
A SLIDING-WINDOWONLINE FAST VARIATIONAL SPARSE BAYESIAN LEARNING
ALGORITHM

Thomas Buchgraber⋆ Dmitriy Shutin† H. Vincent Poor†

⋆ Signal Processing and Speech Comm. Lab., Graz University of Technology, Austria
† Department of Electrical Engineering, Princeton University, USA

ABSTRACT

In this work a new online learning algorithm that uses automatic

relevance determination (ARD) is proposed for fast adaptive non-

linear filtering. A sequential decision rule for inclusion or deletion

of basis functions is obtained by applying a recently proposed fast

variational sparse Bayesian learning (SBL) method. The proposed

scheme uses a sliding window estimator to process the data in an

online fashion. The noise variance can be implicitly estimated by

the algorithm. It is shown that the described method has better mean

square error (MSE) performance than a state of the art kernel re-

cursive least squares (Kernel-RLS) algorithm when using the same

number of basis functions.

Index Terms— Variational inference, sparse Bayesian learning,

online learning

1. INTRODUCTION

Online learning is used in diverse areas of signal processing [1].

In applications like system identification, channel equalization and

time series prediction, in which data is time varying and arrives se-

quentially, online learning can be the only method of choice.

We define the available training set at time instant n as a set

{xi, ti}
n
i=1 consisting of d-dimensional real input vectors xi ∈ R

d

and real valued scalar targets ti ∈ R. The targets included in the

sliding-window block at time n can be modeled as

tn = Φnwn + ǫn, (1)

where Φn = [ϕn,1, . . . ,ϕn,L] is a design matrix consisting of L

basis vectors ϕn,l = [ψl(xn−k+1), . . . , ψl(xn)]T with basis func-

tions ψl(·), tn = [tn−k+1, . . . , tn]T is a vector containing all tar-

gets in the window, wn ∈ R
L is the weight vector, ǫn is a zero

mean additive white Gaussian perturbation vector with covariance

matrix τ−1
I and k is the sliding-window length. In online sparse

signal representation, the aim is to find a small number of non-zero

weights in wn to represent the targets tn for each time n.
Recently, a new approach called kernel adaptive filtering [2]

has emerged, which has its origin in kernel methods [3], a power-

ful method in machine learning. One famous example of a kernel

adaptive filter is the kernel recursive least squares (Kernel-RLS) al-

gorithm [4]. In kernel methods, the kernel basis functions ψl(·) are
placed at each input xi, for i = 1, . . . , n. Thus, kernel models

are build directly from the data itself. Naturally, online implemen-

tation of Kernel-RLS requires some sparsification rule, since data

This work was supported in part by the Austrian Science Fund (FWF)

under Award S10604-N13 within the national research network SISE, in part

by an Erwin Schrödinger Postdoctoral Fellowship, FWF J2909-N23 and in

part by the U.S. office of Naval Research under Grant N00014-09-1-0342.

arrives sequentially and the model complexity would otherwise ex-

plode. The Kernel-RLS therefore uses a method called approximate

linear dependency (ALD) that requires a threshold parameter to be

set in advance. The performance of the Kernel-RLS strongly de-

pends on the adjustment of the threshold. Another drawback of the

Kernel-RLS is its limitation to only kernel basis functions, which is

due to the incorporation of the kernel-trick [3].

In sparse Bayesian learning (SBL) [5, 6], where there is no need

for a sparsification parameter, selecting components is done auto-

matically using automatic relevance determination (ARD). Also, be-

cause SBL uses no kernel trick, it does not rely on only kernel basis

functions like other kernel methods. Since SBL methods are de-

signed for batch learning, i.e. access to all data is needed, it is not

suitable for online processing. Another drawback, which limits the

use of SBL in many online applications, is its slow convergence.

