
Heavy tails with Parameter Adaptation in Random
Projection based continuous EDA

Momodou L. Sanyang∗† and Ata Kabán∗
∗School of Computer Science

University of Birmingham, Edgbaston, UK, B15 2TT
{M.L.Sanyang, A.Kaban}@cs.bham.ac.uk

†School of Information Technology and Communication
University of The Gambia, Brikama Campus, P.O. Box 3530, Serekunda, The Gambia

mlsanyang@utg.edu.gm

Abstract—In this paper, we present a new variant of EDA
for high dimensional continuous optimisation, which extends
a recently proposed random projections (RP) ensemble based
approach by employing heavy tailed random matrices. In par-
ticular, we use random matrices with i.i.d. t-distributed entries.
The use of t-distributions may look surprising in the context of
random projections, however we show that the resulting ensemble
covariance is enlarged when the degree of freedom parameter
is lowered. Based on this observation, we develop an adaptive
scheme to adjust this parameter during evolution, and this results
in a flexible means of balancing exploration and exploitation of
the search process. A comprehensive set of experiments on high
dimensional benchmark functions demonstrate the usefulness of
our approach.

I. INTRODUCTION

Optimisation is at the core of many scientific, engineering
and management problems and has applications in many dis-
ciplines. Modern applications often require optimisation over
large problems. Estimation of Distribution Algorithms (EDAs)
are a relatively recent branch of stochastic optimization heuris-
tics, which guide the search to the optimum by repeatedly
building and sampling explicit probability models of the fittest
individuals from the current population [15]. This allows the
algorithm to learn the structure of the search space and to
guide the search in further promising directions [25]. We can
say they are an enhancement of regular EAs. The core of
each EDA variant is the process of building its model. The
probabilistic model is often the only device used for guiding
the search to the global optimum [19]. This being the case,
the model must represent the search space in great detail, but
the required search cost and computational resources have to
be appropriate as well. This becomes an issue when the search
space is high dimensional, and therefore simplified models
such as univariate models are frequently used instead of a full
multivariate model. The simplest such approach is described
in [16], called UMDAc.

For non-separable problems, the design variables have
inter-dependencies. The approach known as MIMIC, proposed
by De Bonet et. al in [3] is set out to capture bivariate
interactions between decision variables by sampling from the
pairwise joint distribution between variables. Despite MIMIC
is able to outperform univariate models, the majority of opti-
mization problems will have larger groups of interacting design

variables. Several proposals have been put forth to explicitly
capture multivariate dependencies by building graphical de-
pendency networks, for example Bayesian Networks [4]. But,
from statistical, computational and memory points of view,
learning probabilistic graphical models is highly expensive [2].
Thus, the scaling up of these model building processes to high
dimensional problems is challenging. Efforts to alleviate such
problems have resulted in several algorithms being proposed
recently. For example, an approach that is correlation based
such as in [6] and a variable interaction learning process such
as in [22] were among such proposals.

Beyond the above simple methods, model building in high
dimensions is the subject of many research efforts. Many ap-
proaches were proposed, here we will limit ourselves to a few
most relevant ones. Eigendecomposition EDA (ED − EDA)
[7] proposes to utilise a repaired version of the full covariance
matrix estimate, thus giving it the ability to capture interaction
among decision variables. Other methods use limited depen-
dencies. For example, Cooperative Co-evolution with Variable
Interaction Learning (CCV IL) proposed by Weicker et al.
in [22] is a deterministic method to uncover dependencies
between decision variables, which has later been extended to
the CCVIL framework by Chen et al in [5]. In contrast to
the other algorithms mentioned, CCV IL tries to explicitly
find variable interaction. EDA with Model Complexity Control
(EDA −MCC) [6] also employs a deterministic algorithm
to group variables. It splits all decision variables into two
independent subsets, one set contains decision variables with
only minor interaction with other variables and the other
contains strongly dependent variables. If the absolute value
of the correlation of the variables with every other variable is
below a certain threshold, they are considered to be weakly
dependent. Otherwise, they are considered to be strongly
dependent. Only the later dependencies are modelled.

Covariance Matrix Adaptation (CMA-ES) [9], is an evolu-
tionary strategy technique, considered widely to be one of the
leading optimization techniques. Even though it is titled as an
Evolutionary Strategy, its main concepts are very similar to the
ones of a regular EDA [14]. CMA−ES and its variants have
been very successfully used on many low scale problems (e.g.
[10], [13]), but benchmarks on large scale problems are rather
rare. A variant of (CMA-ES) called separable CMA-ES (sep-
CMA-ES) [18] does not sample from a full covariance matrix,

978-1-4799-7492-4/15/$31.00 c©2015 IEEE

but rather from a diagonal covariance. This procedure replaces
the requirement to perform eigendecomposition for sampling
and therefore reduces the complexity per generation to linear in
the problem dimension [18]. The last category is the divide and
conquer. Algorithms in this category are Multilevel Cooperate
Co-evolution (MLCC), proposed in [24]. This is a framework
that groups the decision variables of a problem randomly in
order to put interacting variables in one subcomponent to form
a group to tackle problems in high-dimensional optimization.
The groups are optimized jointly but separately from other
groups. Another divide and conquer technique is the recently
proposed random projections (RP) EDA. This is an approach
which is state of the art and was proposed in [12]. It introduces
an ensemble of random projections (RP) to low dimensions.
This way the full covariance is compressed but no correlations
are explicitly discarded. The compression is done on the set
of fittest search points. The estimation and sampling job is
done in the low dimensional space instead of high dimensional
space, which makes it efficient. The new population is created
and returned to live in the full search space by combining
populations from several low dimensional subspaces [12].

