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Preface

Over the past decade, there have been several shifts in the way compilers are
built. New kinds of programming languages are being used: object-oriented
languages with dynamic methods, functional languages with nested scope and
first-class function closures; and many of these languages require garbage
collection. New machines have large register sets and a high penalty for
memory access, and can often run much faster with compiler assistance in
scheduling instructions and managing instructions and data for cache locality.

This book is intended as a textbook for a one-semester or two-quarter course
in compilers. Students will see the theory behind different components of a
compiler, the programming techniques used to put the theory into practice,
and the interfaces used to modularize the compiler. To make the interfaces
and programming examples clear and concrete, I have written them in the ML
programming language. Other editions of this book are available that use the
C and Java languages.

The “student project compiler” that I have outlined is reasonably simple,
but is organized to demonstrate some important techniques that are now in
common use: Abstract syntax trees to avoid tangling syntax and semantics,
separation of instruction selection from register allocation, sophisticated copy
propagation to allow greater flexibility to earlier phases of the compiler, and
careful containment of target-machine dependencies to one module.

This book,Modern Compiler Implementation in ML: Basic Techniques,is
the preliminary edition of a more complete book to be published in 1998,
entitled Modern Compiler Implementation in ML. That book will have a
more comprehensive set of exercises in each chapter, a “further reading”
discussion at the end of every chapter, and another dozen chapters on advanced
material not in this edition, such as parser error recovery, code-generator
generators, byte-code interpreters, static single-assignment form, instruction

ix



PREFACE

scheduling and software pipelining, parallelization techniques, and cache-
locality optimizations such as prefetching, blocking, instruction-cache layout,
and branch prediction.

Exercises.Each of the chapters in Part I has a programming exercise corre-
sponding to one module of a compiler. Unlike many “student project com-
pilers” found in textbooks, this one has a simple but sophisticated back end,
allowing good register allocation to be done after instruction selection. Soft-
ware useful for the programming exercises can be found at

http://www.cs.princeton.edu/˜appel/modern/

There are also pencil and paper exercises in each chapter; those marked with a
star * are a bit more challenging, two-star problems are difficult but solvable,
and the occasional three-star exercises are not known to have a solution.

Acknowledgments. Several people have provided constructive criticism, course-
tested the manuscript, or helped in other ways in the production of this book.
I would like to thank Stephen Bailey, Maia Ginsburg, David Hanson, Elma
Lee Noah, Todd Proebsting, Barbara Ryder, Amr Sabry, Zhong Shao, Mary
Lou Soffa, Andrew Tolmach, and Kwangkeun Yi.
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PART ONE

Fundamentals of
Compilation





1
Introduction

A compiler was originally a program that “compiled”
subroutines [a link-loader]. When in 1954 the combina-
tion “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into
the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating
programming languages into executable code. A modern compiler is often
organized into many phases, each operating on a different abstract “language.”
The chapters of this book follow the organization of a compiler, each covering
a successive phase.

To illustrate the issues in compiling real programming languages, I show
how to compile Tiger, a simple but nontrivial language of the Algol family,
with nested scope and heap-allocated records. Programming exercises in each
chapter call for the implementation of the corresponding phase; a student
who implements all the phases described in Part I of the book will have a
working compiler. Tiger is easily modified to befunctionalor object-oriented
(or both), and exercises in Part II show how to do this. Other chapters in Part
II cover advanced techniques in program optimization. Appendix A describes
the Tiger language.

The interfaces between modules of the compiler are almost as important
as the algorithms inside the modules. To describe the interfaces concretely,
it is useful to write them down in a real programming language. This book
uses ML – a strict, statically typed functional programming language with
modular structure. ML is well suited to many applications, but compiler
implementation in particular seems to hit all of its strong points and few
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CHAPTER ONE. INTRODUCTION
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FIGURE 1.1. Phases of a compiler, and interfaces between them.

of its weaknesses. Implementing a compiler in ML is quite a pleasant task.
Furthermore, a well rounded introduction to compilers should include some
acquaintance with modern programming language design.

This is not a textbook on ML programming. Students using this book who
do not know ML already should be able to pick it up as they go along, using
an ML programming book such as Paulson [1996] or Ullman [1994] as a
reference.

1.1 MODULES AND INTERFACES

Any large software system is much easier to understand and implement if
the designer takes care with the fundamental abstractions and interfaces.
Figure 1.1 shows the phases in a typical compiler. Each phase is implemented
as one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the com-
ponents. For example, to change the target-machine for which the compiler
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1.2. TOOLS AND SOFTWARE

produces machine language, it suffices to replace just the Frame Layout and In-
struction Selection modules. To change the source language being compiled,
only the modules up through Translate need to be changed. The compiler
can be attached to a language-oriented syntax editor at theAbstract Syntax
interface.

