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Abstract: In recent years, we developed a considerable range of networked robotic applications
based on the software framework Finroc. Such systems often require integrating diverse
communication technologies, protocols, and computing platforms. In this context, beneficial
concepts and approaches applied in the framework are introduced – and their positive impact
on flexibility, interoperability, and development effort of resulting applications is discussed.
Furthermore, applications are presented and tool support is illustrated.
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1. MOTIVATION

Many important and innovative applications in the service
robotics domain depend on computer networks. Apart
from distributing robot control systems to multiple com-
puting nodes, common use cases include teleoperation and
multi-agent systems. Obtaining information on a robot’s
operating environment from sensor nodes and other exter-
nal systems is another relevant area. It has potential to
increase a robot’s performance – or to reduce costs, size,
and energy consumption of sensors required on the robot.

Systems to be connected are often heterogeneous with
respect to computing architectures, communication tech-
nologies, protocols, and patterns. It is always possible to
implement specific solutions for interconnecting two par-
ticular systems. However, this can cause considerable effort
with respect to development and maintenance. Solutions
that cover whole classes of systems are beneficial in this
regard and also more flexible.

Robot control systems are typically based on powerful
frameworks that provide a broad range of standard func-
tionality as well as valuable development tools. They have
a fundamental impact on effort required for development
and maintenance of robot control systems as well as many
of their quality attributes, as discussed in [Reichardt et al.
(2013b)]. Interoperability and integrability are quality at-
tributes that are particularly important in the area of
networked robotics. Support for relevant communication
standards has a major impact in this respect.

Naturally, an adequate network transport mechanism is
of central importance for distributed applications – which
have varying requirements in this regard. Robustness, low
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bandwidth requirements, low computational overhead, low
latency, and support for quality of service (QoS) param-
eters are typically desirable attributes. Security is im-
portant for robot operation over the Internet. Slim solu-
tions are required for small, embedded systems. Supported
communication patterns and network topology are further
aspects for consideration.

Over the years, we have developed a considerable range of
networked robot control systems. They are illustrated in
Fig. 1. Central areas are user interfaces for remote robot
operation and smart environments – involving a notable
range of applications, hardware devices, communication
technologies, and standards. Some systems obtain relevant
information from the Internet.

The older applications were realized in mca2 [Scholl
et al. (2001)], while newer applications are based on
Finroc 1 [Reichardt et al. (2013b)]. There are decisions
in robotic framework design that significantly determine
how suitable they are for different types of networked
applications. These, and the approaches taken in Finroc,
are discussed in section 3 – while section 4 presents some
applications in more detail.

2. RELATED WORK

Virtually all robotic frameworks support creating net-
worked applications. Systems are typically decomposed
into components (sometimes also called “modules” or
“nodes”) which may be instantiated in separate processes
possibly running on different systems. They can be con-
nected in a network-transparent way in order to create
distributed robot control systems.

Network transport mechanisms have significantly differing
characteristics. Some frameworks provide slim, custom

1 http://www.finroc.org
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Fig. 1. Networked robotics use cases at the Robotics Research Lab. Black arrows indicate wired connections, while grey
arrows indicate connections that are at least partly wireless.

solutions tailored to their requirements. Examples include
the Player Project [Gerkey et al. (2001)] and ROS [Quigley
et al. (2009)]. Others rely on popular middleware packets
and standards. Orocos [Soetens (2006)] and OpenRTM-
aist [Ando et al. (2008)], for instance, provide implemen-
tations based on CORBA. Due to the popularity of ROS,
its TCP-based network transport has become a de-facto
standard that several other approaches are interoperable
with.

Some frameworks are independent of a specific network
transport, as no solution is suitable for every application.
The Player Project is among the first frameworks designed
in this way. OPRoS [Jang et al. (2010)] features a notable
solution with respect to middleware transparency. Few
frameworks including Orocos are transport-independent,
even for intra-process communication.

Interoperability with third-party systems requires sup-
porting the standards or protocols they use. YARP is
a network transport-independent approach “designed to
play well with other architectures” [Fitzpatrick et al.
(2008)]. [Wienke et al. (2012)] present a notable approach
to achieve interoperability among systems based on differ-
ent middleware standards and IDLs. If not provided by the
framework, bridges are often implemented as components.
The component model can be a limiting factor in this
respect – e.g. if component interfaces must be static.

