5,162 0.639 3.323 1.00 0.97 -0.75 5.83 0.63 -4.54 -5.56 0.29 0.48 19.23

33 12,949 0.444 4.287 1.00 0.99 -2.25 4.78 2.00 -5.19 -4.37 0.18 0.95 21.86
34 7,832 0.472 4.292 2.50 0.03 0.50 6.91 2.00 -5.61 -5.27 0.07 0.96 20.58
35 8,221 0.478 3.860 1.00 0.97 -0.75 6.47 1.23 -7.13 -6.37 0.32 0.77 21.89
36 6,365 0.504 3.134 1.00 0.97 -0.75 6.47 1.23 -5.05 -5.56 0.29 0.48 21.48
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Such a guess has been supported by the outcomes of the technique here applied and by the 

calibrations of the two car-following models using only the parameters suggested by the sensitivity analysis. 

Indeed important issues arising when setting up a sensitivity analysis have been investigated and commented. 

Firstly, the importance of the data assimilation phase has been highlighted through the presentation of 

the controversial results in Figure 4, yielded by an incorrect/inconsistent definition of the input space. They 

reveal the effect of cutting off a part of the input uncertainty by considering too tight boundaries for the 

parameters. This has notable implications also for model calibration, where the smallest possible searching 

space for the optimisation algorithms is generally sought. The recommendation is therefore that of getting 

prior information on the inputs distribution possibly from dataset covering a wide spectrum of traffic patterns 

(e.g. through preliminary parameters estimation). Alternatively, to perform a number of preliminary tests 

(sensitivity analyses) to find the right balance. 

Figures 5 and 6 show an example of the influence on the results of the information used to feed the 

model.The use of trajectories containing different dynamics (urban vs. extraurban) allowed us to quantify the 

change in the relative importance of model parameters in affecting the output variance in presence of 

different traffic patterns. On the other hand, this showed that the application of such techniques may allow 

the richness of a particular dataset to be also investigated, once a priori information on the sensitivity indices 

of the model parameters is available e.g. calculated over wider datasets. 

Comparison of first order sensitivity indices and total effects of a parameter tell us whether that 

parameter has higher order effect on model outputs. Such results and the ranking of parameters they allow 

for, provide crucial information for model calibration too, as shown both in the case of the IDM and the Gipps’ 

model, where some parameters, generally considered fixed, were demonstrated to account for a not 

negligible share of the output uncertainty. This result requires that those parameters be calibrated in the 

future applications of such models. 

The sensitivity analysis allowed us also to evaluate the parsimony of the two models that is the ability 

to describe reality with a minimum of adjusting parameters (Young et al. 1996). Both the model resulted not 

totally parsimonious, with one parameter showing higher relative importance with respect the others. In 

general, however, we can consider the IDM model more parsimonious, with all the parameters but one 

explaining a significant share of the output variance.  

Results on the Gipps’ model, on the other hand, might require further investigations, depending on the 

problem of inputs correlation introduced by the condition (21). Though such correlation is not expected to be 

strong, being not introduced by a structural equation of the model and being the rejection approach here 

adopted correct, in principle, further research is needed to ascertain results correctness. Calibrations results, 

however, seems confirming the reliability of the results achieved. 
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5. Sensitivity analysis of the Multimedia Assessment of Pollutant Pathways in the Environment 

(MAPPE) model 

Nowadays multimedia models are increasingly used to perform chemical assessment in several scientific 

domains, such as Health and Environmental Risk Assessment (ERA) and Life Cycle Assessment (LCA). 

Historically, ERA, LCA and related impact assessment methods have mostly relied on site-generic models, not 

spatially resolved. In recent years, the relevance of accounting for spatial differentiation has been increasingly 

discussed to provide more realistic evaluations. There is continual debate whether the exclusion of spatial 

information in applications such as ERA and LCA may imply misleading results, influencing the decision on 

products environmental risk and performance.  

Furthermore, toxicity related impacts are argued to present high variability among different models 

(Huijbregts et al 2003, Geisler et al 2005) and results are sometimes expected to be highly sensitive to spatial 

differentiation, depending on emissions’ location patterns, chemical properties, and various landscape 

parameters. Contrary to the so-called global impact categories, such as Global Warming and Ozone depletion, 

the need to have spatially-differentiated models for so-called regional impact categories, has arisen under the 

evidence that differences in fate and exposure mechanisms and differences in sensitivity and background 

levels for effect can vary significantly depending on different geographical contexts (Udo de Haes et al. 2002). 

Environmental fate of chemicals presents an high variability depending on geographical location, due to a 

complex interaction between different chemical and landscape related inputs. 

A complete assessment of spatial differentiation requires at least two levels of analysis (Sala et al 

2011):  

 Assessment of spatial distribution (the range of potential environmental geographical 

distribution of a chemical) in order to understand at which scale a chemical is typically 

distributed (local, regional, global etc) and 

 Assessment of spatial variability (the variability of the distribution and fate of a chemical 

among various scenarios, countries, continents).  

Hitherto, several spatially distributed fate and transport models of chemicals, i.e. models allowing 

spatially explicit assessment of contaminants from a given spatial distribution of emission, were developed at 

various resolutions (e.g. Wegener Sleeswijk and Heijungs 2010, Pennington et al 2005, Toose et al 2004 etc). 

These models allow assessing the distribution and fate of chemicals in the environment after their emissions, 

on the basis of chemical (viz. physical chemical) and landscape related properties. 

