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1. INTRODUCTION

Service-oriented computing is emerging as a new computing paradigm for
efficient deployment and access of the exponentially growing plethora of Web
applications [Papazoglou et al. 2005]. The development of enabling technolo-
gies for such an infrastructure is expected to change the way of conducting
business on the Web. Web services have become de facto the most significant
technological by-product. Simply put, a Web service is a piece of software appli-
cation whose interface and binding can be defined, described, and discovered
as XML artifacts [Alonso et al. 2003]. It supports direct interactions with other
software agents using XML-based messages exchanged via Internet-based pro-
tocols. Examples of Web services include online reservation, ticket purchase,
stock trading, and auction.

The ability to efficiently access Web services is necessary, in light of the
large and widely geographically disparate space of services. Using Web ser-
vices would typically consist of invoking their operations by sending and re-
ceiving messages. However, complex applications, for example, a travel pack-
age that accesses multiple Web services, would need an integrated framework
to efficiently access and manipulate Web services’ functionalities. The increas-
ing adoption of Web services requires a systematic support of query facilities.
The service-oriented queries would enable users to access multiple Web services
in a transparent and efficient manner. In addition, as Web services with simi-
lar functionality are expected to be provided by competing providers, a major
challenge is devising optimization strategies for finding the “best” Web services
or composition thereof with respect to the expected user-supplied quality.

Query optimization technologies have been intensively investigated [Chaud-
huri 1998; Du et al. 1992; Florescu et al. 1999; Dalvi et al. 2001; Papadimitriou
and Yannakakis 2001; Haas et al. 1997; Fernandez and Suciu 1998; Yerneni
et al. 1999]. However, service-oriented queries are inherently different from
data queries partially because of the rich semantics embodied in Web services.
This poses several new research challenges:

—Web services have been so far mainly driven by standards. This is historically
similar to the progress of DBMSs. The DBMS technology has a tremendous
progress with the advent of the relational model which was instrumental in
giving databases a solid theoretical foundation. Web services have yet to have
such a solid theoretical underpinning.

—Web services are usually modeled as function calls, with focus on their input
and output types. However, services with the same input-output types may
provide totally different functionalities. For example, assume services Si and
S j take a string as the input and output a float number. Also assume that
Si is a book price checking service, which takes the book title as its input
and returns the book price. On the other hand, assume S j is a stock checking
service, which takes the stock name as its input and returns the stock price.
Querying Web services based on such limited syntactic information may re-
sult in erroneous results. Necessary semantics need to be defined to extend
the current service models.
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—Web service operations may not be invoked in arbitrary orders. There may be
dependency constraints between different service operations. The constraints
may require that the invocation of some service operations occur only after
their dependent operations have been successfully invoked. A simple exam-
ple is that an online transaction service may require a login operation before
making an order. Therefore, a service query should be answered by consider-
ing all the dependency constraints of the retrieved Web services.

—The proliferation of Web services is expected to introduce competition among
multiple Web service providers. Querying services only based on functional-
ity may result in large numbers of candidate services. Users may also have
special requirements on the service qualities. In this case, the service query
optimizer should not generate efficient query plans based only on perfor-
mance but also differentiate competing Web services based on user expected
Quality of Web Service (QoWS).

Some preliminary research efforts are underway to provide query and
optimization facilities for Web services [Srivastava et al. 2006; Dong et al. 2004;
Ouzzani and Bouguettaya 2004]. These approaches mostly treat Web services
as function calls that take some input and generate some output [Dong et al.
2004; Srivastava et al. 2006]. Web services are usually not queried based on
their functionalities. In addition, traditional optimization techniques mainly
focus on performance, that is, efficiently processing queries. Quality of ser-
vices are not considered by the optimization process. Ouzzani and Bouguettaya
[2004], proposed a query model that offers query optimization functionalities
for Web services. The query model consists of three levels: query level, virtual
level, and concrete level. The query model uses the predefined mapping rules
to map relations defined at the query level to virtual operations defined at the
virtual level. Users can thus directly use relations to query Web services. Our
approach goes beyond this ad hoc query model by proposing a solid foundation,
upon which algorithms can be developed for optimizing service queries.

We propose a query algebra that enables users to access Web services via
service oriented queries. This foundational framework aims to layout a theo-
retical underpinning for the deployment of Web Service Management Systems
(WSMSs) that would be to Web services what DBMSs have been to data [Yu et al.
2007]. The WSMS is proposed as a comprehensive system that offers query op-
timization [Ouzzani and Bouguettaya 2004], composition [Ponnekanti and Fox
2002; Casati and Shan 2001], transaction [Papazoglou 2003], security [Mecella
et al. 2006; Bhatti et al. 2005], and other management supports [Papazoglou
and van den Heuvel 2005; Casati et al. 2003] for accessing and managing Web
services. In this paper, we focus on defining service algebraic operators and the
physical implementation of these operators. This enables us to generate Service
Execution Plans (SEPs) that can be directly used by users to access services. We
also define a set of algebraic equivalent rules to perform algebraic optimization.
We propose an efficient algorithm that extends the DP-based approach to per-
form service query optimization that can select the SEP with the best quality.
The contributions of this article are summarized as follows:
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—Service Query Model. We present a formal service model that captures the
three key features of Web services: functionality, behavior, and quality. Func-
tionality is specified by the operations offered by a Web service. Behavior
reflects how the service operations can be invoked. It is decided by the de-
pendency constraints between service operations. Quality determines the
nonfunctional properties of a Web service.

—Service Query Algebra. We propose a service algebra based on the service
model. The algebra consists of a set of algebraic operators. A set of alge-
braic equivalent rules is also present to transform user provided algebraic
expression into the ones that can be more efficiently processed by the query
processor. We provide the implementation of each algebraic operators. This
enables the generation of SEPs.

—Service Query Optimization. Multiple SEPs might be generated by the query
processor due to the competing service providers. We present a score function
to calculate the quality of SEPs. We propose two algorithms to efficiently find
the SEP with the best quality (i.e., highest score). The first algorithm is based
on the traditional dynamic programming approach. The second algorithm
extends the first one by incorporating a divide-and-conquer strategy. This
strategy greatly improves the efficiency of the optimization algorithm.

—Experimental Study. We present an analytical model to evaluate the proposed
optimization algorithms. We then conduct a set of experiments. The experi-
ments compare the performance of the algorithms in terms of both efficiency
and the quality of the generated SEPs.

The remainder of this article is organized as follows. In Section 2, we describe
a scenario to motivate the need of a service query optimization framework. We
present the service model and service algebra in Section 3 and 4 respectively. In
Section 5, we present the implementation of the algebraic operators. In Section
6, we propose a QoWS model, which serves as the cost estimation criteria in
the QoWS optimization. Based on the model, we propose two optimization algo-
rithms. We present an analytical model in Section 7 and conduct experimental
studies in Section 8. We overview the related work in Section 9. We provide
some concluding remarks in Section 10.

2. CASE STUDY

As a way to motivate this work, we use an application from the car brokerage
domain (see Figure 1). A typical scenario would be of a customer, say Mary,
planning to buy a used car having a specific model, make, and mileage. She
naturally wants to get the best deal. Assume that Mary has access to a Web
service infrastructure where the different entities that play a role in the car
purchase are represented by Web services. Examples of Web services that need
to be accessed include Car Purchase (CP), Car Insurance (CI), and FInancing
(FI). A single Web service may provide multiple operations. Different operations
may also have dependency relationships. For example, the paymentHistory and
financingQuote operations are both offered by the financing service. The lat-
ter operation depends on the former operation; that is, the payment history
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Fig. 1. The car brokerage scenario.

decides the financing quote. We also anticipate that there will be multiple com-
petitors to provide each of the services mentioned. It is important that the
users’ quality requirements be reflected in the service query as criteria for
service selection. To purchase an entire car package, Mary would first like to
know the price quote of the selected car and the vehicle history report. She
then needs to get the insurance quote. Finally, since Mary needs the financ-
ing assistance, she also wants to know the financing quote. In addition, Mary
may have special requirements on the quality of the service operations. For
example, she wants to spend less than 20 dollars to get the vehicle history
report.

3. SERVICE QUERY MODEL

We present our service model in this section. The service model proposes and
formally describes two key concepts: service schema and service relation. The
service schema is defined to capture the key features of all Web services across
an application domain. It provides a fixed vocabulary and enables the definition
of the service query languages. A set of service instances that conform to a
service schema form a service relation.