In this paper, we develop an approach which employs a
heavy tailed distribution as a means to enhance a recently
proposed random projections (RP) ensemble based approach
[12] to increase exploration while maintaining exploitation
and focus by using multivariate Gaussian EDA in which the
entries of the RP matrices are drawn from an i.i.d. heavy tailed
distribution instead of the commonly used Gaussian or sub-
Gaussian entries.

II. USING HEAVY TAILS IN RANDOM PROJECTION BASED
CONTINUOUS EDA

In this section we devise a new variant of the RP-based
large scale multivariate Gaussian EDA of [12] by proposing
to use random matrices with heavy tailed entries. To readers
familiar with the area of random projections, this might come
as a surprise since random projection theory requires sub-
Gaussian matrices, but our reasons will become clear in the
Analysis subsection shortly. In essence, as we shall see, the
use of i.i.d. t-distributions, specifically its degree of freedom
parameter, will allow us to enlarge the high dimensional
ensemble-covariance matrix of the search distribution, which
may facilitate exploration and escape early convergence, while
still maintaining the focus of the search. Our analysis implies
also that sub-Gaussian random matrices in this context would
cause the ensemble covariance to shrink, thus making the
algorithm more prone to pre-mature convergence.

1) Algorithm presentation: We build on random projection
ensemble based EDA (RP-Ens-EDA) [12], and refer to our new
variant as tRP-Ens-EDA. The pseudocode of tRP-Ens-EDA is
shown in algorithm 1.

tRP-Ens-EDA proceeds by initially generating a population
of individuals randomly everywhere and selects the Ñ fittest
points based on their fitness values. This is the set P fit in
algorithm 1. The number of subspaces is denoted by M ,
which is a parameter. These subspaces are created in order
to project the fittest individuals down to these subspaces with
dimensionality k � d, where d is the dimension of the search
space, and k is also a parameter of the method. For both of

Algorithm 1 Pseudocode of the Multivariate Gaussian random
projection EDA with R entries from t-distribution (tRP-Ens-
EDA)

Inputs: k,M,N,MaxFE
(1) Set t← 0.
(2) Set P ← Generate N points randomly to give an initial
population.
Do

(3) Evaluate fitness for all N points in P
(4) Select the fittest Ñ individuals P fit from P
(5) Estimate µ := mean(P fit)
(6) Generate M independent random matrices with

entries iid from a t distribution with mean 0 and variance
1
d .

(7) For i = 1, ...,M.
(a) Project the centred points into k-dimensions:

YRi := [Ri(xn − µ);n = 1, ..., Ñ].
(b) Estimate the k x k sample covariance ΣRi .
(c) Sample N new points yRi1 , ..., yRiN ∼i.i.d

N(0,ΣRi).
EndFor

(8) Let the new population Pnew :=√
dM
k [1

MΣMi=1R
T
i y

Ri
1 , ..., 1

MΣMi=1R
T
i y

Ri
N] + µ.

(9) P ← Pnew

Until Termination criteria are met or MaxFE exceeded
Output P

these parameters we will use the default values as in [12].
The other input parameters are the population size N and
the maximum fitness evaluations allowed, MaxFE. Once the
P fit is determined, its mean is estimated in step (5) to be
used in centering the points. Since we are going to have
M subspaces, M independent random projection matrices are
generated in step (6) so as to project the fittest individuals
down to k dimensions in these M subspaces. The entries of the
RP matrices are drawn iid from a t distribution with mean 0 and
variance 1

d . This is done by sampling from t(0, 1, ν) standard

t, and then multiply the samples by
√

ν−2
νd . The reason we

take the variance to be 1
d is to make sure we recover the

original scale in Step (8) without having to modify the scaling
factor: When d is high, Ri have nearly orthonormal rows if
the entries have variance 1/d. So, pre-multiplying with Ri is
like orthogonally projecting the points from the d dimensional
space to a k dimensional subspace, which shortens the lengths
of vectors by a factor of

√
k
d and the standard deviation gets

reduced by a factor of
√
M after averaging [12]. Therefore,

the scaling factor needed to ensure this recovery is
√

dM
k .

Step 7(a) projects the good samples down to the subspaces
of dimension k, then estimates the k × k covariance matrices
for each of the subspaces and samples N new points in each
subspace using the multivariate Gaussian distribution. Step (8)
averages the individuals obtained from the different subspaces
to produce the new population P .

2) Analysis: We start by computing the ensemble-
covariance of the new population in step (8) conditional on
fixing the random projection matrices Ri, i = 1 : M . We will

then condition on the fit individuals and look at the effect of
Ri, i = 1 : M by computing the expectation of this ensemble
covariance with respect to Ri, i = 1 : M .

