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Abstract: We give a preliminary perspective on the basic principles and pitfalls of adjustable autonomy and human-
centered teamwork. We then summarize the interim results of our study on the problem of work practice 
modeling and human-agent collaboration in space applications, the development of a broad model of 
human-agent teamwork grounded in practice, and the integration of the Brahms, KAoS, and NOMADS 
agent frameworks We hope our work will benefit those who plan and participate in work activities in a wide 
variety of space applications, as well as those who are interested in design and execution tools for teams of 
robots that can function as effective assistants to humans. 

1. INTRODUCTION 

Tomorrow’s world will be filled with agents embedded everywhere in the places and things 
around us [45; 46]. Providing a pervasive web of sensors and effectors, teams of such agents will 
function as cognitive prostheses—computational systems that leverage and extend human cognitive, 
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perceptual, and collaborative capacities, just as the steam shovel was a sort of muscular prosthesis or 
eyeglasses a sort of visual prosthesis [42]. Thus the focus of AI research is destined to shift from 
Artificial Intelligence to Augmented Intelligence [13; 51]. 

While simple software and robotic assistants of various kinds today capture our attention, the 
future surely holds much more novel and sophisticated agent-powered devices than we can currently 
imagine. A key requirement for such devices is for real-time cooperation with people and with other 
autonomous systems. While these heterogeneous cooperating entities may operate at different levels 
of sophistication and with dynamically varying degrees of autonomy, they will require some common 
means of representing and appropriately participating in joint tasks. Just as important, developers of 
such systems will need tools and methodologies to assure that such systems will work together 
reliably, even when they are designed independently. 

Teamwork has become the most widely-accepted metaphor for describing the nature of multi-
agent cooperation. The key concept usually involves some notion of shared knowledge, goals, and 
intentions that function as the glue that binds team members together [28]. By virtue of a largely-
reusable explicit formal model of shared intentions, team members attempt to manage general 
responsibilities and commitments to each other in a coherent fashion that facilitates recovery when 
unanticipated problems arise. For example, a common occurrence in joint action is when one team 
member fails and can no longer perform in its role. A general teamwork model might entail that each 
team member be notified under appropriate conditions of the failure, thus reducing the requirement 
for special-purpose exception handling mechanisms for each possible failure mode. 

Whereas early research on agent teamwork focused mainly on agent-agent interaction, there is a 
growing interest in various dimensions of human-agent interaction [14]. Unlike autonomous systems 
designed primarily to take humans out of the loop, many new efforts are specifically motivated by 
the need to support close human-agent interaction [44; 55; 61; 84]. Under NASA sponsorship, we are 
investigating issues in human-robotic teamwork and adjustable autonomy. Future human missions to 
the Moon and to Mars will undoubtedly need the increased capabilities for human-robot 
collaborations we envision. Astronauts will live, work, and perform laboratory experiments in 
collaboration with robots inside and outside their spacecraft and habitats on planetary surfaces. 

An adequate approach to design of cooperative autonomous systems requires first and foremost a 
thorough understanding of the kinds of interactive contexts in which humans and autonomous 
systems will cooperate. With our colleagues at the Research Institute for Advanced Computer 
Science (RIACS) at NASA Ames Research Center, we have begun to investigate the use of Brahms 
[78] as an agent-based design toolkit to model and simulate realistic work situations in space. The 
ultimate objective is to produce agent-based simulations in Brahms that could form the basis for the 
design of robotic and software agent functions for actual operations. On its part, IHMC is enhancing 
the KAoS [17; 19; 20] and NOMADS [83] agent frameworks to incorporate explicit general models 
of teamwork, mobility, and resource control appropriate for space operations scenarios. These 
models are represented largely in the form of policies [20; 33; 68]. 

In the following pages, we outline a preliminary perspective on the basic principles and pitfalls of 
adjustable autonomy and human-centered teamwork (section 2). We emphasize the importance of 
careful observation and modeling of human work practice as a foundation for teamwork theory, and 
the central role of adjustable autonomy in the design of agent systems. We then describe how we are 
beginning to apply this approach to human-agent collaboration in space applications (section 3). We 
introduce Brahms, a work practice modeling and social simulation environment that is being adapted 
to operate in conjunction with teamwork policies implemented within KAoS agent services [17; 20], 
and strong mobility and resource management services implemented in NOMADS [83]. We 
summarize our initial results in section 4. 
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2. HUMAN-CENTERED PERSPECTIVES ON TEAMWORK1 
“Agents occupy a strange place in the realm of technology,” observes Donald Norman, “leading 

to much fear, fiction, and extravagant claims” [72, p. 49]. Because ever more powerful intelligent 
agents will increasingly differ in important ways from conventional software of the past, we need to 
take into account the social issues no less than the technical ones if the agents we design and build 
are to be acceptable to people: 

“The technical aspect is to devise a computational structure that guarantees that from the 
technical standpoint, all is under control. This is not an easy task. The social part of 
acceptability is to provide reassurance that all is working according to plan… This is [also] a 
non-trivial task” [72, p. 51]. 

Elsewhere we have written about our efforts to address some of the technical aspects of control 
for increased human acceptability: safety, privacy, and other guards against error and maliciousness 
in long-lived agent communities [20]. In this chapter, we will focus mainly on issues of social 
acceptability, in particular with making sure that interactions between agents and people are as 
natural and effective as possible.2 

Specific approaches to human-agent teamwork have been explored, including interface agents 
[32; 55; 61; 62]), mixed-initiative systems [23; 39], and collaboration theory [50; 74]. In addition, 
researchers such as Tambe [77; 84] have successfully adapted principles of agent-agent teamwork to 
human-agent interaction in various settings. 

Unlike other approaches to agent teamwork, a human-centered perspective requires that the 
design of agents be problem-driven, activity-centered, and context-bound [88]. Thus we must begin 
with a detailed understanding of how people actually work. To enable such study, we have developed 
and used Brahms, a language coupled with an agent modeling and simulation environment that can 
capture complexities of observation, communication, and collaboration in the context of group work 
[78]. Our approach seeks to incorporate the best of previous research on human-centered 
collaboration and teamwork, while simultaneously grounding new findings in our own work practice 
study experience.3 

 
2.1 Desiderata for Human-Centered Systems 
Following a careful study of the introduction of automation into complex domains, Billings [9] 

described a set of desiderata for human-centered systems: 

 
1 Most of section 2 appears in expanded form in [14]. 
2 For an entertaining and informative general characterization of various approaches to human-centered computing, see 

[53]. 
3 Researchers in human-agent teamwork have used the term in two broad ways: 1) as a conceptual analogy for heuristically 

directing research (e.g., to build systems that facilitate fluent, coordinated interaction between the human and agent 
elements of the system as “team players”) and 2) as the subject matter for research (e.g., to understand the nature of 
teamwork in people). The first activity focuses on practical engineering of useful systems through application of human-
centered design principles, empirical studies of the use of these systems, and often a limited commitment to studying 
teamwork among people. The second activity is explicitly framed as a scientific study, and may have two angles: 1) 
providing information relevant to the design of successful human-agent systems, and 2) independent of application, 
understanding the nature of cognition, communication, and cooperation in people and animals. The latter activity is seen 
by these researchers as essential for achieving the ultimate goals of artificial intelligence. Since members of our research 
team are drawn from each tradition, our approach attempts to reflect sensitivity to both: neither undervaluing the 
independent study of social and cognitive aspects of human teamwork, nor slavishly imitating superfluous aspects of 
natural systems in the development of artificial ones, like an engineer who insists that successful airplane designs must 
necessarily feature flapping wings because all birds have them [43]. 
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“Premise: Humans are responsible for outcomes in human-machine systems. 
Axiom: Humans must be in command of human-machine systems. 
Corollary: Humans must be actively involved in the processes undertaken by these systems. 
Corollary: Humans must be adequately informed of human-machine system processes. 
Corollary: Humans must be able to monitor the machine components of the system. 
Corollary: The activities of the machines must therefore be predictable. 
Corollary: The machines must also be able to monitor the performance of the humans. 
Corollary: Each intelligent agent in a human-machine system must have knowledge of the intent 
of the other agents.”4 

Note that Billings’ main premise (“Humans are responsible for outcomes in human-machine 
systems”) implicitly assumes a fundamental asymmetry between humans and today’s agents. 
Notwithstanding this assumption, we expect the broad balance between human and agent initiative 
and responsibility to co-evolve commensurate with the degree of trust humans are willing (or 
required) to exercise in particular kinds of technology for specific contexts of use. Already people 
rely routinely on technology to do things automatically for them that were unthinkable not too long 
ago. Section 2.2 shows how within the perspective of human-centered agent teamwork these 
asymmetries between people and machines are best viewed as broad complementarities. Section 2.3 
briefly discusses research in adjustable autonomy that aims to enable principled yet dynamic 
flexibility in the roles of people and agents. 

