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Abstract. This paper has two achievements. The first aim of this paper is optimization of the lossy
compression coder realized as companding quantizer with optimal compression law. This opti-
mization is achieved by optimizing maximal amplitude for that optimal companding quantizer for
Laplacian source. Approximate expression in closed form for optimal maximal amplitude is found.
Although this expression is very simple and suitable for practical implementation, it satisfy opti-
mality criterion for Lloyd–Max quantizer (for R >= 6 bits/sample). In the second part of this paper
novel simple lossless compression method is presented. This method is much simpler than Huff-
man method, but it gives better results. Finally, at the end of the paper, we join optimal compand-
ing quantizer and lossless coding method together in one generalized compression method. This
method is applied on the concrete still image and good results are obtained. Besides still images,
this method also could be used for compression speech and bio-medical signals.

Keywords: simple lossless compression algorithm, companding quantization, optimal maximal
amplitude.

1. Introduction

Quantizers play an important role in every A/D conversion system. They are applied for
the purpose of storage and transmission of continual signals. A vast of research was done
in this topic. An efficient algorithm for design of the optimal quantizer for the source with
known distribution was developed by Lloyd and Max (Max, 1960). This is an iterative
method which gives the sequence of quantizers converging to the optimal quantizer.

Lloyd–Max algorithm is efficient for the small number N of quantization points (usu-
ally for N � 32). However, for the large number of quantization points, it is time con-
suming. Also the realization complexity of the optimal quantizers with many quantization
levels is very high. One solution which overcomes these difficulties is the companding
model (Jayant and Noll, 1984, Chapter 4, pp. 129–139; Gray, 2004). Quantizers based on



100 Z.H. Peric, M.D. Petkovic, M. Dinčic

the companding model (also known as companding quantizers) have simple realization
structure and performances close to the optimal. Also the design of such quantizers is
more efficient than Lloyd–Max algorithm since it does not require the iterative method.
This difference is very notable for some commonly used sources including the Laplacian
source. We will consider companding quantizer, because of less complexity in design and
implementation.

Memoryless Laplacian source is commonly used model in many applications, due to
its simplicity and fact that many parameters and characteristics can be found as the closed
form relations (including the optimal compression function). Examples are speech signal,
images, video signal, bio-medical images (for example, computed tomography scanner),
etc. For transmission, processing and storing that signals, simple and fast compression al-
gorithms are desirable. One solution is given in (Starosolsky, 2007) for uniform quantizer.
In this paper we give simpler solution for non-uniform quantizer.

In paper (Ramalho, 2002) lossless compression algorithm was given that provided
only the additional compression of the digitized signal (PCM), but without providing a
quality improvement. Our algorithm gives quality improvement as well as further com-
pression. In paper (Nikolic and Peric, 2008) lossy compression and Lloyd–Max quantizer
are applied. In our paper simple algorithm for lossy and lossless compression is given.
For lossy compression simpler quantizer is used without deterioration of performances.
Using this algorithm for speech signal compression, improvement of 0.33 bits/sample is
achieved in relation to algorithm used in (Nikolic and Peric, 2008).

In this paper we want to accomplish two goals. Our first goal is to optimize perfor-
mances of the companding quantizer for memoryless Laplacian source by optimizing
maximal amplitude. In the paper (Na and Neuhoff, 2001) it is given one heuristic solu-
tion for the support region of the optimal quantizer. Also paper (Na, 2004) deals with the
upper bound of this support region. The heuristic solution for the maximal signal ampli-
tude in the compading model is given in (Nikolic and Peric, 2008). An intension of this
paper is to generalize these results by giving several approximate analytical expressions
for the maximal signal amplitude and its numerical computation. As it is shown, one of
the analytical expressions almost coincides with the optimal value.

