
Practical Verification Techniques for Wide-Area Routing

Nick Feamster
MIT Computer Science and Artificial Intelligence Laboratory

200 Technology Square, Cambridge, MA 02139
feamster@lcs.mit.edu

Abstract
Protocol and system designers use verification techniques to an-
alyze a system’s correctness properties. Network operators need
verification techniques to ensure the “correct” operation of BGP.
BGP’s distributed dependencies cause small configuration mistakes
or oversights to spur complex errors, which sometimes have devas-
tating effects on global connectivity. These errors are often difficult
to debug because they are sometimes only exposed by a specific
message arrival pattern or failure scenario.

This paper presents an approach to BGP verification that is pri-
marily based on static analysis of router configuration. We ar-
gue that: (1) because BGP’s configuration affects its fundamen-
tal behavior, verification is a program analysis problem, (2) BGP’s
complex, dynamic interactions are difficult to abstract and impossi-
ble to enumerate, which precludes existing verification techniques,
(3) because of BGP’s flexible, policy-based configuration, some as-
pects of BGP configuration must be checked against a higher-level
specification of intended policy, and (4) although static analysis
can catch many configuration errors, simulation and emulation are
also necessary to determine the precise scenarios that could expose
errors at runtime. Based on these observations, we propose the de-
sign of a BGP verification tool, discuss how it could be applied in
practice, and describe future research challenges.

1. Overview and Motivation
Networks establish global reachability by exchanging informa-

tion using the Border Gateway Protocol v4 (BGP) [18]. Operators
need BGP’s configuration flexibility to achieve tasks in a wide va-
riety of network settings, but this flexibility also implies that mis-
configuration can cause the protocol to operate incorrectly. Cor-
rect routing depends on the consistent configuration of routers both
within an AS and across ASes; thus, minor localized errors can
cause BGP’s behavior to violate properties that are fundamental to
globally correct routing.

Most large ISPs contain several hundred routers, and the latest
Cisco IOS release contains over 7,000 configuration commands,
many of which can be configured with arbitrary parameters. Given
this complexity, mistakes are frequent and expected. While existing
tools facilitate some degree of configuration management [3, 9],
operators must frequently perform configuration tasks manually in
low-level, vendor-specific configuration languages [19].

As a result, misconfiguration is an all-too-frequent occurrence
that often disrupts connectivity [15]. Even minor aspects of local
configuration can influence global Internet connectivity. For exam-
ple, in 1997, a small ISP blackholed a significant portion of Internet
destinations when a misconfigured router announced a large por-
tion of prefixes in the Internet’s routing table as destinations inside
its own network [4]. This incident, now notorious as “AS 7007”,

resulted from a configuration that “redistributed” routes from that
AS’s interior routing protocol into BGP; as a result, much of the
Internet became unreachable. One week in July 2003 alone saw
several cases of local misconfiguration that caused global events,
including: (1) a misconfigured router in a small ISP caused it to be-
come a transit network for two tier-1 ISPs [17], and (2) a small Eu-
ropean ISP was assigning IP addresses to routers from unassigned
address space [2]. The ability to verify BGP configuration before
deployment most likely would have prevented these mishaps.

Today, network operators, protocol designers, and researchers
typically reason about BGP’s behavior by observing the effects of
a particular configuration on a live network. The state of the art
for router configuration typically involves logging configuration
changes and rolling back to a previous version when a problem
arises [3, 9]. This approach is not effective. First, the symptoms of
a configuration error may appear long after the configuration error
was introduced. For example, a network operator may not notice
a misconfigured route filter until a route advertisement that should
have been filtered is advertised. Therefore, operators may find re-
verting the configuration difficult, since the appearance of an error
is often not correlated with the configuration change that caused it.
Second, although reverting to a previous configuration may solve
the problem, it does not explain why the configuration was wrong
in the first place; this means that an operator may eventually rein-
troduce the error, especially if the error is conceptual.

The lack of a formal reasoning framework means that router con-
figuration is time-consuming and ad hoc. Furthermore, today’s
routing configuration is based on the manipulation of low-level
mechanisms (e.g., access control lists, import and export filters,
etc.), which makes routing configuration tedious, error-prone, and
difficult to reason about. Network operators need tools based on
systematic verification techniques to ensure that BGP’s operational
behavior is consistent with the intended behavior (i.e., that the
network is operating “correctly”). We propose a verification tool
that helps operators and protocol designers reason about high-level
properties of routing protocols.