Despite this underlying research work, practical recommendations how to reduce uncertainty and 

improve the relevance of environmental impact assessment results by addressing spatial differentiation have 

still not been implemented in the daily ERA or LCA practice. Moreover, asking a practitioner to address spatial 

differentiation has important drawbacks in term of workload (e.g. input data to be provided) and 

computational capacities. Sensitivity analysis techniques may be useful for addressing model uncertainty and 

reducing the computational complexity by highlighting those factors influencing the model outputs. 
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In literature, some attempts of applying sensitivity analysis techniques to spatial multimedia models 

exist and have been focussed on evaluating: 

 the influence of integrating spatial resolved information within multimedia models comparing 

a spatially resolved model for Europe with a non spatial one (Pennington et al, 2005) 

 the influence of a specific environmental input on the final result (e.g. analysis of role of forest 

Wania and McLachlan 2001, or the influence of precipitation Jolliet and Haushild 2005) 

 the relative influence of environmental or chemical based inputs in affecting the final results 

(e.g. Hollander et al 2009, using stepwise multiple regression analysis; Wania and Dugani 2003 

performing sensitivity analysis of four multimedia (box) models, processing various chemicals 

in order to support the assessment of the long range transport potential of the substances and 

the influence of both chemicals and environmental parameters in the final results; Schenker et 

al 2009 adopting rank correlation based approach to provide new insight into important 

processes that govern the global fate and persistence of DDT in the environment) 

Hence, in the context of multimedia models, sensitivity analysis may play a relevant role in evaluating 

the robustness of models but also in supporting the assessment of spatial differentiation.  

Approaches applied so far, however, do not perform an exhaustive exploration of the inputs’ domains 

and therefore do not ensure the correct estimation of the relative influence of model inputs. 

For this reason, in this report, we adopted a Monte Carlo framework to perform the sensitivity analysis 

of the multimedia model MAPPE Global. 

Sala et al 2011 perform with MAPPE an analysis of relevant pattern associated to a set of 34 chemicals, 

representative of different physical chemical properties. The results for the atmospheric part of MAPPE 

showed that there are clear patterns of variability among different substances. This variability has to be 

further explored in order to be able to develop simplified archetypes and scenarios for reducing the 

computational complexity of the impact assessment. Therefore, the sensitivity analysis of MAPPE is conducted 

exploring both the influence of environmental and chemical related parameter and input. 

5.1. The Multimedia Assessment of Pollutant Pathways in the Environment (MAPPE) model  

MAPPE Global (Pistocchi et al 2011) is a GIS based model that builds on the concept of the European version 

(Pistocchi 2008; Pistocchi et al 2010) Currently, it computes only the removal rates of a substance with given 

physico-chemical properties, composed of atmospheric boundary layer, soil, inland and seawater, for the 

whole world, with a resolution of 1ox1o (except for land use parameters, which are defined at finer resolution). 

In MAPPE, the advection between cells is not yet accounted for. Hence, the influence of distributing an 

emission over a region, which would reduce the maximum potential variability for some types of chemical, is 

not modelled at the global scale. The detailed model description, background parameters and input data are 

reported in Pistocchi et al 2011. 

MAPPE Global does not compute chemical transport in space at this time, but only the rate 

coefficients of a substance at each location. The MAPPE Global computes, for each grid cell, mass fluxes of 
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chemical that are available for transport outside of the cell, and their global variability. The model is developed 

specifically to answer questions concerning the environmental fate of contaminants taking into account the 

variability of environmental processes at the global scale. As such, the model can and should be used to 

answer questions related to the variability of fate in response to spatial variance of emissions and chemical 

fate processes, such as:  distribution of a chemical cross different media in different climatic and landscape 

settings; relevance of the variability of environmental processes in determining the fate of chemicals across 

the globe; assessment of amount of a chemical emitted to air will result in a load to soil or waters.  

With respect to spatial differentiation, MAPPE Global allows to adopt several scales of assessment by 

differentiating on the basis of grid cells (100x100 km), political boundaries (countries) or geographical borders 

(river basins, continents, global) and identification of specific pattern in the environmental behaviour of 

chemicals. 

5.1.1. Calculation of Removal rates from air 

The sensitivity analysis was performed on the model, assessing the variability of removal rate from air. MAPPE 

calculation of removal rates are as follows 

Generally, let define the chemical mass,  [kg], in the medium j for a pollutant i emitted in the same 

medium j as: 

 (26) 

 

where  [Kg day-1] is the mass of pollutant i emitted in the medium j and  [day-1] is the removal rate for 

pollutant i in the medium j.  

Let also define the max fluxes  [kg day-1] of pollutant i originated from a cell and available for long 

range transport within the medium j, as 

 (27) 

with  representing the advection removal rate for pollutant i within medium j. If we consider as 

medium j the sole air, we can write: 

 (28) 

 (29) 

For equations (28-29) it is evident that  is expressed in [day-1], while the other  are expressed 

in [s-1]. In equations (28-29): 

 (30) 

 (31) 
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 (32) 

 (33) 

 (34) 

 (35) 

 (36) 

 (37) 

 (38) 

 (39) 

 (40) 
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Table 6. Inputs, outputs and parameter of MAPPE model. Distinction of environment and chemical specific input is 
reported. In MAPPE implementation  is supposed as constant and equal to 1kg.  and , unless differently 

specified are set to 0, as no information on the two temperature degradation coefficients are available  

5.2. Application 

5.2.1. Fixed input data 

Differently from car-following models, as we have seen in the previous section, the output of the MAPPE 

model is the total atmospheric removal rate for a given chemical (day-1) emitted in air. In reality, as pointed 

List of inputs and outputs used in MAPPE and 
their description 

Unit in 
MAPPE 

Model 
parameters 

Value 

1  Mass fluxes of pollutant i within j  Kg s 
-1

 X 10
5
 

2  Mass of pollutant i within j Kg  10
-2.91

 

3  
Advection removal rate for pollutant i 
within j 

s
-1

  0.002 

4  
Emissions of pollutant i in medium j 
(assumed to be) 

Kg day
-1

  0.003 

5  
Removal rate for pollutant i in 
medium air 

day
-1

  18 

6  Particle dry deposition  s
-1

  0.335 
7  Aerosol mass fraction of pollutant i dimensionless  0.0000004 
8  Gas absorption rate s

-1
  0.000004 

9  Wet deposition rate s
-1

  32 
10  Atmospheric boundary layer height m  0.285 
11  Degradation rate s

-1
  0.036 

12  Wind speed at 10m m s
-1

  0.0078 

14  
Deposition flux of atmospheric 
organic carbon 

kg m
-2

 s
-1

  0.045 

15  
Concentration of particulate organic 
carbon 

Kg m
-3

  300 

17  Octanol-water partitioning coefficient  dimensionless  0.0000123 
18  Air-water partitioning coefficient dimensionless  18 