The second goal of this paper is the construction of the lossless coder for Laplacian
source with simple realization structure. The well-known efficient algorithm for lossless
coding of the information sources with known symbol probability is Huffman algorithm
(Hankerson et al., 2004; Sayood, 2006). It requires very complex realization structure and
also is time consuming. Hence we give the simple coding algorithm for M -ary extended
information source and give the optimization of the extension order M . Our algorithm
has better performances (smaller bit-rate) and drastically simpler realization complex-
ity than Huffman algorithm. Our algorithm is also simpler than algorithm proposed in
(Starosolsky, 2007), because we have 1 bit in prefix and (r − 1)bits or r bits in suffix, that
is, we have constant number of bits in prefix. On the other hand, algorithm in (Starosol-
sky, 2007) uses variable number of bits in prefix, which requires much complex coder,
and especially decoder. Prefix defines region where symbol of M -ary source extension
falls (M is a number of samples in frame, and we can consider frame as M -ary source
extension). Suffix represents codeword for symbol of M -ary source extension.



Simple Compression Algorithm for Memoryless Laplacian Source 101

Finally, we have joined optimal companding quantizer and simple lossless coding in a
generalized compression method. This generalized method is applied on a still image and
good results are obtained, as it shown in the paper. Beside still images, this compression
method can be applied on speech and bio-medical signals.

This paper is organized as follows. Section 2 recalls some basic theory of quantizers
and companding model. In Section 3, optimization of companding quantizer was done
by finding optimal value for the maximal signal amplitude tmax. We gave three approxi-
mate expressions in closed form for tmax and also one numerical method for finding tmax

which is based on minimization of approximate expression for distortion. In Section 4,
we compare the approximations with numerically obtained maximal signal amplitude.
Section 5 deals with the construction and performance analysis of the simple lossless
coding algorithm. In Section 6 we gave generalized compression algorithm which repre-
sents combination of lossy and lossless compression. In this section application of this
generalized method on a still image is presented. Section 7 concludes the paper.

2. Fixed Rate Scalar Quantizers and Companding Technique

An N -point, fixed rate, scalar quantizer is characterized by the set of real numbers
t1, t2, . . . , tN −1, called decision thresholds, which satisfy

−∞ = t0 < t1 < . . . < tN −1 < tN = +∞,

and set y1, . . . , yN , called representation levels, which satisfy yj ∈ αj = (tj−1, tj ], for
j = 1, . . . , N . Sets α1, α2, . . . , αN form the partition of the set of real numbers R and are
called quantization cells. The quantizer is defined as many-to-one mapping Q: R → R

defined by Q(x) = yj where x ∈ αj . In practice, input signal value x is discretized
(quantized) to the value yj . Cells α2, . . . , αN −1 are called inner cells (or granular cells)
while α1 and αN are outer cells (or overload cells). In such way, cells α2, . . . , αN −1

form granular while cells α1 and αN form an overload region. As fixed-rate and scalar
are only types of quantizers considered in the paper, for brevity we will ordinarily omit
these adjectives.

Suppose that an input signal is characterized by continuous random variable X with
probability density function (pdf) p(x). In the rest of the paper we will suppose that
information source is Laplacian source with memoryless property and zero mean value.
The pdf of this source is given by

p(x) =
1√
2σ2

e− |x|
√

2
σ .

The sources with exponential and Laplacian pdf are commonly encountered and the meth-
ods for designing quantizers for these sources are very similar. Without loosing of gener-
ality we can suppose that σ = 1 and last expression becomes

p(x) =
1√
2
e−

√
2|x|.
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Since p(x) is an even function, an optimal quantizer Q must satisfy ti = −tN −i and
yi = −yN −i for arbitrary i = 1, . . . , N .

The quality of the quantizer is measured by distortion of resulting reproduction in
comparison to the original. Mostly used measure of distortion is mean-squared error. It is
defined as

D(Q) = E(X − Q(x))2 =
N∑

i=1

∫ ti

ti−1

(x − yi)2p(x) dx.

The N -point quantizer Q is optimal for the source X if there is no other N -point quantizer
Q1 such that D(Q1) < D(Q). We also define granular Dg(Q) and overload Dol(Q)
distortion by

Dg(Q) =
N −1∑
j=2

∫ tj

tj−1

(x − yj)2p(x) dx,

Dol(Q) =
∫ t1

− ∞
(x − y1)2p(x) dx +

∫ +∞

tN −1

(x − yN )2p(x) dx. (1)

Obviously holds D(Q) = Dg(Q) + Dol(Q). Denote by D∗
N distortion of an optimal N -

point quantizer. Considerable amount of work has been focused on the design of optimal
quantizers for compression sources in image, speech, and other applications. As first
discovered by Panter and Dite (1951), for large N holds D∗

N = c∞/N2. Here c∞ is the
Panter–Dite constant

c∞ =
1
12

(∫ +∞

− ∞
p1/3(x) dx

)3

.