We believe that wide-area routing will always need verification
tools, even as configuration languages improve. Although some
configuration errors are caused by simple typographical errors,
many configuration errors are conceptual. The policy-based nature
of wide-area routing configuration allows operators to accommo-
date a wide variety of conditions and network engineering tasks,
but this flexibility also enables operators to make catastrophic mis-
takes. As long as this possibility exists, operators will need mech-
anisms to check the correctness of routing configuration.

Verification implies a notion of correctness; for traditional pro-
grams and protocols, correctness simply requires adherence to a
specification. Our routing logic—a set of rules that facilitates rea-
soning about whether a routing protocol satisfies a particular prop-

erty or set of properties—suggests one possible notion of correct-
ness for wide-area routing [6]. The logic classifies “correctness” in
terms of five properties: validity (the existence of a route implies
the existence of a corresponding path), visibility (the existence of
a path implies the existence of a corresponding route), safety (the
existence of a stable, unique path assignment), determinism (best
route selection is independent of message ordering and the presence
of sub-optimal routes), and information-flow control (the protocol
conforms to a specified information flow policy; that is, it does not
“leak” information). Although many aspects of BGP configura-
tion are clearly correct or incorrect, correctness is often determined
by how well the actual configuration conforms to the intended be-
havior. For example, an operator might specify that routes heard
from one AS should not be readvertised to another; a verifier should
check that access control lists, import and export policies, and com-
munities across multiple routers correctly implement this policy.

BGP’s flexible configuration makes it much more like a dis-
tributed program than a traditional protocol. BGP’s configuration
determines which (and whether) routing messages are distributed;
therefore, BGP verification must analyze the configuration.

We believe that a combination of static analysis and offline simu-
lation or emulation, which we call a sandbox, is the right approach
to BGP verification. Static analysis is useful for verifying systems
that are inherently difficult to model, which makes it appealing
for verifying BGP. Applying static analysis to BGP verification in-
volves examining the static configuration of all routers within an
AS and applying a set of rules to check for inconsistencies. This
approach poses several challenges. We must identify the configura-
tion aspects that can potentially affect correctness and design meth-
ods for expressing and testing correctness rules. In cases where the
notion of “correctness” is not hard and fast, static analysis should
at least verify that BGP’s configuration conforms to the intended
behavior. These challenges are exacerbated by the fact that BGP
configuration is distributed across many routers. Furthermore, be-
cause BGP’s behavior depends on the route advertisements it re-
ceives as well as failure scenarios, static analysis alone often cannot
determine whether a BGP configuration will cause incorrect behav-
ior. We believe that a sandbox can use inputs suggested by static
analysis to help operators identify problematic scenarios and ask
“what-if” questions about BGP configuration.

In this paper, we propose the design of a BGP verifier that a
network operator could use to test possible configurations offline,
prior to deploying them on a live network. We primarily focus on
unintentional configuration errors that result from configuration in-
consistencies within a single AS because, in practice, network oper-
ators typically only have access to their own configuration. Verifi-
cation could use external information (e.g., from a database [10] or
policy registry [11]) to find data inconsistencies or inter-AS policy
conflicts, but we focus on relatively language-independent config-
uration aspects that can be verified using configuration from one
AS with no additional information. Additionally, we discuss how
aspects of our work may provide insights that help improve future
configuration languages.

This paper presents the case for new, domain-specific BGP ver-
ification techniques (Section 2), identifies and classifies how these
techniques can check configuration aspects that affect BGP’s cor-
rectness (Section 3), and proposes an approach to verifying BGP
configuration using static analysis and sandboxing (Section 4).

2. Practical BGP Verification Techniques
In this section, we explain why we pursue static analysis, rather

than model checking, to identify errors. Since BGP’s behavior de-
pends on dynamic conditions (e.g., link failures, advertisements

from neighboring ASes, etc.), static analysis alone will not catch
all configuration errors. We argue that static analysis should be
combined with a BGP sandbox—simulation or emulation that de-
scribes BGP’s behavior under various dynamic conditions.