The corollaries to Billings’ main premise serve to underscore the importance of maintaining 
appropriate mutual awareness among team members. Each actor, both human and agent, must not 
only be able to realistically assess the overall situation and current the state and intentions of the 
other team members, but also to accurately ascertain trends and reliably predict future states. Section 
2.4 discusses the challenges that researchers face in trying to overcome these mutual “gulfs of 
evaluation and execution.” 

Finally, section 2.5 aims to correct the common misperception that automation is a simple 
substitution of machine for human effort. Instead, results of many years of research makes it clear 
that, more fundamentally, automated assistance changes the nature of the task itself. 

2.2 Complementary Asymmetries in Human-Agent Interaction 

Humans and artificial agents are two disparate kinds of entities that exist in very different sorts of 
worlds. For the foreseeable future there will be a fundamental asymmetry in their capabilities: the 
brightest agents will be limited in the generality if not the depth of their inferential, adaptive, social, 
and sensory capabilities; humans, though fallible, are functionally rich in reasoning strategies and 
their powers of observation, learning, and sensitivity to context [2]. Moreover, agents interact 
directly and efficiently in cyberspace but indirectly and awkwardly in the material sphere; humans 
shine in the world of atoms but cannot juggle bits on their own. Adapting to appropriate mutual roles 
that take advantage of the respective strengths of humans and agents, and crafting natural and 
effective modes of interaction are key challenges. 

All this being said, we do not wish to extend here the long tradition of MABA-MABA (men-are-
better-at/machines-are-better-at) lists that began with the classic report of Paul Fitts et al. [40]. The 
point is not to think so much about which tasks are best performed by humans and which by agents 

 
4 Note that this applies to people and to software agents. 
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but rather how tasks can best be shared to be done by both humans and agents working in concert 
[52]. Licklider [60] called this concept man-computer symbiosis.5 

To counter the limitations of the Fitts’ list, which is clearly intended to summarize what humans 
and machines each do well on their own, Hoffman has summarized the findings of Woods in an “un-
Fitts list” [53] (see Table 1), which emphasizes how the competencies of humans and machines can 
be enhanced through appropriate forms of mutual interaction. These guidelines provide useful 
general heuristics for the development of our model of human-agent teamwork. 

 
Machines  
Are constrained in that: Need people to: 
Sensitivity to context is low and is ontology-
limited 

Keep them aligned to context 

Sensitivity to change is low and recognition of 
anomaly is ontology-limited 

Keep them stable given the variability and change 
inherent in the world 

Adaptability to change is low and is ontology-
limited 

Repair their ontologies 

They are not “aware” of the fact that the model 
of the world is itself in the world 

Keep the model aligned with the world 

People  
Are not limited in that: Yet they create machines to: 
Sensitivity to context is high and is knowledge- 
and attention-driven 

Help them stay informed of ongoing events 

Sensitivity to change is high and is driven by 
the recognition of anomaly 

Help them align and repair their perceptions 
because they rely on mediated stimuli 

Adaptability to change is high and is goal-
driven 

Effect positive change following situation change 

They are aware of the fact that the model of the 
world is itself in the world 

Computationally instantiate their models of the 
world 

Table 1. An “un-Fitts” list [53]. 

2.3 Adjustable Autonomy and Mixed-Initiative Behavior 

Before discussing adjustable autonomy, it is important to describe the concept of autonomy itself 
in more detail.6 Some important dimensions relating to autonomy can be straightforwardly 
characterized by reference to figure 1. Note that the figure does not show every possible 

 
5 The ultimate in such symbiosis is where the boundary between agents and people disappears altogether, with the agents 

being subsumed into the human’s eudaemonic space  (i.e., the agents seem to be part of the person). 
6 Note that there is a subtle difference in common usage of the word autonomous between Americans and Europeans. In the 

latter, the original sense of the term as describing something that is capable of self-government (Greek: auto- (self) + 
nomos (law)) strongly predominates, whereas in American English usage the senses of independence from outside 
control and self-directedness have developed stronger associations with the word (American Heritage Dictionary). This 
difference, while not affecting the ability of researchers from different backgrounds to understand one another, may 
sometimes affect the slant or emphasis put on various aspects of their respective conceptualizations of autonomy. Note, 
for example, Brainov and Hexmoor’s emphasis on degree of autonomy as a relative measure of independence between 
an agent and the physical environment, and within and among social groups [21]. Luck et al. [63], unsatisfied with 
defining autonomy as a wholly relative concept, argue that the self-generation of goals should be the defining 
characteristic of autonomy, thus allowing it to be regarded in absolute terms that more clearly reflect the precedence of 
the sense of self-government. 
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configuration of the dimensions, but rather exemplifies a particular set of relations holding for the 
actions of a particular set of agents in a given situation. There are two basic dimensions: 

• a descriptive dimension corresponding to the first sense of autonomy (self-sufficiency) that 
stretches horizontally to describe the actions an agent in a given context is capable of 
performing; and 

• a prescriptive dimension corresponding to the second sense of autonomy (self-directedness) 
running vertically to describe the actions an agent in a given context is allowed to perform or 
which it must perform by virtue of policy constraints in force. 

The outermost rectangle, labeled potential actions, represents the set of all actions across all 
situations defined in a given reference model. 

The rectangle labeled possible actions represents the set of potential actions whose performance by 
one or more agents is deemed plausible in a given situation [8; 34]. Note that the definition of 
possibilities is strongly related to the concept of affordances [47; 70], in that it relates the features of 
the situation to classes of agents capable of exploiting these features in the performance of actions. 

Of these possible actions, only certain ones will be deemed performable for a given agent in a 
given situation. Capability, i.e., the power that makes an action performable, is a function of the 
abilities (e.g., knowledge, capacities, skills) and conditions (e.g., ready-to-hand resources) necessary 
for an agent to successfully undertake some action in a given context. Certain actions may be 
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independently performable by either Agent A or B; other actions can be independently performed by 
either one or the other uniquely.7 Yet other actions are jointly performable by a set of agents. 

Along the prescriptive dimension, declarative policies may specify various permissions and 
obligations [33]. An agent is free to the extent that its actions are not limited by permissions or 
obligations. Authorities may impose or remove involuntary policy constraints on the actions of 
agents. Alternatively, agents may voluntarily enter into agreements that mutually bind them to some 
set of policies for the duration of the agreement. The effectivity of an individual policy specifies when 
it is in or out of force. 

The set of permitted actions is determined by authorization policies that specify which actions an 
agent or set of agents is allowed (positive authorizations or A+ policies) or not allowed (negative 
authorizations or A- policies) to perform in a given context. The intersection of what is possible and 
what is permitted delimits the set of available actions. 

Of those actions that are available to a given agent or set of agents, some subset may be judged to 
be independently achievable in the current context. Some actions, on the other hand, would be judged 
to be only jointly achievable. 

