
Site-Wide Wrapper Induction for Life Science Deep
Web Databases

Saqib Mir1,2, Steffen Staab2, Isabel Rojas1

 1EML Research

Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

2Institute for Computer Science,
University of Koblenz-Landau,

D-56016 Koblenz, Germany
{saqib.mir, isabel.rojas}@eml-r.villa-bosch.de, staab@uni-koblenz.de

Abstract. We present a novel approach to automatic information extraction
from Deep Web Life Science databases using wrapper induction. Traditional
wrapper induction techniques focus on learning wrappers based on examples
from one class of Web pages, i.e. from Web pages that are all similar in
structure and content. Thereby, traditional wrapper induction targets the
understanding of Web pages generated from a database using the same
generation template as observed in the example set. However, Life Science
Web sites typically contain structurally diverse web pages from multiple classes
making the problem more challenging. Furthermore, we observed that such Life
Science Web sites do not just provide mere data, but they also tend to provide
schema information in terms of data labels – giving further cues for solving the
Web site wrapping task. Our solution to this novel challenge of Site-Wide
wrapper induction consists of a sequence of steps: 1. classification of similar
Web pages into classes, 2. discovery of these classes and 3. wrapper induction
for each class. Our approach thus allows us to perform unsupervised
information retrieval from across an entire Web site. We test our algorithm
against three real-world biochemical deep Web sources and report our
preliminary results, which are very promising.

Keywords: Deep Web, Wrapper Generation, Information Extraction, Database.

1 Introduction

Hundreds of freely-accessible databases are available on the Web in the Life Sciences
domain, covering areas such as Genomics, Proteomics, Systems Biology and Micro
Array Gene Expression, to name a few. These databases often provide complementary
data, pertaining to narrow specialized sub-domains. Life Science researchers thus
need to search, collect and aggregate data from multiple online resources. This Web
site hopping is time consuming and error-prone, whereby a user must learn search
interfaces of various Web sites, perform multiple copy-paste actions, create temporary
text-files and manually link records.

“Deep Web” research aims to virtually integrate such Web-accessible databases,
provide a unified query interface and, typically, aggregate query results. Deep Web
data integration consists of a number of distinct sub-tasks (See [5] for a survey) such
as Source Searching and Clustering [2, 16, 23], Interface Extraction [21, 34],
Interface Matching [31, 24, 32, 14], Interface Merging & Query Translation [15, 19],
Wrapper Generation/Data Extraction (See section 5 for related work)
We focus on unsupervised wrapper induction and data extraction in this paper.
Automatic wrapper induction has received considerable attention in recent years.
However, most techniques learn wrappers for one class of Web pages. They assume
structurally and content-wise similar pages are manually provided as an input for their
wrapper induction methods.

As we shall explain in section 2, in our target domain, data are spread across
multiple pages of a Web site, which often differ considerably in their structure and
layout (template) as well as content. We therefore need an approach to automatically
group similar pages in a Web site for our wrapper induction process. Additionally, we
need to automatically discover the Web-site structure, so that we may predict which
wrapper to use for a Web page encountered in that Web site.

These requirements go beyond traditional wrapper induction methods. We term
this compound problem of Web-page classification, site-structure discovery and
wrapper induction as Site-Wide Wrapper Induction. Though this task is extremely
hard in general, in our target domain, i.e. Web-accessible Life Science databases, we
may benefit from additional cues in terms of labeling of data. Consequently, we
restrict our attention to Web pages from Web sites with labeled data.

In order to solve the challenge of Site-Wide Wrapper Induction in our target
domain, we provide the following original contributions in this paper:
1. A novel approach for unsupervised wrapper induction to extract labeled data
2. An original approach for Web-page classification and site structure discovery
3. An automatic mechanism for detecting and correcting errors in our wrapper

learning process
The rest of this paper is organized as follows. Section 2 makes some observations

about deep Web scientific sources. Based on these observations, we formulate our
problem and present our approach for site-wide wrapper induction in section 3.
Section 4 presents our results, followed by a review of the related work and
comparison to our contributions in section 5. We conclude the paper in section 6.

2 Online Life Science Databases: Observations and Implications

We observe the following about result pages of Life Science Web sources:
I) Structured Data – The results are highly structured. This owes to the fact that

the backend relational schemas are very complex, and entities in scientific domains
generally have complex relations and associations.

II) Highly Dynamic Page Structures – Data fields that are NULL are often
omitted from the results displayed, resulting in pages with widely varying structure. A
wrapper induction method which ties its learning process to the page structure only
would require numerous training pages, covering all possibilities of data arrangement.

One drawback of such an approach would be the need for a large number of input
seed queries to probe the deep Web source. A related observation is that Web pages
undergo frequent updates [18]. An approach which circumvents the need to learn the
page structure would hence be desirable.

III) Labeled Data – Scientific data require precision and clear annotation. A
natural consequence of this observation is that scientific data are labeled and, often,
annotated to controlled vocabularies. We carried out a survey1 of 20 Biochemical
Web sites and found that more than 97% of the data fields on these Web sites were
labeled. This differs from other domains such as E-commerce, where many data fields
are often unlabeled because they have become self-explaining in the public domain
(e.g. price, title). This labeling can be exploited to not only help determine data
regions, but can also serve as anchors for these data regions, allowing us to disregard
the portion of the page which does not contain data. We further observe that labels for
the same real-world entity can be different across Web pages of the same source.
Finally, labels of real-world entities, such as biological concepts, rarely change, which
is beneficial for wrapper maintenance.