The learning experience of coming to the right abstraction by several itera-
tions ofthink–implement–redesignis one that should not be missed. However,
the student trying to finish a compiler project in one semester does not have
this luxury. Therefore, I present in this book the outline of a project where the
abstractions and interfaces are carefully thought out, and are as elegant and
general as I am able to make them.

Some of the interfaces, such asAbstract Syntax, IR Trees,andAssem,take
the form of data structures: for example, the Parsing Actions phase builds an
Abstract Syntaxdata structure and passes it to the Semantic Analysis phase.
Other interfaces are abstract data types; theTranslate interface is a set of
functions that the Semantic Analysis phase can call, and theTokensinterface
takes the form of a function that the Parser calls to get the next token of the
input program.

DESCRIPTION OF THE PHASES
Each chapter of Part I of this book describes one compiler phase, as shown in
Table 1.2

This modularization is typical of many real compilers. But some com-
pilers combine Parse, Semantic Analysis, Translate, and Canonicalize into
one phase; others put Instruction Selection much later than I have done, and
combine it with Code Emission. Simple compilers omit the Control Flow
Analysis, Data Flow Analysis, and Register Allocation phases.

I have designed the compiler in this book to be as simple as possible, but
no simpler. In particular, in those places where corners are cut to simplify the
implementation, the structure of the compiler allows for the addition of more
optimization or fancier semantics without violence to the existing interfaces.

1.2 TOOLS AND SOFTWARE

Two of the most useful abstractions used in modern compilers arecontext-free
grammars, for parsing, andregular expressions, for lexical analysis. To make
best use of these abstractions it is helpful to have special tools, such asYacc

5



CHAPTER ONE. INTRODUCTION

Chapter Phase Description
2 Lex Break the source file into individual words, ortokens.
3 Parse Analyze the phrase structure of the program.
4 Semantic

Actions
Build a piece ofabstract syntax treecorresponding to each phrase.

5 Semantic
Analysis

Determine what each phrase means, relate uses of variables to
their definitions, check types of expressions, request translation
of each phrase.

6 Frame
Layout

Place variables, function-parameters, etc. into activation records
(stack frames) in a machine-dependent way.

7 Translate Produceintermediate representation trees(IR trees), a notation
that is not tied to any particular source language or target-machine
architecture.

8 Canonicalize Hoist side effects out of expressions, and clean up conditional
branches, for the convenience of the next phases.

9 Instruction
Selection

Group the IR-tree nodes into clumps that correspond to the actions
of target-machine instructions.

10 Control
Flow
Analysis

Analyze the sequence of instructions into acontrol flow graph
that shows all the possible flows of control the program might
follow when it executes.

10 Dataflow
Analysis

Gather information about the flow of information through vari-
ables of the program; for example,liveness analysiscalculates
the places where each program variable holds a still-needed value
(is live).

11 Register
Allocation

Choose a register to hold each of the variables and temporary
values used by the program; variables not live at the same time
can share the same register.

12 Code
Emission

Replace the temporary names in each machine instruction with
machine registers.

TABLE 1.2. Description of compiler phases.

(which converts a grammar into a parsing program) andLex(which converts
a declarative specification into a lexical analysis program). Fortunately, good
versions of these tools are available for ML, and the project described in this
book makes use of them.

The programming projects in this book can be compiled using theStandard

6



1.3. DATA STRUCTURES FOR TREE LANGUAGES

Stm → Stm ; Stm (CompoundStm)
Stm → id := Exp (AssignStm)
Stm → print ( ExpList ) (PrintStm)
Exp → id (IdExp)
Exp → num (NumExp)
Exp → Exp Binop Exp (OpExp)
Exp → ( Stm , Exp ) (EseqExp)

ExpList → Exp , ExpList (PairExpList)
ExpList → Exp (LastExpList)
Binop → + (Plus)
Binop → − (Minus)
Binop → × (Times)
Binop → / (Div)

GRAMMAR 1.3. A straight-line programming language.

ML of New Jerseysystem, including associated tools such as its ML-Yacc,
ML-Lex, and theStandard ML of New Jersey Software Library. All of this
software is available free of charge on the Internet; for information see the
Wide-World Web page

http://www.cs.princeton.edu/˜appel/modern/

Source code for some modules of the Tiger compiler, support code for some
of the programming exercises, example Tiger programs, and other useful files
are also available from the same Web address.