Finally, the set of obligated actions is determined by obligation policies that specify actions that 
an agent or set of agents is required to perform (positive obligations or O+ policies) or for which 
such a requirement is waived (negative obligations or O- policies).8 Jointly obligated actions are 
those that two or more agents are explicitly required to perform. 

Humans and agents may play mutual roles that vary according to the relative degree of initiative 
appropriate to a given situation (Figure 2).9 At the one extreme, traditional systems are designed to 
carry out the explicit commands of humans with no ability to ignore orders (i.e., executive autonomy 
[7; 37]), generate their own goals (i.e., goal autonomy [37; 63]), or otherwise act independently of 
environmental stimuli (i.e., environmental autonomy [21; 37]). Such systems cannot, in any 
significant sense, act; they can only be acted upon. At the other end of the spectrum is an imagined 
extreme in which agents would control the actions of humans.10 Between these two extremes is the 
domain of today’s agent systems, with most agents typically playing fixed roles as servants, 
assistants, associates, or guides. Such autonomous systems are designed with fixed assumptions 
about what degree of initiative is appropriate to their tasks. They execute their instructions without 
considering that the optimal level of autonomy may vary by task and over time, or that unforeseen 
events may prompt a need for either the human or the agent to take more control. At the limit of this 
extreme are strong, silent systems [76] with only two modes: fully automatic and fully manual. In 
practice this can lead to situations of human “underload,” with the human having very little to do 
when things are going along as planned, followed by situations of human “overload,” when extreme 
demands may be placed on the human in the case of agent failure. 

Although in practice many do not live up to their billing, the design goal of mixed-initiative 
systems is to allow agents to dynamically and flexibly assume a range of roles depending on the task 
to be performed and the current situation [23; 30; 39]. Research in adjustable autonomy supports this 

 
7 Although we show A and B sharing the same set of possible actions, this need not always be the case. Also, note that the 

range of jointly achievable actions has overlap only with Actor B and not Actor A in the exemplar diagram. 
8 A negative obligation corresponds to the idea of “you are not obliged to” rather than “you are obliged not to”. 
9 For a more fine-grained presentation of a continuum of control between humans and machines, see Hancock and Scallen’s 

[52] summary of Sheridan’s ten-level formulation. Barber et al. differentiate three kinds of relationships among agents: 
command-driven (i.e., the agent is fully subordinated to some other agent), true consensus (i.e., decision-making control 
is shared equally with other agents), and locally autonomous/master (i.e., the agent makes decisions without consulting 
other agents and may be allowed to command subordinates) [6]. 

10 Of course, in real systems, the relative degree of initiative that could be reasonably taken by an agent or human would not 
be a global property, but rather relative to particular functions that one or the other was currently assuming in some 
context of joint work (see [7; 12; 49; 52]. 
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goal through the development of an understanding of how to ensure that, in a given context, the 
agents are operating at an optimal boundary between the initiative of the human and that of the 
agents. People want to maintain that boundary at a sweet spot in the tradeoff curve that minimizes 
their need to attend to interaction with the agent while providing them with a sufficiently comfortable 
level of assurance that nothing will go wrong. 

In principle, the actual adjustment of an agent’s level of autonomy could be initiated either by a 
human, an agent, or some third party.11 There are several dimensions of this level that can be varied 
such as: 1) type or complexity of tasks or functions it is permitted to execute, 2) which of its 
functions or tasks may be autonomously controlled, 3) circumstances under which the agent will 
override manual control, 4) duration of autonomous operation, 5) the circumstances under which a 
human may be interrupted (or must be interrupted) in order to provide guidance [35]. 

 

 
11 Cohen [31]  draws a line between those approaches in which the agent itself wholly determines the mode of interaction 

with humans (mixed-initiative) and those where this determination is imposed externally (adjustable autonomy). 
Additionally, mixed-initiative systems are considered by Cohen to generally consist of a single user and a single agent. 
However, it is clear that these two approaches are not mutually exclusive and that, in an ideal world, agents would be 
capable of both reasoning about when and how to initiate interaction with the human and also of subjecting themselves 
to the external direction of whatever set of explicit authorization and obligation policies were currently in force to 
govern that interaction. Additionally, there is no reason to limit the notion of “mixed initiative” systems to the single 
agent-single human case. Hence we prefer to think of mixed-initiative systems as being those systems that are capable of 
making context-appropriate adjustments to their level of social autonomy (i.e., their level or mode of engagement with 
the human), whether a given adjustment is made as a result of reasoning internal to the agent or due to externally-
imposed policy-based constraints. 
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Question Adaptive Response 
Who IF: A human performs within predetermined criteria 

THEN: The human shall keep task control, otherwise the task is allocated to a capable 
agent, if one exists. 

What IF: Only parts of tasks are being performed poorly 
THEN: Only these parts shall become available for dynamic allocation. 

When IF: Certain time periods are associated with increased demand, error, or loss of 
situation awareness 

THEN: These periods will be appropriate for dynamic allocation. 
Where IF: Particular environments or combinations of environmental variables are associated 

with increased task demand or error 
THEN: Encountering these environments triggers dynamic allocation. 

Why IF: Extended periods of allocation have detrimental effects (objective or subjective) 
THEN: Allocation shall periodically return control to the human. 

How IF: Human performance, environmental attributes, and psycho-physiological indexes 
are paramount for human-agent interaction 

THEN: All of these are inputs for allocation shift. 
Table 2. Examples of the types of questions and adaptive responses to be addressed in adaptive allocation (adapted from 

[52, p. 526]) 
 
To the extent we can adjust agent autonomy with reasonable dynamism (ideally allowing 

handoffs of control among team members to occur anytime) and with a sufficiently fine-grained 
range of levels, teamwork mechanisms can flexibly renegotiate roles and tasks among humans and 
agents as needed when new opportunities arise or when breakdowns occur. Such adjustments can 
also be anticipatory when agents are capable of predicting the relevant events [10; 37]. Research in 
adaptive function allocation—the dynamic assignment of tasks among humans and machines—
provides some useful lessons for implementations of adjustable autonomy in intelligent systems. 
Examples of the types of questions and adaptive responses that might be addressed in adaptive 
allocation are shown in Table 2. 

When evaluating options for adaptively reallocating tasks among team members, it must be 
remembered that dynamic role adjustment comes at a cost. Measures of expected utility can be used 
to evaluate the tradeoffs involved in potentially interrupting the ongoing activities of agents and 
humans in such situations to communicate, coordinate, and reallocate responsibilities [31; 55; 56]. It 
is also important to note that the need for adjustments may cascade in complex fashion: interaction 
may be spread across many potentially-distributed agents and humans who act in multiply-connected 
interaction loops. For this reason, adjustable autonomy may involve not merely a simple shift in roles 
among a human-agent pair, but rather the distribution of dynamic demands across many coordinated 
actors.12 Defining explicit policies for the transfer of control among team members and for the 
resultant required modifications to coordination constraints can prove useful in managing such 
complexity [77]. Whereas goal adoption and the commitment to join and interact in a prescribed 
manner with a team sometimes occurred as part of a single act in early teamwork formulations, 
researchers are increasingly realizing the advantages of allowing the respective acts of goal adoption, 

 
12 As Hancock and Scallen [52] rightfully observe, the problem of adaptive function allocation is not merely one of 

efficiency or technical elegance. Economic factors (e.g., can the task be more inexpensively performed by humans, 
agents, or some combination?), political and cultural factors (e.g., is it acceptable for agents to perform tasks 
traditionally assigned to humans?), or personal and moral considerations (e.g., is a given task enjoyable and challenging 
vs. boring and mind-numbing for the human?) are also essential considerations. 
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commitment to work jointly with a team, and the choice of specific task execution strategies to be 
handled with some degree of independence [6; 68]. 