IV) Rich Site Structure – Data is scattered across multiple Web pages. This gives
such Web sites a comprehensive structure. Therefore, the wrapper must be able to
navigate through the result pages to extract data. We also observe that some data
fields, together with their labels, reappear on multiple pages. This reoccurrence can be
used for mutual reinforcement, to detect and correct errors in the induction process.

V) Web Services – Our final observation is that of Web service API access. While
some Life Science databases do provide such APIs, our survey2 of 100 online
databases showed that only 11 sources provide programmatic access, and even among
these, the coverage of the database in some cases is not complete. Therefore, Web
pages still remain the primary form of data dissemination. Furthermore, these services
have varying granularity and do not provide any semantics in their descriptions,
making unsupervised data extraction extremely difficult.

These observations serve to clarify the two broad characteristics of our work:
Firstly, at the Web site level, the challenge is to extract data from a number of pages,
generated from many templates. This requires determining homogenous clusters of
pages having similar templates so that we can induce wrappers for these clusters.
Another implicit requirement is that of learning the structure of a Web site through
navigational steps. This is essential because our system needs to know which wrapper
to apply during data extraction while traversing through the Web site. Secondly, at the
page level, the presence of labeled data gives us the opportunity to segment data
records and fields based on these labels, and to accommodate the dynamic structure of
pages by using these labels to extract data, rather than analyzing and learning the
entire Web page structure in a regular expression-like syntax. However, these labels
must themselves be identified. Although the vocabulary for labels converges across
different sources in a domain [7], it is not trivial to manually provide a set of possible
labels (which can number in their hundreds) to aid in identification of data regions.
Therefore, a desirable approach would be to automatically identify the labels.

1 Complete survey available at http://sabiork.villa-bosch.de/labelsurvey.html
2 Databases indexed by the Nucleic Acids Research Journal (http://www3.oup.co.uk/nar/database/c/).

Complete survey available at http://sabiork.villa-bosch.de/servicesurvey.html

http://sabiork.villa-bosch.de/labelsurvey.html
http://www3.oup.co.uk/nar/database/c/
http://sabiork.villa-bosch.de/servicesurvey.html

3 Wrapper Induction

We present our algorithm for page-level wrapper induction in section 3.1.
Subsequently, in section 3.2, we describe how this algorithm is used in our site-wide
wrapper-induction method. In section 3.3, we discuss a technique to automatically
detect and correct certain erroneous results of our induction algorithm in section 3.1.

3.1 Page-Level Wrapper Induction

Our wrapper induction algorithm relies on multiple sample instance pages from a
class of pages. We borrow this terminology from [9], which describes a class of pages
in a site as a collection of pages which are generated by the same server-side script or
program. Different inputs to this script result in different instance pages. We clarify
this further using Figure 1, our running example, which shows two instance pages of a
class of pages3. The wrapper induction algorithm is shown in Figure 2.

We note that, upon querying, the initial response pages generated by a deep Web
source belong to the same class4. Therefore, we can probe a source with different
inputs, and use the resulting initial pages to learn a wrapper, without having to cluster
similarly structured pages. In fact, for a given Web site, the site-wide wrapper
induction process is bootstrapped by using these initial result pages and learning a
wrapper for this class.

Fig. 1. Results obtained by probing KEGG Compound with C00221 and C00185 respectively

Briefly, the algorithm compares text entries on the sample pages and identifies
some (possibly not all) data entries among them. These data entries are subsequently
used to identify bigger data regions, so that more data entries can be discovered. A
label is then selected for each data entry from text entries outside the data regions,
based on vicinity. Our approach is based on the DOM5 representation of Web pages,
and uses XPath6 for performing the above operations on the DOM tree. The output of

as
the wrapper is a collection of XPath expressions, each pointing to a label and

sociated data region.
We now explain each step of the algorithm in detail using our running example.

Each step is annotated to its corresponding location in the algorithm in Figure 2.

3 From KEGG [15]. Portions of these pages have been removed to simplify the discussion and to save
space, while remaining true to the challenges encountered

per. We assume exact keywords are used to

6 mendation. http://www.w3.org/TR/xpath20/

4 In certain cases, probing a source with an imprecise keyword leads to a disambiguation step. This is a
separate research issue and we don’t address it in this pa
perform the search, as explained in Figure 2.

5 W3C. Document Object Model. http://www.w3.org/DOM/
W3C. XML Path Language (XPath 2.0) Recom

. an HTML-
ar m.
in t
od sets (T1 and T2 in our example) thus contain a union of presentation text,
bels and data entries.

2. We compare both sets tries. Mutually exclusive

 N e,…, Reaction, R00026, Enzyme,…, 3.2.1.21}

ession
de e root
no

4.
(such as R00026, 3.2.1.21). This can be

considered as growing of a data region, whereby data entries are used to reclassify
other entries in their vicinity as data. This reclassification step compares an XPath of
a data entry with that of an entry not classified as data using the following two rules:

Fig. 2. Wrapper Induction Algorithm
e converted to well-formed XHTML using1 The two HTML pages ar

p sing library, i.e. TagSoup7, so that standard XML tools can be applied to the
ach page is screen-scraped to obtain a set T of values contained in all texF ally, e

n es. Both
la

 to initially classify some data en
entries in T1 and T2 are classified as data entries (D1, D2), and the remaining as non-
data entries, or “Other” (O1, O2). For example:

 D1 = {C00221, beta-D-Glucose, …, R01520, 1.1.1.47,…}
 D2 = {C00185, Cellobiose,…, R00306, 1.1.99.18,… }
 O1 = {Entry, am
 O2 = {Entry, Name,…, Reaction, R00026, Enzyme,…, 3.2.1.21}
Notice that since the data entry R00026 occurs in both instance pages, it is

erroneously classified as Other at this point.
3. We compute XPath expressions for each entry in the above sets. The expr

m thtermines the unique path along the DOM tree for the XHTML file, fro
de to the node containing the entry. For example, the XPath for C00221 is:
 html/body/…/code[1]/table[1]/tr[1]/td[1]/code[1]/text()
We use the XPath expressions to reclassify some data entries which might have

been wrongly classified in the previous step

7 A SAX-compliant HTML Parser. http://home.ccil.org/~cowan/XML/tagsoup/

 Input: n Web pages P
 Output: R: L => XBgrB //L is a set of labels. X BgrB is a set of XPaths to data entries. R is a map
 from each label l in L to each data XPath dx in X BgrB.
 Start

i, X i); // grow the data regions, and reclassify data
 For

Path of most suitable label in O

 // X is a set containing all data XPaths associated with one label

gr
 // replace Xpath with the corresponding label

 For each sample page pi in P{
1 For each text entry t in pi
2 If t is unique to pi, Add t to Di;

 Add t to O ; } Else i
3 For each p in P{ i
 Xd

i i
o

 = get_XPath(D);
 X i i
4 D

 = get_XPath(O);}
o d

i´, O ´, Xo
i i´, Xd

i´ = reclassify(X
 th dx in Xeach XPa d

i´{
 o 5 Find closest XPath lx in X i´; // search for X

nding text (label) in OIf the correspo i´ is not in R
 X = {dx};
 Else

 X = X U {dx};
 // XPath of label is mapped to set of corresponding data XPaths R = lx => X;}

 For each lx in R{
6 single XPath from all paths in set X Generalize corresponding X to Xg ; // Create a

 Find re7 lative path Xgr from lx to Xg ; // relative path from label to data
X with X ; Replace

 eplac R e lx with l ;
 }
 End

http://home.ccil.org/%7Ecowan/XML/tagsoup/

Rule 1 (Last Element Node Rule): If two XPaths are identical and differ only at the
ordering of the last element node, and this last element node in the data XPath
precedes the last element node in the non-data XPath, the non-data entry is re-
cla

of

ssified as data.
This rule can be explained from an example in Figure 3(a). As shown in the figure,

this rule uses data elements to automatically grow data regions towards the right in a
table-row. While Figure 3 only shows the example of a table, it is important to
emphasize that since this rule is independent of tag names, it works on tags other than
those associated to HTML tables, for example, downwards in a list or in a succession

 anchor tags. For instance, for the latter case, the XPaths for successive anchor tags
(even if they are separated by line breaks) could be:

html/body/a[1], html/body/a[2]

Fig. 3. Growing of data region

It is easy to see from the above example that this rule grows data regions in many
types of HTML structures.

Rule 2 (Penultimate Element Node Rule) If the two XPaths are identical and differ
only at the ordering of the penultimate element node, and this penultimate element
node in the data XPath precedes the penultimate element node in the non-data XPath,
the non-data entry is re-classified as a data entry

This rule is similar to Rule 1, except it grows data regions down a table-column as
shown in Figure 3(b)

We note that our rules fo ate in only two directions.
Th

strict our re-classification in these two directions.

26, Enzyme,…}

of
ele

r growing data-regions oper
is is based on the observation that labels generally occur above or towards the left

of data [33]. Therefore, we re
After this re-classification step, we have the modified sets:
D1´ = {C00221, beta-D-Glucose,…, R01520, 1.1.1.47,…, 3.2.1.21}
D2´ = {C00185, Cellobiose,…, R00306, 1.1.99.18,…, 3.2.1.21}
O1´ = {Entry, Name,…, Reaction, R000
O2´ = {Entry, Name,…, Reaction, R00026, Enzyme,…,}
Note that R00026 is not re-classified (incorrectly) because there are no data entries

which can grow the data region in its direction. The sets of non-data entries, O1´ and
O2´, now contain both presentation text, as well as labels for our data entries.
5. For each data entry in a data set, we now select the closest non-data entry as its
lab ntry against the XPathsel. This can be achieved by comparing XPath of the data e

 the non-data entries. The closer a non-data entry is to a data entry, the more
 a ment nodes in their corresponding XPath expressions will be matched before

mi path, which is
cla

e:

gle label in s h a
ma entry
R0 data
en

smatch. The closest element will have the longest common leading
ssified as the label. For example, the XPath for data entry 1.1.1.47 is given by:
 html/…./table[1]/tr[8]/td[1]/…/code[1]/a[1]
Some XPath expressions for the set of non-data entries include, for exampl
 html/…./table[1]/tr[6]/th[1]/…/code[1]/ (“Reaction”)
 html/…./table[1]/tr[8]/th[1]/…/code[1]/ (“Enzyme”)
The latter XPath has the longest sequence of matching nodes with the XPath of our

data element (indicated by the bold-face font above). Therefore, the label (“Enzyme”)
and corresponding XPath are associated with data entry 1.1.1.47 and its XPath (This
association is represented by the “=>” symbol in Figure 5).

ucNote that multiple data elements can be associated with a sin
nner, as shown in Table 1. The last row of the table shows that the data
0026, which has been misclassified previously, has been selected as a label for
tries R01520, R01521 etc, as it found to be the closest non-data entry.

Table 1. Two labels inferred, with corresponding data entries and their XPath expressions.