To overcome the drawbacks of SBL, we first suggest not to use

all the data, which we cannot even access in most situations. Instead

we propose to use a block of the last k samples as in (1). This can be

seen as a sliding-window masking the most recent k samples from

the training data. Secondly, we use a recently proposed fast varia-

tional SBL method [7], which is a variational counterpart to the fast

marginal likelihood maximization method [8]. This method provides

a fast decision rule for selecting model components and allows for

addition of new basis functions as well as deletion of components

currently in the model. This is opposed to the constructive sparsity

of the Kernel-RLS, which only controls the addition of new compo-

nents by using the ALD test. Furthermore, since no kernel-trick is

used, this method is not limited to the use of kernel basis functions

only and thus arbitrary functions can be incorporated.

The paper is organized as follows. In Section 2 we introduce

variational SBL [6] and describe the recently proposed method for

fast variational SBL [7]. In Section 3 we show how basis functions

can be added and pruned from the model using a fast variational SBL

decision rule. Then, in Section 4 we describe our new approach by

considering a window block of samples that allows for online inclu-

sion and deletion of basis functions. The resulting sliding-window

fast variational SBL (SW-FV-SBL) method is then compared to a

Kernel-RLS algorithm in Section 5. We finally conclude in Sec-

tion 6.

Throughout the paper we use the following notation. Vectors

are represented as boldface lowercase letters, e.g. x, and matrices

as boldface uppercase letters, e.g. X. For vectors and matrices (·)T

denotes the transpose. The expression diag(x) stands for a diagonal
matrix with the elements of x on the main diagonal; tr(X) is the

trace of X; [X]k̄,l̄ denotes a matrix obtained by deleting the kth row
and the lth column from X; [X]:,l̄ is a matrix obtained by removing

the lth column ofX; similarly, [x]l̄ is a vector obtained by removing

the lth element from x.

2. FAST VARIATIONAL SPARSE BAYESIAN LEARNING

In the following we omit the time index n in the subscript to simlify

notation; we reintroduce it in Section 4.

In variational sparse Bayesian learning, exemplified by the vari-

ational relevance vector machine [6], a Bayesian network (BN) in

the form of a directed acyclic graph (DAG) given in Figure 1 is con-

sidered. The joint probability density function (pdf) given by the

graph is factored as

p(w, t,α, τ) = p(t|w, τ)p(w|α)p(α)p(τ), (2)

where α = [α1, . . . , αL]T . From (1) we define the likelihood as

p(t|w, τ) = N (t|Φw, τ−1
I) and additionally a hierarchical weight

prior p(w|α) =
QL

l=1 N (wl|0, α
−1
l). Using a common definition

of the gamma distribution Ga(x|a, b) = ba

Γ(a)
xa−1 exp(−bx),

the remaining prior pdfs are given by p(αl) = Ga(αl|al, bl)
and p(τ) = Ga(τ |c, d). Since the derivation of the posterior

p(w,α, τ |t) is generally intractable [5], variational inference aims

to approximate it using a proxy pdf q(w,α, τ) that maximizes the

so called “variational lower bound” L(q(w,α, τ)) [3]

ln p(t) ≥

Z

q(w,α, τ) ln
p(w, t,α, τ)

q(w,α, τ)
dwdαdτ

= L(q(w,α, τ)),

(3)

which is a lower bound for the log-evidence ln p(t). In [6] it is

assumed that q(w,α, τ) is factored as

q(w,α, τ) = q(w)q(τ)

L
Y

l=1

q(αl) (4)

and the individual pdfs are defined as follows: q(w) = N (w|µ̂, Σ̂),

q(αl) = Ga(αl|âl, b̂l) and q(τ) = Ga(τ |ĉ, d̂). Factorization (4) is

also known as mean field approximation [3]. Maximization of the

lower bound (3) with respect to the individual factors in (4) gives the

following results [6]:

Σ̂ =
“

τ̂ΦT
Φ + diag(α̂)

”−1

(5)

µ̂ = τ̂Σ̂Φ
T
t (6)

âl = al + 1/2, b̂l = bl + (µ̂l
2 + Σ̂ll)/2 (7)