A major challenge is to ensure that the degree of autonomy is continuously and transparently 
adjusted to be consistent with explicitly declared policies that can ideally be imposed and removed at 
any time as appropriate [20; 68]. In simple terms, the goal of the agent or external entity performing 
such adjustments should be to make sure that the range of permissible actions do not exceed the 
range of those that are likely to be achievable by the agent (see figure 1).13 While the agent is 
constrained to operate within whatever deontic bounds on autonomy are currently enforced as 
authorization and obligation policies, it is otherwise free to act. Thus, the coupling of autonomy with 
policy gives the agent maximum opportunity for local adaptation to unforeseen problems and 
opportunities while assuring humans that agent behavior will be kept within desired bounds. 

2.4 The Gulfs of Evaluation and Execution 

A further challenge to effective human-agent interaction is that the agents necessarily interpose a 
level of indirectness between ourselves and actions in the world. This indirectness can often lead to 
situations where we are misled in our expectations about the state of the world and the effects of our 
actions: 

“The gulfs of execution and evaluation refer to the mismatch between our internal goals 
and expectations and the availability and representation of information about the state of the 
world and how it might be changed [figure 3]. The gulf of execution refers to the difficulty of 
acting upon the environment (and how well the [agent] supports those actions). The gulf of 
evaluation refers to the difficulty of assessing the state of the environment (and how well the 
[agent] supports the detection and interpretation of that state)… We can conceptualize the 
[agent] and its interface in this way. A person is a system with an active, internal 
representation. For an [agent] to be usable, the surface representation must correspond to 
something that is interpretable by the person, and the operations required to modify the 
information within the [agent] must be performable by the user. The interface serves to 
transform the properties of the [agent’s] representational system to those that match the 
properties of the person.” [71]14 

 

 
13 If the range of achievable actions for an agent is found to be too restricted, it can, in principle, be increased in any 

combination of four ways: 1. removal of some portion of the environmental constraints, thus increasing the range of 
possible actions; 2. adding internal capabilities to the agent, thus increasing the range of independently achievable 
actions; 3. making additional external help available to the agent, thus increasing the overall range of achievable 
actions; or 4. reducing an agent’s current set of obligations, thus freeing it to make other choices and to perform other 
tasks (see section 3.4.1 below). Of course, there is a cost in computational complexity to increasing the range of actions 
that must be considered by an agent—hence the judicious use of policy where certain actions can either be precluded 
from consideration or obligated with confidence in advance by a third party. 

14 We do not wish to imply that we are here taking a stance that the world is presented to us directly. Rather, as George 
Kelly elaborated in his principle of constructive alternativism, “‘reality’ does not reveal itself to us directly, but rather is 
subject to as many different constructions as we are able to invent” [18, p. 288]. Such considerations of the fluidity of 
meaning and interpretations are only recently being addressed within human-agent interaction research. 
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Figure 3. The gulfs of execution and evaluation [71]. 

 
In brief, people need to understand what is happening and why when a teammate tends to respond 

in a certain way; they need to be able to control the actions of an agent even when it does not always 
wait for the human’s input before it makes a move; and they need to be able to reliably predict what 
will happen, even though the agent may alter its responses over time [36]. This problem is more 
pronounced in sophisticated agents that have a model of their teammates and the environment than 
with relatively more passive conventional programs because in agent applications these gulfs pose a 
problem not only for the human acting on the agent and its world, but also for the agent trying to act 
on the humans and their world. Humans and agents must be aware of what team members are doing, 
why they are doing it, and where it is on the team member’s current “agenda.” Table 3 below gives 
examples of the kinds of things that humans and agents need to be able to know in teamwork 
settings. 

 
Questions About the Shared 
Representation of the Problem State 

Questions About the Representation of the 
Activities of Humans and Agents 

What type of problem is it? 
Is the problem routine or difficult? 
Is the problem high or low priority? 
What types of solution strategies are 
appropriate? 
What dependencies must be considered? 
How is the problem state evolving? 

How did we get into this state? 
What are they doing now? 
Why are they doing it? 
Are they having difficulties? Why? 
What are they doing to cope with difficulties? Are 
they likely to fail? 
How long will they be busy? 
What will they do next? 

Table 3. Examples of the kinds of things that humans and agents need to be able to know in teamwork settings (adapted and 
extended from [25; 86; 88]). 
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Good designers help manage the problem of the gulf of evaluation by providing an 

understandable and controllable level of feedback about the agent’s intentions and actions. They must 
also think about how to accurately convey the agent’s capabilities and limitations so that people are 
not misled in their expectations. Part of the problem is the natural enthusiasm of agent researchers; 
part of the problem is people’s tendency to falsely anthropomorphize..15 Though we can carefully 
describe agent capabilities and limitations within accompanying instructional manuals, it is even 
more important to find clever ways to subtly weave this information into the agent interface itself. 

Overcoming the gulf of execution requires providing people with straightforward means to 
accurately convey their intentions and requests to agents. And if the agent is not currently capable of 
performing a desired action, how do ordinary people program the agent to do what they want? While 
programming-by-demonstration or simplified graphical or scripting languages have been suggested, 
none of them yet seem adequate to specify the kinds of complex tasks envisioned for future 
intelligent agents [32; 61; 79].16 

The discovery of means for humans to more effectively overcome these gulfs with agents—and 
vice versa—is a prime focus of research on mediating representations [41]. The choice of 
representation can have an enormous effect on human problem solving performance (e.g., [48; 59]. 
As a simple example, consider the impact that representing numbers in binary, Arabic, or Roman 
numeral form would have on the ability of humans or agents to efficiently multiply. As another 
example, concrete or abstract diagrams can be a particularly powerful form of knowledge 
representation for humans because they allow the explicit depiction of relevant information and 
effective hiding of inessential features which otherwise would have to be done at the expense of large 
amounts of cognitive work.17 Moreover, the appropriate mode of interaction needs to be considered in 
the context of the task, physical environment, and the individual preferences and capabilities of the 
human under varying conditions of cognitive load. When required, interruptions of the human by an 
agent must be done judiciously—with no more than the just the necessary degree of obtrusiveness. In 
addition, as the level of sophistication of communication between agents and humans increases, 
future forms of human-agent collaboration must enable people and agents to negotiate and work with 
appropriate tools for shaping shared understanding. 

Erickson [36] raises a related concern when he argues that designers ought to take advantage of 
the ontological expectations that users bring with them when they interact with various portrayals of 

 
15 Fortunately, people have a lot of experience in judging the limitations of those with whom they communicate: 

“Sometimes people overstate what the computer can do, but what people are extremely good at is figuring out what they 
can get away with. Children can size up a substitute teacher in about five minutes” [58]. For evidence that developers of 
intelligent software are no less prone than other people to overestimate the capabilities of their programs, see 
McDermott [65]. 

16 Automatic programming is an enterprise with a long history of insatiable requirements and moving expectations. For 
example, Rich and Waters [75] remind us that “compared to programming in machine code, assemblers represented a 
spectacular level of automation. Moreover, FORTRAN was arguably a greater step forward than anything that has 
happened since. In particular, it dramatically increased the number of scientific end users who could operate computers 
without having to hire a programmer.” Today, no one would call FORTRAN a form of automatic programming, though 
in 1958 the term was quite appropriate. The intractability of fully-automated, completely-general programming is 
analogous to the problem of automated knowledge acquisition [18; 41]. As Sowa observes: “Fully automated knowledge 
acquisition is as difficult as unrestricted natural language understanding. The two problems, in fact, are different aspects 
of exactly the same problem: the task of building a formal model for some real world system on the basis of informal 
descriptions in ordinary language. Alan Perlis once made a remark that characterizes that difficulty: You can’t translate 
informal specifications into formal specifications by any formal algorithm.” [80]. 