Proposition 1: Conditionally on all Ri, i = 1...M , the new
generation produced at Step 8 of Algorithm 1 is i.i.d. Gaussian
with mean µ and the following d× d covariance matrix:

Σrp =
d

kM

M∑
i=1

RTi RiΣR
T
i Ri

where Σ is the sample covariance of the original selected
individuals in P fit

Proof: Recall from step 7(a) of Algorithm 1 that the set
of projected points in the i-th subspace is:

YRi = {Ri(x1 − µ), Ri(x2 − µ), ..., Ri(xÑ − µ)}

Conditional on Ri, the sample covariance matrix of this set
of points is:

ΣRi =
1

Ñ

Ñ∑
n=1

Ri(xn − µ)(Ri(xn − µ))T = RiΣR
T
i

So the samples in step 7(c) of algorithm 1 are yRi1 , ..., yRi
Ñ
∼

N(0,ΣRi) .

To find the distribution of the individuals in P at step (8)
of Algorithm 1, we look at the first individual:

P1 :=

√
dM

k
[

1

M

M∑
i=1

RTi y
Ri
1] + µ. (1)

Conditionally on Ri, i = 1 : M , this is a linear combination
of independent Gaussian random variables , which is again a
Gaussian1 [17]. Hence, P1 is Gaussian distributed, it has mean
µ (since yRi1 has zero mean), and we compute its covariance
below.

In equation (1), denote A :=
√

dM
k

1
MRTi , then from step

7(c), we have that yRi1 ∼ N(0, RiΣR
T
i). So,

AyRi1 ∼ N(0, ARiΣR
T
i A

T) (2)

Replacing A in (2), we have

AyRi1 ∼ N(0,

√
dM

k

1

M
RTi RiΣR

T
i

√
dM

k

1

M
Ri),

which simplifies to

N(0,
d

kM
RTi RiΣR

T
i Ri)

Repeating this reasoning for each Pj , we find that:

Pj ∼ N(µ,
d

kM

M∑
i=1

RTi RiΣR
T
i Ri), j = 1, ..., N (3)

1Assume x ∼ N(mx,Σx) and y ∼ N(my ,Σy), then

Ax + By + c ∼ N(Amx + Bmy + c, AΣxA
T + BΣyB

T)

.

Hence, the form of the ensemble covariance in the d-
dimensional search space is:

Σrp =
d

kM

M∑
i=1

RTi RiΣR
T
i Ri (4)

Now we want to see the effect of the random Ri’s on Σrp.
To this end, we condition on Σ, and look at the expectation
ER[Σrp]. For this we use the following result:

Lemma 1: (Kaban, 2014 [11]): Let R be a k × d random
matrix, k < d, with entries drawn i.i.d. from a symmetric
distribution with 0-mean and finite first four moments. Let Σ
be a d×d fixed positive semi-definite matrix with eigenvalues
λ1, ..., λd. Then, E[RTRΣRTR] = ...

k · E[R2
i,j]

2[(k + 1)Σ + Tr(Σ)Id + (
E[R4

i,j]

E[R2
i,j]

2
− 3)

i=1∑
d

λiAi]

where Ai are d× d diagonal matrices with their jth diagonal
elements being Σda=1U

2
aiU

2
aj and Uaiis the a-th entry of the

ith eigenvector of Σ.

From (4), the expectation of Σrp, is

E[
d

k
RTRΣRTR] =

d

k
E[RTRΣRTR].

which we will compute. Since we have the entries of our t-
distribution with mean 0 and variance 1

d , then we will have
E[R2

ij] = 1
d . Furthermore, we see the excess kurtosis of the

entries of R featuring in this result. So we need to compute
this for the t-distribution. This excess kurtosis will contain the
degree of freedom parameter of the t distribution which we
shall vary adaptively to control the exploration and exploitation
and focus of our algorithm.

Definition: The excess kurtosis of a random variable x is
defined as:

K =
E[x4]

E[x2]2
− 3 (5)

Proposition 2: The excess kurtosis of a standardised
t(0, 1, ν) distribution with degree of freedom ν, is:

K =
6

ν − 4
, ν > 4 (6)

Proof: It is relatively straight-forward to derive the form
of the fourth moment, E[x4] and the second moment, E[x2].

Let x ∈ Rn be a random variable, k ∈ {2, 4} and x ∼
t(0, 1, ν), then by definition

E[xk] =

∫ ∞
−∞

xkf(x)dx

where f(x) is the pdf of the t distribution and we only need to
evaluate for k ∈ {2, 4}, since these are needed in the definition
of excess kurtosis. The pdf of a t distribution is written as:

f(x) = c(1 +
x2

ν
)

−1
2 (ν+1) (7)

where
c =

1
√
νB(ν2 ,

1
2)

(8)

and B(·, ·) is the beta function [1]. It can be observed that
f(x) = f(−x), since t is a symmetric distribution. We can
re-write E[xk] as:

=

∫ 0

−∞
xkf(x)dx+

∫ ∞
0

xkf(x)dx

Now computing the fourth moment, E[x4] and applying a
change of variable in the first integral by letting t = −x, then
dx = −dt, we will have

E[x4] = −
∫ 0

∞
(t)4f(−t)dt+

∫ ∞
0

x4f(x)dx

Interchanging the bounds of the integral, applying the sym-
metric distribution property and then throwing common factor
will give us the following