The general method for design of an optimal N -point quantizer for the given source
X is Lloyd–Max algorithm (Max, 1960; Jayant and Noll, 1984, Chapter 4, pp. 129–139).
This is iterative process which starts from some initial quantizer Q(0) and constructs the
sequence Q(n), n = 1, 2, . . . , of quantizers which converge to the optimal quantizer Q∗

(values of thresholds t
(n)
i converge to the thresholds t∗

i of the optimal quantizer Q∗).
Due to the computational complexity of this method, it is not suitable for the design of
optimal quantizers with more than 128 levels. Hence there are developed other methods
for construction of nearly optimal quantizers for large number of quantization levels.

One of the such techniques which is commonly used is companding technique (Judell
and Scharf, 1986). It forms the core of the ITU-T G.711 PCM standard, recommended
for coding speech signals. Companding technique consists of the following steps:

• compress the input signal x by applying the compressor function c(x);
• apply the uniform quantizer Qu on the compressed signal c(x);
• expand the quantized version of the compressed signal using an inverse compressor

function c−1(x).
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The corresponding structure of a nonuniform quantizer consisting of a compressor, a
uniform quantizer, and expandor in cascade is called compandor.

Optimal compression law is used in this paper. Compression function for that law in
dependence of pdf is known, but optimal maximal amplitude for that compression law
hasn’t determined up to now. In this paper this optimal maximal amplitude for optimal
compression law will be determined. There are several ways to define the compressor
function for optimal compression law. Originally, in (Judell and Scharf, 1986) and also
in (Na, 2004) it is the function c: R → (−1, 1) defined by

c0(x) =

∫ x

− ∞ p1/3(x) dx∫ +∞
− ∞ p1/3(x) dx

.

We will use the similar definition as above

c(x; tmax) =

⎧⎪⎨
⎪⎩

−1, x < −tmax,

−1 + 2

∫ x

−tmax
p1/3(x) dx∫ tmax

−tmax
p1/3(x) dx

, x ∈ [−tmax, tmax],

1, x > tmax.

(2)

Value tmax is called maximal signal amplitude. Since an image of the function c(x; tmax)
is (−1, 1), decision thresholds tu,i and representation levels yu,i of the uniform quantizer
are defined by

tu,i = −1 +
2i

N
, (i = 0, 1, . . . , N), yu,i = −1 +

2i − 1
N

, i = 1, 2, . . . , N.

Hence, decision thresholds and representation levels of equivalent non-uniform quantizer
Q(x) = c−1(Qu(c(x))) can be determined as the solutions of the following equations

c(ti; tmax) = tu,i, c(yi; tmax) = yu,i. (3)

By solving the last equations we obtain the values ti and yi as the functions of the maxi-
mal amplitude tmax

ti =
3√
2

log
(

2i + (N − 2i) exp
(

−
√

2
3 tmax

)
N

)
, 0 � i � N/2,

ti =
3√
2

log
(

N

2N − 2i + (2i − N) exp
(

−
√

2
3 tmax

)
)

, N/2 < i � N,

yi =
3√
2

log
(

2i − 1 + (N − 2i + 1) exp
(

−
√

2
3 tmax

)
N

)
, 1 � i � N/2,

yi =
3√
2

log
(

N

2N −2i+1+(2i−1−N) exp
(

−
√

2
3 tmax

)
)

, N/2<i�N, (4)

where log x represents natural logarithm of x.
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Expressions for tN −1 and yN will be used in further consideration and hence we will
give them explicitly

tN −1 =
3√
2

log
(

N

2 + (N − 2) exp
(

−
√

2tmax
3

)
)

, (5)

yN =
3√
2

log
(

N

1 + (N − 1) exp
(

−
√

2tmax
3

)
)

. (6)

For the ease of notation, we will denote the distortion, granular distortion and over-
load distortion by D, Dg and Dol respectively (we will omit the quantizer Q). Using (1)
we obtain that distortion D is function of one parameter tmax. Same holds also for Dg

and Dol. Our goal is to find the optimal value tcomp
max which minimizes distortion D. One

approximate solution is given in (Peric et al., 2007).