17 “Chernoff faces,” which leverage the efficiency of human facial recognition into the domain of statistical analysis, are an 
ideal exemplar of the kind of integrative pattern-based feedback that works well for people [24]. Another outstanding 
example is the OZ cockpit display [81]. 
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functionality in graphical user interfaces. For example, specific computing functionality can be 
portrayed as an object or an agent, depending on what is most natural. The desktop metaphor takes 
advantage of users’ previous knowledge that office artifacts are visible, are passive, have locations, 
and may contain things. “Objects stay where they are: nice, safe predictable things that just sit there 
and hold things” [36, p. 94]. Ontological knowledge of a different sort comes into play when the 
agent metaphor is employed. Our common sense knowledge of what agents can do tells us that, 
unlike typical desktop objects, they can notice things, carry out actions, know and learn things, and 
go places.18 “Agents become the repositories for adaptive functionality” [36, p. 94]. Erickson 
concludes that research “which focuses on the portrayal of adaptive functionality, rather than [solely] 
on the functionality itself, is a crucial need if we wish to design agents that interact gracefully with 
their users” [36, p. 95]. 

2.5 The Substitution Myth 

A persistent misperception about all forms of automation is the notion that such assistance is a 
simple multiplier of human capability. Such a view is natural because, from the point of view of an 
outsider observing the assisted human, it seems that—in the successful cases at least—the person is 
able to perform the task better or faster than he or she could without help. In reality, however, help of 
whatever kind does not simply enhance our ability to perform the task: it changes the nature of the 
task itself [71]. Those who have had a five-year-old child offer to help them with the dishes know 
this to be true—from the point of view of an adult, such “help” does not necessarily diminish the 
effort involved, it merely effects a transformation of the work from the physical action of washing 
the dishes to the cognitive task of monitoring the progress (and regress) of the child. 

Ignorance of such considerations leads to what Wiener [86] called “clumsy automation” and what 
Christoffersen and Woods [25] term the “substitution myth”: the erroneous notion that “automation 
activities simply can be substituted for human activities without otherwise affecting the operation of 
the system.”19 In refutation of the substitution myth, Table 4 contrasts the putative benefits of 
automated assistance with the results of empirical study. Ironically, even when technology succeeds 
in making tasks more efficient, the human workload is not reduced accordingly. As noted by many 
researchers and summarized by Woods as the law of stretched systems: “every system is stretched to 
operate at its capacity; as soon as there is some improvement, for example in the form of new 
technology, it will be exploited to achieve a new intensity and tempo of activity” [87]. 

 
18 It is also easy for people to assume less tangible qualities about agents, e.g., that they are internally consistent, are 

rational, act in good faith, can introspect, can cooperate to achieve common goals, and have a persistent mental state. 
Obviously, agent designers need to work hard to make sure that human expectation accords with the stark facts of reality 
in each of these dimensions. Violated trust inevitably breeds user hostility. 

19 The substitution myth is one example of what Feltovich and colleagues [38] have termed the “reductive bias”: the 
tendency for designers and operators to oversimplify complex phenomena, often with detrimental effects. 
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Putative Benefit Real Complexity 

Better results are obtained from 
“substitution” of machine 
activity for human activity. 

Transforms practice; the roles of people change; old and 
sometimes beloved habits and familiar features are altered—the 
envisioned world problem. 

Frees up human by offloading 
work to the machine. 

Creates new kinds of cognitive work for the human, often at the 
wrong times; every automation advance will be exploited to 
require people to do more, do it faster, or in more complex 
ways—the law of stretched systems. 

Frees up limited attention by 
focusing human on the correct 
answer. 

Creates more threads to track; makes it harder for people to 
remain aware of and integrate all of the activities and changes 
around them. 

Less human knowledge is 
required. 

New knowledge and skill demands are imposed on the human. 

Agent will function 
autonomously. 

Team play with people is critical to success. 

Same feedback to human will be 
required. 

New levels and types of feedback are needed to support peoples’ 
new roles. 

Agent enables more flexibility 
to the system in a generic way. 

Resulting explosion of features, options, and modes creates new 
demands, types of errors, and paths toward failure—automation 
surprises. 

Human errors are reduced. Both agents and people are fallible; new problems are associated 
with human-agent coordination breakdowns. 

Table 4. Putative benefits of automation vs. actual experience (adapted and expanded from [76; 87]). 
 
Notwithstanding these challenges, adult humans and radically less-abled entities (e.g., children, 

dogs, video game characters) are capable of working together effectively in a variety of situations 
where a subjective experience of collaborative teaming is often maintained despite the magnitude of 
their differences. Generally this is due to the ability of humans to rapidly size up and adapt to the 
limitations of their teammates in relatively short order. More study is needed to understand how to 
take advantage of these human abilities in a general way to make human-agent interaction more 
natural and effective in complex agent applications. As with all automation, the introduction of 
agents into human work practices, particularly agents who do not yet generally exhibit the 
intelligence of a five-year old child, must be done carefully to ensure that the cost of the coordination 
and monitoring demands on the human do not exceed the value of the agent assistance offered [31]. 

3. WORK-PRACTICE MODELING AND HUMAN-AGENT 
COLLABORATION ONBOARD THE INTERNATIONAL SPACE 
STATION 

In this section we describe our efforts to apply the principles of human-centered teamwork to the 
design of robotic agents appropriate for use aboard the International Space Station (ISS). Following a 
discussion of the background of the project (section 3.1), we describe our progress and lessons 
learned to date in using Brahms work practice modeling and simulation approaches (section 3.2). We 
briefly discuss the implications of our preliminary studies of teamwork in space applications (section 
3.3). We then show how Brahms capabilities are combined with KAoS services for analysis and 
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enforcement of policies for teamwork and adjustable autonomy, and NOMADS strong mobility and 
fine-grained resource management capabilities (section 3.4). 

3.1 Background and Motivation 

Enhancing the crew’s ability to perform their duties is critical for successful, productive, and safe 
space operations. Crew time on such missions is a precious resource. The limited number of crew 
members are required to maintain complex systems, assist with life-critical environmental health 
monitoring and regulation, perform dozens of major simultaneous payload experiments, and perform 
general housekeeping. As one example, consider the challenges of Shuttle Mission 89’s flight in 
January, 1998: 

“One astronaut, Andy Thomas, will undertake several hundred research runs involving 26 
different science projects in five disciplines. The projects are provided by 33 principal 
investigators from the U.S., Canada, Germany and the U.K” (Yuri Gawdiak, personal 
communication). 

Other considerations also are important motivators for efficient human teaming and some degree 
of robotic assistance. Considerable time and tedium, as well as long- and short-term risks, are 
involved in human EVA activity. Safety considerations and size constraints are also important issues 
for many manned mission activities, especially in emergency situations. Even if it were physically 
possible for an astronaut to enter congested spacecraft areas, protruding debris or other 
environmental hazards of one kind or another could pose serious safety risks [22]. 

 

Figure 4. The Personal Satellite Assistant (image courtesy Greg Dorais). 
 

One example of a system being designed to support such activities is the Personal Satellite 
Assistant (PSA), a softball-sized flying robot designed to operate onboard spacecraft in pressurized 
micro-gravity environments [44] (figure 4). The PSA will incorporate environmental sensors for gas, 
temperature, and fire detection, providing the ability for the PSA to monitor spacecraft, payload and 
crew conditions. Video and audio interfaces will support navigation, remote monitoring, and video-
conferencing. Ducted fans will provide propulsion and batteries will provide portable power. 

Other examples of such systems involving very different kinds of interaction with humans are 
Robonaut, a dexterous robot with torso, head, arms, and five-fingered hands designed for fine 
movement [5] (figure 5), and Mini-AERCam, a flying spherical “eye” for use outside the ISS in 
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multi-robot multi-person EVA scenarios. Robots of various forms will also support humans 
performing various forms of surface exploration on interplanetary expeditions. 

 

 
Figure 5. Robonaut is a dexterous robot with torso, head, arms, and five-fingered hands designed for fine movement [5]. 

