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Our purpose is to survey some recent contributions and also to suggest several 
avenues of further development in the area of analysis indicated by the title of this 
talk. 

1. Introduction: euclidean background. 

We begin by saying a few words about the classical case corresponding to U1. In 
order to facilitate the presentation that follows we single out three main concerns of 
that theory as points of reference. These are 

A. The Fourier transform 
1 f °° fix - vi 

B. The Hilbert transform, - — -dy 
n J-co y 

C. Harmonic and holomorphic functions in the upper half-plane, 
3)2 = U2

+ = {(x, y), y > 0, x e U1 } . 
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By B we mean of course the whole apparatus that goes with the Hilbert transform, 
including maximal functions, operators of fractional integration (Riesz potentials), etc., 
and by C such things as Fatou's theorem, Poisson integrals, Hardy spaces, etc. 

Now the upper half-plane is the arena of action of the group SL(2, U) of fractional 
linear transformations; it is the symmetric space of that group. In this setup the 
harmonic analysis is taking place, in effect, on the space U1 which is the boundary 
of the symmetric space (1). 

There are two points of view we may take about extending these theories, and in 
particular A, B and C, in the context of symmetric spaces and semi-simple groups. 
The first point of view, and the one I have already suggested, is to start with a semi-
simple group and its corresponding symmetric space (of non-compact type), and 
consider a " boundary ". One then performs the harmonic analysis on the boundary, 
relating it of course to the objects on the group or symmetric space, such as harmonic 
or holomorphic functions on the symmetric space, or the theory of unitary represen
tations of the group, etc. The first point of view will be taken up in Parts I and II 
below. 

The second point of view is that of considering the (semi-simple) group itself as the 
primary object of the analysis what we have in mind will be described later, but the 
best known example that one may cite is that of the " Plancherel formula " for the 
group (2). We shall be dealing with other problems, however. 

A few more words about the Euclidean background may be in order. Much of 
what is indicated by our points of reference A, B, and C can be extended to the context 
of Euclidean IR". We shall here comment only on the singular integral operators 
generalizing B (3). Our concern is then with operators of the form 

• - j 
Jo«1 

/ - T / = K{y)f(x - y)dy, 
Jos» 

where K is a suitable singular kernel. Under appropriate conditions of existence 
these operators can also be realized as multiplier operators, namely (Tff(x) = m(x)f(x), 
where " denotes the Fourier transform, and m is in effect the Fourier transform of the 
kernel K. In the well-known and important case studied by Mihlin and Calderón 
and Zygmund K(x) is, besides some regularity, homogeneous of degree — n, and has 
mean value zero on the unit sphere. The multiplier m is then homogeneous of degree 0. 
The Mihlin-Calderón-Zygmund theory and its variants take care of one important 
class of singularities of the kernel, but there are many other types of singularities 
and the study of their corresponding operators represents serious difficulties which 
are still unsurmounted. I cite an example which is both fundamental for the Euclidean 
theory and has some bearing on our later discussion. 

PROBLEM 1 (4). — Consider the case of T when the multiplier m is the characteristic 

(1) For the theory in the closely related and analogous setting where the unit disc replaces 
the upper half-plane, see ZYGMUND [36]. 

(2) See GELFAND and NEUMARK [7], and HARISH-CHANDRA [10], [11]. 
(3) See e. g. STEIN [29], and the references given there. 
(4) For some recent progress in the direction of the solution of this problem, see FEFFER-

MAN [4]. (Added in proof). A counterxample for p =f= 2 has been found by FEFFERMAN. 
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function of the unit ball in Un. It is known that T is not bounded on Lp(Un)9 when 
1 < p < 2n/(n +1) , or 2n/(n — 1) < p < oo. 7s it bounded when 

2n/(n + l)<p<2n/(n- 1)? 

PART I. — ANALYSIS ON THE BOUNDARY 

2. Examples of boundaries. 

We shall come more quickly to the main points if instead of giving a systematic 
discussion of the class of spaces X which arise as " boundaries " of non-compact semi-
simple groups or symmetric spaces, we list some typical examples (5) (6). 

One type of boundary (that could properly be called the maximal distinguished 
boundary) arises from an Iwasawa decomposition of G as KAN. Then the boundary 
in question of the symmetric space has two essentially equivalent realizations; either 
in its non-compact form, when it is isomorphic to the nilpotent group N, or in its 
compact form as K/M; M is the centralizer of A in K. One example of this is 

(2.1) G = SU(n-l)9 

G/K is the complex «-ball, K/M is its boundary 2n — 1 sphere. Here X is isomorphic 
with N9 and is defined below; it is the genuine boundary of the realization of G/K 
as a Siegal domain of type II, equivalent to the complex ball via a Cayley transform (7). 

