
REAL-TIME DVB-S2 LDPC DECODING ONMANY-CORE GPU ACCELERATORS

Gabriel Falcao�, Joao Andrade�, Vitor Silva� and Leonel Sousa†

�Instituto de Telecomunicações, Department of Electrical and Computer Engineering
University of Coimbra, P-3030-290 Coimbra, Portugal

†INESC-ID, Department of Electrical and Computer Engineering
IST/Technical University of Lisbon, Portugal

ABSTRACT

It is well known that LDPC decoding is computationally
demanding and one of the hardest signal operations to paral-
lelize. Beyond data dependencies that restrict the decoding of
a single word, it requires a large number of memory accesses.
In this paper we propose parallel algorithms for performing in
GPUs the most demanding case of irregular and long length
LDPC codes adopted in the Digital Video Broadcasting –
Satellite 2 (DVB-S2) standard used in data communications.
By performing simultaneous multicodeword decoding and
adopting special data structures, experimental results show
that throughputs superior to 90 Mbps can be achieved when
LDPC decoders for the DVB-S2 are implemented in the
current GPUs.

Index Terms— DVB-S2, LDPC, Communications, GPU,
CUDA

1. INTRODUCTION

When Gallager invented Low-Density Parity-Check (LDPC)
codes in 1962 [1], the computational power required to de-
code large codewords in real-time was not available. Nearly
thirty years later (in 1996) LDPC codes recaptured the atten-
tion of academia and industry [2] and Very Large Scale Inte-
gration (VLSI) solutions were proposed [3, 4, 5]. These be-
came the approach to computing this type of intensive signal
processing applications used in modern communications.
Until recently, signal processing algorithms were devel-

oped with a single processor in mind, but because of the
change of paradigm in computer architectures, which has
increased the number of cores in a system rather than its fre-
quency of operation, they have to be parallelized and acceler-
ated in order to take advantage of multi-core processing sys-
tems [6]. Although LDPC decoding solutions have recently
been proposed for multi-core platforms [7, 8, 9, 10, 11, 12],
they mainly address short and regular codes. In this paper we
propose for the first time LDPC decoders based on Graphics

This work has been partially supported by the Portuguese Foundation for
Science and Technology (FCT) under grant SFRH/BD/37495/2007.

Processing Units (GPU) for the computationally demanding
case of irregular LDPC codes adopted in the Digital Video
Broadcasting – Satellite 2 (DVB-S2) standard [13], which
use very large codewords up to N = 64800 bit long. The
irregular nature of these LDPC codes can impose memory
access constraints and this, associated with large code size,
creates challenges which are difficult to overcome. Also, the
scheduling mechanism imposes important restrictions on the
attempt to parallelize the algorithm. Thread-level and data-
level parallelism can be conveniently exploited, together with
the use of fast local memories, to harness the computational
efficiency of these GPU-based signal processing algorithms.
The algorithms developed support multicodeword decod-
ing [10, 12] and are scalable to future GPU generations, which
are expected to have a higher number of cores. We show that
it is possible to achieve real-time DVB-S2 LDPC decod-
ing with throughputs above 90 Mbps on ubiquitous GPU
computing platforms. We conclude that such programmable
devices can compete with dedicated VLSI hardware [3, 4, 5]
in throughput and BER performance, and that they represent
an alternative to typical VLSI solutions which have limita-
tions imposed by quantization effects and the extensive use
of fixed-point arithmetic, and high non-recurring engineering
(NRE) costs.
This paper is structured as follows. Section 2 addresses

the main properties of LDPC codes used in the DVB-S2 stan-
dard. Section 3 introduces the parallel processing structures
provided by the many-core GPUs and presents the proposed
parallel algorithm for LDPC decoding. Section 4 shows ex-
perimental results, and section 5 concludes the paper and in-
dicates future directions for research.

2. DVB-S2 LDPC CODES AND DECODING
ALGORITHM

LDPC codes are (N,K) linear block codes defined by sparse
binary parity-checkH matrices of codeword length N , with
K information nodes and N − K parity-check equations.
They are usually represented by bipartite Tanner graphs [14],
connecting Bit Nodes (BN) and Check Nodes (CN). The in-

1685978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

formation received from the channel is propagated, processed
and exchanged between neighboring nodes of the graph, as
depicted by the arrows in figure 1. If at the end of an itera-
tion the codeword does not verify all parity-check equations,
a new iteration is launched until the maximum number of al-
lowed iterations occurs or a valid codeword is reached.