 
To support the objective of efficient and effective space operations, we are midway through a 

three-year study to show whether a model of human-robot collaboration implemented in Brahms, 
KAoS, and NOMADS can be used not only as a design tool to understand human-robotic interaction, 
but also in conjunction with agents in the execution environment. The overall plan of the study is 
shown in figure 6. In the next sections, we discuss our efforts to date to use Brahms in performing an 
astronaut work practice study and work systems design for use of collaborative robots onboard the 
ISS (section 3.2). We then share some of our current efforts to extend teamwork theory consistent 
with the results of our modeling, with behavioral science studies, and with previous research on 
human-centered teamwork (section 3.3). Finally, we describe our progress to date on integrating 
Brahms, KAoS, and NOMADS in preparation for the experimental phase of the study (section 3.4). 
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Figure 6. Plan for study of human-robot collaboration on the ISS. 

3.2 Modeling Life Onboard The International Space Station 

3.2.1 Brahms 
Brahms is a language and modeling and simulation environment based on the idea of situated 

action [26; 82] and offers to the researcher a tool to represent and study the richness of activity theory 
and work practice [27]. A traditional task or functional analysis of work leaves out informal logistics, 
especially how environmental conditions come to be detected and how problems are resolved. 
Without consideration of these factors, analysts cannot accurately model how work and information 
actually flow, nor can they properly design software agents that help automate human tasks or 
interact with people as their collaborators. For these goals, what is needed is a model that includes 
aspects of reasoning found in an information-processing model, plus aspects of geography, agent 
movement, and physical changes to the environment found in a multi-agent simulation – 
interruptions, coordination, impasses, and so on. A model of work practice focuses on informal 
behavior in specific locations and circumstances. It emphasizes the behavior by which 
synchronization occurs (such that the task contributions of humans and machines flow together to 
accomplish goals) and allows the researcher to capture much of the richness of activity theory. 

Brahms is based on an Agent-Oriented Language (AOL) with a well-defined syntax and 
semantics. A Brahms model can be used to simulate human-machine systems, for what-if 
experiments, for training, user modeling, or driving intelligent assistants and robots. For a full 
description of Brahms, the reader is referred to [78]. The run-time component—the Brahms virtual 
machine—can execute a Brahms model, also referred to as a simulation run (figure 7). 

The Brahms architecture is organized around the following representational constructs: 
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Groups of groups containing 
 Agents who are located and have  
  Beliefs that lead them to engage in 
   Activities specified by 
    Workframes  
Workframes consist of 
 Preconditions of beliefs that lead to 
  Actions, consisting of 
   Communication Actions 
   Movement actions 
   Primitive Actions 
   Other composite activities 

Consequences of new beliefs and facts 
  Thoughtframes that consist of 
   Preconditions and 
   Consequences 
 

 

Figure 7. A day in the life of the ISS crew: 2D output of a Brahms simulation 
 

Brahms relates knowledge-based models of cognition (e.g., task models) with discrete simulation 
and the behavior-based subsumption architecture. In Brahms, agents’ behaviors are organized into 
activities, inherited from groups to which agents belong. Most importantly, activities associate 
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behaviors of people and their tools with particular times and locations, so that resource availability 
and informal human participation can be taken into account. A model of activities doesn’t necessarily 
describe the intricate details of reasoning or calculation, but instead brings out aspects of the social-
physical context in which reasoning occurs. Thus Brahms differs from other simulation systems by 
incorporating: 
– Activities of multiple agents located in time and space; 
– Conversations; 
– Descriptions of how information is represented, transformed, reinterpreted in various physical 

modalities. 
3.2.2 A Human-Centered Perspective on Autonomous Systems Design 

Consistent with our emphasis on understanding teamwork in practice, our project necessarily 
began with a detailed study of how the astronauts actually work onboard the ISS. Our first step has 
been to develop a Brahms model of the daily work practice of the crew. Secondly, we would extend 
that model to include various PSA and Robonaut use scenarios. Finally, to support real-time 
operational teamwork capabilities for these robots, we would enhance the Brahms model and 
software to run in conjunction with KAoS policies and agent services, and NOMADS capabilities 
(see section 3.5 below). 

The objective of studying crew work practice is threefold: 1) to study how actual crew work 
practices emerge from planned activities and written procedures; 2) to discover opportunities for 
collaborative robots such as the PSA to assist with the crew’s work; and 3) to learn more about how 
teamwork actually occurs in practice. A more complete account of the Brahms modeling effort to 
date may be found in [1]. 
3.2.3 A Day in the Life 

In a typical day, each ISS crewmember divides his or her time between physical exercise, 
maintenance, experiments, communication with ground personnel, unstructured time, and essential 
personal activities (e.g., rest, eating). These activities are critical for the well-being of the crew. 
Hence, the planned maintenance and research activities must be scheduled around them. At the same 
time, several interdependent structural constraints ensure crew safety and productivity: thermal 
control, power management, communication bandwidth management, and regulation of other 
systems. These form a network of components that must be accurately timed and orchestrated around 
crew activities and needs. 

An elaborate planning process is necessary to meet the human and system constraints. The 
planning complexity is such that the major planning rule for the ISS is actually: “Thou shalt not 
replan” (see [69], p. 2.1-21). This means that—with the exception of  “unacceptable failures” and 
“job jar” items left to the self-organization of the crew—any activity that can not be performed at its 
allotted time will not be replanned in real-time. It will simply not be performed, “with the expectation 
that [it] will be rescheduled into the operational flow at some later date.” Such discrepancies are 
actually frequent, as the comparison between daily plans and actual ship logs shows. 
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3.2.4 Developing the Brahms Model 

 
06:00 - 06:10 ISS morning inspection 
06:10 - 06:40 Post Sleep 
06:40 - 07:30 Breakfast 
07:30 - 08:00 Prep for work 
08:02 - 08:17 DPC via S-Band 
08:30 - 09:15 (FE-1) TVIS Video Survey 
08:15 - 08:30 (FE –2) SSC Daily Maintenance 
08:35 - 08:50 (FE –2) MEC card swap 
09:00 - 10:00 (FE –2) Physical Exercise, Active Rest 
09:15 - 10:45 (FE –1) Physical Exercise, Active Rest 
09:00 - 09:15 (CDR) URAGAN, visual observations 
09:50 - 10:20 (CDR) Replacement of urine-receptacle in Toilet 
10:00 - 10:30 (FE –2) MEC Exercise Data Downlink 
10:20 - 11:00 (CDR) ECLSS maintenance by MCC GO 
10:55 - 11:20 (FE –1) LAB PL Status/Monitor 
11:00 - 11:30 (CDR) SOYUZ Window Inspection 
11:30 - 11:50 7A TAGUP via S-Band 
12:00 - 13:00 LUNCH 
13:05 - 13:25 WPC via S-Band 
13:30 - 15:30 (CDR) Wet Cleaning/ ODF Medical Support 
13:30 -16:30 (FE -1, FE –2) Back Up MDM S/U 
16:15 - 17:15 (CDR) Physical Exercises, VELO-1 
16:55 -17:15 (FE –1) Prep of Delta File (IMS) 
16:45 - 18:15 (FE –2) Physical Exercise, Active Rest 
17:15 - 18:15 (FE –1) Physical Exercise, Active Rest 
17:15 - 18:15 (CDR) Physical Exercise. RED-1 
18:15 - 18:45 Familiarization with next day's plan 
18:45 - 19:30 Prep of Report 
19:05 - 19:20 DPC via S-Band 
19:30 - 19:55 Dinner 

Table 5. A Day in the Life of the ISS Crew (Derived from the onboard plan for May 7th, 2001 uploaded to the ISS) 
 
We sought data that could lead us to understand and represent a generic “day in the life” of the 

ISS crew. However, we also dedicated more attention to specific activities and scenarios (such as 
emergency scenarios) that appeared of great relevance to our research objectives. We consulted ISS 
documentation and manuals, onboard procedures and flight rules, crew daily plans and ship logs, 
crew debriefings, and, particularly, ISS crew videos. This information was interpreted, analyzed, and 
validated through interviews with astronauts, astronaut trainers, and flight controllers at Mission 
Control. While the day chosen for modeling was May 7th, 2001 (there was a relatively large amount 
of data available for that day), we generalized the model so that we could later simulate any typical 
day.  