Finite State Machines (FSMs) and Petri-net have previously been proposed
to model Web services [Berardi et al. 2005; Hamadi and Benatallah 2003].
However, these models are mainly designed for automating the composition of
Web services [Pu et al. 2006]. Our proposed service model differs from these
existing service models by providing foundational support for service query op-
timization. It is worth to note that the objective of this work is not to define
a completely new model. Instead, we are inspired by the standard relational
model and make some key extensions to it that enable service users to efficiently
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access services with their best desired quality. The benefit of presenting such a
model is twofold. First, we can use this model to capture the rich semantics of
Web services, including functionality, behavior, and quality. These features are
of primary interest for users to access services, which also makes them funda-
mental for specifying service queries. In the proposed two-level service model,
the graph-based service schema is used to capture the functionalities of Web
services in terms of the operations they offer. It also captures the dependency
relationships between the operations, which determine how these operations
can be accessed (called behavior of the service). The service relation is used
to capture the quality of the service providers. Second, we can leverage the
existing technologies developed for the standard relational databases. For ex-
ample, we can store our service relation in a relational database and use some
relational operators to help implement the proposed service algebra (refer to
Section 5 for details). In what follows, we first formally define several important
concepts about the service schema. We then give the definition of the service
relation.

Definition 3.1 (Service Schema). A service schema is defined as a tuple

S = (SG1, SG2, . . . , SGn, D), with

SGi = (Vi, Ei, εi), i = 1, . . . , n

is a directed acyclic graph (DAG), called service graph where

—Vi = {opij |1 ≤ j ≤ m} represents a set of service operations.

—εi is the root of the service graph. It represents the entry point, through
which all other operations in the service graph can be accessed. εi can also
be regarded as a special service operation, denoted by opi0. A service graph
has only one root.

—Ei = {ei j |1 ≤ j ≤ l }, represents the dependencies between two service oper-
ations from the same service graph, denoted by ≺ii. ei j = (op, op′) is an edge,
where op ∈ Vi, op′ ∈ Vi, and op �= op′.

—D = {Di, j |1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ i �= j }, represents the dependencies
between two non-root operations from different service graphs, denoted by
≺i j . Di, j = {ek

i, j |1 ≤ k ≤ l } represents the dependencies between two non-

root operations from service graph SGi and SG j . ek
i, j = (op, op′) is an edge,

where op ∈ Vi and op′ ∈ Vj .

—SG ′ = SGi ◦ SG j , the concatenation of two service graphs is formed by
coalescing the root of SGi and SG j . Furthermore, V ′ = {op|op ∈ Vi ∨op ∈ Vj }
and E ′ = {e|e ∈ Ei ∨ e ∈ E j ∨ e ∈ Di, j }. Figure 2 shows an example of the
concatenation of two service graphs.

The dependency between two service operations is modeled as op ≺ op′,
where ≺∈ {≺ii, ≺i j }. ≺ii refers to the intra-service dependency, which can only
be satisfied by invoking the two service operations by the specified order in the
service graph. ≺i j refers to the inter-service dependency. It should be satisfied
when multiple services are accessed. We assume in Definition 3.1 that there is
no dependency between the roots of different service graphs. We also assume
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Fig. 2. Concatenation of service graphs.

Fig. 3. The service schema for the car brokerage scenario.

that multiple dependency constraints on a single operation have an “And” rela-
tionship. For example, there are two dependency constraints on opk , one with
opi and the other with opj . In this case, both opi and opj should be accessed
before opk . It is also worth to note that when there is only one service graph in
the service schema S, that is, n = 1 in Definition 3.1, S becomes a single-graph
service schema.

Example 3.1. Figure 3 shows the service schema for the car brokerage
service base. The service schema contains three service graphs, representing
the Car Purchase (CP), Car Insurance (CI), and FInancing (FI) services. For
example, in CI, there is a set of service operations, such as drivingHistory
and insuranceQuote. These operations collectively represent the functional-
ity of the CI Web service. The dependencies between service operations are
captured by the edges in the service graph. For example, drivingHistory ≺ii

insuranceQuote means that the execution of insuranceQuote depends on the
result of drivingHistory. Service operations from different Web services could
have an inter-service dependency. For example, there is a dependency between
carQuote and insuranceQuote. It is denoted as carQuote ≺i j insuranceQuote.
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Fig. 4. An example of an operation graph.

In what follows, we define a set of key concepts derived from the service
schema, including service path, operation graph, and operation set graph. We
focus on identifying the important properties they offer that are fundamental
to specifying and processing service queries.

Definition 3.2 (Service Path). For a service graph SG = (V , E, ε), we de-
fined a service path Pi = ({opi1, . . . , opij , . . . opik}, E ′, ε}) where ε is the root
of SG, E ′ ⊆ E, and k ≥ 1; opij ∈ V for 1 ≤ j ≤ k; and for each
opij , 0 ≤ j ≤ (k − 1), ∃e j ∈ E ′ : e j = (opij , opi( j+1)) (note that when j = 0,
opij becomes ε). Pi is an induced subgraph of service graph SG.

LEMMA 3.1. For any service operation op ∈ SG, there must be at least one
service path P that can reach op from ε.

PROOF. This directly follows the definition of ε. Since ε is the entry point to
access any other operation (including op) in the service graph, there must be
at least one path from it to op.

Definition 3.3 (Operation Graph). For a service graph SG = (V , E, ε), an
operation graph G(op) is the union of all the service paths in SG that lead to
operation op, G(op) = ∪Pi, where Pi = ({opi1, . . . , opij , . . . op}, Ei, ε}). G(op) is
an induced subgraph of the service graph SG. Figure 4 shows an operation
graph G(d ), which is formed from SG by the union of two service paths, P1 and
P2, that both lead to the service operation d .

Definition 3.4 (Operation Set Graph). For a service graph SG = (V , E, ε),
we define an operation set graph G(op) = ∪k

i=1G(opi), where op = {opi|1 ≤ i ≤
k}. G( op) is an induced subgraph of service graph SG. For example, in Figure 4,
the operation set graph for {a,d,f} is SG itself, that is, G({a, d , f }) = SG.

Operation graph and operation set graph are central to service query speci-
fication and processing. We identify their key properties by using the concepts
of accessible operation and accessible graph. It is worth noting that the root of
a service graph is accessible because the root is defined as the entry point of a
service. The formal definitions are given as follows.

Definition 3.5 (Accessible Operation). op is an operation in a service graph
SG and a general graph G is a subgraph of SG. op is an accessible operation
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of G if the following two conditions are satisfied:

(i) op ∈ G;

(ii) ∀op′, (op′, op) ∈ SG ⇒ op′ is an accessible operation of G.

LEMMA 3.2. An operation op is an accessible operation of G iff op and all of
its preceding nodes in the service graph are included in G.

PROOF. This directly follows from Definition 3.5.

Definition 3.6 (Accessible Graph). G is an accessible graph if each opera-
tion in G is an accessible operation of G.

THEOREM 3.1. An operation graph G(op) is a minimal accessible graph for
op.

PROOF. We use two steps to prove this theorem. First, we prove that G(op)
is an accessible graph. Second, we prove its minimality.

We can prove G(op) is an accessible graph by proving that op is an accessible
operation of G(op). Assume that op is not an accessible operation of G(op). Since
op ∈ G(op), there exists an operation op′ where op′ is a preceding node of op in
SG and op′ is not a node of G(op) (Lemma 3.2). Let P1 be the path from op′

to op. From Lemma 3.1, there is a path from ε to op′, which is denoted by P2.
Connecting P1 and P2, we get a new path P3 from ε to op, which is not included
in G(op). This contradicts definition 3.3. Therefore, no such op′ exists. We can
conclude that G(op) is an accessible graph.

Assume that G(op) is an accessible graph but not minimal for op. Therefore,
there exists a graph G ′(op) = G(op)−op′, where op′ �= op, such that G ′(op) is still
an accessible graph and op is its accessible operation. From definition 3.3, there
is a path to op which passes through op′ in SG. Therefore, op′ is a preceding
node of op in SG. Since op is an accessible operation of G ′(op), from Lemma 3.2,
we can get op′ ∈ G ′(op). This contradicts the fact that op′ is removed from G ′(op).
Therefore, G(op) is a accessible graph and minimal for op.

THEOREM 3.2. An operation set graph G(op) is a minimal accessible graph
for op.

PROOF. This directly follows from Definition 3.4 and Theorem 3.1.