3. Estimation of the Optimal Maximal Signal Amplitude

Closed-form expression for the exact distortion D = D(tmax), as the function of the
maximal signal amplitude D = D(tmax) can be obtained by combining relations (1) and
(4). Obtained functional dependence is very complicated, since tmax appears in bounds
of integrals and also in functions under integrations. Hence, the exact minimization of
D(tmax) is very complex (see Section 4), our first goal in this paper is to find some
approximate closed-form expressions for optimal maximal amplitude tmax.

According to the (Peric and Nikolic, 2007), granular distortion Dg can be approxi-
mated by the value D̃g as follows

D̃g =
1

12(N − 2)2

( ∫ tN −1

−tN −1

p1/3(x) dx

)3

=
9

2(N − 2)2

(
1 − exp

(
−

√
2tN −1

3

))3

. (7)

On the other side, we can explicitly compute overload distortion by

Dol = 2
∫ +∞

tN −1

(x − yN )2p(x) dx

= e−
√

2tN −1
(
1 +

√
2tN −1 + t2N −1 −

√
2yN − 2tN −1yN + y2

N

)
. (8)

Hence we will consider an approximate distortion D̃ = D̃g + Dol. It is worth mention-
ing that bounds of the integral (7) are usually set to −tmax and tmax respectively, and
therefore maximum signal amplitude is equal to the support region. Maximal error in this
approximation is obtained on the interval (tN −1, tmax). Therefore, in order to improve
the approximation we set the corresponding bound to tN −1, and therefore lower bound
of integral in (8) is also tN −1.
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Value D̃ is the function of tN −1 and yN and since these values are both functions of
tmax (expressions (5) and (6)), also D̃ can be expressed as the function of tmax. Note that
approximation of D by D̃ is very accurate, especially for the large values of N .

On Figs. 1a, 1b, 1c we show graphs of D and D̃ for N = 128, N = 64 and N = 32
as the functions of tmax, and graph of relative error D−D̃

D .
We will give three estimate expressions for the optimal maximal signal ampli-

tude tmax.
The first estimation is based on the fact that the value of the last representation

Fig. 1a. Graphs of D and D̃ (left) and relative error (right) as the function of tmax for N = 128.

Fig. 1b. Graphs of D and D̃ (left) and relative error (right) as the function of tmax for N = 64.

Fig. 1c. Graphs of D and D̃ (left) and relative error (right) as the function of tmax for N = 32.
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level yN , as determined by (6) is not optimal in general. For fixed tN −1, an optimal
value of yN is given by the following expression

yopt
N =

∫ +∞
tN −1

xp(x) dx∫ +∞
tN −1

p(x) dx
= tN −1 +

1√
2
. (9)

On the other hand, for the fixed yN , value of tN −1 minimizing D̃ is obtained as the
solution of the following equation:

∂D̃

∂tN −1
= 0. (10)

The solution of the last equation is given by

t̂N −1 =
3√
2

log
(N + 1

3

)
. (11)

Value tmax is determined such that next condition holds

t̂N −1 +
1√
2

= yN . (12)

Using (11) and (6) we obtain the following equation in terms of tmax

3√
2

log
(N + 1

3

)
+

1√
2

=
3√
2

log
(

N

1 + (N − 1) exp
(

−
√

2tmax
3

)
)

whose solution is given by

t(1)max =
3√
2

log
(

N − 1
3N

N+1 exp(−1/3) − 1

)
. (13)

In the second approach we consider the similar condition as (12). Namely, instead of
t̂N −1 we will put the value t̄N −1 = 3√

2
log(N

2 ) given by Na (2004) as the upper bound
of the support region. In such way we obtain the following estimation of the maximal
signal amplitude

t(2)max =
3√
2

log
( N − 1

2 exp(−1/3) − 1

)
. (14)