2.1 The case for static analysis
A BGP verifier should efficiently identify cases where BGP vi-

olates some correctness property. Although BGP operates much
like a distributed program, most program verification techniques
are not directly applicable. Theorem proving facilitates reasoning
about high-level system properties but is inefficient and often man-
ual; verification must be automatic to provide timely feedback to
network operators. Model checking has been popular for exam-
ining the correctness of traditional communications protocols with
well-defined state machines (e.g., TCP), so it might seem like a
reasonable approach. Unfortunately, applying model checking to
wide-area routing presents two serious difficulties. First, it requires
state space exhaustion, which is tedious—all possible message or-
derings, prefix combinations, AS paths, and so on—and BGP’s
complexity makes it difficult to collapse these states. More im-
portantly, the policy-based nature of wide-area routing makes it
impossible to ever know every possible state.

Figure 1 helps explain why model checking BGP is hard to get
right. In this example, AS 0 wants to load balance traffic between
its two links to AS 1. The router s sends traffic via the default exit
route unless it hears a route advertisement from the shaded router.
The shaded router only advertises routes to s that match the AS
path regular expression “1 [0-9]+ 3”; furthermore, it is misconfig-
ured and readvertising invalid routes to s. Let’s assume that it is
incorrectly setting the next-hop when readvertising routes. In this
situation, the shaded router only advertises invalid routes if AS 1
switches over to a backup AS. Since AS path “1 2 3” is a backup
path for AS 1, it would not be visible to AS 0 under normal cir-
cumstances. Thus, model checking AS 0’s configuration may fail
to explore the very states that expose bugs. Model checking might
be able to able to verify some aspects of BGP correctness under cer-
tain simplifying assumptions, but subtleties make model checking
BGP almost as complex as BGP itself.

Static analysis, which tests configurations against constraints
that correspond closely to the configuration itself, is a simpler ap-
proach to BGP verification. By analyzing only the configurations,
static analysis could identify that the shaded router was readvertis-
ing routes with unreachable next-hop values. In Section 3.1, we
discuss the configuration details that cause the incorrect behavior
in Figure 1 and describe how static analysis can catch this error.

2.2 The case for a BGP sandbox
Static analysis can efficiently identify configurations that may

cause BGP’s correctness to be violated, but BGP’s behavior also
depends on dynamics, which may expose emergent incorrect be-
havior from a seemingly correct configuration. For example, a
network operator may want to verify that the network operates
“correctly” during link failures (or more serious disasters), fluctu-
ations in traffic volumes, planned maintenance, or instances where
a neighboring AS suddenly begins advertising new routes. A BGP
sandbox (i.e., a simulation or emulation tool that models BGP’s be-
havior, given its configuration [8]) explores these interactions and
can help operators perform higher-level tasks (e.g., traffic engineer-
ing) correctly.

Obviously, verifying BGP configuration with a sandbox alone is
not tractable because the space of possible inputs is too large. Static
analysis can prune the input space to include only inputs that are
most likely to expose incorrect behavior. Additionally, to simplify

AS 1

AS 2

AS 3

Default

AS 0

d

s

AS 1’s backup path is not visible to AS 0
under most circumstances

AS path matches "1 [0−9]+ 3"
only routes whose

Figure 1: AS 0 cannot use model checking to verify configura-
tion because some states, like backup paths, may be hidden.

r
s

multiple−hop BGP session

AS 0
AS 1

failure masked by indirect path

d
AS 2

Figure 2: A sandbox can expose emergent incorrect behavior.

the process of modeling the protocol, a sandbox will typically re-
quire that certain configuration constraints are satisfied; static anal-
ysis can check these types of constraints.

Figure 2 helps explain why operators need a BGP sandbox to
expose certain correctness violations. In this example, the shaded
router is configured to establish a BGP session over multiple net-
work hops (this can be useful if AS 2’s router is behind a firewall).
The shaded router advertises a route to d via AS 2. If the direct
path between AS 0 and AS 2 fails, the BGP session between the
shaded router and the firewalled router may remain active if an al-
ternate multiple-hop path between the two routers exists. Thus, the
shaded router perceives that its path to AS 2 is active, and contin-
ues to advertise a route to d directly via AS 2. Static analysis could
discover that a particular router configuration might raise this pos-
sibility (thus pruning the input space), but a BGP sandbox can help
determine whether (and when) it could actually occur by modeling
BGP’s behavior under specific failure scenarios.

3. Verifying BGP Configuration
To verify BGP’s correctness, we must first understand how vari-

ous configuration aspects affect each correctness property. We use
the routing logic properties from our previous work to classify how
various configuration statements affect aspects of correctness [6].
Each subsection focuses on one or two correctness properties and
presents one or two examples of configuration statements that af-
fect those properties. Table 1 summarizes the effects of many more
configuration statements on higher-level properties; a BGP verifier
should express constraints related to each of these statements that
guarantee that the higher level property holds. For each example
that we discuss, we present a potential misconfiguration and spec-
ify the constraint that should be satisfied to avoid the error. We
classify the constraints in terms of the following questions:

• Does verifying the constraint involve checking configuration
at a single router or multiple routers?