Fig. 1. Generic Tanner graph and iterative decoding using a
thread-per-node parallel approach.

The LDPC codes adopted in DVB-S2 have a periodic na-
ture, which allows the exploitation of suitable representations
of data structures for attenuating their computational require-
ments. The properties of DVB-S2 codes are exploited for the
GPU parallel architectures in this paper.

2.1. DVB-S2 LDPC IRA Codes

The FEC system of the recent DVB-S2 standard [13] incor-
porates a special class of systematic LDPC codes based on
Irregular Repeat and Accumulate (IRA) codes [13, 14]. The
parity-check matrixH has the form:

H(N−K)×N =
[
A(N−K)×K B(N−K)×(N−K)

]
=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 · · · a0,K−1 1 0 · · · · · · · · · 0

a1,0 · · · a1,K−1 1 1 0

...
...

... 0 1 1
. . .

...
...

. . .
...

...
. . .

. . .
. . . 0

...

aN−K−2,0 · · · aN−K−2,K−1

...
. . . 1 1 0

aN−K−1,0 · · · aN−K−1,K−1 0 · · · · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)
where A is sparse and B is a staircase lower triangular ma-
trix [13]. The periodicity constraints imposed on the pseudo-
random generation of A allow a significant reduction in the
storage requirements without code performance loss [13].
Moreover, the LDPC codes adopted in the DVB-S2 stan-

dard support two different frame lengths, one for short (N =
16200 bit) and the other for normal frames (N = 64800 bit).
The short frame mode supports 10 distinct code rates, while
the normal one supports 11 rates [13]. The column and row
weights are variable and depend on the rate.

2.2. Min-Sum Algorithm

The Min-Sum algorithm was adopted in this work to per-
form the decoding of computationally intensive long LDPC
codes because it is less complex than the well-known Sum-
Product algorithm [14]. As figure 1 indicates, the inputs of
the decoder are log-likelihood ratios (LLRs), which represent
the logarithm of the ratio of two complementary probabilities
(LLR(x) = ln(p(x = 0)/p(x = 1))) at the input of the
decoder [14].
For each node pair (BNn, CNm) we initialize Lqnm with

the a priori LLR information received from the channel,LPn.
Then, we proceed to the iterative body of the algorithm by
performing steps 4 and 5 described in Algorithm 1. At the

Algorithm 1
1: {Initialization}
2: while (Hĉ

T �= 0 ∧ i < I) {c-decoded word; I-Max. n. of iterations.}
do

3: {For all node pairs (BNn, CNm), corresponding to Hmn = 1 in
the parity check matrixH of the code do:}

4: {Compute the LLR of messages sent from CNm to BNn:}
(Kernel 1 – Check Node processing)

Lrmn =
∏

n′∈N (m)\n

sign (Lqn′m) min
n′∈N (m)\n

|Lqn′m| , (2)

{where N (m)\n represents BN’s connected to CNm excluding
BNn.}

5: {Compute the LLR of messages sent from BNn to CNm:}
(Kernel 2 – Bit Node processing)

Lqnm = Lpn +
∑

m′∈M(n)\m

Lrm′n. (3)

{whereM(n)\m represents the set of CN’s connected to BNn ex-
cluding CNm.}

6: {Finally, we compute the a posteriori LLRs:}

LQn = Lpn +
∑

m′∈M(n)

Lrm′n. (4)

7: {And perform hard decoding.}
8: end while

end, the decoded bits are obtained at the output of the system
in codeword ĉ.

3. PROPOSED PARALLEL ALGORITHM FOR
MANY-CORE GPU

A computing system with a GPU consists of a host, typically a
Central Processing Unit (CPU) that is used for programming
and controlling the operation of the GPU. The GPU is a mas-
sively parallel processing engine [15] that can speed up pro-
cessing by simultaneously performing the same operation on
distinct data distributed by many arithmetic processing units.
GPUs are programmable and one of the most widely used
programming models is the NVIDIA Compute Unified De-
vice Architecture (CUDA). It exploits data-level parallelism

1686

while guaranteeing the coherent use of the different levels of
memory hierarchy. The execution of a kernel on a GPU is

Fig. 2. Parallel multithreaded LDPC decoder processing a)
kernels 1 and 2 on the GPU using one thread per node of the
Tanner graph where, for example b), BNd, BNf , ..., BNK

are BNs connected to CN0, and threads are grouped and pro-
cessed in B blocks on the c) GPU many-core architecture.

distributed across a grid of thread blocks with adjustable size.
As figure 2 shows, each multiprocessor has several cores that
can control more than one block of threads. Each block is
composed of a predefined number of threads that execute the
kernel synchronously. They are organized in groups of 32
threads, where each multiprocessor time-slices the threads in
a group among its stream processors (SP in the figure).