Remark 3.1. In a service query, users only need to specify the opera-
tion(s) they want to access (i.e., in a declarative way). An operation (set)
graph will be generated when the query is processed. For example, a user
wants financingQuote and formulates a service query to access it. An oper-
ation graph G(financingQuote) will be generated. The query processor will use
the operation (set) graph as the single-graph service schema to generate ser-
vice execution plans (i.e., SEPs). Since an operation (set) graph is an acces-
sible graph, it guarantees that the operations specified in the service query
are accessible through the generated SEPs. In addition, the minimality of
the graph also guarantees that only minimum number of service operations
(i.e., the ones that the operations in the query depends on) are included in the
SEPs.
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Table I. QoWS Parameters

Parameter Definition Domain Index

Latency Timeprocess(op) + Timeresults(op) where Timeprocess is

the time to process op and Timeresults is the time to

transmit/receive the results

number 1

Reliability Nsuccess(op)/Ninvoked (op) where Nsuccess is the number

of times that op has been successfully executed and

Ninvoked is the total number of invocations

number 2

Availability UpTime(op)/TotalTime(op) where UpTime is the time

op was accessible during the total measurement

time TotalTime

number 3

Fee Dollar amount to execute the operation number 4

Reputation
∑n

u=1 Rankingu(op)/n, 1 ≤ Reputation ≤ 10 where

Rankingu is the ranking by user u and n is the

number of the times op has been ranked

number 5

We have now defined the service schema related concepts and identified the
key properties they offer for querying service. The service relation defines a set
of service instances that conform to the service schema. The service instances
offer the operations and follow the dependency constraints defined in the service
graphs. However, since the service instances are provided by different service
providers, they may have different quality properties. In what follows, we first
define a QoWS model to capture the quality features of services. We then give
the definition of a service relation.

Definition 3.7 (QoWS Model). The QoWS model formally defines a set of
quality parameters for Web services (see Table I). It divides the quality param-
eters into two categories: runtime quality and business quality.

—Runtime quality. It represents the measurement of properties that are re-
lated to the execution of an operation op. We identify three runtime quality
parameters: latency, reliability, and availability. The latency measures the
expected delay between the moment when op is initiated and the time op
sends the results. The reliability of op is the ability of the operation to be
executed within the maximum expected time frame. The availability is the
probability that the operation is accessible. Service providers could publish
runtime qualities of their Web service operations in the service description
or offer mechanisms to query them.

—Business quality. It allows the assessment of an operation op from a business
perspective. We identify two business quality parameters: fee and reputation.
The fee gives the dollar amount required to execute op. The reputation of op is
a measure of the operation’s trustworthiness. It mainly depends on the ratio
to which the actual provision of the service is compliant with its promised one.
The fee quality can be obtained based on the service providers’ advertisement
in the service description whereas the reputation is based on the ranking of
the end-users.

The values of the parameters defined in the QoWS model are from the num-
ber domain, which consists of integer, float, and double. The proposed QoWS
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Fig. 5. An example of CI service relation.

model can be extended by adding other quality parameters. The index number
given in Table I will be used by the labeling function defined in the service
relation.

Definition 3.8 (Service Relation). A service relation SR with a service
graph SG = (V , E, ε) is defined as a set of service instances I =
{(sid , op1, . . . , opn)}, where

—sid is the unique service id;

—op is a service operation and defined as a pair op = (opid , λ(op)), where opid
is the operation id and λ is a labeling function that assign to each service
operation op a set of values to its QoWS parameters, denoted by Q = ⋃k

i=1 Qi.
op

λ−→ Q gives the quality parameter values for op. λi(op) = Qi specifies the
ith quality parameter for op, where i is the index for the quality parameter.
Table I specifies the indices for all the QoWS parameters. We will use these
indices to refer to the different QoWS parameters in later sections.

—Each service instance I in SR conforms to the service graph SG; that is,
operations in I are defined in SG and the operations follow the dependency
constraints specified by SG.

We define the domain of λ(op) as dom(λ(op)) = dom{(λi(op))|1 ≤ i ≤ m},
where m is the number of QoWS parameters that can be applied to op. There-
fore, we can further define dom(op) = {dom(opid ), dom(λi(op))}.

Based on the domain definition, we can restate the above definition of a
service relation as follows. A service relation SR is a (n + 1)-degree relation on
the domains of dom(sid ), dom(op1), dom(op2), . . . , dom(opn), where opi ∈ SG
for i = 1, . . . , n,

r(SG) ⊆ (dom(sid ) × dom(op1) × · · · × dom(opn)).

Figure 5 shows an example of CI service relation. The service relation con-
tains 5 service instances (aka service tuples) and has (n + 1) fields, which cor-
respond to the sid and n service operations offered by the service instances.

The functionality, behavior, and quality parameters of the Web service are
captured in the service model. This provides fundamental support for querying
services. Since the functionality of a Web service is offered through a set of
service operations, the vertices in V collectively represent the functionality
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of the Web service. The behavior of the service is reflected by the operation
graphs (or operation set graph), which contain a set of service operations and
the dependency relationship between them. The quality parameters can be
attached to the service operations to evaluate QoWS parameters of operations
from service instances.

4. SERVICE QUERY ALGEBRA

We define a service query algebra that enables the specification of algebraic
service queries. The proposed service algebra contains three major operators
that help service users query their desired services:

—Functional Map (F-map). It facilitates users to locate and invoke their de-
sired functionalities in terms of service operations by making use of the key
properties provided by the operation (set) graphs.

—Quality-Based Selection (Q-select). It allows users to locate service instances
(i.e., service providers) with their desired quality.

—Composition (Compose). It enables service composition when users need to
access multiple services.

Service users can use the algebraic operators to access one or multiple ser-
vices with their desired functionality and quality. A service query is typically
specified with the combination of the above three operators (More detailed def-
inition for each of these operators are given in Section 4.1). Querying services
is an integrated process that requires to query both the service graphs defined
in the service schema and the service relation. Processing an algebraic service
query will result in a service relation SR′ and a service graph, Gs, that serves
as the schema for the retrieved service relation. Gs is constructed based on the
operations specified in the service query (i.e., the functionalities a user wants
to access). Gs consists of the operations in the service query and all their de-
pendent operations. It also specifies the dependency constraints between these
operations. In this section, we first present the service query algebra. We then
present a set of algebraic equivalent rules that enable the query optimizer to
rewrite the algebraic expressions.

4.1 Algebraic Operators

The service algebra consists of three major operators: F-map (χ), Q-select
(δ), and Compose (⊕). The algebra operators are applied to a service relation
and produce a new service relation.

4.1.1 F-map. The F-map operator, denoted by χ , is used to map a service
relation SR onto a subset of (user selected) service operations and result in a
service relation SR′. The service schema of SR′ is a service graph Gs, which is
an operation set graph built upon the user specified operations and the service
graph of SR. The F-map operator is also called functional map because users
can choose their desired functionality (in terms of service operations) using this
operator. F-map is formally defined as follows:

χop(SR) = {s.sid , s[G(op)]|SR(s)},
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where

—op is the set of service operations that a user wants to select to achieve the
desired functionality.

—G(op) is an operation set graph. It contains the service operations specified
by the service query and all their dependent operations. Recall that in The-
orem 3.1, we proved that an operation graph is a minimum accessible graph
for op. It consists of all the necessary operations that make the operation
specified in the service query accessible. It also specifies the dependency con-
straints for accessing these operations. Therefore, the operation (set) graph
can be regarded as the schema (i.e., Gs) for the retrieved service relation.

—The [ ] operator selects the operations from s with respect to G(op); that is,
the retrieved service tuple only contains all the operations of G(op).

Example 4.1. An algebraic service query that retrieves the insuranceQuote
operation from the CI service relation is interpreted as follows:

χ{insuranceQuote}(CI ) = {s.sid, s[G({insuranceQuote}]|CI (s)}.
4.1.2 Q-Select. The Q-select operator, denoted by δ, is used to select a

subset of service tuples from service relation SR that satisfy some quality re-
quirement. The selected tuples form a service relation SR′, which has the same
service schema as SR. Q-select is also called quality select. The quality re-
quirement is specified by the select quality predicate ps. Q-select is formally
defined as follows:

δps (SR) = {s|SR(s) ∧ ps(s)},
where

—SR is a general service algebra expression which results in a service rela-
tion; SR(s) takes True if s belongs to the generated service relation, False
otherwise.

—ps is a select quality predicate, which connects a set of clauses using the
boolean operators: conjunction (∧), disjunction (∨), and negation (¬). A clause
has the form of x θq c and returns a boolean, where (i) θq is a QoWS parameter
comparison operator taken from {=, >, ≥, <, ≤, �=}; (ii) x is a QoWS parameter
and c is a constant.

