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Abstract

In 1996, Khanna and Motwani [KM96] proposed three logic-based optimization problems
constrained by planar structure, and offered the hypothesis that these putatively fundamental
problems might provide insight into characterizing the class of optimization problems that admit
a polynomial-time approximation scheme (PTAS). The main contribution of this paper is to
explore this program from the point of view of parameterized complexity.

Problems of optimization are naturally parameterized by the parameter k = 1/ε. An opti-
mization problem admits a PTAS if and only if there is an algorithm Φ, that, given an input
of size n, and a parameter value k = 1/ε, produces a solution that is within a multiplicative
factor of (1 + ε) of optimal, in a running time that is polynomial for every fixed value of ε. This
definition admits the possibility that the degree of the polynomial that bounds the running
time of Φ may increase, even quite dramatically, as a function of k = 1/ε. In fact, amongst
the PTASs that are currently known, for an error of 20%, polynomial time bounds no better
than O(n2000) are quite common [Dow03]. Viewing k = 1/ε as a problem parameter, in the
sense of parameterized complexity, leads naturally to the question of whether an efficient PTAS
(EPTAS) might be possible for a given optimization problem. An EPTAS is simply an FPT
algorithm with respect to this parameter.

We offer a number of results concerning the problems Planar TMIN, Planar TMAX

and Planar MPSAT defined by Khanna and Motwani:
(1) We show that each of these problems of approximation, naturally parameterized by k = 1/ε,
is hard for W [1], and thus it is highly unlikely that they admit EPTASs. (One could also
interpret this as indicating that PTASs for these problems are unlikely to be a useful way of
coping with intractability in the sense of [GJ79].)
(2) We show that there are EPTASs for some subproblems described by syntactic restrictions,
and establish some limits on how far these positive results can be extended.

Classification: computational and structural complexity.

1 Introduction

Polynomial-time approximation provides various approaches for producing acceptably good solu-
tions to intractable optimization problems. A general approach is the notion of a polynomial-time
approximation schemes (PTAS) that provides a solution with cost that is within a multiplicative
factor of (1 + ε) of optimal, where the error ε can be chosen arbitrarily close to zero [GJ79]. While
many problems do not have polynomial-time approximation schemes unless P = NP , for those
that do, approximation is performed by algorithms that provide additional precision at the expense
of additional running time. The running time for such algorithms is typically of the form nO(1/ε)

or 2O(1/ε)nc, where c > 0 is a constant. While both time bounds are exponential in 1
ε , the time
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bound nO(1/ε) may become intolerable for even moderate values of n and reasonable error bounds
ε. For this reason, some work has been done on obtaining PTAS’s with more efficient running
times, such as 2O(1/ε)n. For some optimization problems, the worst case running time of PTAS
algorithms have been improved through more sophisticated techniques or by more thorough anal-
ysis, yielding PTASs where the exponent of the polynomial does not increase with the error bound
[GGR96, Ar97, Ma05b, DH05, DH06]. For many other optimization problems that admit PTASs,
however, the existence of a PTAS where the degree of the polynomial running time does not depend
on the degree of approximation — that is, an EPTAS — remains a challenging open question.

Khanna and Motwani [KM96] introduced three proposed fundamental syntactic (i.e., logic-
based) classes of optimization problems (the classes may also be viewed simply as “very general”
optimization problems) in a program that aimed to characterize a large number of optimization
problems on planar structures. Furthermore, they showed that a number of optimization problems
that, at the surface, are not about planar structure, and not about logic, admitted PTASs that
could (surprisingly) be understood as based on this “hidden planar logical structure”. In a related
line of research, Hunt et al. [HMRRRS98] investigated many problems with near planar structures
and many problems on geometric graphs. All of these problems admit a PTAS with a running time
of the form O(ng(1/ε)) for some function g.

For many years it was not known whether these problems admit a PTAS with a more efficient
running time such as 2O(1/ε)n (an EPTAS). In the present paper, we show that an EPTAS for the
three planar logic optimatization problems of Khanna and Motwani is impossible unless FPT =
W [1]. In a recent paper, Daniel Marx has shown a similar result for the problems on geometric
graphs considered by Hunt et al. [Ma05a]. Results such as these are based on the techniques and
results recently developed in parameterized complexity theory.

Parameterized complexity was introduced by Downey and Fellows [DF99] to study computa-
tional problems for which efficient algorithms for small or moderate parameters are natural and
useful. Research results show that parameterized tractability and polynomial-time approximabil-
ity are closely related. In particular, under a natural parameterization framework, Cai and Chen
[CC97] observed that the existence of a fully polynomial-time approximation scheme (FPTAS) for
an optimization problem implies fixed-parameter tractability for the naturally associated parame-
terized decision problem, where the parameter is the cost (or value) of a solution.

Bazgan [Baz95], and Cesati and Trevisan [CT97] independently strengthened this connection,
introducing the notion of an efficient polynomial-time approximation scheme (EPTAS), which is
precisely fixed-parameter tractability of the optimization problem with respect to the natural pa-
rameterization k = 1/ε. According to [CT97], an optimization problem admits an EPTAS if it
admits a PTAS of running time f(1/ε)p(n), where f is a function and p(n) is some polynomial.
What Bazgan [Baz95] and Cesati and Trevisan [CT97] showed is that the weaker hypothesis that
an optimization problem admits an EPTAS implies that the associated parameterized decision
problem is fixed-parameter tractable.

Fixed-parameter tractability for the parameterized problem where the parameter is the cost
(or value) of a solution is thus a necessary condition for an optimization problem to admit an
EPTAS. In other words, if the associated parameterized decision problem is W [1]-hard, then the
optimization problem cannot admit an EPTAS unless FPT = W [1]. We use this connection in this
paper in order to explore whether the planar logic problems introduced by Khanna and Motwani
admit EPTASs.