3.1. Proposed parallel algorithm

The algorithm developed attempts to exploit two major ca-
pabilities of GPUs: the massive use of thread and data paral-
lelism and the minimization of memory accesses, which often

degrade performance in multi-core systems [15].
Multithread-based processing: In order to extract the

essence of full thread-level parallelism from the GPU, the
proposed DVB-S2 LDPC decoder exploits a thread-per-node
approach (thread per row and thread per column based pro-
cessing). Figure 2 illustrates this strategy with 16 threads per
block (here represented by tC0

, ..., tC15
) being processed in

parallel inside block 0 for the Check Node processing indi-
cated in kernel 1 from Algorithm 1. A similar approach is
applied to the remaining threads tC16

, ..., tCN−K−1
of ker-

nel 1 (retrieved from figure 1), which are grouped and exe-
cuted in other blocks of the grid. Also, in kernel 2 threads
tB0

, ..., tBN−1
perform the equivalent parallel Bit Node pro-

cessing. The efficiency of this parallelism is achieved by
adopting a flooding schedule strategy that eliminates data
dependencies in the exchange of messages between BNs and
CNs [14]. Additionally, to fully exploit the massive process-
ing power of the GPU, the algorithm performsmulticodeword
decoding by decoding 16 codewords in parallel. Moreover,
this solution uses 8 bit to represent data, which compares
favorably [10] with existing state-of-the-art VLSI DVB-S2
LDPC decoders that typically use 5 or 6 bit to represent
data [3, 4, 5].
Coalesced accesses to data structures: In a GPU, parallel

accesses to the slow global memorymay kill performance and
should, whenever possible, be avoided. To optimize this type
of operation, data is contiguously aligned in memory, which
favors coalescence to take effect and allows several threads to
access corresponding data in simultaneous [10], as depicted
in figure 3. Nevertheless, modern GPU hardware can be more

Fig. 3. Threads tC0 to tC15 performing parallel coalesced
accesses to the GPU global memory.

efficient at dealing with out-of-order memory accesses and
related issues [15].

4. EXPERIMENTAL RESULTS

This section presents experimental results of decoding all
DVB-S2 codes B1 to B11; they represent the complete set of
rates used in the standard [13] for normal frame lengths.

4.1. Experimental setup

The application was developed using CUDA 3.0 and the
C/C++ programming language compiled with GCC-4.3. The

1687

host is based on an Asus P6T7 Workstation running the
GNU/Linux kernel 2.6.31-22 x86 64. The device consists of
a Fermi C2050 GPU with 14 multiprocessors and 32 stream
processors per multiprocessor, in a total of 448 cores.

4.2. LDPC DVB-S2 decoders on Fermi GPUs with CUDA

Table 1 shows the throughputs obtained from decoding differ-
ent numbers of iterations for all codes and rates of the DVB-
S2 normal frame standard. It can be seen that throughputs
superior to 90 Mbps can be achieved for all codes. Also, the

Table 1. Throughput of the DVB-S2 LDPC decoder (Mbps)

Code
GPU GPU-optimized

of iterations
1 3 5 10 1 3 5 10

B1 239 163 126 79 284 191 143 87

B2 246 156 116 69 253 167 121 74

B3 227 143 103 61 234 148 109 65

B4 221 133 95 55 233 148 109 65

B5 177 102 72 41 180 104 74 43

B6 225 133 94 55 229 137 99 57

B7 204 116 82 47 210 121 85 49

B8 187 102 70 40 191 105 72 41

B9 175 92 63 35 177 94 64 36

B10 192 97 65 36 194 99 66 36

B11 190 95 64 35 192 97 65 36

right-hand side of table 1 shows an optimized version of the
algorithm that minimizes memory accesses to the GPU’s slow
global memory. In this case, all memory addresses that rep-
resent the edges of the Tanner graph for the case of matrix
B in (1) have a regular staircase profile and can be computed
on-the-fly automatically on the GPU side, thereby reducing
accesses to global memory. This saves processing time and
throughputs are superior to those in the left-hand side of ta-
ble 1. Because kernel 1 performs divergent operations and
since codes B7 to B11 have high row weights (they range
from 14 to 30), it penalizes the performance of the decoder.
As matrix B is small for such rates, there are no significant
improvements seen in the comparison of both versions. In
spite of that, throughputs compare well with state-of-the-art
VLSI solutions for DVB-S2 [3, 4, 5].