X is { (z, co), ze C""1, CD e M1}, with the multiplication law 

(zl9 co1)o(z2, œ2) = (z1 + z2, co1 + co2-2lmzl.z2). 

Another example of a maximal distinguished boundary is 

(2.2) G = SL(n, U), 

and X is isomorphic with N = n x n strictly upper triangular matrices of G. 

Notice that when n = 3 in (2.2) we get a boundary which is isomorphic with the 
one that arises in (2.1) for n = 2. The problems that will arise however will be quite 
different since in the context of (2.1) we are dealing with a rank one situation, and 
in (2.2) we are in the higher rank case. 

Other examples, which do not arise from the Iwasawa decomposition, are: 

(2.3) G = Sp(n9U)9 

G/K is the Siegel upper half-space = { x + iy, x, y real symmetric n x n matrices, 

(5) See however the general theory of SATAKE [24], FURSTENBERG [5] and C. C. MOORE [21]. 
(6) We shall consider primarily the realizations of the boundaries in their non-compact 

form, as nilpotent groups. 
(7) For the realization of bounded Cartan domains as Siegel domains of type II, see PJA-

TECKII-SAPIRO [22]. 
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and y is pos. def.}. Here X = set of real sym. n x n matrices, with the additive 
structure. 

(2.4) G = SL(2n9 U), 

but if portioned into n x n blocks, then the appropriate boundary is isomorphic with 
I x } n > as x ranges over Mn(U) = n x n real matrices. Thus X can be taken to 

be Mn(U)9 with its additive structure 

Notice that X, in both (2.3) and (2.4), is a Euclidean space (of dimensions n2 and 

respectively); but the problems of interest in these examples will not be the 

Euclidean ones alluded to in section 1. 

3. Singular integrals on nilpotent groups. 

In generalizing the Euclidean theory to the nilpotent groups which arise as bound
aries two fundamental notions need to be introduced: that of dilations (8), and that 
of a norm function (9). The first concept generalizes the standard dilations in IR given 
by scalar multiplication, i. e. x -+ dx9 3 > 0, x e Un, and is prompted by the obser
vation that broadly speaking, much of the usual harmonic analysis on IR" is not only 
translation invariant, but also dilation invariant. The precise definition of dilations 
is as folio ws. We assume that with our group X (which is nilpotent and simply connect
ed) we are given a one-parameter group of automorphisms of X, namely {ocô}0<0<009 

so that aôl o OLôï = aôlÔ2, a t = identity, which is continuous in Ò and also contractive. 
The idea we want is that lim OLô(K) reduces to the group identity, for any compact 

Ò-*Q 

set K. A more useful, and somewhat stronger assumption, and the one we shall 
adopt here, is that when we consider its effect on the Lie algebra of X, namely a j , 
then o$ = ÖÄ, where A is diagonable with all positive eigenvalues. 

Given such a one-parameter group of dilations we introduce a norm function 
x -> \x\ on X as follows. We have | x | = | x _ 1 | , also: 

(3.1) | x | > 0 

(3.2) [ x | is C00 on the set where | x \ > 0 

the measure 

(3.3) • 
dx 

M 
is invariant under dilations; here dx is Haar measure on X. 

For the purposes of Part I we add the important assumption: 

(3.4) | x | = 0 , 

if and only if x is the group identity. 

(8) See STEIN [27]. 
(9) See KNAPP and STEIN [16]. 
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This is equivalent with the statement that the sets {| x | <, C} are bounded. We 
shall see that whether we impose (3.4) or not makes a crucial difference in the theory. 

We cite two quick examples. First in IR" as(x) = ö.x, and \x\ = \\x\\", where 
|| . || is the usual Euclidean norm. Secondly for the boundary X corresponding to 
the unit ball cited in (2.1), we may take uô(x) = (öz9 ö

2a)) if x = (z, co), and 

| x | = ( | z | 4 + co2)"/2. 

Armed with the above notions, we come now to some of the results that can be 
proved. First, there is an elegant analogue of the Hardy-Littlewood maximal theorem. 
Let K be any bounded subset with non-empty interior on which the dilations aô are 
contractive in the sense that OL6(K) a K9 if S <> 1 ; e. g. K — { x, \ x | <, 1 }. Write 
Kô = aô(K)t and let 

(3.5) (Mf)(x) = sup — — | /(xy) | dy 
ö>O m(Kô) JKß 

where dy — dm denotes Haar measure. Then M satisfies all the usual properties of 
the maximal function. As a consequence whenever / is integrable 

1 I f(xy) -f(x) \dy = 0, 
JKa 

(3.6) lim 
5->o m(Kò) a 

for a. e. x e X. We shall come to the applications of the maximal function and (3.6) 
momentarily. 