Example 4.2. An algebraic service query that retrieves the CI service in-
stances with a vehicle history report cost less than 20 dollars can be interpreted
as follows:

δλ4(drivingHisotry)≤20(CI ) = {s|CI (s) ∧ λ4(s.drivingHisotry) ≤ 20}
The following algebra expression combines the F-map and the Q-select
operators:

χ{insuranceQuote}
(
δλ5(insuranceQuote)≥3(CI )

)
= {s.sid , s[G(insuranceQuote)]|CI (s) ∧ λ5(s.insuranceQuote) ≥ 3}.
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4.1.3 Compose. The Compose operator, denoted by ⊕, combines two service
relations SR1 and SR2 into a single service relation SR′. The service schema of
SR′ is the concatenation of the service graphs of SR1 and SR2; that is, Gs = G1 ◦
G2. It is used to address the complex service queries that require the cooperation
of multiple services. Users can specify their quality requirement over multiple
services by using the compose quality predicate pc. These requirements will
be used to select service tuples from the combined service relation. Compose is
formally defined as follows:

SR1 ⊕pc SR2 = {s.sid , s[G1 ◦ G2]|(∃s1)(∃s2)

(SR1(s1) ∧ SR2(s2) ∧ s.op == (s1.op ◦ s2.op) ∧ pc(s))},
where

—G1 and G2 are the service graphs of SR1 and SR2 respectively. G1 ◦ G2 rep-
resents graph concatenation (see Definition 3.1 for details).

—pc is a quality predicate, which connects a set of clauses using the conjunc-
tion (∧) operator. Each clause takes the form of x θq y , where x is a QoWS
parameter of a service operation from SR1 and y is a QoWS parameter of a
service operation from SR2.

—s.op == t.op takes a True value if s and t have the same set of service
operations (i.e., the signatures are the same) whereas it takes a False value
otherwise, where s.op denotes the service operations of service tuple s and
t.op denotes the service operations of service tuple t.

—s1.op ◦ s2.op represents service tuple concatenation. If s1 and s2 have m and
n service operations respectively, the result of service tuple concatenation
will be an operation set with (m + n) service operations,1 with the first m
operations from s1 and the following n operations from s2.

Example 4.3. The following algebraic expression applies to two service re-
lations, CP and CI. It retrieves the combined tuples, in which the insurance-
Quote operation has a higher availability than the carQuote operation.

χ{op1,op2}(CP ⊕λ3(op1)<λ3(op2) CI ) = {s.sid , s[G(op1) ◦ G(op2)]|(∃cp)(∃ci

(CP (cp) ∧ CI (ci) ∧ s.op == (cp.op ◦ ci.op) ∧ λ3(op1) < λ3(op2))}
where op1 and op2 represent the service operations carQuote and insurance-
Quote respectively; λ3(op1) and λ3(op2) refer to the availability of op1 and op2.
The query combines the Compose operator and the F-map operator. The schema
of the resulted service relation SR′ is the concatenation of two operation (set)
graphs, that is, Gs = G(op1) ◦ G(op2).

If a user does not specify any quality predicate, pc becomes empty. We define
a Compose operator with empty quality predicate as Crossover, denoted as ⊗.
Crossover is interpreted the same way as Compose by only removing the pc part.

1The service schema is designed to have different service graphs with different functionalities (i.e.,

different set of operations). In this regards, the set of operations for two service graphs are disjoint.
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Table II. Algebraic Equivalent Rules

1. Associative rule
SR1�(SR2�SR3) = (SR1�SR2)�SR3, ∀� ∈ {⊕p, ⊗}

if p is applicable to operations from SR1 and SR2

2. Communicative rule
SR1�SR2 = SR2�SR1, ∀� ∈ {⊕p, ⊗}
3. Cascading rule
3.1. χop1

(χop2
(...(χopn (SR))) = χop1∪op2 ...∪opn (SR)

3.2. δp1
(δp2

(...(δpn (SR))) = δp1∧p2 ...∧pn (SR)

4. Swapping rule
4.1. χop(δp(SR)) = δp(χop(SR)), if operations in p are only from op
4.2. χop1∪op2 (SR1�SR2) = (χop1 (SR1))�(χop2 (SR2))

if op1 and op2 are the operations from SR1 and SR2 respectively

and p is applicable to operations from χop1 (SR1) and χop2 (SR2)

4.3. δp1∧p2
(SR1�SR2) = (δp1

(SR1))�(δp2
(SR2)), ∀� ∈ {⊕p, ⊗}

if operations in p1 and p2 are only from SR1 and SR2 respectively

4.4. �1(SR1�2SR2) = (�1(SR1))�2(�1(SR2)),

∀�1 ∈ {δp, χop}, ∀�2 ∈ {⊕p, ⊗}

4.2 Algebraic Equivalent Rules

We present a set of algebraic equivalent rules in this section. Algebraic rewriting
can be performed based on these rules. This enables algebraic optimization to
generate efficient Service Query Plans (SQPs). Table II gives the details of each
of these algebraic equivalent rules.

The correctness of the algebraic rules can be proved directly from the def-
inition of our service algebra. These rules lay out a foundation for algebraic
rewriting. We now present our heuristic rules for finding efficient SQPs. We
assume that the internal form of a service query is implemented using a parse
tree.

(1) Split the Q-select with multiclause predicates into a set of cascading
Q-selects with single-clause predicates by using cascading rule 3.2.

(2) Move Q-selects towards the leaves of the parse tree by using swapping
rules, 4.1, 4.3, and 4.4

(3) Split the F-map with multiple sets of operations into a set of cascading
F-maps with single set of operations by using cascading rule 3.1.

(4) Move F-maps towards the leaves of the parse tree by using swapping rules,
4.2, 4.3, and 4.4.

(5) Combine cascading Q-selects and F-maps into a single Q-select, a single
F-map, or a Q-select followed by an F-map by using cascading rules, 3.1, 3.2,
and swapping rule 4.1.

5. IMPLEMENTING THE ALGEBRAIC OPERATORS

We present the implementation of the algebraic operators in this section. This
enables the generation of SEPs that can be directly used by service users to ac-
cess services. In relational databases, there is a strong correspondence between
algebraic operators and the low-level primitives of the physical system [Selinger
et al. 1979]. This correspondence comes from the mapping between relations
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Fig. 6. Normalizing service relations into 1NF. (a) A service relation SR. (b) Decomposing SR into

1NF relations opid(SR), λ1(SR), . . . , λm(SR).

and files, and tuples and records [Straube and Özsu 1995]. In our service query
framework, the service execution plan depends on both the service instances
and the shape of the service graph. The service instances are offered by the
actual service providers. The service graph serves as the schema of the ser-
vice instances. It specifies the dependency constraints of accessing the service
operations in the service instances.

5.1 Storing the Service Relations

We leverage the relational database approach to store service instances. A ser-
vice relation can be mapped to a set of database relations and stored in a re-
lational database. Service relations allow nonatomic attributes. For example,
a service operation is a composite attribute, which consists of an operation id
(opid) and a set of QoWS values (λ(op)). This makes a service relation a nested
relation. Therefore, a service relation contradicts with the First Normal Form
(1NF) of relational databases. To normalize service relations into 1NF, we need
to remove the nested relation attributes into new relations and propagate the
primary key into it. A service relation

SR(sid, {op1(opid, λ(op1))}, . . . , {opn(opid, λ(opn))})
is decomposed into (m + 1) database relations:

opid(SR)(sid, opid(op1), . . . , opid(opn)) (1)

λ1(SR)(sid, λ1(op1), . . . , λ1(opn) (2)

. . .

λm(SR)(sid, λm(op1), . . . , λm(opn) (m + 1).

Figure 6 illustrates the normalization process. SR is a service relation (see
Figure 6(a)). The opi attribute is multivalued, which contradicts with 1NF.
The normalization decomposes SR into (m + 1) 1NF relations, as shown in
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Fig. 7. Operation set graph generation algorithm.

Figure 6(b). Normalization transforms a service relation into a set of database
relations. Service relations can thus be stored in relational databases.

5.2 Implementing the Service Algebra

New service graphs might need to be generated when processing the algebraic
service queries. Generating a new service graph is usually not as straightfor-
ward as generating a new relational data schema. Among the three algebraic
operators, F-map and Compose require the generation of new service graphs.
Therefore, implementation of these two operators consists of two major tasks:
generating the service graph and retrieving service instances. The Q-select op-
erator does not involve any update of the service graph. It only retrieves the
service instances based on the quality requirement.