E[x4] = 2

∫ ∞
0

x4f(x)dx (9)

Plugging in the form of f as defined in eq. 7, we have that
eq. 9 equals

= 2c

∫ ∞
0

(x)4(1 +
x2

ν
)

−1
2 (ν+1)dx

We make the following change of variable: t = x2

ν , x = (νt)
1
2 ,

and with some algebra, we have

= cν
4+1
2

∫ ∞
0

(t)
4+1
2 −1(1 + t)−(

4+1
2)−(ν−4

2)dt

This integral represents a beta function [1]. Therefore we get

E[x4] = cν
4+1
2 B(

4 + 1

2
,
ν − 4

2
)

Now plugging in the value of c back, we have from eq. 8

E[x4] = ν2
Γ(5

2)Γ(ν−42)

Γ(ν2)Γ(1
2)

,
ν − 4

2
> 0 since Γ(0) =∞.

But Γ(5
2) = 3

4

√
π [1] and Γ(1

2) =
√
π [1],

=
3ν2

4 Γ(ν−42)

Γ(ν2)

By the definition of Gamma Γ(x) = (x− 1)Γ(x− 1) [1], we
have after substitution and simplification

E[x4] =
3ν2

(ν − 2)(ν − 4)
(10)

Analogously, computing the second moment, E[x2], we
will arrive at

E[x2] =
ν

ν − 2

Therefore, the excess kurtosis is

K =
E[x4]

(E[x2])2
− 3 =

3ν2

(ν−2)(ν−4)
ν2

(ν−2)2
− 3

K =
3(ν − 2)

ν − 4
− 3 =

6

ν − 4

Corollary: The excess kurtosis of a distribution with
variance σ2 remains unchanged.

Proof: . Let c > 0 be a constant. Then c · x has variance
c2var(x). Now show that the excess kurtosis of c · x is still

K =
6

ν − 4
, ν > 4

If c > 0, then the excess kurtosis of c · x is

E[(c · x)4]

(E[(c · x)2]
2 − 3

taking the constant out, we have

c4E[x4]

c4E[x2]
2 − 3 =

E[x4]

E[x2]
2 − 3

thus the excess kurtosis did not change.

So, replacing this into Lemma 1, and noting that we can
simplify the last term using

∑d
i=1 λiAi � Tr(Σ)·Id, we obtain

the result:
d

k
E[RTRΣRTR] � 1

d
[(k+1)Σ+Tr(Σ)(1+

6

ν − 4
)Id] (11)

Now let us point out what we have gained. In previous
works such as [12], Gaussian was used and Gaussian cor-
responds to ν being ∞, therefore the last term in eq. (11)
tends to zero, so by our choice of degree of freedom that
the t- distribution has, we will be adding more regularity to
the covariance which also makes it larger and gives it more
chance to explore the search space better. Existence of the
matrix expectation we just computed requires that ν is at least
5.

III. SETTING AND ADAPTATION OF THE DEGREE OF
FREEDOM ν

Parameter setting methods are dichotomised into tuning
and controlling [8]. Tuning means finding a good value via
trial and error before running the algorithm and then fixing this
value throughout the evolutionary process. On the other hand,
parameter control starts with an initial value which is changed
during the run, based on the feedback from the algorithm [8].
So the latter tries to adapt the control parameters automatically
to adjust the algorithm to the problem while solving it during
the search [23].

In our algorithm, the parameter we try to control is the
degree of freedom of the t distributed entries of our random
projection matrices (Ri, i = 1 : M). We drew our inspiration
from [23] and carved out our own adaptive method with
our own rules to vary the value of the degree of freedom
automatically to fit our problem. The Pseudocode of our
proposed adaptive method is shown in algorithms 2, 3a, and
3b.

Algorithm 2 takes degree of freedom df which is an array
of different values of the degree of freedom to be tried as
inputs. It runs these values concurrently during a generation

Algorithm 2 Adaptive degree of freedom (df) Algorithm

Inputs: df : array of df values tried, L = lenght(df) .
(1) for i = 1 : L
(2) dftry := df [i];
(3) run steps (6),(7),(8) and (3) of Algorithm 1;
(4) f[i] := min fitness from step (3) of algorithm 1
(5) endfor
(6) [fminfminInd] := min(f);
(9) dfbest := df [fminInd];
(10) if min(f) == max(f)
(11) df [1] := round(df [1]/2);
(12) for i = 2 : L
(13) df [i] == df [i] ∗ 2;
(14) endfor
(16) elseif
(17) UPDATEDF(2df) or UPDATEDF(5df);
(18) endif
Output df

Algorithm 3a UPDATEDF(2df)

(1) procedure UPDATEDF(2df)
(2) if f [1] == min(f)
(3) df1 := round(df1/2);
(4) df2 := round((df1 + df2)/2);
(5) elseif f [2] == min(f)
(6) df1 := round((df1 + df2)/2);
(7) df2 := df2 + round(df2/2);
(8) endif
(9) endprocedure

and keeps track of the best fitnesses found with each of these
parameter values. These fitnesses of each of the df tried are
compared to see which one is the best and then choose the
degree of freedom that gives the best fitness to be taken
forward. The contents of df are then updated accordingly, in a
way that places the values that are to be tried next time around
the best performing one. If all values tried performed the best
then we spread out the content of df . The rules of how this is
done are given in algorithms 3a and 3b, where we use 2 or 5
different values concurrently respectively. This process is then
repeated in each generation.