The converse, of course, does not hold: if the associated parameterized decision problem is
fixed-parameter tractable, this does not imply that the optimization problem admits an EPTAS.
For example, all MAX SNP-complete problems are fixed-parameter tractable [CC97], but they do
not admit even a PTAS, much less an EPTAS, unless P = NP .
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In the present paper we develop techniques to obtain upper and lower bounds on the parameter-
ized complexity for various optimization problems on planar structures. These results have direct
implications on the existence of EPTAS as well as upper and lower time bounds on EPTAS for
these problems. Our research focuses on a large number of (non-weighted) optimization problems
captured by the syntactic classes Planar MPSAT, Planar TMIN, and Planar TMAX which
were introduced by Khanna and Motwani [KM96]. In particular, our work and technical results
address the following issues.

(1) The hardness of admitting an EPTAS. Planar MPSAT, Planar TMIN, and Planar

TMAX are natural extensions from planar versions of the better-known classes Max SNP,
Min F+Π2, and RMAX(2), respectively, by allowing a minterm (i.e., a conjunction of liter-
als) in place of each literal. Our research shows that the existence of an EPTAS for such
problems is very sensitive to the size of each minterm. We are able to show that Planar

TMIN4 (Planar TMIN restricted to minterms of size four or smaller), Planar TMAX,
and Planar MPSAT are W [1]-hard, and hence the possibility of an EPTAS is excluded,
unless FPT = W [1].

(2) The application of parameterized tractability methods in obtaining EPTASs. Polynomial-time
approximation schemes for many optimization problems on planar graphs were developed
based on the method of finding a small separator and then solving each of the separated com-
ponents optimally [Bak94]. Such an idea is generalized in [KM96] for problems in Planar

TMIN, Planar TMAX, and Planar MPSAT. We observe that since solving each compo-
nent can be done by a standard tree decomposition-based algorithmic schema [Bod88, Bod97],
parameterized algorithms employing a standard tree decomposition-based schema can be used
to solve each component optimally, thus leading to an EPTAS. In particular, we prove that
essentially all problems in Planar TMIN1, including Planar Vertex Cover and Planar

Dominating Set, are solvable in time 2O(
√

k)n.

Almost all of the above results in (1) and (2) apply to the classes Planar TMAX and Planar

MPSAT.
The paper is organized as follows. In §2, we introduce the necessary concepts from parameterized

complexity theory and establish the connection between an EPTAS and parameterized tractability.
In §3, we give W [1]-hardness proofs for problems in Planar TMIN, Planar TMAX, and Planar

MPSAT, thereby demonstrating the existence of problems in these classes that do not admit an
EPTAS unless FPT = W [1]. In §4, EPTASs are described for subclasses of problems in Planar

TMIN, Planar TMAX, and Planar MPSAT. We summarize our results in §5, and point to
some open questions.

2 Preliminaries

Here we briefly introduce the necessary concepts concerning optimization problems and the theory
of parameterized complexity. For additional information, we refer readers to the comprehensive
text on parameterized complexity by Downey and Fellows [DF99] and the classic text on NP-
completeness by Garey and Johnson [GJ79].

A parameterized problem Π is defined over the set Σ∗ × N, where Σ is a finite alphabet and N

is the set of natural numbers. Therefore, each instance of the problem Π is a pair 〈I, k〉, where k
is called the parameter.
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Definition 2.1 A parameterized problem Π is fixed-parameter tractable (FPT) if there is an algo-
rithm running in time O(f(k)p(|I|)) that solves the parameterized problem Π for some polynomial
p and some function f .

Parameterized tractability is usually stated in terms of a decision problem, i.e., determining
whether some instance 〈I, k〉 ∈ Π. However, it is occasionally necessary to consider algorithms
that produce witnesses. In this context, we consider algorithms that produce witnesses to the fact
that 〈I, k〉 ∈ Π, if such a witness exists, in O(f(k)p(|I|)) steps. In this case, we say that Π is
parameterized tractable with witness, or that Π is solvable with witness in time O(f(k)p(|I|)). This
slightly stronger definition of parameterized tractability will be used in §4.

The complexity class FPT contains all fixed-parameter tractable problems. Parameterized
problems are classified into the W-hierarchy FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ]. Complete
problems for these classes are defined based on reductions that preserve parameterized tractability
[DF99]. For example, Independent Set and Clique are W [1]-complete. The k-Step Halting

Problem for nondeterministic Turing machines (of unlimited nondeterminism) is also complete for
W [1], and hence (the parameterized analog of Cook’s Theorem) the hypothesis that FPT 6= W [1]
rests on much the same intuitive foundation as the conjecture P 6= NP (for a discussion, see
[Dow03]).

Many parameterized problems are naturally obtained from optimization problems through pa-
rameterizations. Following the earlier work of Cai and Chen [CC97], we use a standard parame-
terization of optimization problems. For each optimization problem Π, the standard parameterized
(decision) version Π∗ of Π is to determine, given an instance I of Π and an integer k, whether
the optimal solution cost OPTΠ(I) is ≥ k for maximization problems or ≤ k in the case of a
minimization problem.

Definition 2.2 ([CT97]) An optimization problem admits an efficient polynomial-time approx-
imation scheme (EPTAS) if for each fixed error ε > 0, there is an (uniform) f(1/ε)p(|I|)-time
approximation algorithm A that guarantees |A(I) −OPT (I)| ≤ ε OPT (I) for every given instance
I, where f(k) is a function and p(n) is some polynomial.

The fact that the existence of an EPTAS implies parameterized tractability was first shown
by Bazgan [Baz95] and later (and independently) by Cesati and Trevisan [CT97]. The following
proposition provides a detailed account of this result in terms of time complexity.

Proposition 2.1 Let Π be an NP optimization problem. If Π admits an O(f(1/ε)nc)-time EPTAS,
then the associated standard parameterized decision version Π∗ is solvable in time O(f(2k)nc).