Finally, in the third approach, we will search for the value of tmax such that t̂N −1 =
tN −1. By solving this equation we obtain

t(3)max =
3√
2

log(N + 1). (15)
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It can be seen in the last section that quantizers corresponding to the maximal signal
amplitudes t

(1)
max, t

(2)
max and t

(3)
max has almost optimal distortion, especially for the large

values of N .
Now we will describe the iterative method for the minimization of the approximate

distortion D̃. As we have already seen, total distortion D̃ is the function of tN −1 and
yN (according to the (7) and (8)). Moreover, relations (5) and (6) explicitly determine
these two quantities as the function of the optimal maximal signal amplitude tmax.
Hence we obtain closed form analytical expression for total distortion D̃ as the func-
tion of number of quantization levels N and optimal maximal signal amplitude tmax, i.e.,
D̃ = D̃(N, tmax). An optimal value t̃max can be obtained by applying Newton iterative
method

tmax,i+1 = tmax,i −
dD̃

dtmax
(tmax,i)

d2D̃
dt2max

(tmax,i)
. (16)

Estimates t
(1)
max, t

(2)
max and t

(3)
max can be used as the starting points. We can obtain D̃(tmax)

as the closed-form expression and then perform the symbolic differentiation to obtain
closed-form expressions for the first and second derivative.

Similar procedure (Newton method) can be repeated for the numerical computation
of tcomp

max , which is the minimum of the exact distortion D(tmax). Since in (16) we need
the second derivation of the exact distortion D(tmax), produced expressions will be too
large. Instead of that, it is more suitable to use some non-gradient optimization method for
minimization of D(tmax). A good choice is Simplex method (Chong and Zak, 2001) due
to its simplicity and ease of implementation. Recall that exact expression for D(tmax)
is obtained by combining equations (4) with equation (1). So, the procedure for com-
putation of tcomp

max can be describes as follows: first we find the exact expression for
D(tmax)substituting (4) in (1), and then apply Simplex optimization method.

From the Fig. 1 we can see that both D and D̃ has only one global minimum, and
hence both Newton iterative method and non-gradient optimization methods will con-
verge to t̃max and tcomp

max respectively.
At the end of this section we recall that tcomp

max is the exact optimal maximal ampli-
tude obtained by minimization of the exact distortion D, but that minimization procedure
is very complicated. Because of that, we found four approximate values for the opti-
mal maximal amplitude: t̃max, t

(1)
max, t

(2)
max, t

(3)
max. t̃max was obtained by minimization of

approximate expression for distortion, D̃, but that minimization procedure is also very
complicated. On the other hand, expressions for t

(1)
max, t

(2)
max, t

(3)
max are very simple and in

closed-form, and because of that they are very useful in practical applications. As it would
be seen from the next section, t

(1)
max and t

(3)
max are very closed to tcomp

max , especially t
(3)
max.

4. Numerical Examples

In this section we will compare the approximate values t
(1)
max, t

(2)
max, t

(3)
max and t̃max with

the exact optimal value tcomp
max . t

(1)
max, t

(2)
max, t

(3)
max is calculated using expressions (13),
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(14) and (15) respectively, while t̃max and tcomp
max is found by minimization of D̃ and

D as it was described in previous section. Minimization procedures for D and D̃ are
implemented in the symbolic programming package MATHEMATICA (see for example
(Wolfram, 2003)). The performance of a quantizer is often specified in terms of signal-to-
noise ratio (SNRQ), which is directly obtained from the distortion D using the following
relation

SNRQ = 10 log10

(σ2

D

)
.

Note that SNRQ is descending function of D, and hence the quantizer is better when
SNRQ has higher value. In Table 1 we show the maximal signal amplitude approximate
values t

(1)
max, t

(2)
max, t

(3)
max and t̃max and exact value tcomp

max for different values of number of
quantization levels N . It can be seen that values t

(3)
max and tcomp

max are very close.
Table 2 gives the optimal SNRQ of companding based quantizer (SNRQcomp, cor-

responding to the tcomp
max ) as well as the differences between SNRQ value correspond-

ing to the t
(1)
max, t

(2)
max, t

(3)
max and t̃max(SNRQ(1), SNRQ(2), SNRQ(3), and SÑRQ re-

spectively), and SNRQcomp. We denoted ΔSNRQ(i) = SNRQcomp − SNRQ(i) for
i = 1, 2, 3 and ΔSÑRQ = SNRQcomp − SÑRQ.