• Does it require information from other routing protocols
(e.g., from the IGP)?

• Does it require information that is external to the configura-
tion (e.g., from a configuration database)?

• Does it require configurations from multiple ASes?

• Can it be specified as a necessary condition, a sufficient con-
dition, or both?

• Does it require the operator to specify the intended correct
behavior, or can it be verified without this specification?

• Can static analysis alone can check the constraint, or is a
BGP sandbox is also necessary?

The examples we present are motivated by options in Cisco’s
IOS configuration language, but other languages have similar op-
tions, and the examples we discuss are language-independent. Al-
though the examples are not exhaustive, other studies [15] and per-
sonal communication with operators have helped us focus on rep-
resentative errors that are common, elusive, or catastrophic.

3.1 Validity and Visibility
Validity requires that a route for a certain destination correspond

to the actual path that packets sent along that route would follow; it
is important for correctness because an invalid route to a destination
can prevent packets from reaching their intended destination (e.g.,
by creating a blackhole, forwarding loop, etc.). Visibility means
that a valid path will have a corresponding route.

Each BGP route contains a next-hop attribute that tells a router
the IP address to forward packets to in order to use that route; con-
figuration affects how this attribute is set. eBGP-speaking routers
typically enable a configuration option that sets the BGP next-
hop attribute to the loopback address of that eBGP-speaking router
(rather than the address of the router in another AS) to ensure that
the next-hop addresses advertised by iBGP are in the internal rout-
ing protocol (“IGP”) and, thus, that internal routers can use the
advertised route (see next-hop-self in Table 1). This option
simplifies configuration but is not always appropriate [1].

The following necessary condition verifies that eBGP-speaking
routers will advertise routes with reachable next-hop IP addresses:
if an eBGP-speaking router does not set the next-hop attribute to
its own loopback address, then valid routing requires that the next-
hop from the neighboring AS’s end of the eBGP session be incor-
porated into the IGP; in this case, routes for these addresses must
not be readvertised to other eBGP peers. This constraint ensures
that internal routers have a route to the next-hop via the IGP and
that the internal routers do not advertise these routes to neighboring
ASes. The error shown in Figure 1 could arise precisely because
the shaded router did not reset the BGP next-hop attribute, and the
IP addresses from its session to AS 1 were not in the IGP. Ac-
cording to several network operators, this error frequently appears
in practice. Static analysis can verify this necessary condition us-
ing configurations across multiple routers within a single AS and
some IGP configuration information; we discuss the specifics of
how static analysis can check this constraint in Section 4.

Network operators typically use a logical full-mesh of iBGP ses-
sions between routers to ensure that every router in the AS receives
the same set of BGP routes, but route reflection is often used to
achieve intra-AS consistency more scalably. This technique is sub-
tle, involves many configuration commands, and can violate valid-
ity and visibility if misconfigured. The best common practice for
correct route reflector configuration requires satisfying sufficient
conditions that involve both iBGP and IGP configuration [6, 13].
Static analysis can use BGP and IGP configuration from the routers
in the local AS to verify that these conditions are satisfied.

Visibility can be violated if the iBGP signaling graph becomes
partitioned; this can occur for several reasons. For example, the
AS may not have “full mesh” iBGP, or route reflector clusters may
be misconfigured. While these types of fundamental partitions can

Statement or Clause What it does How it affects correctness
VALIDITY AND VISIBILITY

neighbor <IP> [options] attempts to establish BGP session to IP with specified options 1. IP address or options mismatch 2. iBGP session failures to a router
interface rather than loopback address are not masked by IGP

no synchronization allows iBGP routes to appear in BGP tables without appearing in
IGP (external routes need not be in IGP)

a non-iBGP-speaking router between two iBGP routers creates a black-
hole

ebgp-multihop allows a router to establish eBGP with a router to which it is
not directly connected (useful for routers behind firewalls, border
routers that can’t handle full routing tables, etc.)