We discuss next a basic class of singular integrals, written in the form 

where the function Q is homogeneous under OLô of degree 0, that is Q(aô(x)) = Q(x), 
and Q is suitably smooth away from the group identity. While the integrals have an 
interest for all complex values of s, and can indeed be studied as meromorphic functions 
of s, the range when Re (s) = 0 is the most critical, and we shall thus impose that 
restriction for the rest of this section. 

Assuming then that Re (s) = 0, and / is bounded and sufficiently smooth, then the 
integral (3.7) can be defined in several ways. First if the mean-value of Q, vanishes, i. e. 

I Q(x)dx = 0, 

then as a principal-value integral 

(3.7') lim f f(x.y)-WLd 
*-><> J I , I * . \ y \ 

or more generally, if the mean-value of Q vanishes or if s ^ 1, then the integral exists as 

(3.7") lim 
s'-*s 

Re(s')>0 

/ ( X - J O ^ U (-). 

(10) If s = 1 and the mean-value of fì is nonzero, then the integral cannot be defined without 
a non-trivial normalizing factor; such a factor has the effect of making it a constant multiple 
of/W. 
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The above limits exist for every x and also in the L2(X) norm. If we denote the 
limiting operator by / -> T(f), then the first result is its extensibility to a bounded 
operator on L2(X), 

(3.8) l | T ( / ) | | 2 ^ | | / | | 2 . 

Unfortunately this fundamental result cannot be proved by following the standard 
arguments of the Euclidean case of IR", because what would amount to a calculation 
in terms of the Fourier transform (in the sense of the unitary representations of the 
group X) seems to lead to unmanageable computations. The one attack which has 
succeeded in proving (3.8) was suggested by a method originally applicable only 
in IR". It turns out that even in the general case T can be written, in effect, as an 
infinite sum of uniformly bounded operators 

(3.9) T = £ Tj, \\Tj\\<A, 
; = - o o 

where the 7} are almost orthogonal in the sense 

(3.10) \\TfTk\\^a(\j-k\), | | 3 J 3 ? | | < ; a ( U - * | ) 

with a sequence { a(k)} which decreases sufficiently rapidly. The two conditions 
(3.9) and (3.10) suffice to prove the boundedness of T ( n ) . 

Once the L2 result (3.8) has been obtained then by using the facts about the maximal 
function (3.5), and following the broad lines laid down by Calderón and Zygmund 
for the case of Un, one can also obtain the U theory, and the L1 results, namely that 
the operators in question are of weak type (1,1) (12). 

Some rather immediate generalizations of the above are possible. First, the specific 

form of the kernel -—-p^ allows a variety of modifications in form. Secondly, 
I *• I 

and more interesting, is the fact that the same theory can be carried out in a setting 
which replaces the existence of dilations by appropriate substitute conditions on the 
open sets Kô = {x:\x\ < Ô}. This generalization is used if one wants to find the 
analogues of the above maximal function and singular integrals on the compact version 
of X, which is of course related to X via a Cayley transform. 

4. Some applications. 

We shall now discuss several applications of the theory sketched above. 

1. One can construct the intertwining operators for the principal series of repre
sentations by means of the operator (3.7). Let G = KAN as before, then the repre
sentations induced by irreducible representations of the subgroup MAN are the 
principal series. Thus there is natural action of G on the boundary X (where X is 
isomorphic with N), which action generalizes the usual action of 5L(2, IR) in IR1 given 

(11) See KNAPP and STEIN [16]. Earlier ideas of this kind are due to M. COTLAR. 
(12) This is due to RIVIèRE [23], KORANYI and VAGI [18], COIFMAN and DE GUZMAN [3]. 
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by fractional linear transformations (13), and in terms of which the principal series 
can be defined. Now the action of the elements of M on X are particularly simple, 
and these transformations have Jacobian determinant equal to one. This allows 
us to define the Jacobian determinant corresponding to each element of the Weyl 
group of G. The square roots of the reciprocals of these Jacobian determinants each 
provide us with an example of a norm function. It is to be emphasized that each 
satisfies the properties (3.1), (3.2) and (3.3) for appropriate " dilations " coming from 
the subgroup A, but in general not the crucial compactness property (3.4). However, 
in the case of rank one (when dim A = 1), the non-trivial element of the Weyl group 
gives u s a norm function (satisfying also (3.4)), and the dilations are provided by the 
conjugations of X given by A. All the intertwining operators are then of the form (3.7), 
after suitable normalization. This construction provides the basic information as to 
irreducibility and analytic continuation (that is existence and unitarity of the comple
mentary series). The general case, when G has higher rank, can also be treated to some 
extent, since the intertwining operators can then be written as products of rank-one 
intertwining operators (14). 