It is evident from Table 2 that companding quantizer with maximal signal ampli-
tude t

(3)
max has SNRQ almost equal to the maximum possible value SNRQcomp of the

quantizer based on the companding model (difference is comparable with the machine
precision). This estimation is even better than t̃max obtained by minimization of the ap-
proximate distortion D̃. Other two estimates have also close values of SNRQ to the
optimal. Therefore, we can conclude that estimation t

(3)
max is very accurate approxima-

tion of the optimal maximal signal amplitude and can be efficiently used in the practical
applications.

Note that for N � 64 all considered companding models (with maximal signal ampli-
tude equal to t

(1)
max, t

(3)
max, t̃max and tcomp

max satisfies the stopping criterion of the Lloyd–Max

Table 1

t
(1)
max, t

(2)
max, t

(3)
max, t̃max and tcomp

max for different values of N

N t
(1)
max t

(2)
max t

(3)
max t̃max tcomp

max

16 5.44891 7.51992 6.01015 5.64467 6.01886

32 6.98886 9.05986 7.41721 7.06473 7.42437

64 8.49319 10.5642 8.85521 8.50929 8.86145

128 9.98034 12.0513 10.3092 9.96659 10.3151

256 11.4591 13.5301 11.7714 11.4304 11.7764

512 12.9336 15.0046 13.2376 12.8975 13.2480

1024 14.4061 16.4771 14.7059 14.3662 14.7109

2048 15.8775 17.9485 16.1753 15.8358 16.1875

4096 17.3484 19.4194 17.6452 17.3057 17.7500

8192 18.819 20.8901 19.1153 18.7759 18.7500
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Table 2

SNRQcomp, ΔSNRQ(1), ΔSNRQ(2), ΔSNRQ(3), and ΔSÑRQ for different values of N

N SNRQcomp ΔSNRQ(1) ΔSNRQ(2) ΔSNRQ(3) ΔSÑRQ

16 18.0802 0.0227864 0.0576701 3.98027*10−6 0.00886233

32 23.8401 0.00668196 0.034428 1.43247*10−6 0.00437507

64 29.7272 0.00238848 0.0186859 5.70152*10−6 0.00216523

128 35.6802 0.000985415 0.00971984 2.49387*10−6 0.00107601

256 41.6668 0.000444215 0.00495525 1.187*10−6 0.00053623

512 47.6704 0.00021043 0.00250157 3.03133*10−6 0.000267631

1024 53.6824 0.000102473 0.00125698 6.54602*10−6 0.000133861

2048 59.6987 0.0000507707 0.000630517 5.94234*10−6 0.0000674533

4096 65.7172 0.000025261 0.000316148 7.79579*10−6 0.0000347439

8192 71.7367 0.0227864 1.576701*10−6 9.12923*10−6 0.0000197884

algorithm. According to the (Gray, 2004), this stopping criterion can be expressed as fol-
lows

δ =
D − D∗

N

D∗
N

< 0.005,

where D∗
N is the distortion of the optimal N -level quantizer. Comparing SNRQ values,

stopping criterion can be expressed as

SNRQ − SNRQ∗
N

SNRQ∗
N

< 0.02,

where SNRQ∗
N = 10 log10(1/D∗

N ). This approves that quantizers based on the com-
panding model with optimized maximal signal amplitude, are close to the optimal quan-
tizers. On the other hand, let us remember that in practice, companding quantizers has
much simpler structure than optimal quantizers, especially for the large number of quan-
tization levels N . Hence they are very suitable for the practical applications.

Optimization of the lossy algorithm based on optimal compression law was done in
this and previous section. Also, we gave some simple approximate expressions in closed
form for the maximal amplitude tmax which satisfied stop criterion of Max-Lloyd algo-
rithm. The best approximate expression is t

(3)
max which is very simple and gives negligible

error. The aim was to choose approximate expression with minimal error in comparison
to optimal solution. Importance of the good choice of tmax can be seen from Fig. 1: for
small values for N (e.g., N = 32), error of distortion can be greater than 5%.