ĉ = c+
k

2
, d̂ = d+

||t − Φµ̂||2 + tr(Σ̂Φ
T
Φ)

2
, (8)

where τ̂ = Eq(τ){τ} = ĉ/d̂, α̂ = [α̂1, . . . , α̂L]T , α̂l = Eq(αl){αl} =

âl/b̂l, µ̂l is the lth element of the vector µ̂ and Σ̂ll is the lth main

diagonal element of the matrix Σ̂. The notation Eq(z){·} denotes

expectation with respect to the distribution q(z). To find a sufficient
statistic for the proxy pdf q(w,α, τ), one has to iterate through the

terms given in (5)-(8) until convergence, which corresponds to the

maximum of the bound in (3). Because the bound in (3) is convex

[3] with respect to each of the factors given in (4), we can update

them in any arbitrary order.

In [7], this fact has been exploited in constructing a fast varia-

tional SBL method that assumes the ARD case, i.e. al = bl = 0, ∀l.
Instead of updating the terms (5)-(8) sequentially, the hyperparame-

ters are updated in L subgroups each consisting of q(αl) and q(w).
By updating only these two factors in the lth subgroup, a fixed point
of the corresponding variational update expressions is found, i.e. an

estimate of q(αl) and q(w) for which the variational lower bound

reaches a maximum with respect to these two factors given that all

t

l = 1, . . . , L

αlwl

τ

Fig. 1. A BN representing the SBL problem. Unshaded nodes are

hidden random variables, whereas shaded nodes are observed.

others stay unchanged. The estimation of the noise precision pdf

q(τ) using (8) can be done after all the subgroups have been up-

dated. An efficient way to compute the fixed point α̂
[∞]
l of the lth

subgroup with no need to iterate until convergence, is to substitute

(5) and (6) into (7) and to solve for α̂l. Note that for the ARD case

we have α̂l = (µ̂l
2 + Σ̂ll)

−1 and we can directly work with α̂l in-

stead of âl and b̂l. We summarize the results below; for more details

the reader is referred to [7]:

Σ̄l =
“

τ̂ΦT
Φ +

X

j 6=l

α̂jeje
T
j

”−1

, (9)

ςl = e
T
l Σ̄lel, ρ2

l = τ̂ 2
e

T
l Σ̄lΦ

T
tt

T
ΦΣ̄lel, (10)

α̂
[∞]
l =

(

(ρ2
l − ςl)

−1 ρ2
l > ςl

∞ ρ2
l ≤ ςl

, (11)

where ej = [0, . . . , 0, 1, 0, . . . , 0]T is a vector of all zeros with 1

at the jth position. From (11) we see that evaluating α̂
[∞]
l reduces

to just computing ςl and ρ
2
l , where the case ρ

2
l ≤ ςl renders the lth

basis function as irrelevant and we can prune it from the model. This

can be seen by substituting α̂l = ∞ into (5) and (6) which leads to

a zero variance and mean for the lth model weight and removes the

influence of the corresponding basis function. The terms ςl and ρ
2
l

in (10) can be efficiently computed without explicitly computing the

matrix inversion in (9) for each l, which is given in [7].

3. ADAPTIVE DELETION AND INCLUSION OF BASIS

FUNCTIONS

Equation (11) provides a fast rule for deciding whether to keep or

delete a basis function from the model corresponding to an α̂
[∞]
l of

finite or infinite value respectively. Furthermore we can ask if a new

candidate basis function should be added to a given model or not. In

the following we will discuss both situations in greater detail.