2. A special case of the intertwining operators, which arise for a particular repre
sentation of the group SU(n, 1) (discussed with its boundary in (2.1)) is the Cauchy 
integral for the complex ball. In the unbounded realization of the ball, if one takes 
the Cauchy-Szego kernel which represents H2, then as boundary integrals one is lead 

the singular integrals (3.7) with -—- = constant x (\z\2 + ico)~n, and 

| x | 

i x i = ( i z r + co2)«/2, 

where (z, œ)eCn~1 x U1, and OLô(Z9 CO) = (öz9 ô
2co) (1S). 

3. In this application the space X = Un, but the dilations are not the usual ones. 
These are now given by a6(x) = (öaixl9 <5fl2x2,..., Sanx„), with x = (x± x„), where 
at > 0. We can put 

| x | = i n f { A > 0 , txfß2at^ l}Ifl<. 

Then the theory described above reduces essentially to the Euclidean theory of singular 
integrals with separate homogeneity due to Jones, Fabes and Rivière, Lizorkin and 
Kree (16). Notice that this has many points in common with example 2 just cited, 
in that the degree of singularity of the kernels depends on the different directions of 
approach to the group identity. The present application differs from the preceding, 
however, in that the convolution is commutative. 

(13) This comes about by identifying (modulo sets of measure zero) G/MAN with 6N, 
where 6 is the Cartan involution, and then identifying X with 6N. 

(14) For details concerning the above application to intertwining operators, see KNAPP 
and STEIN [16]. Some earlier works in this subject may be found in KUNZE and STEIN [20], 
and SCHIFFMAN [25]. See also the recent paper of HELGASON in Advances in Mathematics, 
vol. 5, 1970, 1-154. 

(15) See GINDIKIN [9] and KORANYI and VAGI [18]. 
(16) See e. g., KREE [19]. 
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Examples 2 and 3 suggest the following problem which, as should be understood, 
we state only rather vaguely. 

PROBLEM 2. — Construct appropriate algebras of singular integrals (or more generally 
pseudo-differential operators), together with their symbolic calculus, which algebras 
are to incorporate such examples as 2 and 3 as their building blocks. 

It is strongly indicated that such algebras should have applications to various 
non-elliptic problems, in particular in complex analysis, such as behavior near a 
pseudo-convex boundary and properties of solutions of d problems. 

4. As a final application, in this case of the maximal function (3.5) we mention 
some results dealing with harmonic functions on the symmetric space G/K and center
ing about Fatoü's theorem and Poisson integrals. In the case of bounded functions, 
the generalization of the boundary behavior guaranteed by the classical Fatou theorem 
turns out to be a direct consequence of two facts: a) Furstenberg's representation of 
bounded harmonic functions as Poisson integrals, and b) the maximal function, and 
in particular (3.6) (17). 

However, in the case of Poisson integrals in general (e. g. of U functions), much 
remains to be done. The problems involving Poisson integrals will be discussed 
more fully when we treat the higher rank case below. 

PART II. — ANALYSIS ON THE BOUNDARY; 
HIGHER RANK CASE 

We shall discuss now the situation when the assumption (3.4) concerning the norm 
function is not satisfied, that is when the sets { x : | x \ < c } are no longer bounded. 
Very often in this case the group of automorphisms of X which preserve the measure 

-—: is larger than a one-parameter group, and so in considering the appropriate dila-
1*1 
tions it is not entirely natural to limit oneself to a fixed one-parameter group of dila
tions as we did in Part I. It is for this reason that we refer to the situation when (3.4) 
is not satisfied as the higher rank case. 

The rank-one case treated above provides us—at least on the formal level—with 
an idea of the kind of problems that may be of interest in the general case. However, 
those results have only a limited applicability in the present context; one instance 
of this is the decomposition of intertwining operators for the principal series as products 
of rank-one intertwining operators, already mentioned. In general, however, new and 
different methods surely need to be developed here. 

We shall organize our presentation by discussing several different but related 
problems which reflect the fragmentary state of our knowledge at this stage. 

(1 7) HELGASON and KORANYI [12]. This has been superseded by a later results of K O R A -
NYI and K N A P P and WILLIAMSON. See [17]. 
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5. The Siegel upper half-space. 