Optimal companding quantizer, presented in this and previous section, will be used as
a part of generalized compression algorithm, which will be presented in Section 6.
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5. Novel Simple Lossless Compression Method

In this section, novel simple lossless compression method will be presented. This is our
second goal in this paper.

Suppose that the output of the N -level quantizer are the indices i = 0, . . . , N − 1.
In the rest of this section we will suppose that N = 2r where r is positive integer.
Hence, all indices i = 0, . . . , N − 1 can be coded by the r-bit codeword and average
bit-rate (average number of bits per sample) is equal to R = r. We will develop the
simple compression algorithm which improves that bit-rate, but taking into account the
properties of the source X . Since X has Laplacian distribution, most probable indices are
middle ones, i.e., indices from the segment I = N/4, . . . , 3N/4 − 1. The corresponding
range for the source signal is [−x1, x1], where

x1 = − 3√
2

log
[
1
2

(
1 + exp

(
−

√
2

3
tmax

))]
.

Since I consists of N/2 indices, required number of bits for the representation of each
index i ∈ I is r − 1.

Now we will describe the structure of the coder. First, indices are grouped into the
frames consisting of M indices. First bit of each frame is control bit. If all indices in the
group belongs to I , they are all coded with r − 1 bits each, and the first bit is set to 1.
Otherwise, first bit is set to 0 and all indices are coded with r bits each.

Denote by p1 the probability that output index i belongs to I (i.e., that sample of the
signal belongs to (−x1, x1)). It is equal to p1 = 1 − exp(−

√
2x1). Now the probability

that M consecutive indices belongs to I is equal to pM
1 . Hence, we can compute average

bit-rate as follows

R = pM
1 (r − 1) +

(
1 − pM

1

)
r +

1
M

, (17)

where the last term corresponds to the first bit of the frame.
For example, by taking M = 3, N = 128 and tmax = t

(3)
max, we obtain x1 = 1.45401,

p1 = 0.87207 and R = 6.67012. We will compare this result with the entropy H of the
source and average bit-rate Rh obtained by using Huffman algorithm (Hankerson et al.,
2004). Let us remember that last two quantities are given by

H =
N∑

i=1

Pi log2

( 1
Pi

)
, Rh =

N∑
i=1

Pi

⌈
log2

1
Pi

⌉
.

The length of source extension M can be optimized using relation (16). For N = 128
it can be shown that optimal value of M is M = 3. Also holds H = 6.38823 and
Rh = 6.8427. Let us notice that holds H < R < H + 1 and R < Rh. Similarly holds
for the other values of N . Hence we can conclude that our lossless coder gives better
performances than Huffman algorithm. It is worth mentioning that our coder is drastically
simpler for the realization than Huffman code. Hence it is suitable for implementations
where simplicity of the coder structure is important.
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6. Generalized Compression Algorithm – Combination of Lossy and Lossless
Compression

Generalized compression algorithm which is combination of lossy and lossless compres-
sion method, is presented in this section. Optimization of lossy method with optimal
compression function was done by optimization of tmax in Sections 3 and 4. An sim-
ple lossless compression method was proposed in Section 5, where also optimization of
extended information source was done by optimizing M , where M is the order of the
source extension.

It is assumed that stack S has length M and it is empty on algorithm start. Also
assume that tmax is equal to t

(3)
max and this value is precomputed.

Algorithm 1. (Coder)
Input. Signal sample x.
Step 1. Compute y = c(x).
Step 2. Apply uniform quantizer on y and find the index i of the cell where y belongs.
Step 3. Put i on the top of the stack S.
Step 4. If S is not full, go to the Step 1 and continue with the next sample. Otherwise

continue.
Step 5. Take M indices i1, . . . , iM from the stack S.
Step 6. If ij ∈ I for every j = 1, . . . , M then code every index with r − 1 bits

and produce the binary codeword C = (c1, . . . , c(r−1)M of the length (r − 1)M .
Transmit 1C. Otherwise code every index with r bits and produce the binary codeword
C = (c1, . . . , crM ) of the length rM . Transmit 0C.

