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Abstract. We propose a novel capacity model for complex networks against cascading failure. In this
model, vertices with both higher loads and larger degrees should be paid more extra capacities, i.e. the
allocation of extra capacity on vertex i will be proportional to kγ

i , where ki is the degree of vertex i and
γ > 0 is a free parameter. We have applied this model on Barabási-Albert network as well as two real
transportation networks, and found that under the same amount of available resource, this model can
achieve better network robustness than previous models.

PACS. 89.75.Hc Networks and genealogical trees – 05.10.-a Computational methods in statistical physics
and nonlinear dynamics

1 Introduction

Many systems in nature and society can be described by
networks, including biological and social systems, the In-
ternet, the world-wide web, friendship networks, computer
networks, metabolic networks, power grids, scientific ci-
tation networks, neural networks, and so on. Therefore,
complex networks have recently attracted considerable at-
tention in physics and other fields. Interestingly, many
real-world networks share a certain number of common
topological properties, such as small-world and scale-free
properties [1–4]. The network robustness is one of the cen-
tral topics in studying of complex networks. Robustness
refers to the malfunction avoiding ability of a network
when a fraction of its constituents are damaged. Previous
works demonstrated that the heterogeneity of a network
induces a high resilience to random failure while a high
sensitivity to intentional attacks [5–7]. A common failure
of many networks is cascading failure triggered by the re-
moval of vertices or overload breakdown of vertices. The
robustness of complex networks in response to cascading
failure of intentional attacks has become a topic of recent
interest. Prior studies have shown that the fault-tolerant
capability of network have a great impact on their robust-
ness and function [5–36].

Any failures of vertices in general will change the dis-
tribution of loads. Here the load of a vertex (also called
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betweenness centrality [37,38]) is defined as the total num-
ber of shortest paths passing through this vertex. If the
load at a particular vertex increases and becomes larger
than its capacity, the corresponding vertex fails. The over-
load failure leads to redistribution about the loads and, as
a result, subsequently cascading failures may occur. Be-
cause of the global redistribution of load, new overload
failures may be driven by events happening far away. This
cascading process may stop after a few steps, while it could
also spread over the entire network.

The damage caused by cascading failures can be quan-
tified by the relative size of the largest connected compo-
nent G, defined as following

G = N ′/N, (1)

where N and N ′ are the numbers of vertices in the largest
component before and after the cascade, respectively. The
integrity of a network is maintained if G ≈ 1, while break-
down occurs if G ≈ 0. The relative size G also represents
the robustness of complex networks against cascading fail-
ures. The cascading failure can be prevented by assigning
extra capacities to vertices. Since the extending of network
capacity will bring economic and technique pressure, it is
important to explore how to rationally allocate the limited
capacity onto vertices, and efficiently improve the robust-
ness of network. The capacity of a vertex is the maximum
load that the vertex can handle. Assuming the capacity
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Ci of vertex i be proportional to its initial load Li:

Ci = λi · Li, (2)

where λi > 1 is the tolerance parameter. Excess term (λi−
1) is the extra capacity of vertex i, which simultaneously
reflects i’s ability of tolerating the additional burden and
the extra cost to protect i.

2 Model

Among the previous works, two models should be paid
special attention: Motter-Lai (ML) model [10] and Wang-
Kim (WK) model [33]. ML model assumes the capacity
Ci of vertex i be proportional to the initial load Li as

Ci = λi · Li = (1 + α) · Li, i = 1, 2, . . . , N, (3)

where α ≥ 0 is the control parameter representing the
extra capacity. In WK model, the capacity Ci is

Ci = λi·Li = (1+α·Θ(
Li

Lmax
−β))·Li, i = 1, 2, . . . , N, (4)

where Θ(x) = 0(1) for x < 0(>0) is a two-valued function,
namely the Heaviside step function, Lmax = maxi(Li),
α ∈ [0,∞) and β ∈ [0, 1] are two control parameters.
Here, each vertex can be in one of two states: assigned
some extra capacity, or not. When β = 0, WK model de-
generates to ML model. Since fault-tolerant capacity is
costly [5,10,17,18,33], a fundamental concern is how to
efficiently allocate limited resources of capacity to make
network more robust. ML model raises a linear correlation
between extra capacity and initial load, while WK model
prefers to protect the highest-load vertices. We agree with
WK model that under the same cost, a certain more het-
erogeneous distribution of extra capacities can further en-
hance the robustness, however, the two-step function may
be oversimplified. According to the previous works [10,33],
the total cost e to protect a network can be defined as:

e =
1
N

N∑

i=1

(λi − 1). (5)

In ML model, the cost is

eML =
1
N

N∑

i=1

(λi − 1) = α. (6)

In the WK model, the cost is

eWK =
1
N

N∑

i=1

(λi − 1) =
1
N

N∑

i=1

α ·Θ(
Li

Lmax

− β) = α · N ′′

N
,

(7)
where N ′′ is the number of vertices with initial load larger
than βLmax.

In this paper, we propose a novel allocation mecha-
nism of limited resources of capacity against cascading
failures, as:

Ci = λi · Li = (1 + αkγ
i /〈kγ〉) · Li, (8)

Fig. 1. The robustness G vs. γ under attacking of the highest-
load vertex on BA network of size N = 5000 and average degree
〈k〉 = 4 for different α.

where α ≥ 0 and γ ≥ 0 are two free parameters, and

〈kγ〉 =
1
N

N∑

i=1

kγ
i . (9)

The parameter α corresponds to the extra capacity, and γ
is the parameter controlling the heterogeneity of resource
allocation. the cost of this model is

e =
1
N

N∑

i=1

(λi − 1) =
1
N

N∑

i=1

αkγ
i /〈kγ〉 = α. (10)

Different from ML model, the fault-tolerant capacity and
topological structure are interrelated in the current model.
Since the components of a network may have different
fault-tolerant capacities, this work raises a more general
allocation strategy for extra capacity. The assigning extra
capacity depends not only on load Li of vertex i but also
on the number of its links. When γ > 0, vertices with
larger degrees could be allocated more extra capacities.
The case γ = 0 degenerates to ML model, and the case
γ → ∞ represents the extremely heterogeneous allocation
where only the most connected vertex is protected.