19  
Air-water partitioning coefficient at 
reference temperature 

dimensionless S 2 10
5
 

21  
Degradation rate at reference 
temperature 

s
-1

 
 

22   
Temperature air-water partitioning 
coefficient 

dimensionless 

23   Temperature degradation coefficient dimensionless 
22  Absolute temperature of air  °C 
23  Absorption velocity on water s

-1
 

24  Cell % of water surface % 
25  Cell % of impervious surface cover % 
26  Cell % of deciduous forest % 
27  Cell % of evergreen forest % 
28  Absorption velocity on forest s

-1
 

29  Absorption velocity on soil s
-1

 
30  Diffusion velocity on air m s

-1
 

31  Diffusion velocity on water m s
-1

 
32  Molecular Weight MW 
33  Cell % of broadleaved forest % 
35  Total precipitation m day

-1
 

 Chemical specific input 
 Environment specific input 
 Output 
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out, the actual atmospheric removal rate should be expected between the formulations with and without the 

advection component (Pistocchi et al. 2011). For this reason we are considering two outputs (and thus we are 

performing two different sensitivity analyses): results of equation (28-29), namely the atmospheric removal 

rate with and without the advection component. 

In the previous section we have listed all the inputs and parameters of the MAPPE models. Model 

parameters will be considered as fixed (as they were calibrated). The sensitivity analysis will therefore be 

focused on the inputs. This is a substantial difference with the application to traffic models. The reason for this 

is simple. In traffic models, the aim of the analysis was the selection of the parameters to calibrate. Here the 

objective is to individuate those input which deserve higher accuracy in their definition and those which can 

be neglected and kept as fixed to certain values. 

As detailed in the previous section, the MAPPE model has two types of input factors: environment and 

chemical specific. A complete sensitivity analysis of the model would involve all the inputs together. The 

problem here is that some chemical specific inputs (in particular  and ) are strongly. As pointed out in 

section 2.8, sensitivity analysis in the presence of correlated inputs is not a trivial task. In addition, differently 

from the case of the Gipps’ car-following model, the correlation here is not introduced by a constraint, but is 

intrinsic of the chemical properties of the different substances. 

For this reason we decide to perform two different sensitivity analyses: 

1. sensitivity analysis of environment specific inputs. In this case, chemical-specific inputs were 

considered as fixed and assumed the values corresponding to three different chemicals: 

acephate, -HCH (Lindane) and phtalate, di(n-octyl). The selection of three chemicals, with very 

different physical-chemical properties7, allows in any case understanding the role played by the 

chemical properties. 

2. sensitivity analysis of environment and chemical specific inputs. All the parameters are included 

explicitly or implicitly. In particular chemical specific input factors were only implicitly considered. 

More in details, the four chemical specific inputs have been substituted by just one dummy 

variable named chemical. The value assumed by this variable (in the range [0,1]), identifies a 

specific chemical (among those modelled in MAPPE) and, therefore, the value of its parameters. 

In this way we don’t know how the different chemical specific input factors play on the model 

outputs, but at least are able to compare the impact of the chemical chosen with respect to the 

environment specific inputs. 

5.2.2. Setting up the method for the MAPPE model 

The approach presented for car-following models holds also in this case. In particular, also with the MAPPE 

model, we are using the variance-based sensitivity technique defined in section 2.7.1. For this reason both the 

                                                 
7
 In the chemical space defined by Kow and Kaw, acephate represents a hydrophilic chemical, whilst di(n.octyl)phatalate a 

hydrophobic one. Lindane, instead, is a multimedia chemicals, meaning that it represents those chemical that are close to 
equal affinity for air, soil and water 
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uncertainty propagation and the computation of sensitivity indices phases will follow the same approach 

adopted in the previous case-study. 

The data assimilation phase for the MAPPE model is, on the contrary, totally different. In this case, in 

fact, the ranges for the different inputs are perfectly known (i.e. they are the values attained by the different 

inputs in the different 1x1° cells of the model representation of earth and the values of the inputs with respect 

to the different chemicals) and, therefore, the application of sensitivity analysis techniques is apparently more 

straightforward. 

Table 7 reports on the input factors considered along with the space adopted for them in the analysis. 

The subscript 1 indicates the ranges adopted in the first experiment. 

Parameter 
MAPPE model 

LB1 UB1 LB2 UB2 LB3 UB3 

ABL 285 900 285 900 285 900 

U10 2 5.5 2 5.5 2 5.5 

fOC 2.02e-19 2.06e-12 2.02e-19 2.06e-12 2.02e-19 2.06e-12 

OC 3.98e-15 1e-8 3.98e-15 1e-8 3.98e-15 1e-8 

T -10 30 -10 30 -10 30 

w 0 100 -- -- -- -- 

Imp 0 50 -- -- -- -- 

Dec 0 80 -- -- -- -- 

Eve 0 100 -- -- -- -- 

Bro 0 100 -- -- -- -- 

P 8.97e-8 7.17e-3 8.97e-8 7.17e-3 8.97e-8 7.17e-3 

cov -- -- 0 1 0 1 

chemical -- -- -- -- 0 1 

Table 7. Input factors space adopted. Subscripts 1 and 2 refer to different sensitivity analysis performed (Source: Zulian 
et al., 2010) 

 
As one can see from the table, 5 out of the 11 environment specific input factors are connected to the 

coverage of a given geographic cell (Imp, Dec, Eve, Bro). These five input factors are strongly correlated, as 

their combination must not exceed the 100% of the cell. For this reason we operated as for the Gipps’ car-

following model and imposed that, during the quasi-random number generation, input factor violating the 

following two constraints would have been discarded: 

w+Imp+Dec+Eve≤100 

Bro≤Dec+Eve 
 

Unfortunately, differently from the case of the Gipps’ model, the adoption of these constraints introduced a 

problem in the computation of the Sobol sensitivity indices. This problem showed up as first order sensitivity 

indices of the five coverage types resulted greater than the correspondent total order indices (even with a very 

large size of the Monte Carlo experiment8). From a theoretic point this is the proof that the correlated input 

                                                 
8
 It is worth remembering that equations (18) and (19) are approximated relationships to evaluate first order and total 

sensitivity indices. As a consequence, errors in the evaluation of the sensitivity may arise when the size of the Monte 
Carlo experiment is not sufficiently big. Typical errors are first order indices bigger than total order ones. 
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factors generate a distortion in the Sobol indices calculated with equation (18) and (19) (see Saltelli et al. 2004, 

Chapter 1). In practice Sobol sensitivity indices cannot be used to understand the relative role played by the 

different coverage related factors. 

