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Abstract. Demands for quality assured measurement are increasing, not only from sectors such as health care, 
services and safety, where the human factor is obvious, but also from manufacturers of traditional products of 
all kinds who need to assure the quality of their products as perceived by the customer. The metrology of 
human-based observations is however in its infancy – concepts such as traceability and uncertainty are poorly 
developed as yet. This paper reviews how this can be tackled with a measurement system analysis approach, 
particularly where Man acts as a measurement instrument. Connecting decision risks when handling qualitative 
observations with information theory, perceptive choice and generalized linear modelling – through the Rasch 
invariant measure approach – enables a proper treatment of ordinal data and a clear separation of person and 
item attribute estimates. This leads in turn to opportunities of establishing measurement references for 
metrological quality assurance. The measurement units associated with the Rasch attribute parameters should 
be intimately related to metrological traceability and measurement standards. In psychometrics, we could 
imagine a certified reference for knowledge challenge, for example, a particular concept in understanding 
physics or for product quality of a certain health care service.  

1 Measurement uncertainty  
Traditional handling of measurement uncertainty often 
starts with the evaluation of standard deviations or other 
statistical measures of spread [1]. Thereafter confidence 
intervals are formed about the measurement result to 
describe the extent of scatter. In subsequently introducing 
the impact of this scatter, one might assess the percentage 
risks of in-correct decisions with respect to a certain 
specification limit as functions of the location of the 
uncertainty interval to the region of permissible values of 
the object being measured [2]. 

Reasons for considering re-thinking this order – 
indeed, substantially reversing it and starting instead 
from the ‘end-user’ perspective – include several 
challenges. For the first, there are difficulties with less 
quantitative data where conventional statistical tools 
might not apply or where human judgment doesn’t allow 
modelling of a probability density function [3], [4]. 
Secondly, the need to set proactively a ‘fit-for-purpose’ 
level of measurement quality matched to the actual needs 
[5] and finally, a considerable difference conceptually 
between the usual everyday meaning of ‘uncertainty’ as a 
degree of vagueness when making decisions, and the 
technical definition as a standard deviation. 

Demands for quality-assured measurement analysis 
are increasing in many ‘person-centred’ domains of 
contemporary interest − customer satisfaction, service 
and product quality & classification in healthcare [6], 
teaching, software evaluation, etc. In response, we have 

embarked on a general approach, attempting to model 
Man as a Measurement Instrument. By exploring links 
between metrological (resolution, classification 
effectiveness) and psychometric (Rasch) characterisation 
of Man as a Measurement Instrument [7, 8] we want to:  

� Clarify the concepts of measurement uncertainty 
(section 3-4). 

� Show the potential of establishing measurement 
references for human-based (and other 
qualitative) observations with some analogies to 
reference materials (section 5). 

2 Instrument engineering 
Because measurement uncertainty is associated with 
limited measurement quality, the first step in any 
assessment of measurement uncertainty is to make as 
comprehensive description as possible of the 
measurement set-up. 

2.1 Measurement system analysis 
The Measurement System Analysis (MSA) approach is 
widely used, for instance in the automotive industry [9]. 
It is based on a model where measurement information is 
transmitted from the measurement object, often via an 
instrument, to an operator. The object, instrument, and 
operator are the main elements of the measurement 
system, but the measurement method or environment can 
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affect the main system elements when determining 
overall measurement quality. 

In handling qualitative observations and decision-
making, a special kind of measurement system – where 
the ‘instrument’ is a human being – appears to be a 
promising approach [8, 10]. A question arising in that 
context is then: Can the various metrological instrument 
performance metrics of classical engineering [11] - 
sensitivity; resolution; linearity; bias; environmental 
influence sensitivity; etc. – be applied when assessing the 
performance of Man as a Measurement Instrument?
 The model of human perception from a psycho-
physical point of view, given recently in [12], is similar 
to a traditional model of an engineered instrument, see 
figure 1. The change in Response (R) due to the change of 
Stimulus (S) is the Sensitivity (C) of the human (acting as 
an) instrument. 

Figure 1.  Simple psychophysical model of human perception. 

Other recent descriptions in this area include an 
introduction to the measurement of psychological 
attributes [13, 14]. The latter draw analogies, for 
example, to a mechanical spring acting as a sensor. 