Skeleton source code for the programming assignments is available from
this Web page; the programming exercises in this book refer to this directory as
$TIGER/ when referring to specific subdirectories and files contained therein.

1.3 DATA STRUCTURES FOR TREE LANGUAGES

Many of the important data structures used in a compiler areintermediate
representationsof the program being compiled. Often these representations
take the form of trees, with several node types, each of which has different
attributes. Such trees can occur at many of the phase-interfaces shown in
Figure 1.1.

Tree representations can be described with grammars, just like program-
ming languages. To introduce the concepts, I will show a simple programming
language with statements and expressions, but no loops or if-statements (this
is called a language ofstraight-line programs).

The syntax for this language is given in Grammar 1.3.
The informal semantics of the language is as follows. EachStmis a state-

ment, eachExp is an expression.s1; s2 executes statements1, then statement

7



CHAPTER ONE. INTRODUCTION

s2. i:= e evaluates the expressione, then “stores” the result in variablei.
print (e1, e2, . . . , en) displays the values of all the expressions, evaluated
left to right, separated by spaces, terminated by a newline.

An identifier expression, such asi, yields the current contents of the variable
i. A numberevaluates to the named integer. Anoperator expressione1 op e2

evaluatese1, thene2, then applies the given binary operator. And anexpression
sequences, e behaves like the C-language “comma” operator, evaluating the
statements for side effects before evaluating (and returning the result of) the
expressione.

For example, executing this program

a := 5+3; b := (print(a, a-1), 10*a); print(b)

prints

8 7
80

How should this program be represented inside a compiler? One represen-
tation issource code, the characters that the programmer writes. But that is
not so easy to manipulate. More convenient is a tree data structure, with one
node for each statement (Stm) and expression (Exp). Figure 1.4 shows a tree
representation of the program; the nodes are labeled by the production labels
of Grammar 1.3, and each node has as many children as the corresponding
grammar production has right-hand-side symbols.

We can translate the grammar directly into data structure definitions, as
shown in Figure 1.5. Each grammar symbol corresponds to atype in the data
structures:

Grammar type
Stm stm
Exp exp
ExpList exp list
id id
num int

For each grammar rule, there is oneconstructorthat belongs to the type for
its left-hand-side symbol. The MLdatatype declaration works beautifully
to describe these trees. The constructor names are indicated on the right-hand
side of Grammar 1.3.

8



1.3. DATA STRUCTURES FOR TREE LANGUAGES

.
CompoundStm

AssignStm

a OpExp

NumExp

5

Plus NumExp

3

CompoundStm

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp

IdExp

a

Minus NumExp

1

OpExp

NumExp

10

Times IdExp

a

PrintStm

LastExpList

IdExp

b

a := 5 + 3 ; b := ( print ( a , a - 1 ) , 10 * a ) ; print ( b )

FIGURE 1.4. Tree representation of a straight-line program.

type id = string

datatype binop = Plus | Minus | Times | Div

datatype stm = CompoundStm of stm * stm
| AssignStm of id * exp
| PrintStm of exp list

and exp = IdExp of id
| NumExp of int
| OpExp of exp * binop * exp
| EseqExp of stm * exp

PROGRAM 1.5. Representation of straight-line programs.

Modularity principles for ML programs. A compiler can be a big program;
careful attention to modules and interfaces prevents chaos. We will use these
principles in writing a compiler in ML:

1. Each phase or module of the compiler belongs in its own structure.

9



CHAPTER ONE. INTRODUCTION

2. open declarations will not be used. If an ML file begins with
open A.F; open A.G; open B; open C;

then you (the human reader)will have to look outside this fileto tell which
structure defines theX that is used in the expressionX.put() .

Structure abbreviations are a better solution. If the module begins,
structure W=A.F.W and X=A.G.X and Y=B.Y and Z=C.Z

then you can tellwithout looking outside this filethatX comes fromA.G.

P R O G R A M STRAIGHT-LINE PROGRAM INTERPRETER
Implement a simple program analyzer and interpreter for the straight-line

programming language. This exercise serves as an introduction toenviron-
ments(symbol tables mapping variable-names to information about the vari-
ables); toabstract syntax(data structures representing the phrase structure
of programs); torecursion over tree data structures, useful in many parts
of a compiler; and to afunctional styleof programming without assignment
statements.

It also serves as a “warm-up” exercise in ML programming. Programmers
experienced in other languages but new to ML should be able to do this
exercise, but will need supplementary material (such as textbooks) on ML.