We next present our notation concerning the syntactic classes defined by Khanna and Motwani
[KM96]. To begin, given a collection of variables, a minterm is simply a conjunction of literals. A
literal is positive if it is xi for some variable xi. A literal is negative if it is ¬xj for some variable xj .
A minterm is positive (negative) if all of the literals are positive (negative). A first order formula
(FOF) is a disjunction of minterms. An FOF F is positive (negative) if each minterm in F is
positive (negative). The width of an FOF is the number of minterms in the formula. The size of a
minterm is the number of literals in the minterm.

Definition 2.3 Let s(n), w(n) be two functions in n.

(1) TMIN
w(n)
s(n) is the class of all NP optimization problems that can be expressed as follows: given

a collection C of positive FOFs over n variables with width bounded by w(n) and the maximum
size of minterms bounded by s(n), find a minimum weighted truth assignment T that satisfies
all FOFs in C.
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(2) TMAX
w(n)
s(n) is the class of all NP optimization problems that can be expressed as follows:

given a collection C of negative FOFs over n variables with width bounded by w(n) and the
maximum size of minterms bounded by s(n), find a maximum weighted truth assignment T
that satisfies all FOFs in C.

(3) MPSAT
w(n)
s(n) is the class of all NP-optimization problems that can be expressed as follows:

given a collection C of FOFs over n variables with width bounded by w(n) and the maximum
size of minterms bounded by s(n), find a truth assignment T that maximizes the number of
FOFs in C that are satisfied.

Notice that the size of any satisfiable minterm is bounded by n. Hence, we will only consider values
of s(n) ≤ n.

Given a collection C of FOFs over n variables, the incidence graph of C is the bipartite graph
with edges between the set of FOFs and the set of variables such that there is an edge between
a formula and a variable if and only the variable occurs in the formula. Let the syntactic class
C be either MPSAT, TMIN, or TMAX. Then Planar C is the class of problems in C restricted to
instances with planar incidence graphs.

We now define the following subclasses of problems. Let C ∈ {TMAX, TMIN, MPSAT}. Planar

Cs(n) =
⋃

w∈poly

Planar Cw(n)
s(n) , Planar Cw(n) = Planar Cw(n)

n , Planar C =
⋃

w∈poly

Planar Cw(n), and

Planar Cpolylog =
⋃

c≥0
Planar Clogc n.

In §4, we address the complexity of a generic canonical problem for each of these classes, defined
as follows.

Definition 2.4 Let s(n) and w(n) be two functions. Define

(1) Planar KTMINs(n): given a collection of FOFs over n variables with each minterm size
bounded by s(n), find a minimum weight assignment that satisfies all the FOFs.

(2) Planar KTMINw(n): given a collection of FOFs over n variables with each formula width
bounded by w(n), find a minimum weight assignment that satisfies all the FOFs.

(3) Planar KTMINpolylog: given a collection of FOFs over n variables with each formula width
bounded by logc n for some c ≥ 0, find a minimum weight assignment that satisfies all the
FOFs.

(4) Planar KTMIN: given a collection of FOFs over n variables, find a minimum weight as-
signment that satisfies all the FOFs.

Canonical problems for the corresponding subclasses of Planar TMAX and Planar MPSAT

are defined in a similar fashion.

3 The hardness of achieving EPTAS

In this section, we show that there are problems in Planar TMIN4, the subclasses of Planar

TMIN with restriction to minterms of size at most 4, which do not admit an EPTAS unless FPT
= W [1]. We consider the canonical problem Planar KTMIN4 in the class Planar TMIN4 and
prove W [1]-hardness for its parameterized complexity. Similar results hold for Planar TMAX

and Planar MPSAT.
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Figure 1: A block of n variables.

The W [1]-hardness proofs for these canonical problems are based on parameterized reductions
from Clique. Briefly, let 〈G, k〉 be an instance of Clique. Assume that G has n vertices. From
G and k, we construct a collection C of FOFs over f(k) blocks of n variables. C will contain at
most 2f(k) FOFs and the incidence graph of C will be planar. In the case of Planar KTMIN,
each minterm in each FOF will contain at most 4 variables. The collection C is constructed so that
G has a clique of size k if and only if C has a weight f(k) satisfying assignment with exactly one
variable set to true in each block of n variables. Here we have that f(k) = O(k4).

Theorem 3.1 Planar KTMIN4 is W [1]-hard.

Proof: We show that Clique is parameterized reducible to Planar KTMIN4. Since Clique is
W [1]-complete, it will follow that Planar KTMIN4 is W [1]-hard.

To begin, let 〈G, k〉 be an instance of Clique. Assume that G has n vertices. From G and k,
we will construct a collection C of FOFs over f(k) blocks of n variables. C will contain at most
2f(k) FOFs and the incidence graph of C will be planar. Moreover, each minterm in each FOF
will contain at most 4 variables. The collection C is constructed so that G has a clique of size k
if and only if C has a weight f(k) satisfying assignment with exactly one variable set to true in
each block of n variables. Here we have that f(k) = O(k4). To maintain planarity in the incidence
graph for C, we ensure that each block of n variables appears in at most 2 FOFs. If this condition
is maintained, then we can draw each block of n variables as seen in Figure 4.

We describe the construction in two stages. In the first stage, we use k blocks of n variables
and a collection C ′ of k(k − 1)/2 + k FOFs. In a weight k satisfying assignment for C ′, exactly one
variable vi,j in each block of variables bi = [vi,1, . . . , vi,n] will be set to true. We interpret this event
as “vertex j is the ith vertex in the clique of size k.” The k(k − 1)/2 + k FOFs are described as

follows. For each i with 1 ≤ i ≤ k, let fi be the FOF
n
∨

j=1
vi,j. This FOF ensures that at least one

variable in bi is set to true. For each pair 1 ≤ i < j ≤ k, let fi,j be the FOF
∨

(u,v)∈E

vi,uvj,v. Each

FOF fi,j ensures that there is an edge in G between the ith vertex in the clique and the jth vertex
in the clique.