2.2 Metrological challenges of qualitative 
observations

The metrological challenges when handling specifically 
qualitative observations and decision-making which need 
to be tackled are several:
 Common tools of statistics, which work readily for 
quantitative interval and ratio scales, are unfortunately 
not applicable [15] to the ordinal data typical of ‘human’ 
measurement. Familiar statistical expressions derived for 
quantitative interval scales should not be applied to 
ordinal scales routinely since distances between different 
pairs of categories are not known exactly. Sum scores of 
multi-item assessments; the mean value; standard 
deviation and calculation of differences for description of 
change in score do not have the same interpretable 
meaning on ordinal scales.  
 The concepts of metrological traceability and 
references for qualitative observations are as yet in their 
infancy compared to quantitative observations. But the 
need for the comparability enabled by traceability is just 
as relevant in fields such as healthcare [16, 17] as in other 
more traditional sectors where metrology is well 
established. 

3 Decision-making and qualitative 
observations 

Typically in a quantitative physical measurement, the 
metrologist will focus on how faithfully the instrument 

used responds to a certain stimulus value [18],
particularly in terms of how much difference 
(measurement error) there is between, say the voltage 
displayed as an output (R) by the instrument compared 
with the input signal (S) from a voltage source (such as 
battery).

The response of the instrument can be 
parameterised in other terms apart from error, as 
mentioned above. To tackle qualitative observations, it 
appears to be particularly valuable to consider as an 
instrument performance characteristic, not the error in 
reading but a measure of how reliably decisions are made 
– such as, is the voltage source within tolerance or not? 

Historically, in sectors such analytical chemistry 
where the quality of less quantitative observations 
regularly needs to be assured, an early definition of 
qualitative testing is: “The classification of objects 
against specified criteria to meet an agreed requirement”
[19, 20], reflected a connection with decision-making. In 
the present work, we emphasise further the intimate 
connection [5] of qualitative observations with decision-
making, relating characteristics of objects to each other or 
to specification limits (e.g. an upper specification limit, 
USL), in cases where measurement uncertainty can lead to 
risks of incorrect decisions.  

Even in cases where the initial evidence is less 
quantitative, with an explanatory variable perhaps on an 
ordinal scale, the corresponding response variable (result 
of the decision) can nevertheless be quantitative, e.g., the 
fraction of non-conforming product is obtained just as it 
is in traditional acceptance sampling by attribute. 
Conversely, the result of a decision based on fully 
quantitative observations can be summarized in nominal 
response terms, i.e. go/no-go [21]. 

It is well known that any uncertainty, um, in an 
explanatory (stimulus) variable providing a basis for 
decisions (response) will in turn lead to certain risks (e.g. 
‘consumer’ risk, α; ‘supplier’ risk, β) of incorrect 
decisions.  This is covered by a recent document [2] that 
accompanies the Guide to the Expression of Uncertainty 
in Measurement (GUM) [1].

A key insight is that the human instrument is not 
only a sensor but additionally includes a decision-making 
algorithm. Here we make an additional step, connecting 
decision risks with dispersion in qualitative measures. 
Indeed, there seems to be a repeating ‘loop’ where 
measurement uncertainty in a stimulus (S) leads to risks 
of misclassification in response (R).  This in turn can 
provide a new stimulus that forms the basis for 
subsequent decisions with commensurate decision risks, 
and so on.  

In an introduction to the Rasch measurement 
approach, Mari and Wilson [14] consider factors that 
might lead to dispersion in the instrument output by 
drawing analogies between the human response (e.g. the 
attitude of an individual) to a test item and the 
‘transduction’ function of the human instrument as a 
‘Boolean spring’. They state that probability distributions 
in the instrument response might reflect either – quote: 
“(i) the presence of an underlying unobserved 
(‘influence’) variable; (ii) a non-deterministic dependence 
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of the ‘indication on the measurand’ (i.e. attitude in this 
case); or (iii) that the ‘measurand’ is itself stochastic.”

For our purpose, to clarify concepts and terminology, 
consider the role of Man in a measurement system in 
various scenarios. Studies of elementary tasks – such as 
counting [7] or ellipticity perception [22], an initial 
measurand could be, respectively, the number or degree 
of correlation in a clouds of dots. Man, in this case acting 
as a measurement instrument, yields estimates of the 
value of each measurand. But what is interesting is not 
the number or ellipticity of cloud dots since we know 
these already, but rather how well these measurements 
are performed. The ability to perform such measurements 
is described in terms of a decision-making process, e.g. 
can the human instrument resolve the difference between 
adjacent stimuli, such as: “Are there nine or ten dots in 
the cloud?” This decision-making ability can be 
expressed as the probability of success, ��������, vis-à-vis 
the risks of making incorrect decisions. As will be 
demonstrated below, a psychometric (Rasch) analysis can 
yield estimates of the new measurands, namely: (i) the 
ability of each human instrument and (ii) the inherent 
level of challenge posed by a particular object. Finally, if 
the ability or level of challenge is crucial in some human-
factor application, then specification limits will be set on 
them, in which case these assessed quantities become 
quality characteristics, and so forth. 