5.2.1 F-map. Service Graph Generation. The F-map operator employs an
algorithm called OSGgen (i.e., Operation-Set-Graph generation) to output an
operation set graph given a set of service operations and a service graph. The
resultant operation set graph will be the schema for the new service relation
generated by the F-map operator. Figure 7 illustrates the Operation-set-graph
generation process.

Service Instance Retrieval. The F-map operator performs database pro-
jections on each of the quality value relations and the service id rela-
tion, i.e., �opid (Gop1),...,opid (Gopk )(opid (SR)), �λ1(Gop1),...,λ1(Gopk )(λ1(SR)), . . . , and
�λm(Gop1),...,λm(Gopk )(λm(SR)), where Gop1, . . . , and Gopk are the operations from
service graph G.
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Fig. 8. Service graph concatenation algorithm.

5.2.2 Q-select. Service Instance Retrieval. The Q-select operator uses five
steps to retrieve service instances:

(1) Divide the selection predicate p(λ1, λ2 . . . , λk) into k subpredicates p(λ1),
p(λ2) . . . , p(λk), where k is the number of distinct quality parameters in the
selection predicate.

(2) Use the subpredicates to perform database selection, σp(λ1)(λ1(SR)),
σp(λ2)(λ2(SR)) . . . , and σp(λk )(λk(SR)).

(3) Perform database projection on the resultant relations from step 2
to retrieve the service id, sidλ1

= �sid (σp(λ1)(λ1(SR))), sidλ2
=

�sid (σp(λ2)(λ2(SR))), . . . , and sidλk = �sid (σp(λk )(λk(SR))).

(4) Combine sidλ1
, sidλ2

, . . . , sidλk to generate the relation SID, which contains
all the sids to be retrieved. The combination process is performed based on
the Boolean operators used to connect different quality parameter clauses
in p(λ1, λ2 . . . , λk). The Boolean operator can take one of the following two
forms: ∨ and ∧. For example, if p = c(λ1) ∧ c(λ2), SID = sidλ1

∩ sidλ2
; if

p = c(λ1) ∨ c(λ2), SID = sidλ1
∪ sidλ2

(5) Perform database natural join, opid (SR) ∞ SID, λ1(SR) ∞ SID, . . . , and
λk(SR) ∞ SID to retrieve the operation id and quality values for the re-
trieved service instances.

5.2.3 Compose. Service Graph Generation. The Compose operator employs
an algorithm called Gcon (i.e., Graph concatenation) to output a new service
graph given two service graphs and a set of edges representing interservice
dependencies. The resultant service graph will be the schema for the new ser-
vice relation generated by the Compose operator. Figure 8 illustrates the graph
concatenation process.

Service Instance Retrieval. The Compose operator uses five steps to retrieve
service instances:
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Table III. Complexity of Service Algebraic Operators

Algebraic Operator Complexity

F-map O(n × (V + E) + m × t)

Q-select O((k + m) × t × sF × log t)

Compose O((V + E) + (k × t + m) × t × log t)

Crossover O((V + E) + (m + 1) × t2)

(1) Divide the selection predicate p into a set of subpredicates, each of which
contains a single clause.

(2) Perform database θ -join, λi(SR1) �p(λi ,λ j ) λ j (SR2), where p(λi, λ j ) is a sub-
predicate containing λi and λ j and λi. λ j can refer to the same quality
parameter, for example, p = λ3(carQuote) < λ3(insuranceQuote).

(3) Perform database projection on the resultant relations from step 2 to re-
trieve the service id, sidλi , j = �sidi ,sidj

(λi(SR1) �p(λi ,λ j ) λ j (SR2)).

(4) Combine sidλi ,λ j to generate the relation SID, which contains all the sids to
be retrieved. The combination process is similar to step 4 of the Q-select
operator.

(5) Perform database natural join, (opid(SR1)∞SID)∞(opid(SR2),
(λ1(SR1)∞SID)∞λ1(SR2), . . . , and (λk(SR1)∞SID)∞λk(SR2) to retrieve the
operation id and quality values for the retrieved service instances.

5.3 Complexity of Service Algebraic Operators

We analyze the complexity of the service algebraic operators in this section.
The complexity is defined with respect to the cardinalities of the service rela-
tions that are independent of the physical implementation details. We assume
the cardinality of the original service relations is t. Table III summarizes the
complexity of each service algebraic operator.

F-map. The F-map operator first generates a new service graph by applying
OSG gen that has a complexity of O(n × (V + E)). It then retrieves the service
instances by performing projection on each relation, include the operation id
relation and the m quality value relation. This requires a complexity of O(m×t).
Therefore, the overall complexity is O(n × (V + E) + m × t).

Q-select. The Q-select operator uses five major steps for retrieving service
instances. We analyze the complexity of each step and derive the total complex-
ity in the end.

(1) Step 1 divides a complex selection predicate into k subpredicates. It requires
one pass of the k subpredicates and has a complexity of O(k).

(2) Step 2 performs selection using the k subpredicates on k quality value
relations respectively. The complexity is O(k × t).

(3) Step 3 projects the resultant quality value relation onto the sid attribute.
We assume that the average selection factor in Step 2 is sF . Therefore, the
complexity of step 3 is O(k × t × sF ).

(4) Step 4 uses the set operators (i.e., ∩ and ∪) to get the final sids. To elim-
inate duplicates, we assume that the set operators usually need to sort
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the relations on the sids and then compare the sids from both relations.
Therefore, the complexity is O((k − 1) × t × sF × log (t × sF )).

(5) Step 5 joins the final sids with the operation id relation and all the m quality
value relation. We assume that natural join also needs to sort the relations
on sids. Therefore, the complexity is O(m × t × log t).

We can derive the overall complexity of the Q-select operator as:

O(k + k × t + k × t × sF + (k − 1) × t × sF × log t × sF + m × t × log t)

= O((k + m) × t × sF × log t)

Compose. The Compose operator first applies the Gcon to generate a new ser-
vice graph that requires a complexity of O(V + E). It then uses five major steps
for retrieving service instances. We analyze the complexity of each step and
derive the overall complexity in the end.

(1) Step 1 divides a complex project predicate into k subpredicates. It requires
one pass of the k subpredicates and has a complexity of O(k).

(2) Step 2 performs θ -join using the k subpredicates respectively. The complex-
ity is O(k × t × log t).

(3) Step 3 projects the resultant quality value relation onto the sid attribute.
We assume that the average selection factor in Step 2 is s′

F . Therefore, the
complexity of step 3 is O(k × t2 × s′

F ).

(4) Step 4 uses the set operators (i.e., ∩ and ∪) to get the final sids. To eliminate
duplicates, we assume that the set operators usually need to sort the rela-
tions on the sids and then compare the sids from both relations. Therefore,
the complexity is O((k − 1) × t2 × s′

F × log (t2 × s′
F )).

(5) Step 5 performs (opid(SR1)∞SID)∞(opid(SR2), (λ1(SR1)∞SID)∞λ1(SR2),
. . . , and (λm(SR1)∞SID)∞λk(SR2) to retrieve the operation id and quality
values for the retrieved service instances. Since SID has been sorted in Step
4, the complexity is O(m × t × log t).

We can derive the overall complexity of the Compose operator as:

O((V + E) + k + k × t × log t + k × t2 × s′
F + (k − 1) × t2 × s′

F

× log (t2 × s′
F ) + m × t × log t)

= O((V + E) + (k × t + m) × t × s′
F × log t)

Crossover. The Crossover first applies the Gcon to generate a new service
graph that requires a complexity of O(V + E). It then applies to the operation
id relation and the m quality value relation. Therefore, they have a complexity
of O((V + E) + (m + 1) × t2).

5.4 Generating SEPs

The retrieved service relation conforms to the service graphs that define the
service operations and their dependency constraints for the service instances
in the retrieved service relation. We investigate in this section how to generate
SEPs from the retrieved service instances based on the service graphs. The
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service graphs could be generated during query processing (e.g., if F-map and
Compose are involved) or originally defined by the service schema. We propose
an algorithm that generates a service execution path from a service graph. The
service execution path arranges all operations in the service graph into a se-
quence with respect to all the dependency constraints. A service execution path
is nonexecutable because operations in the path are at the schema level; that
is, these operations are not from any particular service instances. SEPs can be
generated by instantiating the service execution path with the operations from
the service instances. A SEP is executable in that it is formed by the operations
from service instances that correspond to the actual service providers.

Remark 5.1. A Service Execution Plan (SEP) is different from a Service
Query Plan (SQP) from two major aspects:

(1) A SEP consists of a set of service operations from the retrieved service
instances. A SQP, on the other hand, is composed of algebraic operators
and service relations. It is used for retrieving service instances.