It is straightforward to argue that C ′ = {f1, . . . , fk, f1,2, . . . , fk−1,k} has a weight k satisfying
assignment if and only if G has a clique of size k. First notice that any weight k satisfying assignment
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Figure 2: The widget Ak.

for C ′ must satisfy exactly 1 variable in each block bi. Each first order formula fi,j ensures that
there is an edge between the ith vertex in the potential clique and the jth vertex in the potential
clique. Notice too that, since we assume that G does not contain edges of the form (u, u), the FOF
fi,j also enforces that the ith vertex in the potential clique is not the jth vertex in the potential
clique. This completes the first stage.

This first stage can be drawn in the shape of the complete graph Kk on k vertices. To see this,
place each block of variables bi at vertex vi of Kk and label each edge (i, j) in Kk by the FOF fi,j.
Finally, attach each FOF fi to vertex vi on the exterior. Notice that this drawing of the incidence
graph for this collection of FOFs is not planar. We fix this problem in the second stage.

In the second stage we achieve planarity by removing crossovers in the incidence graph for
C ′. We use two types of widgets to remove crossovers while keeping the number of variables per
minterm bounded by 4. The first widget Ak consists of k + k − 3 blocks of n variables and k − 2
FOFs. This widget consists of k − 3 internal and k external blocks of variables. Each external
block ei = [ei,1, . . . , ei,n] of variables is connected to exactly one FOF inside the widget. Each
internal block ij = [ij,1, . . . , ij,n] is connected to exactly two FOFs inside the widget. The k − 2

FOFs are given as follows. The FOF fa,1 is
n
∨

j=1
e1,je2,ji1,j. For each 2 ≤ l ≤ k − 3, the FOF fa,l =

∨n
j=1 il−1,jel+1,jil,j. Finally, fa,k−2 =

n
∨

j=1
ik−3,jek−1,jek,j. These k−2 FOFs ensure that the settings

of variables in each block is the same if there is a weight 2k − 3 satisfying assignment to the 2k − 3
blocks of n variables. The widget Ak is shown in Figure 2.

Since each internal block is connected to exactly two FOFs, the incidence graph for this widget
can be drawn on the plane without crossing any edges.

The second widget removes crossover edges from the first stage of the construction. In the first
stage, crossovers in our drawing can occur in the incidence graph because two FOFs cross from
one block of variables to another. To eliminate this, consider each edge i, j in Kk with i < j as a
directed edge from i to j. In the next stage of the construction, we send a copy of the variables
in block i to block j. At each crossover point from the direction of blocks u = [u1, . . . , un] and
v = [v1, . . . , vn], insert a widget B that introduces 2 new blocks of n variables u1 = [u11

. . . u1n ]

and v1 = [v11
. . . v1n ] and a FOF fB =

n
∨

j=1

n
∨

l=1

uju1j
vlv1l

. The FOF fB ensures that u1 and v1 are

copies of u and v. As shown in Figure 3, the incidence graph for the widget B is also planar.
To complete the construction, we replace each of the original k blocks of n variables from the

first stage with a copy of the widget Ak. At each crossover point in the graph, we introduce a copy
of widget B. We attach each fi to its associated Ak, attaching it to one of the external blocks
(leaving k − 1 of these blocks to communicate with the other k − 1 “vertex choice” gadgets of the
same kind). Finally, for each directed edge between block i and j, we insert the original FOF fi,j
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Figure 3: A planar drawing of the widget B.

between the last widget B and the destination widget Ak. Since one of the new blocks of variables
created by the widget B is a copy of block i, the effect of the FOF fi,j in this new collection of
FOFs is the same as before.

Figure 4 provides a diagram that shows the full construction when k = 5. Since the incidence
graph of each widget in this drawing is planar, the entire collection C of first order formulas has a
planar incidence graph.

Now, if we assume that there are c(k) = O(k4) crossover points in standard drawing of Kk, then
our collection has c(k) B widgets. Since each B widget introduces 2 new blocks of n variables, this
gives 2c(k) new blocks. Since we have k Ak widgets, each of which has 2k− 3 blocks of n variables,
this gives an additional k(2k−3) blocks. So, in total, our construction has f(k) = 2c(k)+2k2−3k =
O(k4) blocks of n variables. Note also that there are g(k) = k(k−1)/2+k+k(k−2)+c(k) = O(k4)
FOFs in the collection C.

As shown in our construction C has a weight f(k) satisfying assignment (i.e., each block has
exactly one variable set to true) if and only if the original graph G has a clique of size k. Since
the incidence graph of C is planar and each minterm in each FOF contains at most four variables,
it follows that this construction is a parameterized reduction from Clique to Planar KTMIN4.
This completes the proof. 2

Theorem 3.2 Planar KTMAX is W [1]-hard.

Proof: The proof is very similar to the proof of Theorem 3.1. Given an instance 〈G, k〉 of Clique,
convert that instance into the collection of FOFs C as described in the proof of Theorem 3.1.
Replace each positive variable vi in each minterm with a conjunction ¬v1¬v2 · · · ¬vi−1¬vi+1 · · · ¬vn

of negated variables from the same block. The process converts each positive minterm to a negative
minterm. Note that this new collection C ′ has weight f(k) satisfying assignment if and only if G has
a clique of size k. Since 〈C ′, f(k)〉 is an instance of Planar KTMAX, this gives a parameterized
reduction from Clique to Planar KTMAX. 2

Theorem 3.3 Planar KMPSAT is W [1]-hard.