3.1. Testing basis functions currently in the model

For a given model with design matrix Φ we can test the lth basis

function - corresponding to the lth column of Φ - and update the

terms according to Algorithm 1. We use the notation α̂old
l to denote

the previous value of α̂l. When a basis function is kept, we use

the matrix inversion lemma [9] to efficiently add the term (α̂l −

α̂old
l)ele

T
l to the inverse of the weight covariance matrix Σ̂, which

is a rank one update of the lth hyperparameter. When the lth basis

function is pruned from the model, we delete the lth column of Φ

and the lth element of α̂. Thus, according to (5), we remove the

lth row and column from Σ̂
−1, which can be implemented using

Algorithm 1 Testing the lth basis ϕl

Compute ςl and ρ
2
l from (10)

if ρ2
l > ςl then
% keep basis

α̂l = (ρ2
l − ςl)

−1, Σ̂ = Σ̂ −
Σ̂ele

T

l
Σ̂

(α̂l−α̂old
l

)−1+e
T

l
Σ̂el

else

% prune basis

Σ̂ = Σ̂l̄ from (12), α̂ = [α̂]l̄, Φ = [Φ]:,l̄, L = L− 1
end if

another rank one update:

Σ̂l̄ =

"

Σ̂ −
Σ̂ele

T
l Σ̂

eT
l Σ̂el

#

l̄,l̄

. (12)

3.2. Testing basis functions not included in the model

To test a new candidate basis function for an existing model con-

taining L basis vectors in the columns of the design matrix Φ we

compute

Σ̄L+1 =

„

τ̂ΦT
Φ + diag(α̂) τ̂ΦT ϕL+1

τ̂ϕT
L+1Φ τ̂ϕT

L+1ϕL+1

«−1

, (13)

which is equivalent to (9) if Φ would have been extended by the

basis vector ϕL+1 in an additional column at the end. By using the

inversion rule for structured matrices [10], (13) is equivalent to

Σ̄L+1 =

„

V −γτ̂Σ̂Φ
T ϕL+1

−γτ̂ϕT
L+1ΦΣ̂ γ

«

(14)

where V = Σ̂ + γτ̂ 2
Σ̂Φ

T ϕL+1ϕ
T
L+1ΦΣ̂ and

γ = (τ̂ϕT
L+1ϕL+1 − τ̂ 2

ϕ
T
L+1ΦΣ̂Φ

T
ϕL+1)

−1. (15)

Similarly we can efficiently compute Σ̂L+1 by using λ = (γ−1 +

α̂L+1)
−1, and W = Σ̂+λτ̂ 2

Σ̂Φ
T ϕL+1ϕ

T
L+1ΦΣ̂ or by updating

Σ̄L+1 with

Σ̂L+1 =

„

W −λτ̂Σ̂Φ
T ϕL+1

−λτ̂ϕT
L+1ΦΣ̂ λ

«

= Σ̄L+1 −
Σ̄L+1eL+1e

T
L+1Σ̄L+1

α̂−1
L+1 + eT

L+1Σ̄L+1eL+1

. (16)

Algorithm 2 summarizes the main steps for adding or rejecting a new

candidate basis function.

Algorithm 2 Testing a new basis ϕL+1

Compute ςL+1 and ρ2
L+1 from (10) using Σ̄L+1 from (14)

if ρ2
L+1 > ςL+1 then

% add new basis

α̂L+1 = (ρ2
L+1 − ςL+1)

−1

Compute Σ̂ = Σ̂L+1 using (16)

Φ = [Φ,ϕL+1], α̂ = [α̂T , α̂L+1]
T , L = L+ 1

else

% reject new basis - no action needed

end if

4. SLIDING-WINDOWONLINE LEARNING

Now we are ready to bring the two key elements of fast variational

SBL, namely pruning existing components and adding new arriving

basis functions, into a single framework that we term the SW-FV-

SBL algorithm. For that, we reintroduce the time index n in the sub-

script indices of the variables to emphasize their time dependency.