inconsistency results if the path between the routers fails over to a more
circuitous route (perhaps through another AS)

next-hop-self sets the next-hop IP address for readvertised routes to the IP
address of the current router; often used when eBGP-speaking
routers readvertise externally-learned routes via iBGP; some-
times disabled for reliability reasons

if not used, next-hop IP addresses for externally-learned routes must be
injected into the IGP (and also not readvertised to other ASes)

set path prepend <AS> prepend additional AS hops to the AS path of readvertised routes prepending with arbitrary AS numbers results in invalid routes
network <prefix> originates (“injects”) routes for prefixes potential for bogus route injection
community-list, access-list determines the prefixes for which advertisements are accepted

and readvertised; facilitates route filtering
improper configuration can accept or leak bogus (or unwanted) routes

redistribute
[bgp|ospf|connected|static]

imports routes from one routing protocol into another; useful for
various reasons (e.g., if some routers don’t support BGP, etc.)

blackholing is likely and commonplace

aggregate-address [addr]-
summary-only

aggregates contiguous prefixes in a certain range; reduces the
number of advertised prefixes, thereby reducing routing table size
and improving scalability

potentially causes fate sharing between independent networks; impedes
traffic engineering

SAFETY AND DETERMINISM

always-compare-med causes the MED attribute to be compared across all routes, rather
than only between routes from the same AS; not commonly used

if not used, then various constraints must be satisfied to prevent route
oscillation

deterministic-med causes the most recently received route to be compared with the
set of all available routes for a prefix, rather than just the current
best route; sometimes (but rarely) disabled to save CPU/state

if not used, route selection depends on route advertisement arrival order

best path compare-
routerid

causes route selection to skip criterion that prefers the route that
was received first; sometimes not used to prefer “stable” routes

if not used (and maximum-paths does not enable multiple best
routes), route selection depends on route advertisement arrival order

INFORMATION-FLOW CONTROL

set community, access-list,
match community-list

controls route propagation incorrectly specified or unspecified ACLs, import policies, or export
policies can cause routes to leak

Table 1: Some examples of BGP configuration statements that affect high-level correctness properties.

be detected with static analysis of local BGP configuration alone,
many partitions may only appear if a BGP session fails or certain
routes are filtered or suppressed. In these types of situations, a
sandbox could highlight the precise failure scenarios that cause a
partition (hence, a visibility violation) to occur.

Other constraints related to validity and visibility require more
extensive information, such as configurations from neighboring
ASes or knowledge about operator intent. Static analysis requires
configuration from neighboring ISPs to determine that one of these
ISPs has misconfigured a filter and is thus preventing some down-
stream network from being visible to the rest of the Internet. Other
configuration options may require a more detailed specification of
operator intent. For example, aggregating contiguous prefix blocks
is a common practice to reduce routing table size, but an operator
might intentionally advertise separate contiguous prefixes for traf-
fic engineering purposes. In this case, static analysis must compare
the configuration with a specification of the operator’s intent to de-
termine whether the configuration is correct.

3.2 Safety and Determinism
Safety requires that, given a set of routing choices, BGP should

eventually arrive at a stable path assignment; in other words, there
should be no oscillations induced by the configuration itself. Most
safety issues involve inter-AS policy, but improper route reflector
configuration can also cause intra-AS route oscillation induced by
BGP’s “MED” attribute [12, 16]. Any one of several sufficient
conditions can prevent this behavior: (1) inter-cluster IGP metrics
are higher than intra-cluster IGP metrics, (2) MEDs are disabled
completely, (3) MEDs are compared across all routes (as opposed
to routes from the same AS only), (4) the AS uses full-mesh iBGP.
Even if none of these conditions are satisfied, MED oscillation may
not occur—the anomaly depends on a specific sequence of route ad-
vertisements. Static analysis of BGP and IGP configuration from a

single AS can determine whether these sufficient conditions are sat-
isfied, and, if the conditions are not satisfied, a sandbox can deter-
mine the sequence of advertisements that will expose the anomaly.
However, verifying that safety is satisfied globally (i.e., that policy-
based oscillations between multiple ASes do not occur) requires
static analysis of configurations from multiple ASes to ensure that
certain sufficient conditions are satisfied [14].

Determinism requires that the routing protocol behave the same
way under (1) different orderings of route messages (time immu-
nity) and (2) different sets of available routes (set immunity) [6].
Unless an operator has intentionally configured nondeterminism,
BGP should satisfy determinism, because it facilitates debugging,
as well as the use of traffic engineering tools [7]. Table 1 lists
several configuration options that should be enabled to ensure that
BGP satisfies time immunity. Static analysis can verify these con-
straints by checking configurations at individual routers in the AS,
as these options do not have dependencies across routers. Unfortu-
nately, as long as operators enable the standard use of MED (where
the MED value is compared only between routes from a single AS,
rather than across all ASes), BGP will violate set immunity [6].
If the operator intends to disable MED, static analysis can easily
verify that MED is disabled on all eBGP-speaking routers.