Proof: The proof is very similar to the proof of Theorem 3.1. Given an instance 〈G, k〉 of Clique,
convert that instance into the collection of FOFs C as described in the proof of Theorem 3.1. For
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Figure 4: The construction when k = 5.

each FOF fi in C, replace fi with the formula

f ′
i =

n
∨

j=1

¬vi,1¬vi,2 . . .¬vi,j−1¬vi,j+1 . . .¬vi,n,

which creates a new collection C ′ of FOFs. The incidence graph for this new collection of FOFs is
still planar. Moreover, notice that each formula f ′

i is true when at most one variable in each block
is set to true. Therefore, there is a satisfying assignment to all the g(k) FOFs in the collection if
and only if G has a clique of size k. Since 〈C ′, g(k)〉 is an instance of Planar KMPSAT4, this
gives a parameterized reduction from Clique to Planar KMPSAT. 2

Note that from the results of Khanna and Motwani [KM96], all three problems Planar

KTMIN4, Planar KTMAX, and Planar KMPSAT have polynomial-time approximation schemes.
However, as we show here, these problems do not have efficient polynomial-time approximation
schemes unless FPT = W [1].

Corollary 3.1 Planar KTMIN4, Planar KTMAX, and Planar KMPSAT do not have ef-
ficient polynomial approximation schemes unless FPT = W [1].

Proof: By Proposition 2.1, the existence of an efficient polynomial-time approximation scheme
for Planar KTMIN4, Planar KTMAX, and Planar KMPSAT implies that parameterized
versions of these problems are in FPT. Since each of these problems is W [1]-hard, this implies that
FPT = W [1]. 2

4 Upper bounds on the running time for EPTAS

In this section we describe some positive results regarding the running time of EPTASs. The work
in this section uses the following concepts.
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Definition 4.1 An outerplanar graph is a planar graph that has an embedding on the plane with all
vertices appearing on the outer face. An r-outerplanar graph is an outerplanar graph when r = 1,
or a (r − 1)-outerplanar graph by deleting all vertices on the outer face when r > 1.

The layer L1 of an r-outerplanar graph consists of the vertices on the boundary of the outer
face, and for i > 1, the layer Li is the set of vertices that lie on the boundary of the outer face in
the embedding of the subgraph G − (L1 ∪ · · · ∪ Li−1).

Intuitively, a graph is r-outerplanar if it has an “onion structure” of depth r — r removals of
“the outer layer” suffice to reduce the graph to the empty graph.

Definition 4.2 A tree decomposition D of a graph G = (V,E) consists of a tree T = (I, F ) and a
collection of subsets of V , {Xi | i ∈ I}, one for each node in the tree T , that collectively satisfy the
following conditions:

1.
⋃

i∈I Xi = V , i.e., each v ∈ V is in some Xi,

2. for each edge (u, v) ∈ E, there exists some i such that u, v ∈ Xi, and

3. for each v ∈ V , the set {i ∈ I | v ∈ Xi} induces a subtree of T .

Item (3) is often written as “for all i, j, k ∈ I, if j lies on the path between i and k, then Xi ∩Xk ⊆
Xj .” Notice that this implies that the set of vertices in the subtrees below some bag Xi are disjoint
except for the vertices in Xi.

The width of a tree decomposition D is the maximum cardinality of any Xi in D. The treewidth
of a graph G is the minimum width needed by every tree decomposition D of G. The notions of
outerplanarity and treewidth are closely connected.

Proposition 4.1 ([Bod97]) An r-outerplanar graph has treewidth at most 3r − 1.

Polynomial-time approximation schemes for many problems on planar structures (e.g., on pla-
nar graphs) can be developed based on the method of finding a small separator and then solving
each separated component optimally [Bak94, KM96]. Such an idea has been generalized by Khanna
and Motwani for problems in Planar TMIN, Planar TMAX, and Planar MPSAT as follows:
given a t-outerplanar embedding of a planar incidence graph, decompose the layers L1, · · · , Lt of
the t-outerplanar graph into r disconnected components, each consisting of at most c/ε layers,
where r = O(εt). Then, find an optimal solution for each component and assemble the solutions
for all the components to form a (1 + ε)-approximation for the original instance. Since each com-
ponent is an O(1/ε)-outerplanar graph, it has treewidth O(1/ε) by Proposition 4.1. A standard
tree decomposition-based algorithmic schema (basically, bounded treewidth dynamic programming)
[Bod88, KM96, Bod97, ABFKN00] is applied to obtain a PTAS. In general, for problems in Planar

TMIN, Planar TMAX, and Planar MPSAT, the running time of these PTAS is O(nO(1/ε)).
On the other hand, many recent parameterized algorithms for problems on planar graphs, such

as Planar Dominating Set [ABFKN00], have been developed via the tree decomposition-based
algorithmic schema. In particular, in order to give a positive answer to the relationship between
OPT (I) and the parameter k (where I is an instance of the optimization problem), the incidence
graph has to have treewidth bounded by w(k) for some function w. This observation leads to the
following technical lemma. (For related results, see [DH05, DH06].)

Lemma 4.1 Let Π be an optimization problem in Planar TMIN, Planar TMAX, or Planar

MPSAT. If Π∗ is solvable with witness in time O(f(w(k))p(n)) via the standard tree decomposition-
based algorithmic schema and a positive answer to the relationship between OPT (I) and k (where
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I is an instance of Pi), implies that the incidence graph has treewidth bounded by w(k), then Π has
an EPTAS running in time

O(
1

ε
f(O(

1

ε
))p(n))

for some polynomial p.

Proof: The proof of this lemma follows the approach given in the work of Baker [Bak94] and
Khanna and Motwani [KM96], with some minor modifications. Here, we give the proof for Planar

TMIN. The proofs for Planar TMAX and Planar MPSAT are similar. Note that the theorem
holds only for the unweighted versions of these problems.

Let Π be a problem in Planar TMIN, and let I be an instance of Π. Then, I can be cast as
a problem of determining a minimum weighted assignment to n variables that satisfies a collection
C of m first order formulae. Since Π is in Planar TMIN, the incidence graph G for C is planar.
Since G has n + m vertices and each layer has at least one vertex, we have that G is t-outerplanar
for some t ≤ n + m. So, let L1, . . . , Lt be the layers in G. Notice that it is possible to build G and
then create the layers L1, . . . , Lt in polynomial-time by first computing a planar embedding of G,
and then iteratively removing the outermost layers of G.