4 Generalized linear models and 
perceptive choice 

So-called generalized linear models (GLM) [23] are 
invoked to treat decision-making scenarios where the 
response variable (R) cannot always be expected to vary 
linearly with the explanatory variable (S). There is an 
extensive family of GLM link functions, g, offering a
linear predictor � of S,

� = � ∙ 
 (1)

(which will be some linear combination of unknown 
parameters 
), such that the expectation 

�[�] = 
��(�) = 
��(� ∙ 
). (2)

This covers not only explicitly non-linear responses but 
also poorly known responses to the explanatory variable, 
perhaps allowing only less quantitative appraisals, such 
as on an ordinal or even a merely nominal scale. A
common link function is the ‘logit’


(�) = log � �
���� (3)

which readily transforms (for instance) a probability,
�������� ∈ (0,1) into a number � ∈ ℝ,

� = log � ��������
1 − ���������. (4)

 This GLM approach is known to be able to handle 
qualitative data, e.g. on an ordinal scale, where familiar 

statistical expressions derived for quantitative interval 
scales cannot be applied. In such methods, using logistics 
regression, measurable constructs are formulated for 
perceptual characteristics such as the difficulty of an 
exam or the quality of a service [24], matched by the 
corresponding human ability and satisfaction for these 
items, respectively, as perceived by a human being and as 
described in an increasing number of domains with 
psychometric approaches, such as Item Response Theory 
and Rasch scaling [25, 26]. 

Connecting the risks of incorrect decisions to GLM 
can be done in terms of two kinds of human-based 
perception (and analogous system performance metrics),
namely: identification and choice as dealt with in 
psychophysics [27]. Identification involves in the 
dichotomous case a yes-no detection – is the stimulus 
within tolerance or outside a region of permissible values 
specification limit? The decision (‘consumer’) risk, α, is 
in this case estimated as the cumulative distribution 
function (CDF) beyond the specification limit (USL, say) 
on the explanatory variable, x, of the initial set of 
observations [5]: 

� = ℙ(� ≥ ���) = � 1
√2! ∙ "# $

�(���%)&'∙�% *�
+

-/3
(5)

 If the decision-making process made by Man when 
acting as a Measurement Instrument can be regarded in 
terms of information theory, then it is possible [10] to 
derive the GLM link function (4) in terms of entropy and 
perceptive distances. 

5 Man as a measurement instrument 
One particular version of logistic regression (section 4)
that has received considerable attention as a tool for 
handling ordinal data is due to the Danish statistician 
Rasch [25].  In response to criticism of psychometric 
methods of the time, Rasch explicitly attempted a 
separation in measured responses into a person attribute 
value (4, such as ability or leniency) and an item attribute 
value (5, such as level of challenge or quality) by writing 
� = 4 − 5.  In the simplest, dichotomous case the logistic 
regression function is, 

4 − 5 = log � ��������
1 − ��������� (6)

The logistic regression approach to handling human-
based measurement results, even those on ordinal scales, 
is rapidly becoming the method of choice in many areas 
of application, ranging from international educational 
studies [28], customer satisfaction surveys [24], to 
person-centred health care [17]. 

Examples of this separation include the difference 
between (i) the intrinsic quality of a product and the 
leniency of a customer; (ii) the level of challenge of a 
certain task and the ability of a person to tackle the 
challenge; (iii) the ability of an indenter and the hardness 
of a material, to name just a few examples. 
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5.1 Separating person and item attribute 
values in responses with the Rasch 
approach to logistic regression

The response of a human when encountering a particular 
task or feature of an item will depend on a combination 
of the characteristics of both the person and the item. In 
traditional metrology, a separation of instrument and 
measurement object is regularly achieved, such as when 
determining the mass of a weight in terms of the 
calibrated response of a weighing instrument. Without 
that separation, dispersion in the sought item attribute 
will be masked by instrument dispersion.  
 In the words of Guilford [29]:

 "… all measurements are indirect in one sense or 
another. Not even simple physical measurements are 

direct, as the philosophically naive individual is likely to 

maintain. The physical weight of an object is customarily 

determined by watching a pointer on a scale. No one 

could truthfully say that he 'saw' the weight…”

  “It must be granted that, to measure such 

psychological attributes as appreciation of beauty,…, we 
must depend upon secondary signs of these attributes. 

The secondary signs bear some functional relationship to 

the thing we wish to measure, just as the movement of a 

pointer on a scale is assumed to bear a functional 

relationship to the physical phenomenon under 

consideration. The functional relationship may be 

simpler and more dependable in the latter case than in 

the former and the type of relationship may be more 

obvious. That is the only logical difference. It is 

admittedly a difference of some practical consequence. 

But it is not a difference which leads to the conclusion 

that measurement is possible in the one case and 

impossible in the other.”