3 Simulation

Figure 1 reports the robustness G as a function of γ at
several typical values of α for BA network [39,40] of size
N = 5000 and average degree 〈k〉 = 4. We find that the ro-
bustness has a maximum, Gmax, with γ ∈ (0, 1) for differ-
ent α, indicating that the allocation of the limited resource
of fault-tolerant capability should be neither uniform nor
extremely uneven, but a little bit more heterogenous (for
γ > 0) than the case of ML model. When γ ≥ 5, all
G(γ) at different α converge to a single curve, indicating
that the extremely uneven distribution of resource, with
the largest-degree node possessing the majority of extra
capacity, has even worse performance then the uniform
allocation (except for the cases with α close to zero). De-
fine G0 = G(γ = 0), and Gmax = maxγG(γ) for given α.
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Fig. 2. The robustness G0 (black square) and Gmax (red cir-
cles) vs. α. Here, G0 = G(γ = 0) corresponds to the robustness
of the ML model, and Gmax = maxγG(γ) is the maximal ro-
bustness predicted by the current model.

The former corresponds to the ML model, while the latter
to the best robustness predicted by the current model. In
Figure 2, we plot G0 and Gmax vs. α for the same data in
Figure 1. Clearly, in a broader region of α, Gmax is always
greater than G0, demonstrating that we can get higher ro-
bustness of network than ML model with the same amount
of resource.

The serious global failure, as a catastrophe resulting
from cascading propagation [13], has often been observed
in some kinds of traffic networks suffering overload fail-
ure, where the word “traffic” can stand for information
packets of the Internet [41,42], the electronic flow in the
power grids [43], as well as passengers in public trans-
portation systems [44,45]. Next, we compare the perfor-
mance of the current model with ML model on some real
networks. Especially, the drawing near Olympic 2008 in
Beijing and World Expo 2010 in Shanghai will bring ex-
tremely heavy traffic pressure on Beijing and Shanghai
urban traffic systems, thus an urgent problem is how to al-
locate the limited additional traffic capacities to avoid pos-
sible cascading traffic congestions. The topological charac-
ters of urban public traffic networks (UPTNs) are reported
previously [46], and here we investigate the same data to
see if our model can achieve better performance than ML
model.

In Figure 3, we show the relation between the robust-
ness G of Beijing’s UPTN and the parameter γ of allo-
cation of capacity resources at various values of α. Qual-
itatively speaking, the pattern of G(γ) is similar to that
of BA network. Figure 4 compared the performance of
the current model and ML model for UPTNs in Beijing
and Shanghai respectively. Clearly, the current model can
always perform better than ML model under the same
amount of extra capacity. Moreover, large fluctuation is
observed for ML model, thus one could not guarantee the
enhancement of robustness giving more resource. In con-
trast, Gmax increases with α monotonously in the current
model. Two G(α) curves in Beijing and Shanghai are re-
markably different for ML model, while have almost the
same trend for the current model. Perhaps, this indicates

Fig. 3. The robustness, G, vs. γ under attacking of the highest-
load vertex for UPTN on Beijing with size N = 4127 for dif-
ferent α.

Fig. 4. The robustness G0 (black squares and brown up-
triangles) and Gmax (red circles and blue down-triangles) vs. α
for UPTNs in Beijing (N = 4127) and Shanghai (N = 2035).

that current model has some universality to improve ro-
bustness for different real-world networks, or maybe it is
because the robustness of this strategy is near the optimal
one.

4 Summary

In summary, the robustness of complex networks is an-
alyzed within the framework of allocating extra fault-
tolerant capacity against cascading failure. We proposed a
novel capacity model, which achieves higher robustness for
the same amount of resource as ML model [10]. In previous
works, the extra capacity of a vertex is linearly correlated
with its load, or simply divided into two discrete values
by a step function. In this paper, we argue that those
prior strategies may be oversimplified, and a more compli-
cated and more heterogenous (than ML model) allocation
strategy could further enhance the robustness. The simu-
lation results of BA networks and two typical real trans-
portation networks strongly support the efficiency of our
strategy. It is worthwhile to emphasize two features of the
current model: firstly, the maximum value of robustness
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Gmax is a monotonously increasing function on parameter
α, in contrast with ML model. Secondly, the same trend
and pattern of Gmax(α) for different UPTNs indicates that
this model may have some universality for robustness im-
provement of different real-world networks (Maybe it is
because the performance of this strategy is near the opti-
mal one). However, this point is not clear thus far, which
needs further investigation. Besides, although the previous
works suggested using the mean relative extra capacity e
to measure the cost, it is also, to some extent, reasonable
to measure the cost by using absolute extra capacity. In
that way, given α, the cost will be a monotonous function
of γ, and our numerical results give raise to a practically
significant conclusion: There exists a specific threshold of
γc corresponding to Gmax, below which one could improve
the robustness by spending more, while above which the
additional resource will, in contrast to what we expect,
makes the network worse robust. Although at a first step
far from the final goal, optimal allocation, we believe this
model have its theoretical importance and potential appli-
cation in designing infrastructure networks from the point
of economic view. It can also provide guidance in designing
more robust artificial networks.
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