We describe an efficient polynomial-time approximation scheme for Π. Let p = d 1
ε e, and notice

that 1
p ≤ ε. We break the layers of G into overlapping groups of size at most 2p + 1. Let Sj

be the graph that consists of the layers L2jp+2i−1 to L2(j+1)p+2i for some i, 1 ≤ i ≤ p, where
j ranges through all possible values where this makes sense. The graphs Sj and Sj+1 overlap
at layers L2(j+1)p+2i−1 and L2(j+1)p+2i. For each Sj, build the subproblem C ′

j consisting of just
the FOFs in the layers L2jp+2i−1 through L2(j+1)p+2i whose variables also appear in these same
layers. This guarantees that all FOFs in layers L2jp+2i through L2(j+1)p+2i−1 appear in C ′

j . We
now solve each of these subproblems C ′

j exactly using the parameterized algorithm mentioned in
the statement of theorem. Since each Sj is 2p+1-outerplanar graph, we know that it has treewidth
bounded by that of the incidence graph of C ′

j (which is a subgraph of Sj) and therefore is at most
3(2p+1)−1 by Proposition 4.1. Since Π∗ is solvable in time O(f(w(k))p(n)) steps via the standard
tree decomposition-based algorithm, we can solve the problem exactly in O(f(τ)p(n)) steps, where
τ is the treewidth of the problem. Since each subproblem has treewidth τ ≤ 3(2p+1)− 1 = 6p+2,
the minimum weighted value of the solution can be found in O(f(6p + 2)p(n)) steps.

Given ε > 0, let p = d 1
ε e. Since each minterm in the collection of FOFs C is positive, the union

of the solutions to each C ′
j provides a solution for C. We repeat this process for each i ranging from

1 to p, and we return the minimum weighted solution. The total running time of this algorithm is

O(
1

ε
f(O(

1

ε
)p(n))

To see that the solution is within 1
p of optimal, consider an optimal solution for C. Notice that

this is a solution for each C ′
j . So, since each C ′

j was solved optimally, we have that the total cost
of the solution produced by this algorithm is bounded below by the cost of the optimal solution
plus the number of variables set in the overlapping layers (layers L2jp+2i−1 and L2jp+2i). By the
pigeonhole principle, we know for some i, 1 ≤ i ≤ p, that the total number of variables set to true
in the overlapping layers L2jp+2i−1 and L2jp+2i is at most OPT (C)

p . Hence the solution produced by

this algorithm has weight at most OPT (C) + OPT (C)
p ≤ (1 + ε)OPT (C). 2

To obtain an EPTAS or time upper bounds on EPTAS for problems under consideration, it
suffices to consider the parameterized tractability via the standard tree-decomposition algorithmic
schema.

11

To appear in journal Theory of Computing Systems, 2006.



Lemma 4.2 Let G = (V1 ∪ V2, E) be a planar bipartite graph such that there exists a V ′ ⊆ V1 of
size k which dominates every vertex in V2. Then G has treewidth O(

√
k).

Proof: We can assume that G has no isolated vertices. Therefore V ′ is a 2-dominating set in
G. That is, every vertex in V1 ∪ V2 is at a distance of at most 2 from a vertex of V ′. The
lemma follows from the bidimensionality theory recently developed by Demaine and Hajiaghayi
[DH04, DH05, DH06]. More specifically, the lemma follows immediately from Theorem 3 of [DH06]
(Theorem 5 of [DH05]), since 2-domination is contraction bidimensional. 2

We next use Lemma 4.2 to show that subclasses of Planar TMIN are parameterized tractable.
We apply Lemma 4.2 to show that the incidence graphs for all problems in Planar TMIN have
small treewidth.

Theorem 4.1 Planar TMIN1 ⊆ FPT. Moreover, for every problem Π in Planar TMIN1, Π

has a O(2O(
√

k)p(n)) parameterized algorithm.

Proof: Let Π be any problem in Planar TMIN1. Let I be an instance of the problem and k be an
integer. Then I can be expressed as a collection C of first-order formula. Let x1, · · · , xn be the set
of variables in C and let f1, · · · , fm be the first-order formula in C. Then the incidence graph is a
planar bipartite graph G = (Vvar ∪Vfof , E), where Vvar = {vx1

, · · · , vxn} and Vfof = {vf1
, · · · , vfm

}.
If there is an weight k truth assignment that satisfies every formula fj, j = 1, · · · ,m, then there

exists a subset D ⊆ Vvar of size k in G that dominates every vertex in the set Vfof . The vertices in
D can be picked such that a vertex vx is in D if and only the corresponding variable x is assigned
the value “true.” Because each formula f is satisfied (by the weight k truth assignment) and all
xi1, · · · , xit occur in f as positive literals, at least one of these variable must be assigned with value
“true” and that corresponding vertex dominates the vertex vf .

By Lemma 4.2, the treewidth for the incidence graph is O(
√

k). Since the size of each minterm

is one, we can construct a 2O(
√

k)N -time algorithm to determine if there is an weight k truth
assignment that satisfies every formula in C by using the standard dynamic programming approach
[Bod88]. For each node Xi in the tree-decomposition of the incidence graph, build a table with
one entry for every possible setting of the variables and FOFs in Xi. The table stores the value of
the minimum weighted satisfying assignment in the boolean formula constructed from the subtree
rooted at Xi that is consistent with the given table entry. Note that since each minterm has size
one, we can use true or false as a possible setting for each FOF. This gives a table of size at

most 2O(
√

k). The minimum weighted satisfying assignment can be found by building the tables for
each node in the tree decomposition in a bottom-up fashion. This approach is very similar to the
algorithms given in the work of Khanna and Motwani [KM96]. 2

The next theorem requires a somewhat straightforward result concerning parameterized tractabil-
ity found in the work of Cai and Juedes [CJ01].