The number of degree of freedom parameters that are tried
concurrently at each generation need not be exactly two or
five, and the rules can easily be designed for different numbers
if desired. The more degree of freedoms used concurrently,
the better the results, but this comes at the expense of more
function evaluations.

IV. ANALYSIS OF THE EXPERIMENTAL RESULTS

A. Benchmark functions used

We use two sets of benchmark functions: the 1000-
dimensional CEC’2010 test suite as described in [21], and the
50-dimensional CEC’2005 test suite [20]. All problems are
minimizations. The majority of the test functions implemented
from the CEC’2010 benchmarks contain modifications to make
them non-separable, and hence harder for meta-heuristics
optimisation.

Algorithm 3b UPDATEDF(5df)

(1) procedure UPDATEDF(5df)
(2) if f [1] == min(f)
(3) df1 := round(df1/2);
(4) df2 := round((df1 + df2)/2);
(5) df3 := round((df2 + df3)/2);
(6) df4 := round((df3 + df4)/2);
(7) df5 := round((df4 + df5)/2);
(8) elseif f [2] == min(f)
(9) df1 := round((df1 + df2)/2);
(10) df2 := df2 + round(df2/2);
(11) df3 := round((df2 + df3)/2);
(12) df4 := round((df3 + df4)/2);
(13) df5 := round((df4 + df5)/2);
(14) elseif f [3] == min(f)
(15) df1 := round((df1 + df2)/2);
(16) df2 := round((df2 + df3)/2);
(17) df3 := df3 + round(df3/2);
(18) df4 := round((df3 + df4)/2);
(19) df5 := round((df4 + df5)/2);
(20) elseif f [4] == min(f)
(21) df1 := round((df1 + df2)/2);
(22) df2 := round((df2 + df3)/2);
(23) df3 := round((df3 + df4)/2);
(24) df4 := df4 + round(df4/2);
(25) df5 := round((df4 + df5)/2);
(26) elseif f [5] == min(f)
(27) df1 := round((df1 + df2)/2);
(28) df2 := round((df2 + df3)/2);
(29) df3 := round((df3 + df4)/2);
(30) df4 := round((df4 + df5)/2);
(31) df5 := df5 + round(df5/2);
(32) endif
(33) endprocedure

TABLE I: 1000-dimensional test functions from the CEC’10
collection.

Problem Name
F2 Shifted Rastrigin’s function
F3 Shifted Ackley’s function
F5 Single-group Shifted and m-rotated Rastrigin’s function
F6 Single-group Shifted and m-rotated Ackley’s function

F10 D
2m -group Shifted and m-rotated Rastrigin’s function

F11 D
2m -group Shifted and m-rotated Ackley’s function

F13 D
2m -group Shifted and m-dimensional Rosenbrock’s function

F15 D
2m -group Shifted and m-rotated Rastrigin’s function

F16 D
m -group Shifted and m-rotated Ackley’s function

F18 D
m -group Shifted and m-dimensional Rosenbrock’s function

F20 Fully nonseparable Rosenbrock

In the CEC’2005 problems, 5 are unimodal and 11 mul-
timodal. All the global optima are within the given box
constrains. However, problem 7 was without a search range and
with the global optimum outside of the specified initialization
range. From the problems in the [21] suite we are most
interested in the multimodal ones.

Table I lists the 1000-dimensional CEC’10 problems that
we used, and Table II gives the 50-dimensional ones.

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:1

df=5
df=6
df=7
df=10
df=12
df=30
tRP−Ens−EDA(2df)
tRP−Ens−EDA(5df)
RP−Ens−EDA

(a) Function 1

50 100 150 200 250 300

2

3

4

5

6

7

8

9

10

11
x 10

4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:2

(b) Function 2

50 100 150 200 250 300

0.5

1

1.5

2

2.5

3

3.5

x 10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:3

(c) Function 3

50 100 150 200 250 300

3000

4000

5000

6000

7000

8000

9000

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:5

(d) Function 5

50 100 150 200 250 300

1

2

3

4

5

6

7

x 10
4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:6

(e) Function 6

50 100 150 200 250 300

2

4

6

8

10

12

14

16

18

20

22

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s
Adaptive dfs vs Gaussian for Fun:7

(f) Function 7

50 100 150 200 250 300

21.17

21.18

21.19

21.2

21.21

21.22

21.23

21.24

21.25

21.26

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:8

(g) Function 8

50 100 150 200 250 300

330

340

350

360

370

380

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:9

(h) Function 9

50 100 150 200 250 300

330

340

350

360

370

380

390

400

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:10

(i) Function 10

50 100 150 200 250 300

74.5

75

75.5

76

76.5

77

77.5

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:11

(j) Function 11

50 100 150 200 250 300

5.6

5.8

6

6.2

6.4

6.6

x 10
6

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:12

(k) Function 12

50 100 150 200 250 300

29

30

31

32

33

34

35

36

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:13

(l) Function 13

50 100 150 200 250 300

23.1

23.15

23.2

23.25

23.3

23.35

23.4

23.45

23.5

23.55

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:14

(m) Function 14

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:15

(n) Function 15

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:16

(o) Function 16

Fig. 1: Plots to compare different dfs, RP-Ens-EDA and two versions of our tRP-Ens-EDA on Functions 1-16. For better visibility,
we display from generation 50 only and show legend of only the first plot. The error bars represent one standard error over 25
repeated runs.