We are dealing with the example cited in (2.3). X is the space of n x n real sym
metric matrices under addition, which is the Bergman-Shilov boundary of the Siegel 
domain = { x + iy; x, y real n x n symmetric, y pos. def.}. The action of Sp(n, U) 
imposes the following structure on X. The dilations are provided by the mappings: 

i i + i 
x -> axla9 where a e GL(n9 R), and for norm function we take | x | = | det (x) | 2 . 

Let us first look at the analogues of the integrals (3.7) with the kernels r^- , 
1*1 

where Q is homogeneous in the sense that Q(axla) = Q(x), a e GL[n, IR). These inte
grals have a long history, going back to Siegel, Bochner, and others. We indicate an 
interesting example arising from the Cauchy kernel. Consider the H2 space of holo
morphic functions f(x + iy) on the Siegel upper half-space, those which satisfy 

sup 
y>0 

I / ( * + iy) \2dx < oo. 
x 

Such functions have boundary values, namely lim f(x + iy) =f(x) exists in the 

L2(X) norm. Their integral representation in terms of their boundary values is 
then (18) 

(5.1) f(x + iy) = c 
- n - l 

X 
(det (t -f iy)) 2 f(x - t)dt 

where c is an appropriate constant. 

The boundary value functions form a closed subspace of L2(X), and the orthogonal 
projection on this subspace is formally given by an operator of the form (3.7), where 

Q(x) - " - i 
now -—r = c (det (x)) 2 . Rigorously the operator is given as the limit as y -• 0 

1*1 
in (5.1), and more particularly as 

J - H - l 

(det (t + iel)) 2 f(x - t)dt. 
... x 

This operator then is clearly a natural generalization of the Hilbert transform to the 
present context. A host of questions arise for it, but only a few have an answer at 
present. We indicate one such unsolved problem: 

PROBLEM 3. — The operator (5.2) is a projection on L2(X). Is it bounded on any 
other LP(X) spacel 

The close relation of this problem with problem 1 (in section 1) can be aeen as follows. 
The operator (5.2) is a multiplier operator corresponding to the characteristic function 
of the cone of positive definite real n x n matrices. When n — 2 this cone is equivalent 
with a circular cone in IR3, and the intersection of that cone with an appropriate plane 
is a disc in IR2. Thus by a theorem of de Leeuw, a positive resolution of problem 3 
for any p, when n — 2, implies the same for problem 1 when n = 2. 

(18) See BOCHNER [1]. 
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Part of the difficulty in dealing with integrals such as (5.2) lies in the fact that the 
singularities of the kernel, that is where | x | = 0, are a whole variety and not merely 
a point. However, one is not always stimied by this obstacle. An example of this 
is the Poisson integral, closely related to (5.2); it is given by 

(5.3) 

where 

Py(t)f(x - t)dt 

^ d e t J 2 ^ 
y ' | det (x + iy), 

and feLp(X). 

It can be shown that as y -> 0 " regularly ", then the integral (5.3) converges to / 
almost everywhere, even for feL\X) (19). This result is rather delicate because 
as y -• 0, the singularities of the kernel Py(x) again appear on the variety | x | = 0 . 
It shows us that the hope of carrying out a theory for integrals of the type (5.2) may 
not be entirely forlorn. 

Our discussion for the Siegel upper half-space may be generalized as follows. We 
consider any bounded symmetric domain of Cartan and realize it as a tube domain 
when this is possible, or in general as a Siegel domain of type II (20). The Cauchy 
kernel has also been determined (21), and we can of course pose the analogue of prob
lem 3 (For the complex ball the answer is in the affirmative for 1 < p < oo, by the 
discussion of section 4). Finally there is an analogue of the Poisson kernel, and the 
result sketched above is known to hold in that generality (19). 

6. Poisson integrals. 

We have already alluded to Poisson integrals at several occasions, and we shall 
now discuss them in their generality. Briefly the setting is as follows. For any 
symmetric space G/K, the class of harmonic functions are those annihilated by all 
G-invariant differential operators which annihilate constants. Equivalently, these 
functions can be characterized by the mean-value property. Now every harmonic 
function which is appropriately bounded at oo can be represented as a Poisson integral, 
which is in effect a convolution on the group X isomorphic to N. By the mean-value 
property the Poisson kernel P can be described as follows. We have already pointed 
out the existence of a natural correspondence between X and the compact homogeneous 
space K/M, if one leaves out an appropriate set of measure zero (22). If we transplant 
Haar measure of K/M to X we get a measure of the form P(x)dx, where dx is Haar 
measure on X. 

Now the subgroup A acts on X by automorphisms x -* axa'1, a e A. Let OLô be 
a one-parameter subgroup of these automorphisms which are dilations in sense defined 

(19) STEIN and N. J. WEISS [33]. 
(20) See footnote (7). 
(21) See GINDIKIN [9]. 
(22) See footnote (13). 
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in section 3. It is then easy to see that for any fe LP(X), 1 < p < .oo, the Poisson 
integral 

I (6.1) } x P(y)f(x-^y}dy 

converges to / in the LP(X) norm, as Ö -* 0. 