Proposition 4.2 ([CJ01]) If a parameterized problem Π is solvable in time O(2O(s(n)k)p(n)) for
some unbounded and nondecreasing function s(n) = o(log n) and some polynomial p, then it is
parameterized tractable.

Theorem 4.2 Planar TMIN polylog ⊆ FPT.

Proof: The proof is similar to the proof of Theorem 4.1. Given a problem Π in Planar

TMIN polylog, an instance I of Π can be represented as a collection of FOF C, where the width of
each FOF in C is bounded by (log n)c, for some constant c.
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As in the proof of the previous theorem, we can show that the treewidth of the incidence graph
for C is O(

√
k). Since the width of each minterm is bounded by (log n)c, we can construct a

(log n)c O(
√

k)n-time algorithm to determine if there is a weight k truth assignment that satisfies
every formula in C by using the standard dynamic programming approach [Bod88]. For each node
Xi in the tree-decomposition of the incidence graph, build a table with one entry for every possible
setting of the variables and FOFs in Xi. The table stores the value of the minimum weighted
satisfying assignment in the boolean formula constructed from the subtree rooted at Xi that is
consistent with the given table entry. Note that since the width of each minterm is bounded by
(log n)c, we can use the name of the minterm that satisfies it as a possible setting for each FOF.

This gives a table of size at most (log n)c O(
√

k). The minimum weighted satisfying assignment can
be found by building the tables for each node in the tree decomposition in a bottom-up fashion.
This approach is very similar to the algorithms given in the work of Khanna and Motwani [KM96].

The running-time of this algorithm is 2log(log n)c O(
√

k)N , where N is the total input size. Since
log log n = o(log n), it follows from Proposition 4.2 that Π is in FPT. 2

Similar results are given for Planar TMAX and Planar MPSAT.

Theorem 4.3 Planar TMAX1 ⊆ FPT and Planar TMAX polylog ⊆ FPT.

Proof: The proof follows the proofs of the previous theorems. Let Π be an optimization problem
in Planar TMAX1 or Planar TMAX polylog. It suffices to show that the incidence graph
for each instance of this problem has small treewidth. Let I be an instance of Π and assume that
OPT (I) = k. Then I can be expressed by a collection C of m first-order formula, each a disjunction
of negative minterms over n variables.

We first show that when the maximum weight of satisfying assignments is k, the incidence graph
for C must be an O(k)-outerplanar graph. Without loss of generality, assume that in each formula
f no variable occurs in every minterm for some FOF – otherwise, such a variable must be assigned
the value “false” and the collection C can be simplified by eliminating such a variable. Now,
consider the incidence graph of C. It must be r-outerplanar for some r ≤ n+m. Let L1, . . . , Lr be
the layers in this r-outerplanar graph. Notice that, because of the planarity of the graph, the first
order formulae in layers Li−1 and Li+2 must be separated in the sense that no variable can appear
at the same time in both a FOF in Li+2 and in a set of variables in Li−1 or vice versa. Also notice
that, since no layer is empty and the incidence graph is bipartite, each layer, except possibly the
last layer, contains at least one variable and at least one FOF.

The layers of the r-outerplanar incidence graph can thus be partitioned into groups {L1, L2, L3},
{L4, L5, L6}, · · ·, {L3t−2, L3t−1, L3t}, where t = dr/3e, such that layer the FOF in L3j+i are sepa-
rated from the FOF in layer L3(j−1)+i and layer L3(j+1)+i for each i = 1, 2, 3 and j = 0, · · · , t − 1.
Consider some FOF f in layer L3j+i. Since no variable occurs in every minterm in f , at least one
variable x that appears in f can be assigned the value “true” such that all f is satisfied. (For
example, we can simply select one variable from each layer L3j+1 for j = 0, · · · , t − 1, set them to
“true” and set all other variables to “false”. In this way, every FOF has at most 1 variable in it
set to “true”, and thus it is satisfied.) The value of x has no effect on FOFs in layers L3(j+1)+i

and L3(j−1)+i. Now, if we set all other variables to be false, this is a satisfying assignment to the
collection C of first order formula. Therefore, at least t variables can be assigned the value “true.”
This implies that r ≤ 3t ≤ 3k since k is the maximum number of variables assigned the value
“true.” Therefore the incidence graph can be at most 3k-outerplanar.

According to Proposition 4.1, the incidence graph has treewidth 9k − 1 when the maximum
weight for satisfying assignments is k. Using the associated tree decomposition in the standard
dynamic programming algorithm gives the result. 2
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Theorem 4.4 Planar MPSAT1 ⊆ FPT and Planar MPSATpolylog ⊆ FPT.

Proof: The proof is similar to the proof for Theorem 4.3, except that we are trying to maximize
the number of FOF that are satisfied. Let C be a collection of FOF, and assume that the maximum
number of FOFs that can be satisfied is k for any the truth assignment to the variables in C. We
will show that the incidence graph for C is at most 3k outerplanar.

As in the proof of Theorem 4.3, we can break the incidence graph into r layers L1, . . . , Lr. The
first order formulae in layer Li−1 must be separated from the first order formula in layer Li+2 in the
sense that they do not share variables. The layers of the r-outerplanar incidence graph can thus be
partitioned into groups {L1, L2, L3}, {L4, L5, L6}, · · ·, {L3t−2, L3t−1, L3t}, where t = dr/3e, such
that the FOF in the layer L3j+i are separated from the FOF in layer L3(j−1)+i and layer L3(j+1)+i

for each i = 1, 2, 3 and j = 0, · · · , t−1. Since each layer L3j+i contains at least one FOF, pick one of
them. Call this FOF f . Now, pick one minterm m in f and set the variables from m appropriately
so that m evaluates to true. This assignment to the variables satisfies f . Now, since L3j+i and
L3(j+1)+i are separated, we can do this assignment for all layers L3j+i. Thus we have created an
assignment to the variables that satisfies at least t FOF.