In our analysis of the data gathered during the first phase of our research we looked for patterns in 
the crew activities and the emergence of work practices that are specific to onboard life. We 
generalized and represented the individual astronaut’s daily behavioral patterns as learned and shared 
activities at the informal group level. For example, the activity of eating breakfast is represented in 
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the Brahms ISS model at the Crew group-level. This way, all agents that are a member of the ISS 
Crew “know” how to perform this activity. The group structure also allows us to represent 
differences between social, cultural and other type of communities (for example, the behavioral 
differences between American and Russian crewmembers, and between male and female 
crewmembers). 

In order to make our model reusable and applicable to any typical day and scenario on the ISS, we 
represented procedures, daily plans, and flight rules as physical and conceptual objects in the model, 
that agents can access, have beliefs about, manipulate, and act upon. We categorized activities 
according to a 2-by-2 matrix, with the degree in which the activity was scheduled (scheduled vs. 
unscheduled activities) represented on one axis, and the uniqueness or repeatability (day-specific vs. 
recurrent activities) of the activity represented on the other axis (see Table 6). This allowed us to 
model elements of the crew’s situated action by letting the crew agents perform a just-in-time 
replanning activity20 through which they change their mental plan—that was first constrained by the 
OSTP and coordinated with Mission Control—during the day, based on the context of the day’s 
activities. 

 
 Scheduled activity Unscheduled activity 

Day-specific 
activity 

Maintenance activities (e.g., Replacement of 
urine-receptacle in Toilet). 
Experiments (e.g., LAB PL Status/Monitor). 
… 

Emergencies. 
Job-Jar activities 
Unexpected maintenance or 
repair activities. 
… 

Recurrent 
activity 

Physical exercise. 
Daily Planning Conference. 
Eating (lunch, dinner, breakfast) 
… 

Going to the toilet. 
Sending personal email. 
… 
 

Table 6. A 2 by 2 matrix of sample ISS activities 
 
Discrepancies between plan and reality come out of the simulation of the model, as they do during 

the actual day of the astronauts. While procedures and scheduled activities suggest a certain idealized 
scenario, several issues can emerge: procedures might not be clear, American and Russian versions 
of the same document might differ slightly and thereby generate confusion, the time needed to 
complete an activity might be longer than expected, tools might get lost, and, significantly, new work 
practices might emerge. 

The discrepancies we refer to are not only those caused by imprecise timing of new activities, or 
triggered by unforeseeable error and mismatches with systems or procedures.21 As Table 7 shows, we 
also focus on more substantial discrepancies that involve a deliberate (though possibly not planned-
in-advance) behavior of the crew. For example, it is often the case that “highly motivated crew 
members sacrifice personal time to ‘get the job done’” [73]. Traditional approaches do not take into 
consideration any of these kinds of unplanned events. More importantly, they rarely deal with the 
concatenated effects caused by the highlighted discrepancies. For example, the activity of printing 
out a procedure rather then reading it on a laptop implies that the astronauts must move to the printer 
location; it also implies that paper must be available, otherwise new paper must be fed into the 

 
20 We do not suggest that astronauts perform this activity by executing a computational algorithm similar to artificial 

intelligence planning systems. We rather represent the astronaut’s ability to change the order they decide to perform 
their activities, based on situational awareness and context. 

21 In this regard, Expedition 2 reported a substantial improvement with respect to Expedition 1 in the accuracy of the 
predicted duration of scheduled activities and in the feasibility of the planned daily workload. 
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printer. In contrast to typical planning approaches, the Brahms simulation is capable of showing how 
the practice of onboard activities often diverges, both in timing and execution, from the originally-
scheduled activities and procedures. Distances and movements, noises, tools location, work practice, 
and so forth are considered. Hence, delays caused by crew movement constraints, the search for tools 
and other items, and the inability to share resources or access to electronic procedures can be 
revealed by the simulation. For example, we model the fact that the work practice of the astronauts is 
to move from one module to the other to communicate face-to-face, rather than using the internal 
audio system. 

 
Example Cause of Discrepancy 

Plan Practice 
Procedures are not easily 
accessible or are not clear 

During emergency, refer to procedure During emergency, rely on 
training and memory 

Noise level on internal 
audio system 

Use internal audio system to 
communicate between modules 

Move from module to module 
to communicate with crew 
members 

Personal preferences Do medical tests as scheduled Do medical tests in the 
morning 

Shared resources are not 
always available 

Upload on laptop computer 
medical/physical data after 
experiment/exercise 

Upload data rarely 

Personal habits Read procedure Read electronic procedure 
(from laptop), or read printed 
procedure 

Inventory system is not 
always reliable 

Use the tools indicated in procedure Tools must be found and time 
can be lost in this operation 

Inventory system is not 
always reliable 

Use the bar-code reader for inventory Rarely use bar-code reader 

Table 7. Discrepancies between plan and practice.22 
 

3.3 Extending Teamwork Theory 

In extending traditional teamwork theory [29; 85], we seek to incorporate the best of previous 
research on human-centered collaboration and teamwork, while simultaneously grounding new 
findings in our own work practice study experience. In addition to surveying studies of multi-agent 
teamwork and human-centered perspectives cited above, we are assessing the contributions of allied 
fields ranging from cognitive function analysis [11], to studies of animal signaling and cooperation, 
the roles of values and affect, and the enablers of effective delegation in humans [66]. 

 
22 Sources: ISS Ship logs; ISS debriefs; interviews with ISS training specialists. 
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From our preliminary studies of human teamwork to date we have realized that the longstanding 
emphasis in teamwork research on “joint goals” and fixed task-specific “roles” has previously 
overshadowed other important aspects of teamwork such as shared context, awareness, identity, and 
history. Unlike the relatively rigid joint intentions of typical agent teamwork models, experience in 
work practice underscores the importance of conceptualizing agreements among team members as 
things that are forever tentative and subject to ongoing negotiation. An interesting finding has been 
that some of the most important settings for the coordination of teamwork are not in formal planning 
meetings but around the breakfast table (figure 8). Such settings can also be a time for sharing 
knowledge gleaned from practice. To take a simple example, we observed Commander Usachev 
engaged vigorously spinning one of his food tins at the breakfast table—what a naïve observer might 
initially think was just “playing with his food” could instead prove to be a useful strategy to heat the 
can or to keep it from drifting off while he attends to other activities. 

 

Figure 8. Breakfast onboard the ISS during Expedition 2 (Commander Yuri Usachev on the left). 
 
Additionally, we expect that as we study divergences between plan and practice we will better 

understand how people plan and coordinate their activities in the real world. Such detail in the 
Brahms model has already helped us notice unexpected opportunities for robotic assistance. For 
example, a simple thing like one crew member having to stand and hold a flashlight for another or 
having to stop and look for missing tools can tie up valuable human resources. Building features to 
support mundane activities that waste valuable crew time into the PSA has turned out to be of great 
importance. 
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3.4 Integrating Brahms, KAoS, and NOMADS 

In preparation for the experimental phase of our work, we have integrated a version of Brahms 
with KAoS, and are developing an approach to take advantage of NOMADS as well. These 
capabilities and their expected roles during the experimental phase are briefly described below. 

3.4.1 KAoS 

KAoS is a collection of componentized agent services compatible with several popular agent 
frameworks, including the DARPA CoABS Grid, DARPA the ALP/Ultra*Log Cougaar framework, 
and Objectspace Voyager. The adaptability of KAoS is due in large part to its pluggable 
infrastructure based on Sun’s Java Agent Services (JAS) (http://www.java-agent.org). For a full 
description of KAoS, the reader is referred to [17; 19; 20]. 

There are two key KAoS services relevant to the effort described here: policy services and domain 
management services. 