Label – With XPath Data XP
Entry

ath of Data Entry

1.1.1.47 html/…/td[1]/…/code[1]/a[1]
1.1.3.4 html/…/td[1]/…/code[1]/a[2]

Enzyme -
html/…./th[1]/…/code[1]/

….. …..
R01520 html/…/td[1]/…/code[1]/a[2]
R01521 html/…/td[1]/…/code[1]/a[3]

R00026 -
html/…/th[1]/…/code[1]/a[1]

…. ….
6. The ies classifi me labe form
a si

]/td[1] e[1]/a
The last XPath expression above, for e le, selects all text entries pointed to by a
co
s mall f multi
label. What is required is that we reco and generalize that multiple number of

(2) gives us, for label “Enzyme”:
//

neralized

XPaths of data entr ed to the sa l are then generalized to
ngle XPath expression. The XPaths for entries in Tab

 html/…./table[1]/tr[8]/td[1] e[1]/a
html/…./table[1]/tr[6

le 1 can be generalized as:
/…/cod

cod
[position()≥1]/text()

ition()≥2]/text() /…/
xamp

[pos

llection of anchor tags, starting from the second anchor tag
ample pages may only contain a s

. This is required as
number o ple data entries associated to a
gnize

data entries are associated for that label, rather than the number of data entries seen by
the wrapper induction algorithm.

7. A relative path from the label to its corresponding generalized data path is
computed. For the “Enzyme” label in Table 1, the relative path to its data is:

 ../…./../td[1]/…/code[1]/a[position()≥2]/text() (1)
Finally, the XPath for the label is replaced with an anchored XPath expression, i.e.,

an XPath which directly access the text node, and does not utilize ancestor nodes. For
the “Enzyme” label:

 //*[text()=‘Enzyme’] (2)
Concatenating (1) with
*[text()=‘Enzyme’]../…./td[1]/…/code[1]/a[position()≥2]/text()
The wrapper, thus, comprises of a collection of labels associated with a ge

anchored XPath expression to extract corresponding data.

Di

tive path from the label to associated data entries. As noted in
se
is

need to not only discover which
pages returned by the server belong to the same class, but also to distinguish between
classes and navigational steps between them. We make the following observations:

ain data, for example, pages pointed to by
navigational menus, help pages, contact information etc. Therefore, we do not wish to

enus. However, link-collections that have

scussion It is worth noting here that the wrapper learnt by our algorithm is not tied
to the structure of a class of pages. The wrapper anchors, or pivots, to a particular
label, and finds a rela

ction 2, data pages returned by Web databases can be very dynamic. Our approach
beneficial in this case, as well as in the case that a Web site undergoes a template

redesign, for instance. As long as the relative path from a label to its corresponding
data remains the same, there would be no need to re-learn the wrapper. The only other
limitation is that of labels remaining constant, and as we mentioned in section 2,
changes in names of real-world entities, such as biological concepts, is extremely rare.
Finally, recall that the wrapper-induction process for our running example results in
the misclassification of “R00026” as a label. We discuss a technique to automatically
detect and possibly correct such errors in section 3.3.

3.2 Site-Wide Wrapper Induction

As we noted in section 1, data-intensive sites, such as those in the Life Sciences
domain, have their data scattered across multiple pages. Therefore, we need a
wrapper-induction strategy that extracts data from multiple pages, which might
belong to different page classes. This implies that we

1. Not all pages of a Web site cont

discover all page classes. Rather, we wish to perform targeted crawling to only seek
out data-pages and discover their classes.
2. We observe the concept of link-collection [9], which refers to anchor links in a page
(class) that share the same path in the DOM tree, from the root element to their parent
or grandparent element. As a result, these hyperlinks appear grouped together in the
rendered page. In our example of Figure 1, the links on the reaction names form a
link-collection, as well as those on the enzyme names. A link collection may be a
singleton as well, comprising only a single hyperlink. We also note that hyperlinks in
such a collection might not point to the same class of pages. For example, links in a
navigation bar or those in categorization m
been classified as being over data regions point to the same class of pages. For
example, all hyperlinks on enzyme names point to “enzyme details” pages.
3. Pages belonging to the same class contain similar set of labels. However, due to the
highly dynamic nature of pages, some labels may be omitted (e.g. NULL values in
databases), but their ordering typically remains the same, as they are generated by
scripts. If the order of labels on two pages is different, then their page-structures will
most likely be different as well. Furthermore, it is highly unlikely that a site will have
two different templates to display the same set of labels in the same order.

We base our approach for site-wide wrapper induction on these assumptions:
1. Given the initial result output of a deep Web source, all data-intensive pages can be
reached by iteratively following link-collections that occur on data regions. This
assumption allows us to do targeted crawling for data-intensive pages, and eliminate
navigation bars and menus etc.

2. A pre-classified link-collection points to the same class of pages.
3. Classes of pages can be distinguished from each other based on the labels they
contain, and their order.

We now model our site-wide wrapper-induction problem as follows:
A page class Ci is defined by Ci = SEQi, where SEQi = (ℓi1, ℓi2,…), a sequence of

labels ℓi1, ℓi2, … described in page class Ci in this order of arrangement. These labels
may have link-collections associated with them. Two classes Ci and Cj are considered
not equal if SEQi ≠ SEQj

Our site model is given by a collection of navigation steps:
Rijn = Ci → ℓim → Cj (i ≠ j, i, j, n, m ≥ 0)

Where ℓim is the m-th label in page class C , the associated link-collection of which
poi
Th

orithm
hat is, all possible dat -inte eps between
em. The algorith ented in Figure 5. We

xplain the algorit ach step explained below is
nn t its cor ding location in the algorithm in Figure 5.
. T t of the initial page class C , which corresponds to
e lass that is

gene by the sample pages of our runnin example, shown in Figure 1.
2. For each label in th llowed. Assuming

owed. Our initial
experiments have shown that ~9 sample pages yield a very good result (section 4).

i
nts to pages of class Cj.
e goal of the site-wide wrapper induction algorithm is to find the following:
1. Ci ≠ Cj (i ≠ j, i, j ≥ 0) 2. Rijn = Ci → ℓim → Cj (i ≠ j, i, j, n, m ≥ 0)

Fig 5: Site-Wide Wrapper Generation Alg

a

1 Input: S={C0}, C0=(ℓ01, ℓ02,…); // Set of all page classes discovered. C0 corresponds to the
 initial results page of a deep Web source.

age classes.

