A SEMANTIC SCHEMA FOR GEONAMES

Enzo Maltese

Feroz Farazi

Index

- Introduction
- GeoNames
- DERA Methodology
- Faceted Ontology
- Semantic Schema
- Result
- Conclusion

Introduction

- With the proliferation of the Web, dataset publishing is also getting a momentum
- With Linked Open Data (LOD) initiative
 - Old datasets are published in machine readable format
 - Many new datasets are made available on the Web
- As part of LOD initiative essentially we observe that datasets are there with increased
 - Machine readability
 - Availability
 - Ease of finding through links

Introduction

• However, in the LOD initiative more emphasis is given on the quantity of the data than its quality

• In this work we proposed a semantic schema that can help improve the quality while enforcing it on the data

Our approach is domain independent

We performed a detailed case study using GeoNames

GeoNames

- GeoNames is a geo-spatial database consists of various locations of all countries
- It includes geographical data
 - Place names in various languages
 - Latitude
 - Longitude
 - Altitude
 - Class
- Latitude and longitude coordinates are stored according to the WGS84

GeoNames

- It currently contains around 8 million geographic names for around 7 million unique places
- The places are classified into 9 broader categories called feature classes
- They are further divided into 667 classes, most of them have a natural language description
- The data is available free of charge, can be used under a creative commons attribution license

DERA Methodology

- A methodology for developing ontology
- It allows building domain specific ontologies
- However, it can be used to construct ontology for any domain
- In DERA, a domain consists of three components namely entity class, relation and attribute.

 E is a tuple <C, e>, where C represents set of concepts and e represents set of entities

DERA Methodology

- Methodology:
 - Step 1: Identification of the relevant terms
 - Step 2: Analysis
 - Step 3: Synthesis
 - Step 4: Standardization
- Following the above steps leads to the creation of a set of facets

Faceted Ontology

- Facet is a hierarchy of homogeneous concepts describing an aspect of the domain (e.g., space), where each term in the hierarchy denotes an atomic concept
- A facet is a distinctive property of a set of concepts that can help in differentiating one group from another
- Faceted ontology is an ontology in which concepts are organized into facets
- S. R. Ranganathan was the first to introduce the faceted approach
- GeoWordNet is an example of a faceted ontology consists of facets such as body of water, geological formation and administrative division

Faceted Ontology

Body of water

- Flowing body of water
 - Stream
 - Brook
 - River
- Still body of water
 - Pond
 - Lake

Populated place

- •City
- •Town
- Village

Landform

- Natural depression
 - Oceanic depression
 - Oceanic valley
 - Oceanic trough
 - Continental depression
 - Trough
 - Valley
- Natural elevation
 - Oceanic elevation
 - Seamount
 - Submarine hill
 - Continental elevation
 - •Hill
 - Mountain

- The usage of a geospatial ontology does not solve all the problems
- In fact, GeoNames lacks sufficient constraints on the domain and range of the attributes
- Moreover, it lacks corresponding mechanisms to enforce them which can guarantee for an adequate quality of the data
- We define a semantic schema as a set of constrains on the domain and range of
 - the attributes (e.g. population)
 - the relations (e.g. capital)

- Such constraints should prevent the attribute population to have a negative value
- While it is fine for cities to have such attribute, this should be prevented for streams
- The schema is semantic-aware because
 - the domain of attributes and relations and
 - the range of relations are always a class and its more specific classes taken from the geospatial ontology
- For instance, if we specify that the domain of the attribute population is populated place

- We assume it to apply also to city, town and village (more specific classes in the ontology)
- The purpose of the schema is expressly to define what is legal in terms of
 - attributes
 - relations
 - corresponding values
- Enforcing the schema corresponds to verifying the consistency of the dataset w.r.t. such constraints

Attribute Name	Definition	Domain (main class)	Range
Population	the people who inhabit a territory or State	Populated Place	Long > 0
Altitude	elevation above sea level	Location but Undersea	Float in [-423, 8848]
Area	the extent of a 2- dimensional surface enclosed within a boundary	Location	Float > 0
Capital	A seat of government	Geo-political entity	Populated Place

- The range of altitude was set by referring to the altitude of
 - the Dead Sea (the lowest)
 - the Mount Everest (the highest)

Result

- In GeoNames the Dead Sea is represented with negative altitude set to −405 m.
 - Surprisingly, GeoNames contains other 45 locations with same altitude of the Dead Sea
 - two other locations are reported to be even lower than the Dead
 Sea (Nahal Amazyahu and `Arvat Sedom)
- The domain of population includes several unexpected classes such as airport, stream and garden
 - We removed population from corresponding entities in the ontology

Result

- We found several entities with elevation set to -9999 that is used in GeoNames to encode an unknown value
 - We removed elevation from corresponding entities in the ontology
- In the range of capital, 3 entities are encoded as cities (e.g. Jerusalem) while all the others as capitals
 - This is not wrong, but at least this is not homogeneous
 - We represented them homogeneously

Conclusion

 We have stressed the need for an integrated approach to effectively support semantic interoperability between different geospatial applications

- The proposed solution
 - Consists in the usage of a geospatial faceted ontology providing the terminology of the geospatial domain and
 - A semantic schema that, by establishing precise constraints on the domain and range of the attributes and the relations, guarantees a higher level of data quality

Thank you

Questions?