 In human-based measurement, an ordinary factor 
analysis in traditional statistics could be attempted to 
separate the two attributes (person/item) in the response, 
but that would not necessarily work for ordinal data [30]. 
 In a recent paper, Wilson and co-workers [31] in 
considering ‘instrument calibration’, state that “social 
science measurement does not usually allow for the 
concept of a measurement standard”. They refer to a 
common form of standardisation in social science 
measurements, e.g. IQ tests, called “norm-referencing” 
and point out that to provide measurement standards it is 
necessary to extend the concept of an ‘instrument’ (which 
they regarded as a questionnaire or multi-choice 
examination, say) to “include the particular sample to 
which it is administered”. But they conclude by stating 
that measurement standards in the social sciences will be, 
even in the best case, “of not much practicable use”.
 The key to our approach is to treat the human 
responder as the instrument instead. 

5.2 Reliability, uncertainty and metrological 
traceability in human-based measurement

In its logistic regression form, the ‘straight ruler’ aspect 
of the Rasch formula, i.e. equation (6), has been 

described by Linacre and Wright [32] in the following 
terms: “The mathematical unit of Rasch measurement, 
the log-odds unit or "logit", is defined prior to the 
experiment. All logits are the same length with respect to 
this change in the odds of observing the indicative event.” 

The Rasch invariant measure approach goes further 
in defining measurement units [33] since it uniquely 
yields estimates “not affected by the abilities or attitudes 
of the particular persons measured, or by the difficulties 
of the particular survey or test items used to measure.” It 
is not simply a mathematical or statistical approach, but 
instead a specifically metrological approach to human-
based measurement. Note that the same probability of 
success can be obtained with an able person performing a 
difficult task as with a less able person tackling an easier 
task. The separation of attributes of the measured item 
from those of the person measuring them brings invariant 
measurement theory to psychometrics.  

In general, the measured item attribute 5 e.g. a level 
of challenge) differs, because of limited reliability, from 
the ’true’ 5′, with an error 78: 

5 = 5′ + 78 (7)

Invariant measure theory, allowing the level challenge 5
for a particular task to be estimated independently of who 
is encountering the challenge, permits the identification 
of a metrological standard (an ‘anchor’) for item 
challenge if a sufficiently large and representative group 
of people are allowed to test the item.

The reliability – that is, the ratio of ‘true’ item 
variance to the total variance (including measurement 
uncertainty (often set to a target value of 0.8, 
corresponding to a measurement uncertainty :;< not 
larger than half the item standard deviation :8), is a 
function both of the number of test persons as well as 
how well their abilities match the challenges. 

5.3 Standards, references and units in human-
based measurement

Once an agreed definition and realisation of the standard 
challenge has been achieved it can subsequently be used 
reproducibly as a reference for new challenges. As in 
traditional metrology, this traceability enables all the 
advantages commensurate with objectively comparable 
measurement. For instance, having access to a 
psychometric barrier challenge standard would allow an 
estimate of each person’s ability 4 to negotiate a range of 
barriers of different challenge to be metrologically 
calibrated by measuring a task of known challenge. This 
procedure determines the measurement error 7> in person 
ability: 

4 = 4′ + 7> (8)

Inserting the corrected item 5 and person 4 attribute 
values in equation (6) allows a more correct estimate of 
the accessibility score, ��������. 
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These metrological references – which might be 
termed ‘performance’ measures – refer to a different class 
of quantities than those familiar from traditional 
metrology and care has to be taken not to assume that the 
new references follow exactly the same rules as say 
physical quantities and units [34, 35]. Perhaps the closest 
analogies to references in psychometrics can be found 
with reference materials.  We seek, when formulating 
examples of measurement references in psychometrics, 
an agreed upon, standardized measure of, for instance, 
the level of challenge posed by a particular task or 
barrier. In psychometrics, we could imagine a certified 
reference for knowledge challenge, for example, a 
particular concept in understanding physics or for product 
quality of a certain health care service.  

6 Conclusion 
The cumulative probability of a ‘correct’ decision is 
related to the change of entropy on information 
transmission.  This can be interpreted as the combined 
process of observation (measurement) of an explanatory 
variable and response (decision-making), linearized using 
logistic regression. This covers not only explicitly non-
linear responses but also poorly known responses to the 
explanatory variable, perhaps allowing only less 
quantitative appraisals, such as on an ordinal or even a 
merely nominal scale. 

The explicit separation of person and item attribute 
estimation made possible with the psychometric (Rasch) 
invariant measure approach, appears well suited for 
introducing metrological traceability to human-based 
measurement. Thus, the measurement units associated 
with the Rasch attribute parameters 4 and 5, should be 
intimately related to metrological traceability and 
measurement standards.  
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