We, then, performed a second experiment in which the five coverage-related factors were substituted 

by a single “dummy” variable cov defined in the range [0,1]. The values attained by this dummy variable 

defined a specific combination of the five coverage factors, correspondent to a real combination of a cell in the 

MAPPE representation of the world. Since the MAPPE model considers 140x360 cells, the connection between 

the dummy variable and the cell combination of coverage factors would be computationally expensive. In 

addition, many cells have the same combination and thus there is an easier way to match them with the 

variable cov: defining the empirical cumulative probability distribution (Cdf) of the different combinations. 

Given that each combination will have a certain cumulative probability (in the range [0,1]), it is easy to link the 

value attained by the dummy variable with the combination of coverage values. 

In this way about 1.400 combinations are representative of all the 50.400 cells of the model. Figure 8 

shows the cumulative distribution function (Cdf) . 

 
FIGURE 8. Cumulative probability distribution function of coverage combinations on earth in the MAPPE model 

 

In Figure 8, it is possible to see that the first combination of natural coverage factors accounts for 

almost the 65% of the cells in MAPPE. This combination has w=100 and all the other factors equal to 0, namely 

it represents the cell in the oceans and seas. In order not do distort the analysis with this predominance of full 

water cells, we decided to perform two analysis: a first one with the Cdf of natural coverage as in Figure 8, and 

another one with the Cdf as in Figure 9, in which the full water cells have been removed from the sample. 
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FIGURE 9. Cumulative probability distribution function of coverage combinations in the MAPPE model (without 
considering sea cells) 

 

The same approach adopted for coverage combination has been adopted also to connect the dummy 

variable chemical to the different chemicals of the MAPPE model. In this case the Cdf function is a straight line, 

since any chemical has the same probability to be selected. In this case we selected the 34 chemicals listed in 

Table 3 of Pistocchi et al. (2011). As it will be described in the remainder, also in this case we performed two 

different analyses: one with the complete set of chemicals and another without a small group of chemicals 

(Acephate, Benomyl, Methomyl and Propoxur) with the biggest impact on the outputs of the model. Data used 

to characterize the different chemicals are retrieved from Pistocchi et al. (2011, Table 3). 

5.2.3. Results – Environment specific inputs 

What has been already described for the two car-following models, has been applied also here. In particular, 

we paid attention that all the sensitivity indices resulted stable at the end of the analysis. In all the 

experiments carried out we used a size of the Monte Carlo experiment N=20.000. Sobol indices proved to be 

stable with no less than 5.000 iterations (and therefore the MAPPE model resulted more instable that the two 

car-following models). 

Further to what produced for the traffic models, in this application we also derived the scatter plots of 

each input factor per each output and the confidence interval of the Sobol indices calculated.  

Scatter plots can be very useful to understand if the first order effect of an input on the outputs is 

regular or, for example, is connected with just specific values of the inputs. It therefore represents an 

important tool to check about the robustness of the analysis and about the suitability of the ranges adopted to 

describe the inputs’ variability. 

Confidence intervals can be used to assess the robustness of the indices derived, to check their 

stability and also to rank the different inputs (in a factor prioritization setting). Confidence intervals have been 

numerically derived using the bootstrapping technique. In particular, let consider that the Sobol indices are 
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calculated on 1.024 model evaluations. To calculate the confidence intervals of these Sobol indices with 

bootstrapping, we need M vectors of model evaluations of the same size of that used to calculate the indices 

(in this case 1024) obtained by sampling the original vector with replacement. In this way we are able to 

evaluate M different values of the Sobol indices and use them to evaluate the confidence interval. For further 

details about the bootstrapping technique, please refer to Saltelli et al. (2008). In the present application the 

level of confidence adopted has been 0.9. 

5.2.3.1. Acephate, gamma-HCH (Lindane) and Phtalate, di(n-octyl) 

In the following figures, the results of the sensitivity analysis for the three chemicals are reported. As already 

pointed out in the previous section, we expect for the temperature not to have any effect on the outputs, as 

(1)= (3)=0. 

 

FIGURE 10. First order, total order sensitivity indices and their confidence interval for environment specific input 
factors of the MAPPE model with respect to the Acephate. Charts a) and c) refer to the total air removal rate, while b) 

and d) do not consider advection. Indices in charts a) and b) are calculated with the complete Cdf for coverage 
combinations, while c) and d) refer only to coverage combinations without sea cells 

 

Figure 10 reports the results for the Acephate. The four charts give approximately the same figures 

and this means that neither the coverage combinations, nor the advection phenomenon exert any impact on 

the model outputs for this chemical. The air removal rate, in this case, is only affected by the value of the 

average precipitation in the cell and by the atmospheric boundary layer (both for their first order and 
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combined effects). This is reasonable as the Acephate is a highly hydrophilic chemical and also because, as it is 

well known in the literature, spatially resolute models usually overestimate the role of precipitation. 

 
FIGURE 11. Scatter plots of the air removal rate Kair (resulting from the MAPPE model) with respect to precipitation P 

and wind speed u10 for the Acephate  

 

FIGURE 12. First order, total order sensitivity indices and their confidence interval for environment specific input 

factors of the MAPPE model with respect to the -HCH. Charts a) and c) refer to the total air removal rate, while b) and 
d) do not consider advection. Indices in charts a) and b) are calculated with the complete Cdf for coverage 

combinations, while c) and d) refer only to coverage combinations without sea cells 



 

57 
Uncertainty in sustainability assessment 

 
 

In all the charts, first order indices are lower than total order ones and confidence interval are quite 

small around the calculated values. These are both good indications about the reliability of the results 

achieved. 