The main real-variable problem can then be stated as follows. 

PROBLEM 4. — Does the integral (6.1) converge almost everywhere, as Ö -+ 0, for 
any feLp(X)9 1 < p ? 

One gets an idea of the resistive nature of the problem by observing the increase 
in difficulty met in passing from the classical case of the upper half-plane, to the case 
of the product of half-planes contained in the theorem of Marcinkiewicz and Zyg
mund (23). 

The farthest advance of the problem at present is the solution of a closely related 
variant for the symmetric spaces which are bounded domains, already alluded to in 
section 5. That variant differs from the present one in that it refers to a different 
boundary of the symmetric space in question, one that can be viewed as a quotient 
space of the maximal distinguished boundary occurring in problem 4 (24). 

There is a reason why problem 4 in its general setting seems more complicated 
than the analogue already obtained for the case of bounded domains. To over
simplify matters a little, it is as follows: the locus of singularities in the latter problem 
(e. g. {det (x) = 0 } ) is generated by straight lines issuing from the origin. Along 
these lines the theory for IR1 is applicable and then the result follows by a rather delicate 
calculation which is akin to " integrating " over appropriate lines. In the general 
case, however, straight lines would have to be replaced by other curves; these curves 
are the orbits of points under one-parameter groups of dilations. The above raises 
a simply-stated (and possibly fundamental) problem which we shall discuss only in 
the context of IR". Let y(t) be the curve y(t) = sign (t)(A1\t\

ai, A2\t\
a2,. . .,A„\t \"n) 

where AY A„ are real, and a{ > 0. Consider the analogue of the Hilbert transform 

(6.2) ( T / ) ( x ) = | f(x + y®)j -f 
(Notice that if ax = a2 ... = an, then this reduces essentially to the classical Hilbert 
transform along the direction defined by (Al9 A2,.. .9A„)). Consider also the asso
ciated maximal operator 

(6.3) (M/)(x) = s u p ^ fh\f(x + y(t))\dt 

PROBLEM 5. — Is there an Lp(Un) theory for T and Ml 

An analogous result for nilpotent groups (in particular for M) could be applied 
to the solution of problem 4. 

(23j See ZYGMUND [36], Chapter 17. 
(24) This incidentally raises the question of giving an intrinsic characterization of the 

functions which arise as Poisson integrals for the other boundaries. 



184 E. M. STEIN G 

There is one hopeful indication that may be mentioned concerning problem 5. 
A calculation carried out by Wainger and myself (see [31]) shows that the operators (6.2) 
when suitably defined is bounded on L2(IRn), (and the bound does not depend on 
A±9 A2,.. ,,AJ. 

7. The matrix space Mn(U). 

We shall now consider the example (2.4), with X = M„(U) the n x n real matrices, 
and G = SL(2n, U). Here we take as dilations the mappings x -> axb~x, with 
a, be GL(n, IR), and as norm function | det (x) \n. 

This example has obviously some resemblance to that of the Siegel upper half-
space in section 5, but it differs from it in that the space Mn(U) has not only the obvious 
additive structure (its group structure), but upon removal of a set of measure zero 
what remains also has a multiplicative structure (GL(n, IR)). The situation has an 
analogy with that of a field (e. g. IR1) where one of the concerns is with the interplay 
of an additive and a multiplicative harmonic analysis. The additive harmonic analysis 
here is that given by 

(7.1) nn e2nitHxÈy)f(y)dy, 
M„(R) 

while the multiplicative analysis (the analogue of the Mellin transform) is given by 
the unitary (infinite-dimensional) representations of GL(n, U). This interplay is at 
the bottom of the results detailed below (See also section 8). 

The most direct analogue of the integral (3.7) arises if fì s 1. We consider there
fore 

(7-2) /,(/)=[ /(x-y)-^-
jM„(m i y i 

The L2 theory of this integral is contained in the following statement (25). Suppose / 
is C00 and has bounded support. (7.2) initially defined as an absolutely convergent 

integral when Re (s) > 1 has a meromorphic continuation into the whole com-
n 

plex plane, and when Re (s) = 0 the operator / -> Is(f) is unitary modulo a multi
plicative constant. More precisely, with 

y»W = ft <ns - j + 1), a(s) = n^-T^/T^-^, 

we have that when Re (s) = 0, Is is a multiplier operator with multiplier y^(s) | x \~s. 