5. CONCLUSIONS

In this paper we proposed and developed efficient parallel al-
gorithms to perform the massive decoding of DVB-S2 LDPC
codes on GPUs. We have discussed the main challenges to
implement efficient LDPC decoders on typical GPU architec-
tures supported on CUDA. We have shown that high through-
puts can be achieved for real-time applications, with values
surpassing the 90 Mbps. They accommodate throughput re-
quirements of the DVB-S2 standard and also compete well
in BER performance with existing state-of-the-art VLSI ded-
icated LDPC decoders.

We intend to pursue this work by investigating the possi-
bility of efficiently performing the calculation of all memory
addresses of the Tanner graph on-the-fly, on the GPU side of
the system. The goal is to reduce expensive accesses to the
slow global memory of the GPU to accelerate the processing
and improve throughput even more.

6. REFERENCES

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE
Transactions on Information Theory, vol. 8, no. 1, pp. 21–28,
1962.

[2] D. Mackay and R. Neal, “Near Shannon Limit Performance
of Low Density Parity Check Codes,” IEE Electronics Letters,
vol. 32, no. 18, pp. 1645–1646, 1996.

[3] F. Kienle, T. Brack, and N.Wehn, “A Synthesizable IP Core for
DVB-S2 LDPC Code Decoding,” in Proceedings of Design,
Automation and Test in Europe, 2005 (DATE’05), March 2005,
pp. 1–6.

[4] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder
for DVB-S2,” in Proceedings of Design, Automation and Test
in Europe, 2006 (DATE’06), March 2006, pp. 1–6.

[5] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and
N. Wehn, “A novel LDPC decoder for DVB-S2 IP,” in
Proceedings of Design, Automation and Test in Europe, 2009
(DATE’09), April 2009, pp. 1308–1313.

[6] T. P. Chen and Yen-Kuang Chen, “Challenges and oppor-
tunities of obtaining performance from multi-core CPUs and
many-core GPUs ,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP’09), April 2009, pp. 613–616.

[7] M. Wu, S. Gupta, Yang Sun, and J. R. Cavallaro, “A GPU
implementation of a real-timeMIMO detector,” inProceedings
of the IEEEWorkshop on Signal Processing Systems (SiPS’09),
October 2009, pp. 303–308.

[8] Hyunwoo Ji, Junho Cho, and Wonyong Sung, “Massively par-
allel implementation of cyclic LDPC codes on a general pur-
pose graphics processing unit,” in Proceedings of the IEEE
Workshop on Signal Processing Systems (SiPS’09), October
2009, pp. 285–290.

[9] H. Ji, J. Cho, and W. Sung, “Memory Access Optimized
Implementation of Cyclic and Quasi-Cyclic LDPC Codes on
a GPGPU,” Journal of Signal Processing Systems, DOI
10.1007/s11265-010-0547-9, 2010.

[10] G. Falcao, V. Silva, and L. Sousa, “How GPUs can outperform
ASICs for fast LDPC decoding,” in Proceedings of the 23rd
ACM International Conference on Supercomputing (ICS’09),
June 2009, pp. 390–399.

[11] G. Falcao, V. Silva, and L. Sousa, GPU Computing Gems,
chapter Parallel LDPC Decoding, ed. byWen-mei Hwu, vol. 1,
NVIDIA, Morgan Kaufmann, 2011.

[12] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC Decoding
on Multicore Architectures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 2, pp. 309–322, 2011.

[13] EN 302 307 V1. 1.1, European Telecommunications Standards
Institute (ETSI), “,” Digital video broadcasting (DVB); second
generation framing structure, channel coding and modulation
systems for broadcasting, interactive services, news gathering
and other broad-band satellite applications, 2005.

[14] T. K. Moon, Error Correction Coding – Mathematical Meth-
ods and Algorithms, John Wiley & Sons, Inc., 2005.

[15] David Kirk and Wen-mei Hwu, Programming Massively Par-
allel Processors: A Hands-on Approach, Morgan Kaufmann,
2010.

1688