Algorithm 3 presents the implementation details for the proposed

online SW-FV-SBL method. Note that references to equations and

Algorithm 3 Sliding-window online learning algorithm

Initialize Φ1 = ψ∗(x1) with basis function ψ
∗

Set τ̂1 to an initial value, n = 1, k = 1, L = 1, α̂n,1 = 0
Compute Σ̂1 = (τ̂1Φ

2
1)

−1 and µ̂1 = τ̂1Σ̂1Φ1t1 = Φ−1
1 t1

for n = 2, 3, . . . do

Update τ̂n = ĉn−1/d̂n−1 from (8)

if k < K then

k = k + 1 % grow window length until k = K
end if

Update Φn and tn with current window length k
Compute Σ̂n from (5)

% Test all current basis functions

Run Algorithm 1, ∀l=1, . . . , L

% Test a new candidate basis function

Run Algorithm 2 with candidate basis ϕn,L+1

Compute µ̂n from (6)

end for

subroutines given in Algorithm 3 assume the use of the windowed

versions of the variables, i.e. Φn and tn instead ofΦ and t, when re-

ferring back to previous sections. In the initial phase of Algorithm 3,

the sliding-window length k is assumed to grow until k = K, where

K is the final sliding-window length. Computing Φn and tn dur-

ing the algorithm depends on the current window length k and thus

the number of rows in both terms also grows until k = K. The

method starts with an arbitrary basis function ψ∗ evaluated at the

first input sample x1 in the design matrix. The other variables are

then initialized according to Algorithm 3. In some cases it is better

not to start the re-estimation of the noise precision τ̂n at the very be-

ginning. We have observed that especially at the initial phase where

basis functions are rare, the noise precision estimate performs poorly

and a delayed re-estimation start could give better results. At each

iteration, all basis functions in the model are tested, then updated or

pruned according to Algorithm 1. A new candidate basis function

is tested, then kept or rejected according to Algorithm 2. As given

in [5], the model prediction at time n for a test sample x∗ can be

computed by

y∗n = φ(x∗)T
µ̂n, (17)

where we define φ(x) = [ψ1(x), . . . , ψL(x)]T , the evaluation vec-
tor of all basis functions currently in the model.

5. SIMULATION

In this section, we evaluate the performance of the proposed al-

gorithm on one-step-ahead prediction of Mackey-Glass chaotic

time series, where we have generated the data as described in [2,

Section 2.11.1]. Mackey-Glass has been extensively used for bench-

marking different time-series prediction algorithms [11, 12]. In

one-step-ahead time-series prediction, the training (and test) data

100 200 300

20

40

60

80

SW−FV−SBL

Final Window Length K

N
o
.
o
f
K

e
rn

e
ls

100 200 300
10

−3

10
−2

10
−1

Final Window Length K

M
S

E
 T

e
s
t

0.2 0.4 0.6 0.8

20

40

60

80

Kernel RLS

ALD Treshold

N
o
.
o
f
K

e
rn

e
ls

0.2 0.4 0.6 0.8
10

−3

10
−2

10
−1

ALD Treshold

M
S

E
 T

e
s
t

Fig. 2. Comparison of the SW-FV-SBL algorithm with an ALD

Kernel-RLS for one-step ahead prediction of Mackey-Glass data.

Results are averaged over 200 independent realizations for 500 sam-

ples. For the MSE, a test set of 200 samples was used.

0 50 100 150 200 250 300 350 400
10

−3

10
−2

10
−1

Iterations

M
S

E
 T

e
s
t

SW−FV−SBL

Kernel RLS

Fig. 3. Example learning curves of the SW-FV-SBL algorithm using

a window length of 300 samples and the Kernel-RLS using an ALD

threshold of 0.3. Both methods result in the same number of 14

kernels at the last iteration. For the MSE, a test set of 200 samples

was used.

{xn, tn}
∞
n=1 can be generated with xn = [tn−d, . . . , tn−2, tn−1]

T ,

where each ti is a sample from the time-series with additive

white Gaussian noise having variance σ2. For the simulations

we have used an input dimension of d = 7 and a noise variance

σ2 = 10−3. We compare the simulation results with a Kernel-RLS

[4], which uses ALD as a constructive sparsification criterion. As

basis functions ψi(·), we use the same Gaussian kernels defined as

κ(x,xi) = exp{−||x − xi||
2} for both algorithms. Similarly to

the Kernel-RLS, we define the candidate basis vector in Algorithm 3

at time n as ϕn,L+1 = [κ(xn−k+1,xn), . . . , κ(xn,xn)]T and the

initial basis function as ψ∗(·) = κ(·,x1). For the noise precision

estimate τ̂ = ĉ/d̂ from (8), a non-informative prior c = d = 0 was

used and as the initial value we set τ̂1 = 105.