B. Experiments and Results

We conducted two types of experiments. The first is with
a fixed time frame of 300 generations in order to assess
the potential of various values for the degree of freedom
(df) as well as our adaptive procedures. The second type of
experiment compares tuning with adaptation on a fixed budget
of function evaluations, set to 5.4 · 105 .

In all the experiments, 25 independent runs were performed
except on the 1000 dimensional functions experiment, were
due to time constraints, we were able to do only 10 inde-

pendent runs of our method. The rest of the state of the art
methods were given 25 independent runs.

1) RP-Ens-EDA vs. the proposed tRP-Ens-EDA in experi-
ments with equal time frame: We use the 50 dimensional CEC
2005 benchmark functions. We ran the RP-Ens-EDA [12] and
our proposed tRP-ENS-EDA with different degrees of freedom
values for 300 generations each. The results are shown on
figure 1.

As we can see from the results in figure 1, different degrees
of freedom perform well on different problems. Therefore, we

TABLE IV: Comparison with state of the art under equal budget of 3 · 106 function evaluations.

ED-EDA CCVIL MLCC sep-CMA-ES EDA-MCC tRP-Ens-EDA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F2 1.11E+04 1.12E+02 4.00E-07 0.00E+00 37.89 86.41 5.68E+03 4.89E+02 1.17E+04 6.38E+01 5.94E+02 1.76E+01
F3 7.22E-01 4.71E-02 4.00E-07 6.32E-07 8.45E-01 1.04E+00 2.15E+01 1.08E-01 2.92E+00 7.76E-02 2.48E-13 4.57E-15
F5 3.15E+08 1.33E+07 5.51E+08 1.55E+08 1.22E+08 8.63E+07 1.19E+08 2.92E+07 4.24E+08 1.67E+07 4.99E+06 1.32E+06
F6 3.56E+06 2.81E+05 4.14E+05 6.54E+05 1.06E+06 9.42E+05 6.39E+06 3.85E+06 1.53E+07 1.92E+05 3.20E+01 5.32E-01
F10 1.12E+04 1.00E+02 1.43E+03 6.34E+01 2.93E+03 6.72E+02 6.28E+03 2.51E+02 1.18E+04 6.35E+01 5.96E+02 1.71E+01
F11 1.49E+02 2.33E+01 7.44E+00 2.41E+00 1.64E+02 7.72E+00 2.12E+02 6.16E+00 1.91E+02 7.39E-01 3.10E+01 1.09E+01
F13 2.13E+06 2.25E+05 2.98E+11 8.57E+11 1.56E+03 5.52E+02 2.94E+02 9.20E+01 4.77E+10 2.99E+09 1.00E+06 5.74E+04
F15 1.13E+04 9.74E+01 2.78E+03 8.78E+01 7.11E+03 1.34E+03 6.76E+03 2.76E+02 1.18E+04 6.61E+01 6.05E+02 2.74E+01
F16 1.76E+02 2.35E+01 1.31E+01 2.92E+00 3.62E+02 7.80E+00 4.21E+02 1.59E+01 2.37E+02 2.43E+01 8.04E+01 1.04E+01
F18 1.02E+06 3.72E+05 6.42E+11 2.19E+12 3.36E+03 9.08E+02 9.16E+02 1.94E+02 1.49E+10 1.67E+09 4.41E+04 5.40E+03
F20 1.89E+05 9.81E+04 1.75E+11 8.77E+11 2.23E+03 3.20E+02 9.04E+02 3.91E+01 8.08E+08 7.81E+07 1.02E+03 2.83E+01

TABLE II: 50-dimensional test functions from the CEC’05
collection.

Problem Name
P01 Shifted Sphere Function
P02 Shifted Schwefels Problem 1.2
P03 Shifted Rotated High Conditioned Elliptic Function
P05 Schwefel’s Problem 2.6 with Global Optimum on Bounds
P06 Shifted Rosenbrock’s Function
P07 Shifted Rotated Griewank’s Function without Bounds
P08 Shifted Rotated Ackley’s Function with Global Optimum on Bounds
P09 Shifted Rastrigin’s Function
P10 Shifted Rotated Rastrigin’s Function
P11 Shifted Rotated Weierstrass Function
P12 Schwefel’s Problem 2.13
P13 Expanded Extended Griewank’s plus Rosenbrock’s Function
P14 Expanded Rotated Extended Scaffe’s F6
P15 Shifted Griewank’s Function
P16 Shifted Ackley’s Function

TABLE III: Statistical Test for performance comparison be-
tween Tuning, 5df and 2df methods ran on equal budget.