Just to understand the meaning for an input factor to be considered as sensitive, Figure 11 reports the 

scatter plots of the removal rate Kair with respect to the precipitation, P, and the wind speed u10. It is evident 

as the shape of the scatter plot is heavily affected by the value of the precipitation input, while it is not by the 

value of the wind speed. 

Figure 12 reports on the results of the sensitivity analysis for the MAPPE model with respect to the -

HCH (Lindane). In this case both the coverage combinations and the advection have a significant impact on the 

results. On the contrary the precipitation has no influence on the outputs of the model. Comparing the chart in 

Figure 10 with those in Figure 12 it is possible to see that chemical specific factors have a significant effect on 

the model. For the Lindane the coverage combinations and the wind speed have the most important effects. 

This quantitatively varies if we consider sea cells or not (see the difference between Figure 12a and Figure 

12c). Also in this case the atmospheric boundary layer has an effect on the model outputs, even if lower than 

in the case of the Acephate. 

Also in this case, in all the charts, first order indices are lower than total order ones and confidence 

interval are quite small around the calculated values. Again, these are both good indications about the 

reliability of the results achieved. 

 
FIGURE 13. Scatter plots of the air removal rate Kair (resulting from the MAPPE model) with respect to coverage 

combination cov and wind speed u10 for the gamma-HCH chemical 

Figure 13 shows the scatter plots of the removal rate Kair with respect to the coverage, cov, and the 

wind speed u10.It is peculiar to see that some coverage combinations allow value of the removal rate much 

higher than others. The effect of the wind speed is instead to define a lower bound for the removal rate. 



 

58 
Ciuffo B., Miola, A., Punzo, V., Sala, S. 

 
 

Differently from the other chemicals, with Lindane, we performed also an additional analysis since the 

parameters of the relation between both Kaw and Kdeg and the temperature T are available. This relationship 

considers (1)=0.0783 and (3)=0.0255. Results are reported in Figure 14. 

 

FIGURE 14. First order, total order sensitivity indices and their confidence interval for environment specific input 

factors of the MAPPE model with respect to the -HCH chemical with the influence of the temperature modelled. 
Charts a) and c) refer to the total air removal rate, while b) and d) do not consider advection. Indices in charts a) and b) 

are calculated with the complete Cdf for coverage combinations, while c) and d) refer only to coverage combinations 
without sea cells 

Results are fairly different from the previous case. Apart from the organic carbon and its fluxes, all the 

inputs show an effect on the model outputs. This is particularly true considering sea cells without advection. 

Being a multimedia chemical, this behaviour for the Lindane was expected: the chemical does not show a clear 

preference toward a medium with respect to the others. For this reason, without an explicit link with the 

temperature we could conclude that the MAPPE model proves not to be sufficiently accurate to reproduce the 

behaviour of chemicals like Lindane. 

Figure 15 shows the results of the model sensitivity analysis for the di(n octyl) phtalate. 

Again the results are different from the other chemicals, and this further confirms what stated before. 

For the di(n octyl) phtalate, almost all the input factors have an effect on the model outputs (apart from the 

organic carbon fluxes and the temperature that, however, is not modelled for this chemical). The atmospheric 

boundary layer has still an important effect, even if most of the variance in the outputs is accounted by the 
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wind speed and the precipitation. Figure 16 shows the scatter plots of removal rate without advection with 

respect to the organic carbon OC and the atmospheric boundary layer ABL input factors.  

 

FIGURE 15. First order, total order sensitivity indices and their confidence interval for environment specific input 
factors of the MAPPE model with respect to the di(n octyl) phtalate. Charts a) and c) refer to the total air removal rate, 
while b) and d) do not consider advection. Indices in charts a) and b) are calculated with the complete Cdf for coverage 

combinations, while c) and d) refer only to coverage combinations without sea cells 

 

FIGURE 16. Scatter plots of the air removal rate (without advection) Kair (resulting from the MAPPE model) with respect 
to organic carbon OC and atmospheric boundary layer ABL for the di(n octyl) phtalate 
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Before drawing any inference about the results of the sensitivity analysis for this chemical, it is worth 

showing that in absolute terms, the air removal rate for both Lindane and di(n octyl) phtalate are much lower 

that for the acephate. This means that, on average, Lindane and di(n octyl) phtalate are expected to stay much 

longer in the air compartment than the acephate. If this can be expected for the Lindane, this is probably not 

the case for the di(n octyl) phtalate, which has and extreme lipophilic character (even though this feature 

might be explained by the fact that the chemical remains in air associated with particulate matterers). For this 

reason the model behaviour should not be checked against the effects of the input factor, but, in this case, 

against the reliability of the output. In any case the fact that, differently from the other chemicals, the organic 

carbon has a certain effect on the model outputs should be seen as a proof that the MAPPE model is able, 

within certain limits, to mimic the mechanisms that lead a chemical to follow its natural pathway. 

5.2.4. Results – Environment and chemical specific inputs 

As pointed out in the previous sections, in order to quantify the effects on the outputs of choosing a specific 

chemical and to compare such effects with those of the other environment specific compounds, an additional 

sensitivity analysis has been carried out. Results are shown in Figure 17. 

 

FIGURE 17. First order, total order sensitivity indices and their confidence interval for environment and chemical 
specific input factors of the MAPPE model. Charts a) and c) refer to the total air removal rate, while b) and d) do not 

consider advection. Indices in charts a) and b) are calculated with the complete Cdf for coverage combinations, while c) 
and d) refer only to coverage combinations without sea cells 
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From the analysis it is shown that the choice of the chemical, alone, accounts for approximately the 

70% of the model output variance independently from all the other factors. Precipitation and the width of the 

atmospheric boundary layer have an effect only in combination between themselves and with the chemical. 

This is a clear indication that, once the properties of the chemical are known, precipitation and atmospheric 

boundary layer, alone, can provide a good indication of the time the compound will remain in the air 

compartment.  

In Figure 18, scatter-plots of the air removal rate with respect to the chemical and the precipitation 

variables are shown.  