Algorithm 2. (Decoder)
Step 1. Take one bit c from the input.
Step 2. Ifc = 1, take (r − 1)M bits from the input and decode indices i1, . . . , iM , each

from r − 1 bits. Otherwise take rM bits from the input and decode indices i1, . . . , iM ,
each from r bits.

Step 3. For each j = 1 to M perform:
Step 3.1. Set y to the value of representation level of ij-th cell of uniform
quantizer. Return x = c−1(y).

At the end of this section we present practical example of usage of generalized com-
pression method for compression of a still image. Fig. 2 (left) presents original image
and Fig. 2 (right) presents image after compression. We can see that compressed image
is visually very close to the original image. First, we found differences of the consec-
utive image samples because they have Laplacian distribution, and then applied com-
pression method on those differences. To prevent error propagation, beside differences
we also transmit one original image sample on every 128 samples. We use compand-
ing quantizer with N = 64 levels to quantizing differences of the samples, and for
this quantizer SNRQ = 28.038dB. We use lossless algorithm with M = 3. Average
bit-rate for compressed image is Rcompr. = 5.4702 bits/pixel and for original image
is Rorig. = 8 bits/pixel, so the compression ratio is Rorig./Rcompr. = 1.462.
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Fig. 2. Original image (left) and compressed image (right).

7. Conclusion

This paper provides the simple structure coder for memoryless Laplacian source. We
used companding quantizer and perform the optimization of the maximal signal ampli-
tude tmax. There are derived 3 analytical estimates of the optimal maximal signal am-
plitude as well as one numerical estimate (based on the minimization of approximate
distortion) and exact numerical method for its computation. It is shown that one of the es-
timates has almost optimal distortion. Due to the exact simple analytical expression, this
estimate is very suitable for the practical applications. Also we develop simple lossless
coder algorithm for Laplacian source and compared with the Huffman code and source
entropy. Main advantage of our method is simple realization structure and less bit-rate,
compared with the Huffman method. Finally, we joined lossy and lossless compression
methods in one generalized compression algorithms. We applied this generalized algo-
rithm on the one still image and obtained good results.

Generally our coder gives the very simple realization structure and performances close
to optimal and hence it is very useful in practical applications, such as speech signals,
images, bio-medical images, etc.
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Apie glaudinimo algoritm ↪a, skirt ↪a neturinčiam atminties
Laplaso šaltiniui bei grindžiam ↪a optimalia glaudinimo procedūra

Zoran H. PERIĆ, Marko D. PETKOVIĆ, Milan DINČIĆ

Pirmoje straipsnio dalyje siekiama optimizuoti glaudinimo su informacijos praradimu koder↪i,
realizuot ↪a kompandiniu signal ↪u keitikliu pagal diskrečiuosius lygius ir veikiant↪i pagal optimal ↪u
glaudinimo dėsn↪i. Darbe šis uždavinys išspr ↪estas optimizuojant tokiam keitikliui maksimali ↪a am-
plitud ↪e Laplaso šaltinio atveju. Rasta uždaroje formoje aproksimuojanti išraiška optimaliai ampli-
tudei gauti. Ji tenkina Loido–Makso signal ↪u dydži ↪u keitikliams optimalumo kriterij ↪u, kai R � 6
bitai/atskaitai. Antroje straipsnio dalyje pateiktas naujas paprastas glaudinimo metodas be infor-
macijos praradimo. Šis metodas esti žymiai paprastesnis nei Hafmano metodas. Jis pranašesnis
už pastar ↪aj↪i ir tuo, kad j↪i taikant gaunami geresni taikym ↪u rezultatai. Straipsnio pabaigoje autoriai
apjungia optimal ↪u kompaundin↪i signalo keitikl↪i pagal diskrečiuosius lygius su kodavimo metodu
be informacijos praradimo ↪i apibendrint ↪a glaudinimo procedūr ↪a, kuri panaudota tam tikro skait-
meninio vaizdo apdorojimui. Eksperimentiniai apibendrintos procedūros patikros rezultatai pateikti
grafik ↪u ir lenteli ↪u pavidalu.