The above also has the following consequences: 

(a) The facts just stated can be reinterpreted by saying that the Fourier transform 
of the distribution | x [ " 1 + s is y*(s)l*l~s> where both distributions are defined by 
analytic continuation. This functional equation is closely related to the functional 
equations of generalizations of the zeta function, and is therefore of interest in several 
number-theoretic questions (see also the generalizations in (8.3) below). 

(25) See the references cited in footnote (29). 
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(b) The operators (7.2) also serve as intertwining operators, but not for the principal 
series. They arise typically in the " degenerate series ", in this case for the group 
SL(2n9 U). 

(c) If we write A(s) = y^1(s)Is, and B(s) as the multiplication operator by | x | ~ s , 
then as we have seen A(s)B(s) is unitary when Re (s) = 0. In addition A(s)B(s) has 
an analytic continuation as bounded operators (on L2(M„(IR)), in the strip 
0 <; Re (s) < 1/2«. This fact is important in constructing certain uniformly bounded 
and unitary (complementary series) representations of the group SL(2n, IR). 

There are many variants and generalizations of the above that can be suggested; 
we shall discuss briefly one typical of those we have in mind. The underlying space X 
will be IR" and we will pick a fixed non-degenerate quadratic form Q on it, which for 
simplicity we normalize as Q(x) = x2 + x\ ... + x\ — x 2

+ 1 ... — x2. We intro
duce the norm function | x | = | Q(x) |"/2. The analogue of the integral (7.2) is the 
integral 

(7.3) 7s(/) = f(x-y)\Q(y)\-^-^dy 

It has well-known analytic continuations, going back to M. Riesz and Gelfand and 
Graev (26). We let B(s) denote the operator of multiplication by | x |~s = | Q(x) \~nsf2. 

PROBLEM 6. — Are the IsB(s) bounded operators on L2(X) in some strip of the form 
0 < Re (s) < c? (27). 

An interesting approach to this problem might be to study the decomposition of 
the action of 0(n, Q) on L2(IR"), since after all, the operators IsB(s) commute with this 
action (28). 

PART III. — ANALYSIS ON THE GROUP 

8. Euclidean Fourier transform. 

The interplay of the additive and multiplicative harmonic analysis on M„(IR), men
tioned in the previous section, will now be outlined. We take the additive Fourier 
transform given by (7.1). A simple change of variables leads to a slight modification 
of itself, which we shall call ^ * where now 

(8.1) ^ * ( / ) = e*/, 

with the convolution taken on the group GL(n, IR), and 

e(x) = e2nitr^x-1)\x\-nl2. 

(26) See GELFAND et al. [8]. 

(27) When Q is definite, the answer is yes, with c = 1/2. The cases n = 1 and 2 are in 
KUNZE and STEIN [20] ; their method essentially applies to all n, but in the definite case only. 
When n — 4, k = 2, we are back to M2(M), s o c = 1/4. 

(2B) Part of the decomposition of the action of 0(«, Q) on L2(IRn) is in the book of VILEN-
KIN [34]. 
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The properties of ^ * are then twofold: #"* is unitary on L2(GL(n, IR)), and secondly J5"* 
commutes with both left and right group multiplication, i. e. with the action 
/(*) -> /(a -1*)> /(*) -> f(xb), a, beGL(n, U). (The original #" had this com
mutation property only when both a and b were orthogonal). &* is therefore a 
central operator on L2(GL(n, IR)). From this it follows by a general form of Schur's 
lemma that whenever x -> p(x) is an irreducible unitary representation of GL(n, U) 
we may expect that 

(8.2) P(&*(f)) = y(p)p(f) 

whenever / and &*(f) are in L\GL(n, R)) n L2(GL(n, IR)). Here y(p) is a constant 
factor which depends only on the representation p. 

This identity is formally equivalent with the statement 

/ Pix) \ 
VI*! 1" 5 / (8.3) ^{jxT^J = ys{PÌP(tx~1){xr 

where the factor ys(p) can be immediately read off from the factor y(p). 

When p is the trivial representation, then ys(p) reduces to the factor y#(s) of the 
previous section. The other cases where the factor ys(p), (and thus y(p)) has been 
computed explicitly are those for the representations p which arise in the decomposition 
of L2(GL(n, U)), (i. e. those which occur in the " Plancherel formula " for the group). 
In this case, because of the unitary character of « "̂*, all the factors y(p) have absolute 
value one. 

It is particularly simple to describe these factors in the analogous case correspond
ing to M„(C). In that case if the representation is induced from the character of the 
triangular subgroup which has value 

for a triangular matrix with eigenvalues (<5l5.. .,<5„), then 

M = ft { W J r ( ' ^ ' Y + '"tj)/r(|m^V"^ } 
The formulae in the case M„((R) have a similar appearance but are more complicat

ed because there are now [n/2] + 1 different series of representations which occur in 
the L2 reduction of GL(n, U) (29). 