[Broxvall et al. (2007)] propose the PEIS middleware
for smart environments involving robots. Notably, its
lightweight variant is suitable for embedded systems with
merely 4kb of memory.

An extensive survey on design principles in state-of-the-art
frameworks can be found in [Reichardt et al. (2013a)]. We
are not aware of any other solution providing the central
features presented in the next chapter in combination.

3. FINROC

Development of Finroc began in 2008 at the University
of Kaiserslautern. In a systematic design approach, critical
areas of design were identified and investigated – carefully
considering their impact on the many relevant quality
attributes of robot control systems. Apart from that, the
qualities we learned to appreciate in mca2 were preserved.
Thus, application style and tools are in many ways similar.

Finroc’s key features include a slim and highly modular
framework core as well as an efficient, zero-copy, lock-
free, real-time transport for intra-process communication.
Intra-process runtime construction and suitability for up
to thousands of components are further distinguishing
properties. In addition, it features network transport-
independence, support for multiple and extensible compo-
nent models, composite components, and dynamic compo-
nent interfaces. Any copyable or movable C++11 type can
be used in component interfaces – enabling using domain
types directly. Supported communication mechanisms in-
clude data-flow ports, service ports and blackboards – no-
tably all provided as optional plugins (see Fig. 3). Details
can be found in [Reichardt et al. (2013b)].

There are full Finroc implementations available in
C++11 and Java. The latter is suitable for the Android op-
erating system. Finroc-lite is a related lightweight C++
implementation developed by Robot Makers GmbH 2 for
small embedded processors. It is currently used on Altera
Nios II soft cores.

In order to increase reusability of software artifacts
and to avoid framework lock-in, functionality that is
not framework-dependent is implemented in independent

2 http://robotmakers.de



libraries called rrlibs – contributing to a separation of
concerns in framework implementation and components.

3.1 Network-related Design Principles

Figure 2 illustrates a selection of quality attributes, frame-
work design aspects, and some of their major relations in
the context of networked robot control systems.

Robot Control System

Qualities (network-related)

Execution Qualities
Interoperability

Adaptability
Responsiveness (Latency)

...

Evolution Qualities
Maintainability
Changeability

Flexibility
...

Development E�ort for Networking

Areas of Design

Component Model
- Component Interfaces
- Communication Patterns
- Type System
- Component Granularity
- Runtime Diagnosis and
    Recon�guration

Runtime Model
Programming Languages
  and Paradigms
API and Application
  Constraints
Reuse Approaches

Implementation
- Internal Transport
- Network Transport
- Real-time Capabilities
- Runtime Construction

                                 Tooling                  

Framework Design Aspects

Network transport-independence
Multi-transport

Dynamic Component Interfaces

Runtime Construction

Runtime Model

Type System (Component Interfaces)

Adherence to Standards

Separation of Concerns
- "4C" Model
- Plugin Architecture
- Separate framework-
      independent code
- Transport-independence
- Avoid Framework-lockin

Robot Control System

Qualities (network-related)

Execution Qualities
Interoperability

Responsiveness/Latency
Adaptability

...

Evolution Qualities
Maintainability

Flexibility
Changeability

...

Development E�ort for Networking

Framework Design Aspects

Type System (Component Interfaces)

Runtime Model

Dynamic Component Interfaces
and Runtime Construction

Support for Standards

Network transport-independence
and Multi-transport

Fig. 2. Overview on network-related topics in framework
design

The network transport has an impact on all network-
related execution qualities of a system. We opted for net-
work transport-independence in Finroc so that suitable
transports for every application can be selected. As the
choice can be changed later, this has a positive impact on
several evolution qualities of the implemented system.

Figure 3 shows Finroc’s slim and highly modular frame-
work core with a selection of plugins. All plugins are op-
tional. By selecting a suitable set of plugins, the framework
can be tailored to the requirements of an application.
Notably, network transports are also provided as plugins
– or as components. Typically, components are used for
communication with a defined set of subsystems. They are
instantiated at a specific place in a robot control system
and have similar characteristics to components providing
hardware drivers. Plugins are used for network transports
that are added to whole Finroc runtime environments.