 
FIGURE 18. Scatter plots of the air removal rate (without advection) Kair (resulting from the MAPPE model) with respect 

to precipitation P and chemical input factors 

It is interesting to notice that both the charts clearly identify two (or even more) categories of 

chemicals: a category of chemicals with also very high removal rate and another category (including the vast 

majority of the compounds) with much lower removal rates. Since most of the variance in the outputs is 

owned by the first category, the scatter plots clearly explain why only ABL and P have showed up in the 

sensitivity analysis (confirming what stated for the acephate, which in fact is one of these high air removal rate 

chemical). 

In order to get further insights into the model, also for the other chemicals, we performed an 

additional sensitivity analysis without considering the chemicals pertaining to the first category of compounds 

(namely Acephate, Benomyl, Methomyl and Propoxur). 

Results are shown in Figure 19. 
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FIGURE 19. First order, total order sensitivity indices and their confidence interval for environment and chemical 
specific input factors of the MAPPE model (without considering Acephate, Benomyl, Methomyl and Propoxur among 

the chemicals). Charts a) and c) refer to the total air removal rate, while b) and d) do not consider advection. Indices in 
charts a) and b) are calculated with the complete Cdf for coverage combinations, while c) and d) refer only to coverage 

combinations without sea cells 

 
FIGURE 20. Scatter plots of the air removal rate (without advection) Kair (resulting from the MAPPE model) with respect 

to precipitation P and chemical input factors 
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In this case more input factors appear exerting a certain impact on the outputs, even if the situation 

does not change considerably with chemical, P and ABL accounting the most of the variance in the model 

outputs. The main difference with the previous case is that the environment specific factor has an effect also 

by themselves and not only in combination with the other factors. One can conclude that, according to what 

foreseen by the MAPPE model, the magnitude of the air removal rate is totally defined once the chemical, the 

width of the atmospheric boundary layer and the amount of precipitations are defined. Then, the calculation 

can be refined by knowing also the average wind speed and the coverage combination. Scatter plots of Figure 

20 do not add significant elements to this conclusion. 

5.3. Discussion 

In this study, variance based sensitivity analysis techniques have been used to shed light on the properties of 

the Multimedia assessment of pollutant pathways in the environment (MAPPE) model. The output considered 

in the analysis has been the air removal rate with and without considering the advection component (the 

inverse of the resident time of a chemical in a specific compartment). 

Two different types of analysis have been carried out. In the first only environmental inputs were 

considered, while in the second both environmental and chemical specific inputs are considered. As a first 

outcome of the study, results confirm the conclusions of Hollander et al. (2009) concerning the predominance 

of the chemical properties in the quantification of the removal rate. However, once defined the specific 

chemical (or at least the specific archetype the chemical pertains to), the definition of the more influential 

environmental parameters has a total novel character. A summary of the results is provided in Table 8.  

Chemical Archetype Key parameters for archetypes  

Hydrophilic  Precipitation, ABL  

Lipofilic  Wind, Precipitation, ABL, OC, Coverage  

High volatility  Wind, Coverage, ABL  

Multimedia  Wind, Coverage, ABL  

Table 8. Results’ summary: key environmental parameters for different chemical archetypes as resulting from the 
sensitivity analysis of the MAPPE model 

 
Results highlights the following issues: 

 the Atmospheric Boundary Layer (ABL) parameter has always a certain effect on the model outputs 

(though it is never the most influential parameter) independently from the chemical; 

 the wind speed (the main driver of the advection process) has an effect on most of the chemicals and 

therefore the advection is really the uppermost process of removal from air only for certain chemicals; 

 land coverage and the forest have a significant effect on the model outputs, especially for multi-media 

chemicals and especially when assessing removal from land surface (see Figure 11); 

 the role of precipitation, especially for hydrophilic substances, is significant. However, as already 

pointed out by Jolliet and Hauschild (2005) this is probably due to the assumption of continuous 



 

64 
Ciuffo B., Miola, A., Punzo, V., Sala, S. 

 
 

(versus intermittent) rain that produce an overestimation that has to be further explored and adjusted 

in multimedia models. 

Furthermore, the results achieved suggest the development of chemical specific and landscape specific 

archetypes that might be based on climatic zones (usually based on wind, precipitation and coverage as in 

Masson et al. 2003). 

As a further development, the analysis may lead to the definition of robust archetypes of emission, in 

order to build realistic scenarios of distribution of chemical in the environment, reducing the computational 

burden related to complex and at high resolution multimedia models.  
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6. Example of application of uncertainty analysis in sustainability assessment 

As pointed out in section 1 and 2, the report is mainly focused on sensitivity analysis techniques. However, an 

introduction to the techniques to perform uncertainty analysis has been provided in section 3. In the present 

section our intention is to report on the approach followed in Dorini et al. (2011) as a typical case study for 

uncertainty analysis in sustainability assessment. 

The case study in Dorin et al. (2011) regards the necessity to satisfy the demand for electricity of a 

certain Region with a new additional power plant with an installed power of 40MW. Objective of the 

assessment is to understand whether is better to produce the required power with a coal or a bio-mass power 

plant. The assessment follows the PUrE sustainability decision support framework (Azapagic and Perdan 2005, 

http://www.pureframework.org/) and concerns the evaluation of 22 different criteria (13 environmental and 9 

socio-economic ones). Basing on the criteria a Multi Criteria Decision Analysis (MCDA) has been performed 

using the opinion of 6 experts. 

In particular, the experts were asked: 

- to select the most suitable sub-set of criteria for the evaluation; 

- to define a vector of weights w=(w1,…,wN) for the N criteria (according to the MCDA logic) 

- to define vectors of upper ub=(ub1,…,ubN) and lower bounds lb=(lb1,…,lbN) for the criteria. 

In this way the best option is that satisfying the following condition: 

 (41) 

where  is the estimated value for the criterium i attained by the alternative j (in this case i=22 and j=2). 

Please consider that this is true if we consider the criteria as impacts (so we have to minimize the overall 

impact). In the case the criteria are benefits, equation (41) has to be seen in a maximization framework. 