This gives the bound r ≤ 3k on the outerplanarity of the incidence graph when the maxi-
mum number of formulae satisfied is k. According to Proposition 4.1, the incidence graph has
treewidth 9k − 1 when the maximum weight for satisfying assignments is k. Using the associated
tree decomposition in the standard dynamic programming algorithm gives the result. 2

For the above theorems and proofs, we have the following results concerning EPTAS.

Corollary 4.1 All problems in the classes Planar TMIN1, Planar TMAX1, and Planar MPSAT1

admit time O(2O(1/ε)n) EPTAS.

Proof: As shown in the proof of Theorem 4.1, for each problem Π in Planar TMIN1, Π∗ can
be solved in time O(2tn) via the standard tree decomposition algorithmic schema, where t is the
treewidth of the incidence graph of each collection C of FOFs. Therefore, by Lemma 4.1, there is
an EPTAS for Π running in time

O

(

1

ε
2O(1/ε)n

)

= O(2O(1/ε)n).

Similarly, for each problem Π in Planar TMAX1, Π∗ can be solved in time O(2tn) steps,
where t is the treewidth of the given incidence graph. So, by Lemma 4.1, there is an EPTAS for Π
running in time O(2O(1/ε)n). The proof for Planar MPSAT1 is similar. 2

Corollary 4.2 All problems in the classes Planar TMINpolylog, Planar TMAXpolylog, and Pla-

nar MPSATpolylog admit EPTAS.

Proof: The proof employs Theorems 4.2, 4.3, and 4.4 and Lemma 4.1, and is similar to the proof
of Corollary 4.1. 2

5 Conclusion

The problems that are the main focus of our investigation in this paper, Planar TMIN, Planar

TMAX, and Planar MPSAT, were introduced by Khanna and Motwani as central to their
ambitious program to address the question of, “What is it about the structure of an optimization
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problem that allows it to have a PTAS?” They proposed that the answer is, roughly, hidden planar
logical structure [KM96].

Such a program would not have to capture all PTASs in order to be considered successful. A
skeptic might consider the program implausible on the grounds that “planar structure” is much
too special to play such a general role. On the other hand, many structural and algorithmic results
that hold for planar graphs actually generalize to any class of graphs that excludes a fixed graph
H as a minor (see [AST90, DH04, DH05, DH06]). In this form, the original program of Khanna
and Motwani must still be considered interesting and worthy of further investigation.

One can parameterize any given classical problem in a variety of interesting and potentially
relevant ways (the parameter, in a parameterized problem, doesn’t have to be the solution size).
In particular, parameterizing by the goodness of approximation, with k = 1/ε, is one of the most
fundamental ways to parameterize. A parameterized problem Π, parameterized in this way, is
in the class XP (“solvable in polynomial time for every fixed parameter value”) if and only if the
optimization problem has a PTAS, and it is fixed-parameter tractable if and only if the optimization
problem has an EPTAS. The difference between a PTAS and an EPTAS is basic, since between
the two classes of algorithms lies the distinction that animates the entire field of parameterized
complexity. To put it differently, the largely unexplored question of what optimization problems
admitting PTASs admit EPTASs, is a premiere application area for parameterized complexity
theory. It is not necessary in this context to introduce a parameter, since the natural parameter
k = 1/ε is already fully engaged.

As additional motivation for such explorations, of which there have been only a few so far (see
the recent results in [Ma05a, Ma05b]), it has become clear that many of the PTASs developed in
recent years are unlikely to be useful in practice because of the heavy dependence of the exponents
of the polynomials bounding the running times of the PTASs on the parameter k = 1/ε [Fe02,
Dow03, Fe03, Ma05a].

The centrality of the three planar logic optimization problems to the PTAS-explanatory program
of Khanna and Motwani has motivated our attention to the “PTAS versus EPTAS” question for
these problems. Our results have been both positive and negative. We have shown that none of
the three proposed fundamental planar logic problems admit EPTASs unless FPT = W [1].

We have also explored restrictions based on the maximum size of minterms. We have shown
that if an optimization problem can be described by planar collections of FOFs with minterms of
size 1, then it does have an EPTAS. But there is also a limit to such “good news” — we have
shown that there are problems that can be described by a collection of FOFs with minterms of size
at most 4 that do not have an EPTAS unless FPT = W [1]. This connection between the syntactic
description of planar problems and the existence of EPTASs also deserves further investigation.
For instance, what is the complexity of problems in Planar TMIN2 and Planar TMIN3?

References

[ABFKN00] J. Alber, H. Bodlaender, H. Fernau, T. Kloks and R. Niedermeier, “Fixed Parameter
Algorithms for Dominating Set and Related Problems on Planar Graphs,” Algorithmica 33
(2002), 461–493.

[ADF95] K. Abrahamson, R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness IV: On Completeness for W [P ] and PSPACE Analogs,” Annals of Pure and Applied
Logic 73 (1995), 235–276.

15

To appear in journal Theory of Computing Systems, 2006.



[Ar97] S. Arora, “Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Ge-
ometric Problems,” Proc. 38th Annual IEEE Symposium on the Foundations of Computing
(FOCS’97), IEEE Press (1997), 554-563.

[AST90] N. Alon, P. Seymour and R. Thomas, “A Separator Theorem for Nonplanar Graphs,” J.
Amer. Math. Soc. 3 (1990), 801–808.

[Bak94] B. Baker, “Approximation Algorithms for NP-Complete Problems on Planar Graphs,”
Journal of the ACM 41 (1994), 153–180.

[Baz95] C. Bazgan, “Schémas d’approximation et complexité paramétrée,” Rapport de stage de
DEA d’Informatique à Orsay, 1995.
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