3.3 Information-flow Control
The information-flow control property requires the exchange of

routing messages to conform to some higher-level information flow
policy. An AS must control which routes propagate to neighboring
ASes because advertising a route to another AS implies a willing-
ness to carry traffic for that AS. In practice, an AS can control
unintended route propagation using import and export policies in
conjunction with the “community” attribute. Routers often assign
a community to routes received from other ASes based on which
session the route was learned from (e.g., from a peer, customer,

Property
Violations

Pattern−Based
Constraint Checker

Control Flow
Analyzer

BGP

High−level
Network Summary

Rules

Configuration

Specification
Constraint Checker

Violations
Property

High−level
Property

Control Flow

(external information
as needed)

Figure 3: A static constraint checker for BGP configuration.

etc.). These routes are readvertised to other routers within the AS
along with the assigned community attribute, and other routers in
the AS determine whether to readvertise the route to a particular
neighbor based on this attribute. Effectively, network operators use
low-level mechanisms like communities to specify a high-level pol-
icy (e.g., don’t advertise routes from one peer to another); this ap-
proach makes misconfiguration much more likely. Static analysis
of BGP configuration, along with a specification of operator intent,
can ensure that the configuration satisfies high-level information
flow policy. In general, static analysis can verify these types of
information-flow policies using BGP configurations from all of the
routers inside one AS. We describe more details of how an actual
static analysis tool might verify such policies in Section 4.

4. Applying Verification Techniques to BGP
In this section, we describe a practical approach to BGP verifica-

tion that combines static analysis and a BGP sandbox. Static analy-
sis parses configuration statements to detect errors that are evident
from the configuration commands themselves. A sandbox can de-
termine whether (and under what circumstances) a seemingly cor-
rect configuration can produce incorrect behavior.

4.1 Verifying BGP with Static Analysis
We now discuss how to apply static analysis to BGP. We propose

the design for a tool that uses static analysis to catch various types
of BGP configuration errors that span multiple routers within a sin-
gle AS. We first present a systematic approach for enumerating cor-
rectness constraints using properties of the routing logic. We then
describe some practical methods for checking these constraints.

Configuration dependencies determine how static analysis
should check constraints on BGP configuration. For example, va-
lidity tests verify that the BGP configuration does not readver-
tise invalid routes (outbound validity). This involves checking
that outbound access control lists (ACLs) are configured appropri-
ately (i.e., that the AS is not advertising bogus prefixes or origin
ASes, etc.). Additionally, outbound validity depends on inbound
validity—the verifier must ensure that routes learned via eBGP ses-
sions are valid (inbound validity). This requires ACLs to be con-
figured to reject invalid prefixes and routes and iBGP configuration
to be consistent with the IGP topology. Several of these checks de-
pend on BGP-level connectivity, which in turn requires verifying
configuration of router interfaces and IGP-level connectivity.

Figure 3 provides an overview of a static constraint checker for
BGP. We believe that the constraints that a BGP verifier should
check to guarantee correctness fall into the following categories:

1. Pattern-based constraints. Rules that are expressed in terms
of the configuration language itself. Pattern-based con-
straints are appropriate for expressing low-level constraints
that involve specific configuration options.

Start

a1==a2 or a2 a sub-AS?

r1: router bgp a1 {neighbor n2 remote-as a2}

eBGP session to n2 (AS a2)

No

continue with intra-AS test cases

Yes

Next-hop reachability OK

r1: router bgp a1 {neighbor n2 next-hop-self}

Looking for n2 in IGP

END

ERROR: next-hop not in AS

END

n2 in AS at r2

r2: interface { ip address n2 }

router ospf { network [prefix containing n2] }

ERROR: next-hop in AS, but not in IGP

END

Figure 4: FSM for the next-hop reachability test. END is
taken when no other transition can be matched.

2. Control-flow constraints. Rules that express how routing
messages should propagate with respect to routing protocols
at lower scopes. For example, control-flow constraints can
specify how iBGP routing messages should flow with respect
to an AS’s IGP graph.