Two such plugins are highlighted. ros provides interoper-
ability with ROS components. tcp is a custom TCP-based
protocol tailored to Finroc’s requirements. It is a binary
peer-to-peer protocol featuring simple quality-of-service.
Furthermore, it is robust with respect to temporary con-
nection losses and allows changing update rates for every
data port individually at runtime. The implementation
is based on the Boost.Asio library and opens only one
TCP port. As our industrial partners acknowledged, it is
suitable and convenient for remote maintenance over the
Internet using Finroc’s standard development tools. An
early implementation has been used for teleoperation over
the Internet [Koch et al. (2008)]. For more sophisticated
networking, a plugin for integrating middleware based on
the DDS standard is being developed.

Supporting relevant standards has a positive impact on
interoperability of systems. Furthermore, as standards are
mature and stable, they are beneficial with respect to
development effort and maintainability. However, lack of
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Fig. 3. Finroc’s modular core with a selection of plugins
and communication components

required features or heavyweight implementations can be
drawbacks for homogeneous framework integration.

Robot Makers GmbH developed support for the Ether-
CAT real-time bus. This allows integrating standard com-
ponents from automation industry. dsp rrlab provides a
custom, CAN-based protocol for communication between
embedded PCs and DSP boards, while can bus is a more
generic component for exchanging messages with third-
party electronic control units. amica provides access to
wireless sensor nodes – as presented in section 4.2.

Notably, the Finroc components wrapping these proto-
cols are thin – with often only a few hundred lines of code.
In other frameworks with similar properties, it should be
possible to wrap the rrlibs with equally little effort. Most
of the communication plugins and components contain
bridges that attach I/Os of the protocol they contain to
Finroc data ports.
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Fig. 4. Two Finroc component types

Component types are also provided via optional plug-
ins – e.g. structure and ib2c. The structure plugin con-
tains Finroc’s standard component types. One is the
“SenseControlModule” (see Fig. 4a), which is very similar
to “Modules” in mca2. It processes sensor and controller
data in separate tasks that have their own interfaces for



incoming and outgoing data. In Finroc, service ports were
added. ib2c contains components for the behavior-based
architecture [Proetzsch (2010)]. Fig. 4b shows a simple
behavior. These have only data flow interfaces.

Without component plugins, Finroc can be set up as
middleware only. It is available as shared library that can
be linked against, in order to be easily integrable in other
applications – possibly for enabling interoperability.

The types that can be used in component interfaces
are a key issue with respect to interoperability. Some
frameworks apply IDLs, while others allow using e.g. C++
types directly – provided they fulfill certain requirements.
These requirements typically include defining serialization.
In order to use data types from third-party libraries
directly, it must be possible to specify serialization without
modifying classes – e.g. via C++ operator overloading
or traits. A well-defined IDL has major advantages with
respect to multi-language support. Bridging between two
IDLs is challenging. In Finroc, we opted for native data
types in component interfaces. This can avoid overhead for
data conversion. Notably, types generated by IDLs may be
used as well.

The ability to instantiate, connect, and delete components
at application runtime (runtime construction) can have
advantages for networked applications. When operating in
smart environments, for instance, robots typically need to
condense the available sensor information in homogeneous
views of the environment. Suitable components to perform
such tasks can be created as sensors are encountered.
Apart from that, it simplifies implementations of commu-
nication components with dynamic sets of I/Os if ports can
be added and removed from their interfaces at runtime.

Finally, the runtime model has an impact on the latency
of a networked system. If incoming data is processed in
a periodic loop, data will be processed with an average
delay of half the cycle time. Finroc provides event-driven
execution in case this is to be avoided.

3.2 Graphical Tooling

Fig. 5. FinGUI: flexible GUI editor

There are two major graphical tools for Finroc – both
implemented in Java. FinGUI is a flexible and extensible
user interface editor (see Fig. 5 and Fig. 7). Widgets are
arranged on a scalable canvas – possibly in multiple tabs
and windows. Similar to components, a widget’s interface
is a set of ports. These can be connected to any port in

Fig. 6. Finstruct: application visualization, inspection,
and construction

a connected Finroc application with a compatible type.
New widget types can be added via plugins. In principle,
they may contain complex Java Swing applications. Gen-
erally, the FinGUI helps to minimize development effort
for graphical user interfaces of predictable quality.