∉ S) { // if this is a new class
 Add Cnew in S and S´;} // add it to our set

R = (C →ℓ→Cnew); // form the navigation step
Add R in W;} // add the step
 }

 W = {}; //Set of navigation steps between p
 Output: S={Ci} (i≥0)
 W={Rij} (i,j≥0, i≠j)
 Start
 S´ = S;
 Do{
2 For each C in S´{ // for each class in our set
 For each ℓ in C{ // for each link-collection associated with a label
 Follow ℓ; // follow the link-collection
3 induceWrapper Cnew; // induce wrapper
4 if (Cnew

 Remove C from S´;
5 }While(S´ ≠ NULL) // all classes’ link-collections have been explored
End

T nsive page classes, and the navigation st
th m for site-wide wrapper induction is pres
e hm using our example of Figure 1. E
a otated o respon
1 he algorithm starts with an inpu 0
th initial response pages of the Web source. In our case, this is the page c

rated g
is class, corresponding link-collections are fo

we follow the link-collection of “Enzyme”, a sample result is shown in Figure 6.
3. According to our assumption 2, these pages belong to the same class. We learn a
wrapper for this page class using our algorithm in Figure 2, with these sample pages
as input. We note that not all links in a link-collection need to be foll

4. If this wrapper learning process results in a new class, according to our assumption
3, we add this new class to our sets, and define its corresponding navigational steps.
In our example, a new class is created, C1 = (Entry, Name, Class,…), as well as a
navigation step R = (C0 → “Enzyme” → C1).
5. The above steps are repeated for each new page class that is learnt in step 3.

Fig 6: Small excerpts of pages obtained from following “Enzyme” link-collection

3.3 Error-Detection by Mutual Reinforcement

The natural residual output of our site-wide wrapper-induction approach is labeled
data. These labels and data can be used to automatically detect and possibly correct
errors in our wrapper-induction method for a page-class. We observe that some data
entries reappear on different page classes. For example, the enzyme classification
number fied
as data across different page-class wrapper induction runs, then this enforces our
confidence that the classification is correct. On the other hand, if, for example, some

t by some wrappers and data by
others, then this points to a misclassification. This indicates that not enough sample

s in Figures 1 and 6. If the reappearing entries have been correctly classi

entries are classified as labels or presentation tex

pages were available to distinguish between data, labels and presentation text. We can
address this by providing more samples for these page classes. We call such a
mismatch as label-data mismatch. For example, recall from Section 3.1 that the data
entry R00026 was misclassified as a label in our running example (for page class C0).
When we follow the “Reaction” link-collection, we come across the page shown in
Figure 7. While learning the wrapper for this class of pages (C1), R00026 will be
(correctly) classified as data. Based on this mismatch, we introduce more learning
pages for both C0 and C1. In our example, any page for class C0 which does not
contain “R00026” as an entry will force our algorithm to classify this entry as data,
thereby correcting the label to “Reaction” as well. The other type of mismatch is
label-label mismatch, where the same data entry is assigned different labels across
page classes. Recall our observation from section 2 that the same data entries can be
labeled differently across different page classes. This can be observed from Figures 1
and 7, where R00026 is labeled as “Reaction” and “Entry”, respectively. Therefore it
is impossible to detect whether a label-label mismatch was an error or a correct
classification. We slightly modify our site-wide wrapper induction algorithm to
incorporate automatic error detection and correction for label-data mismatches. We
introduce this mutual reinforcement step each time a new page class is created. The
entries classified as data in this new class are compared with labels of previously
formed page classes. If a mismatch is found, more sample pages for this new class
and conflicting page class are introduced until the mismatch is resolved.

Fig 7: Top-most portion of “Reaction” page of R00026 From KEGG

4. Results and Evaluation

We have developed a prototype in Java which implements our algorithms. We use
it to perform some preliminary experiments on three real-world biochemical sources,
namely KEGG[17], ChEBI[12] and MSDChem[13]. All these sources provide basic
qualitative data, and are often used for reference or annotation in more specialized
domains. We use a simple random sample of input values for search forms of these
sites in orde r based on
httpUnit9 w lues.

n Results

W

such as a heading or a large caption, and are often redundant data entries, as they
reappear as labeled data later in the same page (e.g, compound identification numbers

ntries are misclassified as labels (as
“R00026” in section 3.1). This may also result in a corresponding false-negative for

on has a perfect
pr

r to probe and induce their initial results page8. A Web-crawle
as manually configured to submit the search forms with these va

4.1 Page-Level Wrapper Inductio

e verify the accuracy of our wrappers by applying them to sets of 20 test pages. We
manually count the total number of data entries and note corresponding labels across
these test pages a priori, and determine the precision and recall of our algorithm in
retrieving these data entries and classifying them with the right label.