Programs to be interpreted are already parsed into abstract syntax, as de-
scribed by the data types in Program 1.5.

However, we do not wish to worry about parsing the language, so we write
this program by applying data constructors:

val prog =
CompoundStm(AssignStm("a",OpExp(NumExp 5, Plus, NumExp 3)),

CompoundStm(AssignStm("b",
EseqExp(PrintStm[IdExp"a",OpExp(IdExp"a", Minus,

NumExp 1)],
OpExp(NumExp 10, Times, IdExp"a"))),

PrintStm[IdExp "b"]))

Files with the data type declarations for the trees, and this sample program,
are available in the directory$TIGER/chap1 .

Writing interpreters without side effects (that is, assignment statements that
update variables and data structures) is a good introduction todenotational
semanticsandattribute grammars, which are methods for describing what
programming languages do. It’s often a useful technique in writing compilers,
too; compilers are also in the business of saying what programming languages
do.

10



PROGRAMMING EXERCISE

Therefore, do not use reference variables, arrays, or assignment expressions
in implementing these programs:

1. Write an ML function (maxargs : stm →int ) that tells the maximum
number of arguments of anyprint statement within any subexpression of a
given statement. For example,maxargs(prog) is 2.

2. Write an ML functioninterp : stm →unit that “interprets” a program in
this language. To write in a “functional” style – without assignment (:= ) or
arrays – maintain a list of (variable,integer) pairs, and produce new versions
of this list at eachAssignStm .

For part 1, remember that print statements can contain expressions that
contain other print statements.

For part 2, make two mutually recursive functionsinterpStm andinterp -
Exp. Represent a “table,” mapping identifiers to the integer values assigned
to them, as a list ofid × int pairs. TheninterpStm should have the type
stm × table → table , taking a tablet1 as argument and producing the new
tablet2 that’s just liket1 except that some identifiers map to different integers
as a result of the statement.

For example, the tablet1 that mapsa to 3 and mapsc to 4, which we write
{a 7→ 3, c 7→ 4} in mathematical notation, could be represented as the linked
list a 3 c 4 , written in ML as("a",3)::("c",4)::nil .

Now, let the tablet2 be just liket1, except that it mapsc to 7 instead of 4.
Mathematically, we could write,

t2 = update(t1, c, 7)

where the update function returns a new table{a 7→ 3, c 7→ 7}.
On the computer, we could implementt2 by putting a new cell at the head of

the linked list: a 3 c 4c 7 as long as we assume that
thefirst occurrence ofc in the list takes precedence over any later occurrence.

Therefore, theupdate function is easy to implement; and the correspond-
ing lookup function

val lookup: table * id -> int

just searches down the linked list.
Interpreting expressions is more complicated than interpreting statements,

because expressions return integer valuesand have side effects. We wish
to simulate the straight-line programming language’s assignment statements
without doing any side effects in the interpreter itself. (Theprint statements

11



CHAPTER ONE. INTRODUCTION

will be accomplished by interpreter side effects, however.) The solution is to
makeinterpExp have typeexp × table → int × table . The result of
interpreting an expressione1 with table t1 is an integer valuei and a new
tablet2. When interpreting an expression with two subexpressions (such as
anOpExp), the tablet2 resulting from the first subexpression can be used in
processing the second subexpression.

E X E R C I S E S

1.1 This simple program implements persistent functional binary search trees, so
that if tree2=insert(x,tree1) , then tree1 is still available for lookups
even while tree2 can be used.

type key = string
datatype tree = LEAF | TREE of tree * key * tree

val empty = LEAF

fun insert(key,LEAF) = TREE(LEAF,key,LEAF)
| insert(key,TREE(l,k,r)) =

if key<k
then TREE(insert(key,l),k,r)

else if key>k
then TREE(l,k,insert(key,r))

else TREE(l,key,r)

a. Implement a member function that returns true if the item is found, else
false .

b. Extend the program to include not just membership, but the mapping of
keys to bindings:

datatype ’a tree = · · ·
insert: ’a tree * key * ’a -> ’a tree
lookup: ’a tree * key -> ’a

c. These trees are not balanced; demonstrate the behavior on the following
two sequences of insertions:
(a) t s p i p f b s t
(b) a b c d e f g h i

*d. Research balanced search trees in Sedgewick [1988] and recommend
a balanced-tree data structure for functional symbol tables. (Hint: to
preserve a functional style, the algorithm should be one that rebalances
on insertion but not on lookup.)
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