Finstruct is a graphical tool for application visualiza-
tion and construction (see Fig. 6). It enables viewing
and setting the current values of all data flow ports and
parameters in running Finroc applications – an indis-
pensable help for testing, debugging, and tracking down
malfunctioning components. Components can be instan-
tiated, connected, and deleted at application runtime. As
changes can be saved, it is an optional tool for live creation
of robot control systems. It is used in several projects in
this way. An extensible set of special-purpose views enables
visualizing particular aspects of an application. There are
special such views for behavior-based networks or visual-
ization of the amount of data exchanged by components.

4. NETWORKED ROBOTIC APPLICATIONS

As Fig. 1 indicates, various networked robotic applications
were realized at the Robotics Reasearch Lab. [Koch et al.
(2008)] present the FinGUI tool in more detail – including
options to integrate user interfaces in web pages. The
latter was used for semi-autonomous teleoperation of a
mobile indoor robot over the Internet – the robot oper-
ating in a smart environment in the context of ambient
assisted living. Other examples include remote operation
of commercial vehicles using mobile Android devices, or
exploiting Internet services in interaction of humans with
a humanoid robot.

In the following, two applications are presented in more
detail: one involving user interfaces as well as Internet
services, the other one dealing with wireless sensor nodes
in smart environments.

4.1 Mission Planning in Aerial Images

Based on Finroc’s graphical user interface editor FinGUI,
a plugin to plan, visualize and analyze robotic missions
has been developed. Its widget uses aerial images as well
as map data from different web providers to display all
information in a human readable way (see Fig. 7).

Usability of the widget is comparable to well-known map
services available on the web. By typing a postal address, a
geographic coordinate (e.g. latitude 49.4235 and longitude
7.7540) or a UTM coordinate into the address bar, the



Fig. 7. FinGUI with a topological map shown in the
developed widget

location of the mission can be defined. The postal address
or location description is converted to a geographic coordi-
nate using Google’s Geocoding API. In contrast to most of
the online map services, the widget supports multiple data
providers via a plugin mechanism, such as Esri ArcGIS,
Google Maps, Microsoft Bing, Nokia Maps and Open-
StreetMap as well as their different layers. Additionally, it
offers a seamless switch between these providers, preserv-
ing the current section and zoom settings. Furthermore, it
has a built-in caching mechanism to provide data when no
Internet connection is available.

For the task of manual mission planning, a topological
map represented as a directed graph can be set up by
an operator. Therefore, the user defines waypoints based
on the aerial imagery or the map data which can be
positioned and adjusted using the mouse or by entering
GPS/UTM coordinates. For graphically placed nodes, the
geographic location is automatically determined based on
the GPS -annotated images. Afterwards, the connections
between these nodes can be edited using the mouse. Here,
bidirectional as well as unidirectional edges are possible
to be able to model one-way connections. To start the
new mission, the map can be transferred to the robot
in an XML-based representation using Finroc’s built-in
communication.

The widget was originally developed for the ravon project
[Armbrust et al. (2010)], where it can also be used to
update a mission by correcting or extending the topologi-
cal graph. This is possible because of ravon’s multi-layer
architecture, allowing the navigator to replan while the
behavior-based pilot steers the robot safely through the
local environment. That way, by continuous updating of
the graph and replanning by the navigator, the widget
becomes a remote control that allows steering the robot
by clicking on aerial images.

The widget also offers several options for analyzing a
running mission. For instance, the robot’s position and
orientation can be displayed as an overlay on the aerial
imagery, which can help to identify possible failures e.g.
of a GNSS receiver or an inertial measurement unit. For
a human operator the visualization within aerial images is
more intuitive than interpreting GPS coordinates or yaw
angles.

Again motivated by the application in ravon – the topo-
logical map is evaluated and modified as the robot drives
along its connections [Braun (2009)] – additional map

information can be shown as another layer. In contrast
to the previously mentioned mission setup, the evaluated
map contains information regarding the drivability and the
accessibility as determined by the robot’s planning and
navigation algorithms during the mission. The drivability
is currently divided into three different groups: executable,
not executable, and speculative if no execution information
is available yet. In the visualization, these classes are
indicated by different colors for edges and nodes.