Before discussing the results, we briefly explain some conditions under which
false-negatives and false-positives occur. False-positives generally occur when there
is unlabeled data present in the pages. These data usually occur at the top of a page,

etc). False-positives also occur when data e

the missed label (“Enzyme” by misclassification of “R00026”). False-negatives also
occur when sample pages do not contain the labels. This is a limitation for all wrapper
induction approaches – you can only learn what you see. Our results are summarized
in Table 2. The wrapper for the page class belonging to KEGG Reacti

ecision and recall, with a relatively small training set. This owes to the fact that
there are frequent pages in KEGG Reaction which contain all labels. Our algorithm is
thus able to correctly induce a wrapper for this class. The wrappers for KEGG
Compound and ChEBI are unable to retrieve data entries corresponding to the labels
which were not learnt (“Sequence” and “IN Number” respectively). Manual
inspection of the training set revealed that none of our 15 training pages contained
those labels, which leads us to believe that they occur rarely. This can only be
removed with more sample pages. The wrapper for MSDChem has false-positives as
a result of false classification of redundant data entries to some presentation text in
the learning phase. The results for MSDChem are quite interesting, as they
demonstrate the usefulness of our data-region growing approach. Unlike other
sources, pages in MSDChem have a very static structure – no labels are omitted from
the pages when corresponding data entry is NULL, as shown in Figure 8. This means
that the frequency of data fields being NULL (or “Not Assigned” in this example) is
very high. Such fields are not classified as data in our algorithm, as they are constant
across many pages. However, we note that the label-data pairs are arranged in a

8 The values can be collected from downloadable flat files or Web services provided by each source.
9 A Java library for automated testing of Web sites. http://httpunit.sourceforge.net/

http://httpunit.sourceforge.net/

(invisible) table, as shown in Figure 8. Therefore, through rule 2 in Section 3.1, an
entry classified as data at the top of the data column in Figure 8 reclassifies all entries
below it in the column as data. This accounts for perfect recall, with 3 sample pages.

Table 2. Results from applying wrappers to 20 test pages each. (L=Labels, T=data entries in
20 test pages, S=samples, R=Retrieved but not classified correctly, IR=Incorrect Retrieval)

FP SOURCE #
L

#T #S TP FN
 #R #IR

P R

3 411 351 46 0 89.9% 53.9%
6 638 124 39 0 94.2% 83.7%
9 759 3 0 0 100% 99.6%
12 759 3 0 0 100% 99.6%

KEGG
Compound
http://www.g
enome.jp/keg
g/ compound/

10 762

15 759 3 0 0 100% 99.6%
3 173 32 0 0 100% 84.4%
6 205 0 0 0 100% 100%
9 205 0 0 0 100% 100%
12 205 0 0 0 100% 100%

KEGG

enome.jp/keg

10 205

0 0 100% 100%

Reaction
http://www.g

g/ reaction/ 15 205 0
3 595 236 93.5% 71.6% 41 0
6 713 118 0 0 100% 85.8%
9 809 22 0 0 100% 97.3%
12

ChEBI
.e

8

 829 2 0 0 100% 99.7%

http://www
bi.ac.uk/chebi

22 31

15 829 2 0 0 100% 99.7%
3 600 0 0 20 96.7% 100%
6 600 0 0 20 96.7% 100%
9 600 0 0 20 96.7% 100%
12 600 0 0 20 96.7% 100%

MSDChem
http://www
bi.ac.uk/msd-
srv/msdchem

.e

/

30 600

cgi-bin/cgi.pl

15 600 0 0 20 96.7% 100%
Average (bas n ra ers for h s ce) ed o final w pp eac our 99.1% 99.8%

Ove obse th e can get very pr on nd r 9 8%
resp om ~9 samples. The is an b imp ved with mor les,
especially if they contain rarel ccu la .

rall, we rve at w high ecisi a ecall (~ 9%, ~9
ectively) fr prec ion c e ro e samp

y o rring bels

Fig 8: Portion of MSDChem page for “ATP”, showing unassigned values

4.2 Site-Wide Wrapper Induction

In this section, we present our results for site-structure discovery, which together with
the wrapper induction algorithm constitutes our site-wide wrapper induction
approach. We manually model all three sources, which involves manually
determining classes for data pages for a source, and the navigation steps for
generating these classes. MSDchem and ChEBI have relatively simple models.
KEGG on the other hand has a very complex model. It actually consist of a number of
back-end database schemas, each having its unique Web interface, with more than 30
page classes. For this paper, we restrict our manual model o a specific sub-site
(KEGG Co
Next we use our site-wide wrapper induction algorithm to learn the corresponding

 from exploring the KEGG portal outside our
ng it to discover navigation steps within the

 t
mpound, Drug, Reaction, RPair, Enyzme and Orthology).

wrappers. We restrict our algorithm
manually defined boundary, allowi
aforementioned sub-site. Finally, we apply our site-wide wrappers to the three sources
to extract data. We limit the execution so that our system extracts data from only 20
test instances of each class of the Web site. We manually count the total number of
data entries and note corresponding labels across all test pages a priori, and determine
the accuracy of the algorithm, with the results shown in Table 3.