The mapping / -* p(f) may be viewed as the natural generalization of the Mellin 
transform (to which it reduces when n = 1). The explicit determination of the factors 
y(p) which occur in (8.2) gives the desired multiplicative analysis of the additive Fourier 
transform in M„(IR). This " Mellin transform " analysis of !F is the main tool in the 
proof of several results of the previous section, in particular those stated in paragraph (c). 

(29) The results sketched above, and those in section 7, were first obtained in the complex 
case (corresponding to Af„(C)); see STEIN [26]. In the real case they were obtained by GEI-
BART [6], but in the meanwhile several of these problems had been dealt with from a different 
point of view by GODEMENT (unpublished), and JACQUET and LANGLANDS [14]. These authors 
have also obtained extensions to the /7-adic analogue, when n = 2. 
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A related question arises by analogy with the ordinary Fourier transform on IR". 
The fact that the Fourier transform commutes with rotations leads to a well-known 
decomposition of L2(IR"), compatible with the Fourier transform. The various inva
riant subspaces are defined in terms of spherical harmonics, and the restriction of the 
Fourier transform to each can be described in terms of appropriate Bessel functions (30). 
The theory of higher Bessel functions, in the setting of matrix spaces, has been started 
by Bochner (31), but much still remains to be done. This discussion is the background 
for the following problem. 

PROBLEM 7. — Describe the action of the Fourier transform &* on L2(M„(IR)) when 
restricted to the subspaces invariant under the action f(x) -*• f(a~ixb)9 a9beQ(n)9 

in terms of appropriate generalizations of spherical harmonics and Bessel functions. 

9. Other problems on the group manifold. 

The last general question we shall deal with is the following. Is it possible to develop 
a systematic generalization of some of the objects dealt with in Parts I and II, such 
as Hilbert transforms, boundedness of various convolution operators, multipliers, etc. 
but on the semi-simple group itself, and not on one of its boundaries. 

For compact groups, the answer is surely yes (32). However, for non-compact 
groups, the situation seems to be far from clear. Part of the difficulty of the problem 
there, and also its interest I believe, is that unlike the classical case the group Fourier 
transform of an U function, 1 < p < 2, is actually analytic in some of its parameters. 
It is thus more like the classical Laplace transform than the classical Fourier trans
form. The analyticity of the Fourier transform is intimately connected with the possi
bility of analytic continuation of the representations of the non-compact semi-simple 
groups, but even this subject is far from understood (33). 

To get a better inkling of the nature of these questions, we pose the simplest convolu
tion problems. Suppose we know the LP classes of two functions / and g9 what is 
the class of f*gl There is a very general answer, valid for any locally compact 
unimodular group, and it is given by Young's inequality and its variants. Young's 
inequality is 

l l / * g | | , < l l / I U I g | | , , where Ì = 1 + Ì - 1. 

The variants of Young's inequality (which include the theorem of fractional integra
tion for IR" of Hardy, Littlewood and Sobolev) arise when we replace these norms by 
" weak-type " norms. For IR" these inequalities are in the nature of best possible; 
for semi-simple groups this is far from the case. In fact the evidence already at hand, 
and described below, suggests the following L2 convolution problem for semi-simple 
groups. 

(30) See e. g. STEIN and WEISS [32], Chapter IV. 
(31) See BOCHNER [2] and HERZ [13]. 
(32) See STEIN [28], where part of this has been carried out; see also COIFMAN and DE GUZ

MAN [3] and N. J. WEISS [35]. 
(33) See KUNZE and STEIN [20], and the survey article, STEIN [30]. 
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PROBLEM 8. — Suppose G is semi-simple and has finite center. Prove that 

I l / * s l l 2 < ^ i m i j l s l l 2 5 if I < ; P < 2 . 

This problem involves only the relative sizes of | / 1 and \g\, and thus, one would 
think, should be resolvable without any detailed study of the group Fourier transform 
of / or of analytic continuation of representations. Paradoxically however, that 
approach is the only one that has had any substantial success so far. The answer to 
problem 7 is known to be affirmative in the following cases (33). 

(i) G = SL(2, U) 
(ii) G is any complex classical group, i. e. SL(n, C), SO(n, C), or Sp(n, C) 

(iii) G is any semi-simple group, but the function / is assumed to be bi-invariant, 
i. e. f(kxxk2) = / ( x ) , when kl9k2eK9 and K is a maximal compact subgroup 
of G. 
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