(2) A SEP specifies the order to execute the service operations. A SQP, on the
other hand, specifies the order of the algebraic operators and service rela-
tions for retrieving service instances.

Figure 9 illustrates the algorithm of generating a service execution path
from a service graph. The produced service execution path is an ordered list of
service operations. This algorithm has two major features: edge coloring and
depth-first traversal. First, the orders among operations need to conform to the
dependency constraints. Therefore, an operation can be executed only after all
of its depending operations have been executed. To fulfill this requirement,
we color the edges of the graph as green and red. An edge is initially colored
as red (line 3–4). Once a service operation is visited, all of its outgoing edges
are colored as green (line 9–10 and line 24–25). Only the operations with all
green incoming edges will be visited (line 17–20). Edge coloring guarantees that
service operations can be executed in the order that conforms to dependencies.
Second, we use the recursive call to achieve a graph depth-first traversal (line
26–27). The graph depth-first traversal will put service operations that come
from the same service paths (e.g., paymentHistory and financingQuote) close
to one another in the service execution path. This enables users to continuously
perform a set of related operations.

THEOREM 5.1. The execution path generation algorithm has the complexity
of O|V + E|.

PROOF. This algorithm is a graph depth-first traversal algorithm. Therefore,
it has the complexity of O|V + E|.

6. SERVICE QUERY OPTIMIZATION

The retrieved service relation usually contains more than one service instances.
Therefore, multiple SEPs can be generated from the service relation. All these
SEPs satisfy the functional and quality requirement specified by the query.
However, users may have special preference for some QoWS parameters over
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Fig. 9. Execution path generation algorithm.

others. For example, Mary wants to use the SEP with the highest reputation;
that is, she prefers to buy the car package from the most reputable providers.
The preference is on the entire SEP that usually contains multiple operations.
It is different from the quality requirement in the service query that is on some
individual operations (e.g., get the history report for less than 20 dollars). The
QoWS aware query optimization is a “user centered” optimization. It is to find
the SEP with the best quality based on user preference over the entire SEP.
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Table IV. QoWS for a Service Execution Plan

QoWS Parameter Aggregation Function

Latency
∑n

i=1 latency(opi)

Reliability
∏n

i=1 rel(opi)

Availability
∏n

i=1 av(opi)

Fee
∑n

i=1 fee(opi)

Reputation 1
n

∑n
i=1 rep(opi)

In this regard, the service query optimization performs a global selection as
opposed to local search that is performed by the query processor. In this section,
we first present a set of aggregation functions to compute the QoWS for SEPs.
They combine the QoWS parameters from multiple service operations. An score
function is then presented to evaluate the entire SEPs. Finally, we present two
optimization algorithms to find the best SEPs.

6.1 QoWS for SEPs

We need now to compute the QoWS parameters for the entire service execu-
tion plan that may contain multiple service operations. Based on the meaning
of QoWS, we define a set of aggregation functions to compute QoWS of ser-
vice execution plans, as shown in Table IV. The quality of a SEP can thus be
characterized as a vector of QoWS,

Quality(SEPi) = (lat(SEPi), rel(SEPi), av(SEPi), fee(SEPi), rep(SEPi)).

lat (latency) and fee (usage fee) take scalar values (�+). av (availability), and rel
(reliability) represent probability values (a real value between 0 and 1). Finally,
rep (reputation) ranges over the interval [0,5].

6.2 Score Function

We define a score function to compute a scalar value out of the QoWS vector
of the SEPs. This can facilitate the comparison of the quality of the SEPs.
Since users may have preferences over how their queries are answered, they
may specify the relative importance of QoWS parameters. We assign weights,
ranging from 0 to 1, to each QoWS parameter to reflect the level of importance.
Default values are otherwise used.

We use the following score function F to evaluate the quality of the service
execution plans. By using the score function, the QoWS optimization is to find
the execution plan with the maximum score.

F =
( ∑

Qi∈neg

Wi
Qmax

i − Qi

Qmax
i − Qmin

i

+
∑

Qi∈pos

Wi
Qi − Qmin

i

Qmax
i − Qmin

i

)
,

where neg and pos are the sets of negative and positive QoWS respectively.
In negative (resp. positive) parameters, the higher (resp. lower) the value, the
worse is the quality. Wi are weights assigned by users to each parameter. Qi

is the value of the ith QoWS of the service execution plan obtained through
the aggregate functions from Table IV. Qmax

i is the maximum value for the
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Fig. 10. DP-based plan optimization algorithm.

ith QoWS parameter for all potential service execution plans and Qmin
i is the

minimum. These two values can be computed by considering the operations
from service instances with the highest and lowest values for the ith QoWS.

6.3 Optimization Algorithms

The algebraic optimization depends on the “predicate pushdown” rules to per-
form Compose and Crossover as late as possible. Since the service algebraic rules
also include associative and communicative rules for Compose and Crossover,
many equivalent expressions can still be produced after the algebraic optimiza-
tion. As the number of Compose or Crossover in a service query increases, the
number of different composition orders may grow rapidly. The objective of ser-
vice query optimization is to select the most efficient composition order to form
a fast SQP. It then selects the SEP with the best user desired quality from the
multiple candidates resulted from the SQP.

Join ordering optimization has been intensively investigated in database
research [Chaudhuri 1998; Selinger et al. 1979]. One of the most adopted ap-
proaches is the System-R bottom-up dynamic programming query optimiza-
tion [Selinger et al. 1979]. A straightforward solution for our service query
optimization is to extend the DP optimization approach. Figure 10 shows the
extended DP based plan optimization algorithm. It consists of two major phases.
The first phase depends on dynamic programming to select the most efficient
query plan (line 1–8). The query plan is then executed in the second phase (line
9), which results in a set of SEPs. The second phase then proceeds to select the
SEP with the best quality (i.e., the maximum score) (line 10–15). It is worth
noting that multiple query plans may coexist even if they share the same join
order in the first phase of the algorithm. This is because some query plan may
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Fig. 11. Properties of Crossover.

place the service tuples in interesting orders that can be beneficial to subsequent
algebraic operators [Selinger et al. 1979].

DP optimization performs all Crossovers as late in the join sequence as
possible [Selinger et al. 1979]. This implies that in composing service relations
SR1, SR2, . . . , SRn only those orderings SRi1, SRi2, . . . , SRin are examined in
which for all j , where j = 2, . . . , n, either

(1) SRij has at least one join predicate with some relation SRik , where k < j ,
or

(2) ∀k > j , SRik has no compose quality predicate with SRi1, . . . , SRi( j−1).

All query plans that satisfy the above composition ordering requirement can
generate relatively smaller number of intermediate results than other query
plans. Therefore, they can be performed more efficiently to generate the SEPs.
Since service query optimization aims to select the best SEP, it will be necessary
if a query plan can return a subset of the SEPs where the optimal solution is
in it. This can effectively reduce the enumeration space. Therefore, we can
further improve the DP optimization. The challenge is how to ensure that the
optimal solution is included in the subset of SEPs. This is addressed by a special
treatment on the Crossover operator.

A Divide-And-Conquer Query Optimization Strategy. Crossover is an ex-
pensive algebraic operator. The number of service tuples returned is exponen-
tial to the number of service relations that are involved. In this section, we
propose an approach to deal with the Crossover operator. This approach en-
ables the optimization process to consider only a small subset of the service
execution plans. It guarantees that the subset encompasses the (semi) optimal
solution. This greatly improves the system performance while preserving the
quality of the selected SEP.

We first investigate some important properties of the Crossover operator.
Figure 11 helps illustrate these properties. Service relation SR j−1 is the result
of a sequence of compositions. The service relations (e.g., SR1 and SR2) under
the Compose operator are “partially connected” based on the compose quality
predicate. By “partially connected,” we mean that only a subset of service tuples
from SR1 and SR2 are selected and combined to form the composed relation (see
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the connections between SR1 and SR2 in Figure 11). The number of service gen-
erated is card(SR1) × card(SR2) × SFJ (SR1, SR2, p), where SFJ (SR1, SR2, p)
is the join selectivity factor. The selectivity factor depends on service relations
and the compose quality predicate. It takes a real value between 0 and 1. After
the sequence of compositions are performed, service relation SR j−1 is combined
with SR j to generate the final result using the Crossover operator. Since there
is no compose predicate, SR j−1 is “fully connected” with SR j to perform the
Crossover (see the connections between SR j−1 and SR j in Figure 11). This
results in card(SR j−1) × card(SR j ) service tuples. The searching space would
be greatly increased by the Crossover operator.