Table 3: Site-wide wrapper evaluation. (#C = Total number of classes, #C’ = Number of
classes discovered, T = data entries in 20 test pages)

SOURCE #C #C’ #T TP FN FP P R

MSDChem 1 1 N/A N/A N/A N/A N/A N/A
ChEBI 3 1 1711 1195 516 0 100% 69.8%
KEGG 10 7 6223 5044 1179 188 97% 81.1%

Average 98.5% 75.5%
We observe that for MSDChem, even though the navigation steps constituting the site
model are correct, the site-wide wrapper induction fails. Upon inspection, we notice
that the navigation step from a page instance actually results in the same instance.
This implies that the MSDChem Web site consists of a large number of leaf nodes

es that the two classes our algorithm
failed to retrieve had rich data regions. Our algorithm also fails to retrieve 3 classes in
the -s igher recall suggests these missing classes
did a ig a n h e of I. ermo e have
som ns so g p r K wh ght r the
pre r the re di e- w for G ely
hig ion su sts at su n le ss with

only, having no hyperlinks connecting them to each other. For ChEBI, we have a
perfect precision, but a low recall. This indicat

KEGG sub ite, though a relatively h
 not contain

lassificatio
s b a dat regio as in t e cas

fo
 ChEB
EG

Furth re, w
e misc in me pa e wrap ers G ich sli ly lowe

cision fo
h precis

 cor
gge

spon
 th

ng sit
our as

wide
mptio

rapper
 tha

KEG
l

. Overall, a relativ
t all link-co ctions a ociated

data regions point to classes of pages containing data is indeed correct. However, the
relatively low recall seems to suggest that we need to relax the restriction that only
link-collections associated with data regions should be followed. Instead, links close
to data regions should also be followed.

5. Related Work

The earliest approaches to wrapper induction, including [20] and [26] required
manually labeled training sets. Due to the large size of the Web and its dynamic
nature, supervised techniques do not scale well. Recent attempts have focused on
fully automatic wrapper induction techniques. The reader is instructed to read [22] for
a survey on wrapper induction techniques. RoadRunner [8, 10] is an automatic
wrapper induction algorithm that is closest to our approach, as it uses multiple sample
pages of a page-class. However, unlike our approach, it compares the structures of the
sample pages to learn a regular expression, which takes into consideration the
mismatches between text and HTML tags across the samples. This regular expression
based wrapper is thus tied directly to the page structure. As we noted in section 2,

sources are often very dynamic, where concepts that are NULL
are often omitted. RoadRunner would thus require a large number of sample pages,
pages from deep Web

covering all possible types of such omissions, so that its regular expression can
accommodate for this dynamic behavior. Lixto [3] and W4F [28] use XPath-like
languages “Elog” and “HEL” respectively, and both offer visual tools for creating
wrappers in an unsupervised manner. The user selects data of interest in a Web page,
and a path from the root of the page to the target node is generated in the respective
languages. Therefore, manual identification of data elements is required for each
page, which can be laborious for pages containing numerous data entries. ANDES
[25] is based on XPath and requires the user to manually provide XPath expressions
to extract data. [1] builds on ANDES to induce the XPath expressions using tree
traversal patterns but requires annotated examples. IEPAD [6], DeLA [33], ViNTs
[27], DEPTA [35] and ViPER [29] are unsupervised wrapper induction techniques that
are all based on one common assumption: Data regions in Web pages are constituted
by at least two spatially consecutive records that are structurally and visibly similar.
This assumption partially holds for result pages of search engines, online listings and
E-commerce Web sites, but not for scientific repositories on the Web, as is apparent
from our example in Figure 1. Even in the case of E-commerce sites and listings, the
initial response pages of a search do exhibit a repetitive structure comprising of
records, but the details pages describing each result do not exhibit this repetitiveness.
All approaches cited above perform wrapper induction on a single class of pages,
whereas our approach attempts to automatically classify pages in a Web site into
appropriate classes, learn wrappers for each class and discover rules for applying
these wrappers on Web pages encountered on the Web site. IDE [36] extracts
structured data from different classes of Web pages. It starts with one labeled training
page, indicating the information to be extracted. It proceeds to extract corresponding
data from test pages based on the similarity between a consecutive sequence of tags
before and after the labeled data and the data in the test pages. Whenever extraction
fails for a page, it is manually labeled. This requires foreknowledge about which
information must be extracted, and assumes that the same information is present and
to be extracted from all classes.

We are only aware of one approach to automatic site-structure discovery [9], which
also constitutes the main motivation for our approach. The focus of their work is
slightly different from ours. It tries to efficiently discover the entire site-structure,
whereas we focus on discovering only data-rich regions. Their approach to clustering

of Web pages into classes is based on the assumption that pages belonging to the
same class contain link-collections that are in a structurally similar arrangement.
Based on structural similarity of these link collections, they group Web pages into
classes. This is a good assumption for sites that do not have leaf pages which do not
have any links, such as help pages, FAQs, contacts, legal disclaimers etc. In the
absence of hyperlinks, all these pages would be classified into a single class (because
their link-collections have the same structure), even though these pages may exhibit
considerable structural variations. Our approach is also based on an assumption over
link-collections, but contrary to [9], we assume that link-collections classified to the
sa

o
not require any manual labeling. The approach does not need fine-tuning of any

ut does require the presence of labels.

–147, Special Issue on

7. Chang, K. C.-C., He, B., Zhang, Z.: Mining Semantics for Large Scale Integration on the
Web: Evidences, Insights and Challenges. SIGKDD Explorations, 6(2):67-76 (2004)

me label point to pages belonging to the same class. A closely related research field
is that of focused crawling, which can either be content-based or structure-based.
Content based-crawlers [4] fetch Web pages relevant to a given topic, which is
specified by example Web pages. Structure-driven crawling relies on the structural
similarity between given sample pages and pages of a Web site to find similar pages
[30] or between the pages encountered in a Web site to cluster similar pages [11].