The ALD criterion in the Kernel-RLS has the need to specify a

threshold parameter [4] to adjust the amount of sparsity. In compar-

ison, our method has no need for such an inconvenient parameter.

However, in our case a final window length K has to be chosen.

Another difference from the Kernel-RLS is that the SW-FV-SBL

method provides an estimator for the noise precision τ̂ , where in the
Kernel RLS no such estimator exists. In Fig. 2 we see a comparison

of both methods for different parameter settings. One can see that for

the same estimated sparsity, the Kernel-RLS has a higher test mean

square error (MSE) than our proposed method. A sample learning

curve resulting in the same sparsity of 14 kernels is presented in

Fig. 3 with a window lengthW = 300 for the SW-FV-SBL method

and an ALD threshold of 0.3 for the Kernel-RLS.

6. CONCLUSIONS

In this work, a sliding-window fast variational sparse Bayesian learn-

ing algorithm for online learning and nonlinear filtering has been

considered. The method exploits fast variational SBL with auto-

matic relevance determination to determine the important basis func-

tions by computing the fixed points of the update expressions of

a variational posterior approximation. By processing data using a

sliding window mechanism, the proposed algorithm can be used in

online learning scenarios. We have shown that this allows adding

and removing basis functions in an efficient online manner. The

presented simulation results for prediction of Mackey-Glass chaotic

time-series data demonstrate that the proposed algorithm has a bet-

ter mean square error performance than a state of the art Kernel-RLS

when using the same number of basis functions.

7. REFERENCES

[1] Simon Haykin, Adaptive Filter Theory (4th Edition), Prentice

Hall, Upper Saddle River, NJ, September 2001.

[2] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filter-

ing, Wiley Publishing, Hoboken, NJ, 2010.

[3] C. M. Bishop, Pattern Recognition and Machine Learning (In-

formation Science and Statistics), Springer, New York, 1st ed.

2006. corr. 2nd printing edition, October 2007.

[4] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-

squares algorithm,” IEEE Transactions on Signal Processing,

vol. 52, no. 8, pp. 2275 – 2285, Aug. 2004.

[5] M. E. Tipping, “Sparse Bayesian learning and the relevance

vector machine,” Journal of Machine Learning Research, vol.

1, pp. 211–244, June 2001.

[6] C. M. Bishop and M. E. Tipping, “Variational relevance vector

machines,” in UAI ’00: Proceedings of the 16th Conference on

Uncertainty in Artificial Intelligence, San Francisco, CA, USA,

2000, pp. 46–53, Morgan Kaufmann Publishers Inc.

[7] D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Poor,

“Fast variational sparse Bayesian learning with automatic rel-

evance determination,” IEEE Transactions on Signal Process-

ing, 2010, submitted.

[8] M. E. Tipping and A. C. Faul, “Fast marginal likelihood max-

imisation for sparse Bayesian models,” in Proceedings of the

Ninth International Workshop on Artificial Intelligence and

Statistics, Key West, FL,, January 2003.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns

Hopkins Studies in Mathematical Sciences - 3rd Edition), The

Johns Hopkins University Press, Baltimore, MD, 3rd edition,

October 1996.

[10] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,”

October 2008, Version 20081110.

[11] J. D. Farmer and J. J. Sidorowich, “Predicting chaotic time

series,” Physical Review Letters, vol. 8, no. 59, pp. 845–848,

1987.

[12] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predict-

ing chaotic systems and saving energy in wireless communi-

cation,” Science, pp. 78–80, April 2004.