Problems Tuning 2 concurrent df 5 concurrency df

(mean Optimal Gap) (mean Optimal Gap) (mean Optimal Gap)
P01 0±0 0±0 0±0
P02 4.07e+04±7.32e+03 1.53e+04±3.85e+03 1.62e+04±3.23e+03
P03 7.84e+06±1.74e+06 2.06e+06±3.82e+05 2.29e+06±4.87e+05
P04 0±0 2.17e+04±4.56e+03 2.05e+04±4.99e+03
P05 3.99e+03±401.26 4.27e+03±406.49 4.18e+03±268.13
P06 3.01e+03±3.14e+03 894.65±1.31e+03 1.02e+03±1.62e+03
P07 0.94±0.11 1.48e-05±1.44e-05 1.14e-05±8.43e-06
P08 21.19±0.04 21.14±0.06 21.18±0.04
P09 332.32±13.52 313.40±11.45 326.12±10.58
P10 341.78±15.66 316.36±14.23 326.60±11.13
P11 74.45±1.79 73.74±1.17 73.67±1.67
P12 5.61e+06±3.38e+05 5.27e+06±3.03e+05 5.55e+06±5.10e+05
P13 30.35±1.08 28.36±1.14 29.46±0.83
P14 23.08±0.16 22.9686±0.15 23.08±0.15
P15 7.79e-11±7.04e-011 0±0 0±0
P16 3.37e-13±1.05e-013 2.84E-14±0 2.84E-14±0

also ran our adaptive method to automatically select the value
of the degree of freedom as the optimisation progresses to
optimise each problem.

From the comparisons shown in figure 1, we can see that
our method, tRP-Ens-EDA(5df) has demonstrated superiority
over RP-Ens-EDA by outperforming it in 8 out of the 16
problems and it has almost the same performance with RP-Ens-
EDA on 2 of the problems with RP-Ens-EDA outperforming
our method in only two problems. Therefore, we can conclude
that our method, tRP-Ens-EDA(5df) is superior to RP-Ens-
EDA. However, this is not surprising since it used more

budget of function evaluations per generations due to the
number of concurrent trials it had to make. We also performed
experiments with the version of our adaptive method that uses
2 values concurrently, and found, as expected, that it performs
slightly inferior to the version that uses 5 concurrent values
– although we need to bear in mind the tradeoff that using
more concurrent values means more fitness evaluations per
generation.

2) Tuning vs. adaptation in equal budget experiment: In
this set of experiments, we compare tuning with adaptation
under equal budget of total number of function evaluations.
Tuning encompasses separate runs with the degree of freedom
parameter being fixed to a value in the set {5, 6, 7, 10, 12,
30}. The number of generations was 300 with a population size
of 300. This means the total number of function evaluations
available for the tuning method was 5.4 · 105. Hence we
gave the same amount of function evaluations to our two
adaptive methods. This means that tRP-Ens-EDA(2df) ran for
900 generations with a population size of 300 and tRP-Ens-
EDA(5df) ran for 360 generations with same population size.
The aggregated results are summarised in figure 2. We see that
our method with 2 concurrent values of degree of freedom
is the out performed the other two. This is confirmed in a
statistical test results in table III where bold font indicates
statistical out-performance.

Therefore, with equal budget, it is better to use the method
that uses less df, say 2df concurrently as it is more cost
effective than the other methods. This is true because the
tuning method only uses pre-defined dfs to choose from and
does not try all other possible values, hence the inferiority.
Our method that uses 5 df concurrently uses lots of function
evaluation just to try out possible dfs and does not have much
left to create new generations, while our version that uses 2
df concurrently uses less function evaluations than the other
two methods to try out possible dfs and greater amount of
function evaluations are used to create new generations, thus
giving it the advantage of performing better than the rest of
the methods.

3) Comparison with state of the art methods on 1000
dimensional problems: In this section, we show results of com-
paring our method tRP −Ens−EDA(5df), with other state
of the art performing methods on the 1000 dimensional CEC
2010 problems. The results of this comparison are summarised
in table IV. We present the average and std of best fitness
results after 3 million function evaluations throughout the EDA
process. Bold font indicate statistical out-performance. Out of

11 problems, our method was able to outperform all the other
methods in 4 of the problems while being very competitive
in the other problems where significant out-performance were
not registered. Other methods like CCV IL and the famous
sep−CMA−ES where each able to win in 2 out of the 11
problems. Therefore, our method has once again proved to be
very promising.

Tune 2df 5df
0

2

4

6

8

10
x 10

5 50D comparison

Methods

M
ea

n
O

pt
im

al
 G

ap

Fig. 2: Summary of the comparison experiment with equal
budget set to 5.4 · 105.

V. CONCLUSION AND FUTURE WORK

We devised a new approach for high dimensional con-
tinuous black-box optimization by building on RP ensemble
based EDA. Our focus has been on the utility of the heavy
tailed distributions as entries of our RP matrices. Our results
suggest that taking RP matrices with entries drawn with i.i.d.
t-distribution increases exploration and at the same time main-
tains exploitation and focus. We have demonstrated superiority
of our method in comparison with a number of state of the art
methods on 1000 dimensional problems. Our future work will
focus on further developing our method, by adapting other
parameters such as the dimension of the reduced space, k.

Acknowledgements

We thank Xiaofen Lu and Prof. Xin Yao for fruitful
discussions on adaptive methods and Hanno Muehlbrandt for
carrying out part of the experiments for table IV.

REFERENCES

[1] M. Abramowitz and I. A. Stegun (Eds.). Handbook of mathematical
functions with formulas, graphs and mathematical tables (applied math-
ematics series 55). Washington, DC: NBS., 1964.