6. Conclusions

We have described a novel wrapper induction technique to extract labeled data from
data-intensive Web pages of deep Web sources. The approach takes advantage of the
peculiarities typically associated with Life Science Web sites, most notably that they
contain labeled data. Our approach is unique in that it automatically classifies
structurally similar pages into classes which can then be used for learning wrappers.
Navigation steps that are retrieved during the site-wide wrapper induction phase are
used to associate wrappers to classes of pages, allowing us to automatically select and
apply a wrapper for a page in the Web site. The approach is fully automatic, the
samples required for page-level wrapper induction are collected automatically and d

heuristics or parameters, b

References

1. Anton, T.: XPath-Wrapper Induction by generalizing tree traversal patterns. In Workshop
on Web Mining, in ECML/PKDD (2006)

2. Barbosa, L., Freire, J.: Searching for Hidden-Web Databases. In WebDB, p 1-6 (2005)
3. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto.

Proc. 27th Interntnl. Conference on Very Large Data Bases:119 – 128 (2001)
4. Chakrabarti, S. et al. Mining the Web's link structure, Computer 32 (8) 60–67 (1999)
5. Chang, K. C.-C., Cho, J.: Accessing the Web: From Search to Integration. In Proceedings

of the 2006 ACM SIGMOD Conference (2006)
6. Chang, C.-H., Hsu, C.-N., Lui, S.-C.: Automatic information extraction from semi-

structured web pages by pattern discovery. SCI expanded, 35(1):129
Web Retrieval and Mining (2003)

8. Crescenzi, V
from Large W

., Mecca, G., Merialdo, P.: RoadRunner: Towards Automatic Data Extraction
eb Sites. In VLDB p. 109-118 (2001)

ER.

14.

with visual

36. racting Web Data Using Instance-Based Learning. WWW16 (2007)

9. Crescenzi, V., Merialdo, P., Missier, P.: Clustering Web pages based on their structure.
Data & Knowledge Engineering 54:279–299 (2005)

10. Crescenzi, V., Mecca, G., Merialdo, P.: Improving the expressiveness of ROADRUNN
SEBD 62-69 (2004)

11. de Castro Reis, D. et al. Automatic web news extraction using tree edit distance. In
WWW13, pp. 502–511 (2004)

12. Degtyarenko, K. et. al..: ChEBI: a database and ontology for chemical entities of biological
interest. Nucleic Acids Res. 36, D344–D350 (2008)

13. Golovin, A. et. al.: E-MSD: an integrated data. Nucleic Acids Research, 32 (Database
issue), D211-D216 (2004)
 He, B., Chang, K. C.-C.: Statistical Schema Matching across Web Query Interfaces. In
SIGMOD Conference, pages 217-228 (2003)

15. He, H., Meng, W., Yu, C. T., Wu, Z.: WISE-Integrator: An Automatic Integrator of Web
Search Interfaces for E-Commerce. In VLDB, pages 357-368 (2003)

16. He, B., Tao, T., Chang, K. C.-C.: Organizing structured web sources by query schemas: a
clustering approach. In CIKM, pages 22-31 (2004)

17. Kanehisa, M.. The KEGG database. Novartis Found Symp, 247:91-101; discussion 101-3,
119-28, 244-52 (2002)

18. Knoblock, C., Kambhampati, C.: Information Integration on the Web. In AAAI (2002)
19. Kabra, G., Li, C., Chang, K. C. C.: Query Routing: Finding Ways in the Maze of the

DeepWeb. WIRI 2005: 64-73 (2005)
20. Kushmerick, N.: Wrapper Induction for information extraction. In ICAI (1998)
21. Kushmerick, N: Learning to Invoke Web Forms. CoopIS/DOA/ODBASE,997-1013(2003)
22. Laender, A. H. F., Ribeiro-Neto, B., Silva, A. S. D.,Teixeira, J. S.: A brief survey of web

data extraction tools. ACM SIGMOD Record, 31(2):84–93 (2002)
23. Lu, Y., et al.: Clustering e-commerce search engines based on search interface pages using

WISE-Cluster. Data Knowl. Eng. 59(2):231-246 (2006)
24. Madhavan, J., et al.: Corpus-based Schema Matching. In ICDE, pages 57-68 (2005)
25. Myllymaki, J., Jackson, J.: Robust Web Data Extraction with XML Path Expressions. IBM

Research Report (2002)
26. Muslea, I., Minton, S., Knoblock, C.: Stalker: Learning extraction rules for semistructured,

web-based information sources. AAAI-98:AI and Information Integration Workshop (1998)
27. Meng, W., Raghavan, V., Yu, C.: Fully automatic wrapper generation for search engines. In

WWW14 (2005)
28. Sahuguet, A., Azavant, F.: Building intelligent Web applications using lightweight

wrappers. Data Knowl. Eng. 36(3): 283-316 (2001)
29. Simon, K., Lausen, G.: ViPER: augmenting automatic information extraction

perceptions. CIKM 2005: 381-388 (2005)
30. Vidal, A. et al. Structure-driven crawler generation by example. SIGIR’06:292-299 (2006)
31. Wang, J., Wen, J.-R., Lochovsky, F. H., Ma, W.-Y.: Instance-based Schema Matching for

Web Databases by Domain-specific Query Probing. In VLDB, p 408-419 (2004)
32. Wu, W., Doan, A., Yu, C. T.: WebIQ: Learning from the Web to Match Deep-Web Query

Interfaces. In ICDE, page 44 (2006)
33. Wang, J., Lochovsky, F. H.: Data extraction and label assignment for web databases. In

WWW12, p 187–196 (2003)
34. Zhang, Z., He, B., Chang, K. C.-C.: Understanding Web Query Interfaces: Best-Effort

Parsing with Hidden Syntax. In SIGMOD Conference, pages 107-118 (2004)
35. Zhai, Y., Liu, B.: Automatic Wrapper Generation Using Tree Matching and Partial Tree

Alignment. In AAAI 2006, Boston, USA, July 16 - 20 (2006)
Zhai, Y., Liu, B.: Ext