These rules can also express (1) what information (i.e.,
routes) should be imported into the AS, (2) what informa-
tion should be exported to other ASes, and to which ASes
it should be sent, and (3) whether and how that information
should be processed.

Once the verifier parses the configuration, each type of constraint
can be language-independent. Control flow constraints can be
analyzed without regard to configuration statements. Although
pattern-based constraints may be expressed in terms of the config-
uration language, these rules could also be expressed in a vendor-
independent representation.

Pattern-based rules can be expressed as a finite state machine
(FSM) that matches on patterns in router configuration. One com-
plication arises because BGP configuration is distributed across
multiple routers. For example, for two routers to establish a BGP
session, each router must have a neighbor statement for an in-
terface on the other’s router (preferably the loopback). Scoping
each configuration statement with a unique identifier representing
the router where that statement appears facilitates the expression of
rules that depend on configurations at multiple routers.

Let’s revisit the example from Section 2.1 (Figure 1), where
router s receives invalid routes from the shaded router because the
routes contain incorrect next-hop values. As previously mentioned,
inbound validity depends on iBGP and IGP consistency, which in
turn depends on next-hop reachability. Figure 4 shows an FSM that
checks the next-hop reachability constraints that we described in
Section 3.1. Static analysis could determine that the shaded router
from Figure 1 has the error “next-hop not in AS”—it is advertis-
ing routes with a next-hop that other routers cannot reach. As in
other pattern-based checkers, the rules are expressed as templates:
from the start state, any router r1 and neighbor n1 will match; once
bound, a variable maintains the same binding.

Control-flow constraints, on the other hand, are high-level rules
that express how routing information should propagate. For ex-
ample, information-flow control involves controlling how routes
propagate between BGP sessions. Outbound filters typically check
whether a route has a particular community value that was set by
another router. These filters use a mechanism to achieve a high-
level policy, but the actual mechanism that is used to control the
propagation of routes is not as important as the intention. In these

types of cases, pattern-based rules are not appropriate; rather, a rule
should specify constraints on how routes should be propagated. For
example, a constraint might specify that routes from learned from
one peer should not be advertised to another peer; as shown in Fig-
ure 3, checking this constraint not only requires a summary of con-
trol flow, but also a high-level specification of correct control flow.

For information-flow control, a network operator specifies the
meaning of “correct” control flow, but other high-level control flow
constraints are not intention-based. For example, checking that
iBGP configuration satisfies sufficient conditions to avoid partitions
in the iBGP signaling graph or loops induced by route reflectors in-
volves checking how BGP control flow relates to the IGP.

4.2 A BGP Sandbox
As we saw in Section 2.2, configuration options can affect BGP’s

correctness when combined with dynamic effects. We developed an
emulator that uses BGP routing tables and router configurations to
emulate BGP’s route selection process for each router in an AS [8].
This emulator efficiently predicts the outcome of the BGP deci-
sion process given a certain BGP configuration across all routers
in an AS. This tool could be used to expose potential configuration
pitfalls such as those in Figure 2 by emulating the BGP decision
process under different failure scenarios.

Because of the extremely large input space, the primary chal-
lenge in using a sandbox is finding the inputs that expose property
violations. We believe that static analysis can parse configuration
to identify potential property violations and prune the input space
to those that will likely cause property violations.

5. Discussion and Research Agenda
Analyzing BGP’s configuration with the combination of static

analysis and a BGP sandbox can help verify BGP’s correctness be-
cause its correctness is largely defined by its configuration. We
have incorporated some of these verification techniques into a pre-
liminary tool and have made it available to network operators for
feedback [5]. This work is a first step in an important, generally un-
explored area and poses many interesting, unanswered questions.

How can verification exploit beliefs about correct configuration
to automatically derive rules for static analysis? Since static anal-
ysis requires checking router configuration against many rules, ex-
haustively specifying every possible rule is manual and tedious. To
alleviate this problem, verification could exploit statistical beliefs
about what correct configuration looks like. For example, if an AS
has several hundred routers, and all but a few are configured in a
certain way, more likely than not the aberrations are mistakes.

What classes of errors can be discovered with various verifi-
cation techniques? Clearly, there is an enormous space of BGP
configuration errors that we need to understand better. What types
of errors require information external to the configuration? What
types of errors cannot be found with static analysis alone? What
classes of errors involve configuration consistency across neigh-
boring ASes, and what is the minimum amount of information that
needs to be exchanged to check for these errors?