4.2 Wireless Sensor Nodes

Finroc has been used together with nodes of a Wireless
Sensor Network (WSN) on several occasions. One of the
first applications was the optimization of a mobile robot’s
navigation by tracking people within a WSN using a par-
ticle filter [Arndt and Berns (2012)]. People moving in the
environment were detected with the help of passive in-
frared (PIR) sensors on wireless sensor nodes, distributed
in the target environment. The robot was able to use
this data to estimate positions of people and adapt its
maximum velocity according to the system state.

The work mentioned above employed nodes of the Am-
ICA wireless sensor network platform. These nodes are
based on a low-power 8 bit microprocessor (Atmel Atmega
324P), a 433/868/915 MHz radio module, and several
sensors and actuators which can be mounted on each node.

As already mentioned in section 3, the communication
with AmICA nodes is provided by a Finroc component.

The frames that are sent over the radio layer are the basic
elements of communication in the AmICA WSN. They can
be used as a native data type in the Finroc framework,
allowing modules to send and receive frames.

AmICA Nodes

AmICA Transceiver

serial link
ttyUSBx

AmICA HW
Interface

AmICA
Simulation

People Tracking

Robot Control

struct amica_frame

Finroc

Fig. 8. Integration of AmICA wireless sensor nodes in the
Finroc framework

In addition to interfacing the real hardware, experiments
can also be conducted by replacing the real hardware
with a simulation of the nodes. This simulation backend
is realized using the simulation tool SimVis3D in Finroc.



Figure 8 provides an architectural overview of how the real
or the simulated hardware can be accessed.

The simulation environment of the AmICA nodes has also
successfully been used to feed node data back to the Smart
Environment Platform framework TinySEP [Wille et al.
(2012)], which was initially intended only to be used with
real hardware. Recorded data from a real WSN has served
as the base for automatically creating different simulation
scenarios which have then been “played back” with the
help of SimVis3D. The setup has been used to evaluate the
performance of TinySEP under many different conditions
[Arndt et al. (2013)].

5. CONCLUSION AND FUTURE WORK

In this paper, we discuss principles in framework design
with particular relevance for networked robotic applica-
tions. The Finroc framework is an example of how they
can be implemented. The successful use in a diverse range
of robotic applications – notably including commercial
ones – shows that these approaches are suitable and ben-
eficial for real-world applications.

Over the last decade, we implemented a considerable
collection of drivers and algorithms for robot control
systems. They are available as slim and independent open
source libraries (rrlibs) as well as Finroc components.
In its current state, we believe that Finroc provides the
necessary means to conveniently create efficient, complex
robot control systems. Furthermore, it integrates well with
other solutions and systems – making it a viable option
for subsystems. All these approaches aim at providing
reusable software artifacts that are of value in the research
community also.

Future technical work will include the integration of fur-
ther middleware standards in Finroc plugins – such as
DDS, RT Middleware [Ando et al. (2008)] or OPC UA.
Current projects target service robot operation in further
smart environments, namely production facilities and con-
struction sites.
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G., and Matarić, M. (2001). Most valuable player: A
robot device server for distributed control. In Proc.
of the IEEE/RSJ Internatinal Conference on Intelligent
Robots and Systems (IROS), 1226–1231. Wailea, Hawaii.

Jang, C., Lee, S.I., Jung, S.W., Song, B., Kim, R., Kim, S.,
and Lee, C.H. (2010). Opros: A new component-based
robot software platform. ETRI Journal, 32, 646–656.

Koch, J., Reichardt, M., and Berns, K. (2008). Uni-
versal web interfaces for robot control frameworks.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Nice, France.

Proetzsch, M. (2010). Development Process for Complex
Behavior-Based Robot Control Systems. Verlag Dr. Hut.
ISBN: 978-3-86853-626-3.

Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A.Y. (2009). ROS: an
open-source robot operating system. In Proceedings of
the Workshop on Open Source Software in Robotics, in
conjunction with the IEEE International Conference on
Robotics and Automation (ICRA). Kobe, Japan.
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