We adopt a divide-and-conquer strategy to deal with Crossover. The strat-
egy generates a set of (sub) optimal partial SEPs through local search. It then
combines these partial SEPs to form the final SEP. Before going into the de-
tails, we first introduce some approximation functions which will be used in
this strategy. Two aggregation functions (i.e., the functions for reliability and
availability) presented in Table IV do not combine QoWS parameters from mul-
tiple service operations in a linear manner. We propose two linear functions to
approximate the original functions for aggregation purpose. Specifically,

Reliability =
n∑

i=1

log(rel(opi)), Availability =
n∑

i=1

log(av(opi)).

These enable us to express the score of the final SEP as a linear combination of
the scores from the partial SEPs. In the example shown in Figure 11, the score
of the final SEP is the sum of those from its partial SEPs, that is, score(SEPik) =
score(SEP j−1

i ) + score(SEP j
k ).

SR j−1 is fully connected with SR j through the Crossover operator. There
must be a connection between the best partial plan in {SEP} j−1 and the best
partial plan in {SEP} j . The aggregation of these two partial plans forms the best
service execution plan. This is because best({SEP}).score = best({SEP} j−1).score
+ best({SEP} j ).score. Therefore, the optimization algorithm can perform the se-
quence of joins and query a single (or a set of) service relation(s) separately. This
enables to achieve the (semi) final optimal solution through a set of local search
without the need to really perform the Crossover. We call this optimization
strategy the Divide-And-Conquer-DP (DAC-DP) optimization. The best partial
SEPs can finally be combined to form the (semi) optimal solution. For the case
shown in Figure 11, only (card(SR j−1)+ card(SR j )) service tuples are returned
instead of (card(SR j−1) × card(SR j )). Figure 12 shows the DAC-DP service
query optimization algorithm. The algorithm first perform the sequence of com-
positions on the first t service relations and generate m partial SEPs (line 9). It
then selects the best partial SEP (line 10–14). The algorithm then proceeds to
query each of the remaining service relations that need to be combined using
the Crossover operator. It selects the best partial SEP from the query result of
each service relation (line 15–21). All the best partial SEPs are then combined
to form the final SEP (line 22).
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Fig. 12. DAC-DP plan optimization algorithm.

Table V. Symbols and Parameters

Variables Definition

NSR Total number of service relations

N J
SR Number of service relations under join

NC
SR Number of service relations under Cartesian product

NI O Total number of interesting orders

Ni
SI Number of service instances in the ith service relation

SFJ (SRi , SRi+1) Join selectivity factor between SRi , SRi+1

7. ANALYTICAL MODEL

In this section, we present the analytical model for the above optimization
algorithms. We analyze the complexity of the DP-based optimization algorithm
and the DAC-DP algorithm. Table V defines the parameters and the symbols
used in this section.

7.1 DP-based Query Optimization

We start by studying the complexity of the DP-based optimization algorithm.
There are two major phases in this algorithm. The first phase is to select the
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most efficient query plan whereas the second phase is to generate the best ser-
vice execution plan. In the first phase, the DP optimization algorithm uses two
heuristics to reduce the enumeration space. First, it eliminates the permuta-
tions that involve Cartesian products. Second, the commutatively equivalent
strategies with the highest cost are also eliminated. Therefore, these heuristics
help reduce the size of the enumeration space from NSR ! to 2NSR . The algorithm
also considers interesting orders; hence, the complexity of the first phase is:

O
(
2NSR × NI O

)
. (1)

The second phase enumerates the space of SEPs. The size of the SEP space
is determined by the number of service relations, number of service instances
per service relation, and the join selectivity factor. The join selectivity factor
for Cartesian products takes the value of 1 whereas the selectivity factor for
the normal join operators takes a value between 0 and 1. The complexity of the
second phase is:

O

(
NSR−1∏

i=1

Ni
SI ×

NSR−1∏
i=1

SFJ (SRi, SRi+1)

)
. (2)

Therefore, the complexity of the entire DP-based optimization algorithm is:

O

(
2NSR × NIO +

NSR−1∏
i=1

Ni
SI ×

NSR−1∏
i=1

SFJ (SRi, SRi+1)

)
. (3)

7.2 DAC-DP Query Optimization

The DAC-DP optimization algorithm consists of two similar phases as the DP-
based optimization algorithm. It relies on the divide-and-conquer strategy to
reduce the enumeration space in both phases. We assume that there are N J

SR
service relations to be combined using join. Therefore, the complexity of the
first phase is:

O
(
2N J

SR × NI O
)
. (4)

The second phase selects a set of best partial SEPs and then combines them
to form the final optimal SEP. Based on our analysis in Section 6.3, we can
derive the complexity of the second phase is:

O

⎛
⎝N J

SR∏
i=1

Ni
SI ×

N J
SR−1∏
i=1

SFJ (SRi, SRi+1) +
NSR∑

i=N J
SR+1

Ni
SI

⎞
⎠ . (5)

Therefore, the complexity of the entire DAC-DP optimization algorithm is:

O

⎛
⎝2N J

SR × NI O +
N J

SR∏
i=1

Ni
SI ×

N J
SR−1∏
i=1

SFJ (SRi, SRi+1) +
NSR∑

i=N J
SR+1

Ni
SI

⎞
⎠ . (6)
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Table VI. Parameter Settings

CP CI FI

Parameters carQuote historyReport paymentHistory financingQuote drivingHistory insuranceQuote

latency 0–300(s) 0–300(s) 0–300(s)

reliability 0.5–1.0 0.5–1.0 0.5–1.0

availability 0.7–1.0 0.7–1.0 0.7–1.0

fee 0–30($) 0–30($) 0–30($)

reputation 0–5 0–5 0–5

8. EXPERIMENTAL STUDY

We conducted a set of experiments to assess the performance of the proposed ap-
proach. We use the car brokerage scenario as our testing environment to setup
the experiment parameters. The purpose is to demonstrate how our approach
can help Mary select the best deal. The Web services are developed on Systinet
WASP Server, which is a complete platform for development, deployment, and
management of Web service based applications [Systinet 2004]. We run our ex-
periments on a cluster of Sun Enterprise Ultra 10 workstations under Solaris
operating system.

We create a service schema containing three services, which is similar to
the one shown in Figure 3. For simplicity, we omit the unnecessary service op-
erations. Each service contains two operations: CP (careQuote, historyReport),
CI (drivingHistory, insuranceQuote), and FI (paymentHistory, financingQuote).
We create three service relations, which conform to the service schema. The
number of service instances in each service relation varies from 10 to 60. We
use five QoWS parameters to evaluate service operations: latency, reliability,
availability, fee, and reputation. The values of these parameters are generated
within a range based on uniform distribution. The user’s role is to give the
weights for these parameters. Table VI summarizes the potential values for
the QoWS parameters for each service operation.

We consider a service query that helps Mary get an entire car package, in-
cluding the price quote and history report of a used car, insurance quote, and
financing quote. The service query can be expressed as a service algebraic ex-
pression as follows:

Q : χ{op1,op2,op3,op4}
[
δλ4(op2)≤20(CP ) ⊕λ3(op1)<λ3(op4) δλ4(op3)≤20(CI ) ⊗ FI

]
,

where op1, op2, op3, op4 represent service operations carQuote, historyReport,
insuranceQuote, and fincancingQuote respectively.

Performance measure. We measure the performance of the optimization ap-
proaches using computational time and score function value. We use the formu-
lae defined in Section 6.2 to compute the score of SEPs. We compare the scores
of the best SEPs generated by the two query optimization algorithm. Since
both query optimization algorithms both have two phases, we study and com-
pare the computational time for each phase and the entire algorithm. We also
investigate and compare the number of SEPs generated by each algorithm.

Figure 13 shows the optimization time resulting from the experiments. DP-
DAC is much more efficient than DP due to the divide-and-conquer strategy.
The chart on the left compares the optimization time for the first phase, where
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Fig. 13. Performance comparison: DP Vs. DAC-DP.

Fig. 14. Number of SEPs.

the most efficient service query plans (SQPs) are selected. The chart in the
middle compares the optimization time for the second phase, where the best
service execution plans (SEPs) are generated. DP-DAC outperforms DP in both
cases. The right-hand-side chart compares the total optimization time.