Finally, configuration checking techniques can help network op-
erators find errors in configuration, but these techniques are only
treating the symptoms of a more fundamental problem: today’s
routing configuration languages are based on low-level mecha-
nisms, rather than operator intent. A better approach would allow
an operator to specify configuration in terms of high-level policy
without having to worry about the details of how the policy is actu-
ally implemented. Because checking today’s routing configuration
requires understanding how to specify operator intent, we believe
that configuration checking is not only useful in and of itself, but

also that figuring out how to specify operator intent will facilitate
the design of a BGP configuration language that focuses on opera-
tor intent, rather than mechanism.

Acknowledgments
I am very grateful to Hari Balakrishnan and Jennifer Rexford, who
both provided invaluable guidance for this work. I also thank Tom
Barron, Randy Bush, Avi Freedman, Dave Meyer, Dave Ward,
and Russ White, who offered useful insights into current practices.
Thanks also to Senthil Ayyasamy, Frans Kaashoek, Richard Mortier,
the NMS group at MIT, and the reviewers for thoughtful feedback.

6. References
[1] BICKNELL, L. Re: transit across the ixs. http://www.merit.

edu/mail.archives/nanog/1999-02/msg00192.html,
February 1999.

[2] BUSH, R. It’s 1918 in Bologna. http://www.merit.edu/
mail.archives/nanog/msg11169.html, July 2003.

[3] BUSH, R., ET AL. Watching your router configurations and detecting
those exciting little changes.
http://www.nanog.org/mtg-0310/rancid.html,
October 2003. Panel at NANOG 29.

[4] FARROW, R. Routing instability on the Internet. Network Magazine
(March 4, 2002). http://www.networkmagazine.com/
article/NMG20020304S0007/2.

[5] FEAMSTER, N., AND BALAKRISHNAN, H. A systematic approach
to BGP configuration checking.
http://www.nanog.org/mtg-0310/feamster.html,
October 2003. NANOG 29.

[6] FEAMSTER, N., AND BALAKRISHNAN, H. Towards a logic for
wide-area Internet routing. In ACM SIGCOMM Workshop on Future
Directions in Network Architecture (Karlsruhe, Germany, Aug.
2003).

[7] FEAMSTER, N., BORKENHAGEN, J., AND REXFORD, J.
Techniques for interdomain traffic engineering. Computer
Communications Review 33, 5 (October 2003).

[8] FEAMSTER, N., WINICK, J., AND REXFORD, J. A model of BGP
routing for network engineering. In submission, Nov. 2003.

[9] Goldwire Formulator, 2003. http://www.goldwiretech.
com/products/formulator.cfm.

[10] GOTTLIEB, J., GREENBERG, A., REXFORD, J., AND WANG, J.
Automated Provisioning of BGP Customers. IEEE Network (2003).

[11] GOVINDAN, R., ALAETTINOGLU, C., VARADHAN, K., AND

ESTRIN, D. Route servers for inter-domain routing. Networks and
ISDN Systems 30 (1998), 1157–1174.

[12] GRIFFIN, T., AND WILFONG, G. Analysis of the MED oscillation
problem in BGP. In Proc. ICNP (Paris, France, November 2002).

[13] GRIFFIN, T., AND WILFONG, G. On the correctness of IBGP
configuration. In Proc. ACM SIGCOMM (Pittsburgh, PA, August
2002).

[14] GRIFFIN, T. G., SHEPHERD, F. B., , AND WILFONG, G. The stable
paths problem and interdomain routing. IEEE Transactions on
Networking 10, 1 (2002), 232–243.

[15] MAHAJAN, R., WETHERALL, D., AND ANDERSON, T.
Understanding BGP misconfiguration. In Proc. ACM SIGCOMM
(Aug. 2002), pp. 3–17.

[16] MCPHERSON, D., GILL, V., WALTON, D., AND RETANA, A.
Border Gateway Protocol (BGP) Persistent Route Oscillation
Condition. Internet Engineering Task Force, August 2002. RFC 3345.

[17] PAYNE, J. Filtering Customer BGP Sessions. http://www.
merit.edu/mail.archives/nanog/msg11184.html,
July 2003.

[18] REKHTER, Y., AND LI, T. A Border Gateway Protocol 4 (BGP-4).
Internet Engineering Task Force, 1995. RFC 1771.

[19] REXFORD, J. State of the art in router configuration.
http://www.merit.edu/mail.archives/nanog/
2002-01/msg00265.html, January 2002.