Policy services are used to define, manage, and enforce constraints assuring coherent, safe, 
effective, and natural interaction among teams of human and agents. Knowledge is represented 
declaratively in DAML+OIL ontologies. The current KAoS Policy Ontology (KPO) specification 
defines basic ontologies for actors, actions, entities that are the targets of actions (e.g., other actors, 
computing resources), places, policies, and policy conditions. We have extended these ontologies to 
represent simple atomic Java permissions, as well as more complex NOMADS, and KAoS policy 
constructs. The ontologies are currently being extended with additional classes, individuals, and rules 
to represent our model of human-agent teamwork, reflecting both the traditional concerns of team 
formation and maintenance as well as newer concerns about effectiveness of human-agent interaction 
in specific contexts of practice. 

The policy ontology distinguishes between positive and negative authorizations (i.e., constraints 
that permit or forbid some action) and positive and negative obligations (i.e., constraints that require 
some action to be performed, or else serve to waive such a requirement) [10; 33]. Dynamic changes 
or additions to policy require logical inference to determine first of all which if any policies are in 
conflict and second how to resolve these conflicts [64]. We have implemented a general-purpose 
algorithm for policy conflict detection and harmonization whose initial results promise a relatively 
high degree of efficiency and scalability.23 Figure 9 shows the three types of conflict that can 
currently be handled: positive vs. negative authorization (i.e., being simultaneously permitted and 
forbidden from performing some action), positive vs. negative obligation (i.e., being both required 
and not required to perform some action), and positive obligation vs. negative authorization (i.e., 
being required to perform a forbidden action). We use subsumption-based reasoning to allow policy 
conflicts to be detected and resolved even when the actors, actions, or targets of the policies are 
specified at vastly different levels of abstraction. 

Beyond the mechanisms for assuring consistency among permissions and obligations, we are 
developing an approach to determine how and when to make policy changes based on adjustable 
autonomy considerations. To accommodate reasoning and decision-making under uncertainty in 
these situations, we are incorporating a reasoning component based on knowledge-based construction 
and evaluation of Bayesian networks and influence diagrams [4; 15; 16; 54; 57]. The results of this 
analysis are used to compute the expected utility of potential adjustments to the agent’s autonomy. 
The goal is to delegate as much as appropriately can be done to the agent while continually adjusting 

 
23 A detailed description of the KAoS policy ontologies and our policy conflict detection and resolution process is currently 

being prepared for publication. 
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the policies in force so that the range of permissible actions does not exceed the range of those 
deemed as likely to be achievable. The need to maintain an appropriate level of mutual awareness of 
the intentions of team members and of the state of the world while minimizing unnecessary 
intrusiveness is also being taken into consideration in the model. While initial results are 
encouraging, these are challenging problems that will require many additional years of long-term 
research. 

We are also exploring approaches to increase the agent’s autonomy in a more absolute sense by 
automatically expanding its external capabilities so that the agent is able to take on new kinds of 
tasks relying on outside assistance that it could not have taken on by itself alone (or through the use 
of external resources of which it was previously aware). For example, one approach might be to 
provide support for transparent resource discovery and coordination processes. A related approach to 
increasing the agent’s autonomy in an absolute sense is to provide support for it to efficiently reduce 
its obligations through various forms of facilitation, and renegotiating (or, in exceptional 
circumstances, reneging on) current obligations so that the agent can focus on higher priority tasks. 

 

 
Figure 9. Three types of policy conflict are detected and resolved in KAoS. 

 
Policy enforcement mechanisms built either into the execution environment or the agent platform 

aim to assure policy compliance for any agent or program running in that environment or platform, 
regardless of how that agent or program was written.24 Viewing the knowledge governing the 
interaction of agent communities from a policy-based perspective has proven natural and effective in 

 
24  Our need to support heterogeneous agents and platforms precludes us from using an approach such as Myers et al. [68] 

that provides for policy enforcement by requiring all agents to adopt a common BDI framework. Scerri et al. [77] and 
Cohen et al. [31] differ from both Myers et al. and our approach in that the determination of the preferable mode of 
interaction with humans and other agents is wholly performed through the reasoning processes of the agents themselves 
rather than allowing for policy constraints to be explicitly imposed by external authority. In the context of our space 
applications, we see the requirement to embrace both approaches: providing a model and mechanisms for self-initiated 
reasoning about mixed-initiative interaction while assuring that the actions of agents are consistent with externally-
specified policy constraints. 
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a variety of our recent agent applications (e.g., [3; 13]), and we are finding that many of the lessons 
learned can be straightforwardly generalized to the domain of human-agent teamwork.  

Domain services are used to facilitate the structuring of agents into complex organizational 
structures, administrative groups, and dynamic task-oriented teams, and to provide a common point 
of administration and policy enforcement. Through various property restrictions, a given policy can 
be variously scoped, for example, either to individual agents, to agents of a given class, to agents 
belonging to an intensionally- or extensionally-defined domains or teams, or to agents running in a 
given physical place or computational environment (e.g., host, VM).  

The basic approach for the integration of Brahms and KAoS can be described as follows. A 
Brahms world runs in parallel with the robotic execution environment, providing a work practice 
context when KAoS services are invoked. KAoS is in turn responsible for message transport, 
management and execution of conversation, adjustable autonomy, and teamwork policies among 
humans and agents. KAoS is also responsible for providing input from the teamwork model to 
general-purpose robotic planning, scheduling, and execution capabilities that will be used in our 
testbed experimentation. For example, we are working with Muscettola and his colleagues on an 
interface between KAoS and EUROPA/IDEA for this purpose [67]. 

3.4.2 NOMADS 

NOMADS is the name we have given to the combination of Aroma, an enhanced Java-compatible 
Virtual Machine (VM), with its Oasis agent execution environment [83]. It is designed to provide 
environmental protection of two kinds: 
– assurance of availability of system resources, even in the face of changing resource priorities, 

buggy agents or denial-of- service attacks; 
– protection of agent execution state, even in the face of unanticipated system failure. 

These basic capabilities of NOMADS provide essential features of reliability and safety required 
for interaction with humans in dynamic and demanding space environments. We are currently 
working with Sun Microsystems on incorporating resource management features similar to 
NOMADS into a future version of the commercial Java platform. 

Thus, in summary, the model of work practice provided by Brahms of activities, humans, agents, 
and objects that are part of those activities provides needed contextual parameters that will be used to 
tune the constraints of the KAoS teamwork model and its operational mechanisms. The policy 
specification, representation, conflict resolution, and enforcement mechanisms of KAoS will assure 
that a coherent set of teamwork policies can be continuously in effect. The strong mobility and safe 
execution features of NOMADS will enable protection and optimal use of scarce onboard computing 
resources. 

4. SUMMARY 

We have outlined a preliminary perspective on the basic principles and pitfalls of adjustable 
autonomy and human-centered teamwork, and some of our preliminary observations on a teamwork 
theory incorporating insights from the cognitive and behavioral sciences, and our own studies of 
teamwork in practice. We then described the first phases of its application to the development of an 
agent-based model of the work practice of the ISS crew. We use Brahms—an agent-oriented, 
activity-based language—to model the ISS crew’s situated action, communication, and collaboration 
during the course of their daily activities. In our modeling of a day in the life onboard the ISS we 
include resource availability, both scheduled and unscheduled activities, and the emergence of work 
practices. In addition, we model human-machine interaction (such as the collaboration between the 
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crew and robotic systems such as the PSA and the Robonaut). In the next phase of our research we 
will experimentally explore the use of an enhanced Brahms ISS model as part of an execution 
environment for teamwork between ISS crews and onboard collaborative software- and robotic-
agents relying on integration with the KAoS and NOMADS frameworks. As the study proceeds over 
the long term, we hope our work will benefit those who plan and participate in work activities in a 
wide variety of space applications, as well as those who are interested in design and execution tools 
for teams of robots that can function as effective assistants to humans. 
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