[2] R. Armañanzas, I. Inza, R. Santana, Y. Saeys, J.L. Flores, J.A. Lozano,
Y. Van de Peer, R. Blanco, V. Robles, C. Bielza, and P. Larrañaga.
A review of estimation of distribution algorithms in bioinformatics.
BioData Mining, 1(6), 2008.

[3] J.S. De Bonet, C.L. Isbell, and Jr. P. Viola. Mimic: Finding optima
by estimating probability densities. In Neural Information Processing
Systems. Vol. 9, pp. 424-430, 1997.

[4] P.A.N. Bosman and D. Thierens. An algorithmic framework for density
estimation based evolutionary algorithms. Technical report, UU-CS.,
1999.

[5] W. Chen, T. Weise, Z. Yang, and K. Tang. Large-scale global
optimization using cooperative co-evolution with variable interaction
learning. In PPSN XI, Lecture Notes in Computer Science, Vol. 6239,
pp. 300-309, 2010.

[6] W. Dong, T. Chen, P. Tiňo, and X. Yao. Scaling up estimation of
distribution algorithm for continuous optimisation. IEEE Transaction
of Evolutionary Computation. Vol 17, Issue 6, pp. 797 - 822., 2013.

[7] W. Dong and X. Yao. Unified eigen analysis on multivariate gaussian
based estimation of distribution algorithms. Information Sciences, Vol.
178, Issue 15. pp. 3000-3023., 2008.

[8] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in
evolutionary algorithms. IEEE Transaction on Evolutionary Computa-
tiontion. Vol 3, Issue 2, pp. 124-141, 1999.

[9] N. Hansen. Towards a New Evolutionary Computation. Springer Berlin
Heidelberg, 2006.

[10] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošı́k. Comparing results
of 31 algorithms from the black-box optimization benchmarking bbob-
2009. ACM, NY, USA, pp. 1689-1696, 2010.

[11] A. Kabán. New bounds for compressive linear least squares regression.
In The 17-th International Conference on Artificial Intelligence and
Statistics (AISTATS 2014). Vol 33, pp. 448-456, 2014.

[12] A. Kabán, J. Bootkrajang, and R.J. Durrant. Towards large scale
continuous eda: a random matrix theory perspective. In Christian Blum
and Enrique Alba, editors, GECCO, pp. 383-390. ACM, 2013.

[13] S. Kern, S.D. Müller, N. Hansen, D. Büche, J. Ocenasek, and
P. Koumoutsakos. Learning probability distributions in continuous
evolutionary algorithms- a comparative review. Natural Computing.
Vol. 3. Issue 1, pp 77-112., 2004.

[14] O. Kramer. Self-adaptive heuristics for evolutionary computation. PhD
thesis, Dept. CS, Univ. of Paderborn, Warburger,, 2008.

[15] P. Larrañaga and J.A. Lozano. Estimation of Distribution Algorithms:
A new tool for Evolutionary Computation. Norwell, MA: Kluwer
Academic Publishers., 2001.

[16] T.K. Paul and H. Iba. Linear and combinatorial optimizations by
estimation of distribution algorithms. In Proceedings of the 9th MPS
Symposium on Evolutionary Computation. IPSJ, Vol. 9, pp. 99–106,
2002.

[17] K.B. Petersen and M.S. Pedersen. The matrix cookbook. In Version:
October 3, 2005, Page 53. 2005.

[18] R. Ros and N. Hansen. A simple modification in cma-es achieving
linear time and space complexity. In Parallel Problem Solving from
Nature-PPSN X . Springer Berlin Heidelberg. Vol. 5199, pp. 296-305.,
2008.

[19] M.L. Sanyang, H. Muehlbrandt, and A. Kabán. Two approaches of
using heavy tails in high dimensional eda. In the Proceedings of the
IEEE International Conference on Data Mining Workshop. pp 653-660,
2014.

[20] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger,
and S. Tiwari. Problem definitions and evaluation criteria for the cec
2005 special session on real-parameter optimisation. Technical report,
CEC 2005 Special Session on Real-Parameter Optimisation., 2005.

[21] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise. Large scale
global optimization 2010. CEC2010 special session. Technical report,
Accessed on Sept. 10, 2014, 2010.

[22] K. Weicker and N. Weicker. On the improvement of co-evolutionary
optimizers by learning variable inter-dependencies. In Proceedings of
the Congress on Evolutionary Computation. Vol. 3. pp. 1627–1632,
1999.

[23] Y.Y. Wong, K.H. Lee, K.S. Leung, and C.W. Ho. A novel approach in
parameter adaptation and diversity maintenance for genetic algorithms.
Soft Computing. Vol. 7. Issue 8. pp. 506-515, 2003.

[24] Z. Yang, K. Tang, and X. Yao. Multilevel cooperative co-evolution for
large scale optimization. In IEEE World Congress on Computational
Intelligence (CEC 2008). pp. 1663 - 1670, 2008.

[25] B. Yuan and M. Gallagher. On the importance of diversity maintenance
in estimation of distribution algorithms. In H.G. Beyer and U.M OReilly,
editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 05), pp 719-729, New York, NY, USA., 2005.