Figure 14 shows the number of SEPs generated by performing the most
efficient SQP selected in the first phase. DP-DAC generates much less SEPs
than DP. This also justifies why DP-DAC is more efficient in its second phase
than DP. Figure 15 shows the scores of the best SEPs generated by DP and DAC-
DP. In two cases (number of instances 10 and 60), DP and DAC-DP output the
best SEPs with the same score. In the other four cases, the scores of DAC-DP
are slightly lower (less than three percent) than those of DP. The difference
comes from the two approximation functions used by DAC-DP to aggregate
QoWS parameters. We have conducted a set of additional experiments to further
evaluate the scalability of the DAC-DP algorithm. We increase the number
of instance per service relation with two orders of magnitude and test of the
performance of DAC-DP with the number of service instances varying from
1000 to 5000. Experiment results (presented in Figure 16) show that DAC-DP
can still perform very efficiently (using less than 1 second to query three service
relations, each of which has 5000 service instances) on large number of service
instances.
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Fig. 15. Score of SEPs.

Fig. 16. Scalability.

Compare with the analytical model. We further compare the experiment
results with the results from the analytical model presented in Section 7. Al-
though the analytical model only predicts the upper bound of the time com-
plexity, we can still perform an approximate comparison. This is to justify that
the experiment results follow the same trends as predicted by the analytical
model. We focus on the improvement (in terms of optimization time) achieved
by DAC-DP over DP. We define a variable DP/DAC-DP (i.e., the time used by
DP divided by the time used by DAC-DP) to demonstrate the improvement.
Figure 17 illustrates the detailed comparison results.

The chart on the left-hand-side shows the improvement for the first opti-
mization phase. The complexity of this phase is mainly decided by the number
of service relations under join. In our experiment settings, the DP approach
needs to join three service relations whereas the DAC-DP only needs to join two
service relations (the divide-and-conquer strategy removes the service relation
FI from the join list by considering it separately). Therefore, in the analytical
model, DP/DAC-DP should take an approximate value of (2 × NDP

IO )/NDAC–DP
IO ,

where NDP
IO and NDAC–DP

IO represent the number of interesting orders consid-
ered by DP and DAC-DP in the first optimization phase. Since the number of
interested orders are unknown, they are not reflected by the analytical result
in the chart (that is why the analytical result curve is a horizontal straight
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Fig. 17. Experiment result vs. analytical result.

line). The actual experiment result curve stays above the analytical one. This
is because DP joins one more service relations than DAC-DP, it naturally needs
to consider more interesting orders; that is, NDP

IO /NDAC-DP
IO > 1. This makes

(2 × NDP
IO )/NDAC-DP

IO > 2.
The middle chart in Figure 17 shows the improvement in the second op-

timization phase. To calculate DP/DAC-DP for the analytical model, we use
Equations (2) and (5) defined in Section 7. If we neglect the last item in Equa-
tion (5) (i.e.,

∑NSR

i=N J
SR+1

Ni
SI ), we can derive that DP/DAC-DP takes an approx-

imate value of N 3
SR , that is, the number of service instances in the third ser-

vice relation FI. Therefore, the analytical curve is an 45-degree straight line.
The experiment curve has a very similar trends. It stays below the analytical
curve because we neglect the last item in the denominator for the analytical
curve. Since the total optimization time is dominated by the second phase, the
total optimization time has very similar trends to the second phase. The right-
hand-side chart shows the result of the total optimization time.

9. RELATED WORK

The proliferation of Web services is fostering a very active research area. We
give an overview of some work in this area which are most closely related to
our work. Since the field of Web service research is still in its infancy, there is
little foundational work to date.

The concept of quality of service (QoS) has been widely used in middleware
and networking communities [Aurrecoechea et al. 1998; Marchetti et al. 2004;
Gillmann et al. 2002]. In these communities, QoS usually refers to a broad
collection of networking technologies which aim to provide guarantees on the
ability of a network to deliver predictable results. Elements of network perfor-
mance within the scope of QoS often include availability (uptime), bandwidth
(throughput), latency (delay), and error rate. Research efforts in middleware
and networking communities mainly focus on the performance of network and
devices. Therefore, these works are centered on the network transport and sys-
tem level [Zeng et al. 2004]. This is different from the Web service domain
that treats QoS from a broader perspective and focuses on the application and
process levels. In this regards, QoS in the Web service domain subsumes ex-
isting technologies in middleware and networking communities, which can be
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leveraged to improve the system performance (e.g., availability). More impor-
tantly, quality metrics for Web services put more focus on the user experiences
(called QoE) and business return (QoBiz) [van Moorsel 2001]. Optimization
for Web services based on these quality metrics is “user centered” as opposed
to the “system performance centered” optimizations in middleware and net-
working communities. Moreover, since multiple Web services usually need to
be combined to work as a complex process (called composite service), an impor-
tant and distinct issue is to combine the QoS from different services to evaluate
the overall QoS of the composed service.

Finite state automata have been adopted to model Web services (e-Services).
A typical example is the work in Berardi et al. [2005]. A service model in this
work consists of an external schema and an internal schema. The external
schema is to specify the exported behavior of a service. The behavior is repre-
sented by a set of actions and the corresponding state transitions. The internal
schema, on the other hand, specifies the information on which services exe-
cute each given action. The FSMs service model provides fundamental support
for the service composition theory. Petri net has also been used to to model
Web services, which is referred to as a service net in Hamadi and Benatallah
[2003]. Based on the Petri-net service model, a service level algebra is pro-
posed. The proposed algebra verifies the closure property. The algebra can be
used to construct complex composite services by aggregating and reusing ex-
isting services. A fundamental difference between the automata and Petri-net
service models and the model used in this paper is the purpose and usage of
the formalisms embodied in these models. The service model in this paper is
designed to provide formalisms for service query optimization. Specifically, the
graph-based service schema and the service relation enable to query services
based on their functionalities. They also enable the design of optimization algo-
rithms to select services with the best user desired quality. Formalisms defined
in the automata and Petri-net models are mainly used for automatically com-
posing services and verifying the composed service is well formed and meet the
composition requirement.

Srivastava et al. [2006] propose a Web Service Management System (WSMS)
to enable optimized querying of Web services. A Web service W Si(X b

i , Y f
i ) is

modeled as a virtual table in the proposed WSMS. The values of attributes
in Xi must be specified whereas the values of attributes in Yi are retrieved.
An algorithm is proposed to optimized access Web services. The optimization
algorithm takes as input the classical Select-Project-Join queries over Web ser-
vices. It arranges Web services in a query based on a cost model and returns a
pipelined execution plan with minimum total running time of the query. In our
service query optimization framework, we adopt a formal service model. The
service model goes beyond the simple function call by effectively capturing the
key features of Web services: functionality, behavior, and quality. The service
calculus is proposed based on the service model. It enables users to declara-
tively query Web services based on these features. The optimization algorithm
in [Srivastava et al. 2006] focuses on the total running time. In contrast, in our
optimization algorithm, process, both the response time and the quality of Web
service are optimized.
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Zeng et al. [2004] propose a composite service optimization approach based
on several quality of service parameters. Composite services are represented
as a state-chart. The optimization problem is tackled by finding the best Web
services to execute a composite service in the form of a linear programming
problem. Our work focuses on Web service querying instead of generating com-
posite services. We propose a query algebra that to access Web services. Our
optimization algorithm aims to efficiently find the service execution plan with
the best quality.

10. CONCLUSION

We present in this article a query algebra that allows users to efficiently and
optimally access Web services. The query algebra consists of a set of algebraic
operators. Service queries can thus be specified as algebraic expressions using
these operators. We present the physical implementation of each algebraic op-
erator. This enables us to generate SEPs that can directly be used to access
services by the users. A divide-and-conquer query optimization algorithm is
proposed to efficiently select the SEP with the best user-desired quality. Ex-
perimental results demonstrate significant performance improvement over the
traditional DP-based optimization approach.
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computing: A research roadmap. In Service-Oriented-Computing.

PAPAZOGLOU, M. P. AND VAN DEN HEUVEL, W. 2005. Web services management: A survey. IEEE
Internet Comput. 9, 6, 58–64.

PONNEKANTI, S. AND FOX, A. 2002. SWORD: A developer toolkit for Web service composition. In

Proceedings of the International Conference on World Wide Web.

PU, K., HRISTIDIS, V., AND KOUDAS, N. 2006. A syntactic rule based approach to Web service com-

position. In Proceedings of the IEEE International Conference on Data Engineering.

SELINGER, P., ASTRAHANAND, M., CHAMBERLIN, D., LORIE, R., AND PRICE, T. 1979. Access path selection

in a relational database management system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 23–34.

SRIVASTAVA, U., WIDOM, J., MUNAGALA, K., AND MOTWANI, R. 2006. Query optimization over Web

services. In Proceedings of the International Conference on Very Large Databases.
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