The method involves two sources of uncertainty: 

1. uncertainties in  (expert judgement independent); 

2. uncertainties in  (expert judgement dependent); 

In Dorini et al. (2011) the two sources of uncertainties have been progressively added in the analysis 

(namely, they first perform MCDA without uncertainty, then with the first source only and finally with all the 

two sources). A Monte Carlo-based approach was used for this purpose. 

6.1. MCDA without uncertainty 

In the first analysis, results from the PRuE framework were considered for both the power plants and the multi 

criteria indicator was evaluated using as weights the mean of the weights provided by the experts. Using this 

approach, the Biomass option resulted to be preferred. 

6.2. MCDA with uncertainty in models 

As clearly pointed out in section 1, each model is only a coarse representation of the reality, with its outputs 

usually affected by the value assigned to its parameters. A perfect knowledge of such values is usually 

http://www.pureframework.org/
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unknown. More easily the analyst has an estimate of the range in which they can vary. A Monte Carlo 

framework for the uncertainty analysis tries to resemble the distribution of the model outputs by evaluating 

the model many times in different points of the domain of the parameters. In Dorini et al. (2011) the authors 

adopted this approach. Again the weights were considered as the average values of the weights proposed by 

the experts. 

  

FIGURE 21. Results of the uncertainty analysis presented in Dorini et al. (2011) concerning the sustainability 
assessment of two alternative electricity power plants. Picture on the left refers to the case of uncertainties in models 
only, while the picture on the right refers to the case of uncertainty in both models and experts preferences. (source 

Dorini et al. 2011) 

 

Using this approach, the authors were able to assess that the Biomass plant is the best option with the 

75% of confidence (which is a completely different answer, since, on average, in 25 cases out of 100 it can the 

opposite). 

6.3. MCDA with uncertainty in models and experts preferences 

Further than on the models, uncertainty analysis can be also applied to the experts’ preferences. Indeed the 

choice of using the average value of the weights has no reason to represent the best choice. Making different 

trials with different model parameters and different weights, the results of the MCDA may also result very 

different. As a matter of fact the uncertainty analysis allowed the analysts concluding that there is no actual 

preference between the two options (the coal plant resulted the best option with a 52% level of confidence). 

From Figure 21 it is clear that, even though the most probable value for the Biomass plant has a lower MCDA 

indicator that the corresponding value of the Coal plants, the cumulative probability function shows that the 

two options have almost the same probability to result in the best option. 

This example clearly shows the usefulness of uncertainty analysis in checking the robustness of the 

results of an impact/sustainability assessment. It is also important to prevent falsifications due, for example, to 

inappropriate weights provided by potentially interested experts. It is clear that, for a decision maker, the two 

answers “this is the best option” and “this is the best option with the 75% of confidence” may sound very 

differently. Further information may also arise from the analysis of the parameters/inputs/weights that have 

generated the unexpected tail in the cumulative probability distributions (with respect to the described case 
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study, for example, this may mean analyzing in which, operational/technical/causality conditions the coal plant 

resulted the best option). 
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7. Dealing with fuzzy logic 

In section 1 we have briefly described the difference between uncertain and fuzzy values. Aim of the present 

section is to provide further details about this difference and to briefly introduce the reader to the fuzzy set 

theory, which can be fruitfully applied to sustainability assessment. 

Fuzzy logic originated from recognizing that the accuracy of many system analysis theories and 

techniques goes beyond the levels required in common real applications. L.A. Zadeh was the first to translate 

this concept into a new theory (just the fuzzy logic) in the early sixties in the U.S (Zadeh, 1065). From that 

moment on, fuzzy set theory has found several applications, especially in Japan, China and Europe. 

Fuzzy set theory is basically an extension of the classical set theory in which the two Aristotelic 

principles of exclusions and of the “tertium non datur” are no longer valid. In practice it is allowed for 

something to pertain to a certain class A and contemporary to the class non-A (in contrast with the principle of 

exclusion) but with different degrees of membership (in the range [0,1]). 

The concept of “degrees of membership” has opened the debate concerning the relationship between 

fuzzy logic and the probability theory. Both the theories deal with uncertainty, but from totally different 

perspectives: in probability theory, the uncertainty is connected to our incapability to foresee a certain event 

due to our ignorance on the phenomena that drive the event itself. Let consider the following example. I am 

not able to foresee the height of my daughter when she will be 18 years old. However, when my daughter will 

be 18 years old I will be able to measure her height (with the precision allowed by the device that I will use) 

and therefore the uncertain event will become certain (unless the uncertainty connected with the device’s 

accuracy). This is the perspective of probability theory. What I can do now is to define a probability 

distribution of the height of my daughter basing on my current knowledge. In fuzzy logic the perspective is 

completely different. The previous example can be posed in this other way: I am not able to say if my daughter 

will be “tall” or not when she will be 18 years old. However, when she will be 18 years old, I will hardly be able 

to say if she is “tall” with absolute certainty, as “tall” is a subjective (thus “fuzzy”) concept. What “tall” means 

for me can be very different from what it means for a basketball player. In this case, then, the uncertainty is 

intrinsic of the definition. With the fuzzy logic, however I will be able to say that my daughter is “tall” with a 

certain degree of membership. This means that fuzzy logic allows providing a concrete answer (also referred to 

as crisp) to a subjective problem. 

Just in order to be more operational, fuzzy set theory applied to the previous problem would work in 

the following way. We need an automatic methodology to classify people as “Tall”, “Short ” or “Medium” 

height. These are fuzzy attributes that, however, in our mind have a numeric meaning. The first step of the 

process is the fuzzification, that is to say that we have to assign to the numerical values we have in mind a 

linguistic rule. So we call “Short” the people less than 140cm tall, “Tall” those more than 180cm tall and 

“Medium” those who are in the range 160-170 cm tall (in Figure 21 these ranges have degree of membership 

1). Of course, in our mind we know that this classification has no reason to be universal and therefore we 

fuzzify the concept introducing level of membership in the range [0,1] for the three categories (which reflects 
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our difficulty in defining a person 155 tall as “Short” or “Medium”). This process produces the membership 

functions reported in Figure 22. Now we are ready to proceed with the classification and a person 175cm tall 

will be classified as “Medium” with membership 0.5 and “Tall” with membership 0.5. This classification has 

very little of linguistic and fuzzy. In truth it is a crisp classification which, however, reflects our intrinsic 

incapability of classification (not our ignorance). The process which has led to the classification is referred to as 

defuzzification. Fuzzification and defuzzifications are the two crucial steps of the fuzzy set approach. Between 

them, many operational treatments can be carried out by means of logical operators. In this way it is possible 

to deal with very complex analysis without a detailed mathematical description of the problem. 

 

FIGURE 22. Fuzzification and membership functions for the Height attribute 

This simple example is also able to show how the fuzzy logic is able to deal with subjective judgements 

and preferences and therefore that it can represent a suitable tool for social sciences. This is an important 

feature for sustainability assessment, as many targets may be posed by policy makers only in qualitative terms 

(even because, as already pointed out before, the concept of sustainability hardly leads to the definition of 

measurable yardsticks against which to assess practical policies, Phillis and Andriantiatsaholiniaina 2001). 

In the following we will provide the reader with a brief literature review of the application of fuzzy set 

theory to sustainability appraisal applications. 

Fuzzy logic and theory have been applied to sustainability assessment a few years later the 

introduction of the sustainable development concept by the Bruntland report (WCDE 1987). Marks et al. 

(1995) and Shrestha et al. (1996) respectively applied fuzzy logic for the sustainability assessment of the 

agriculture system (in combination with multi-criteria decision making) and of reservoir operations. The 

motivation was methodological rather than conceptual. Palmer et al. (1996) defined the terms sustainability 

and sustainable development as “fuzzy buzzwords”, namely “terms that appear to encapsulate a discrete 

notion but which actually have multiple interpretations”, and inspired subsequent studies to deal with 

sustainability assessment using the fuzzy logic. 
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Many other applications have followed, purposefully using fuzzy set theory for its methodological 

soundness to deal with qualitative and not well defined inputs/targets. These involve, the sustainability 

assessment of energy systems (Ludwig 1997), sustainable water/coastal management (Simonovic 1997, 

Hogarth and McGlade 1997), sustainability of projects (Carter et al. 1997). Other studies have then followed, 

exploiting the use of fuzzy logic to the definition itself of the sustainable development, rather than on its 

attributes. Application fields, in this case, have been forest management (Ducey and Larson 1999) and rural 

planning (Bosshal 2000). Main limitation of these and others works on the topic of that period is the fact that 

all of them looked at the sustainability problem from their own, field related perspective. The first example of 

fuzzy logic applied to sustainability assessment with an ecological economic perspective can be found in Phillis 

and Andriantiatsaholiniaina (2001). The authors also provide a thorough introduction to fuzzy set theory and 

the details of its application to sustainability assessment applications (see also Andriantiatsaholiniaina et al. 

2004). In the last years, fuzzy logic has seen its application in hundreds of sustainability assessment studies. 

The interested reader can for example refer to the following interesting examples, Cornelissen et al. (2001), 

Opricovic and Tzeng (2002), Prato (2005), Zavadskas and Antucheviciene (2007), Erol et al. (2011). 
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8. Conclusions 

Dealing with uncertainty is a big issue especially for policy makers. It can confuse them, but it can be made 

policy relevant if results are translated into the likelihood that policy targets will be met. Policy makers, then, 

have the choice to either accept the risks, or to take actions that increase the certainty that targets will be 

met. Basically there are two types of policy risks, i) doing too much (and spoil public money) or, ii) doing too 

little (and be confronted with irreversible environmental problems later). The acceptance of the different 

types of policy risks will depend on the preference of the chosen politicians and the priorities they will give to 

environmental, social and economic stakes. The careful politician will easily realize that policies can be made 

more robust when risks are acknowledged and adaptations are made to minimize the risks (or to define a 

strategy on how to respond when risks would really occur).  

In this light, the role of the analysts is to provide the politicians with as much information as possible 

in order to facilitate their decision process. In particular, providing a robust estimation of the level of 

confidence of the results achieved may represent an invaluable contribution for a robust policy making. 

In this report we have analysed some of the sources of uncertainty connected to the sustainability 

assessment practice and have provided a conceptual framework in order to deal with them. The conceptual 

framework is centred on the phases of sensitivity and uncertainty analysis. Different techniques can be used to 

carry out both the analyses and some of them have been discussed here. In particular, in the report we 

suggest the adoption of a Monte Carlo framework in both the cases, which should allow for a more effective 

exploration of the inputs’ space. This framework has been applied to field specific simulation models in order 

to highlight the added value of their applications in the models’ comprehensions.  

Results of the application of sensitivity and uncertainty analysis to the different case studies also 

provide some interesting properties of the different models considered, as well as they may represent a useful 

guide through the application of the two different techniques. 

The report ends with a brief presentation of the fuzzy-logic concept. The reason for this is twofold. On 

the one hand we want to clarify the differences between the concepts of uncertainty and fuzziness, which are 

frequently confused. On the other hand we claim that the fuzzy logic should be more and more applied in the 

sustainability assessment, given the fuzzy nature of the sustainability concept itself. 
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Abstract 

Assessing sustainability is more and more becoming a common practice in products, policies and institution appraisals. However, 
increasing concern has been recognized in the scientific community regarding whether the various available examples of 
sustainability assessment are really comprehensive and able to judge in a robust and reliable way if new developments to “meet the 

needs of the present without compromising the ability of future generations to meet their own needs”. It is possible to identify three 
main sources of uncertainty: i) the “sustainable development” concept and the definition of boundaries (physical, economic and 

social) to assess it, ii) the intrinsic subjectivity of many assessment tools, iii) the incapability of many available modelling activities 
to mimic our world. 
This report tries to define a conceptual framework in order to deal with the uncertainty within a sustainability assessment describing 
some statistical techniques that can be fruitfully applied for this purpose. The conceptual framework proposed is centred on 
sensitivity and uncertainty analysis. A Monte Carlo framework is suggested in both the cases, and examples of its application to 
field specific models are provided. Results clearly show the powerfulness of such techniques in providing the analyst with useful 
information to manage the uncertainties hidden behind any assessment exercise. 
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