
Distributed Database Design Methodologies
~

STEFAN0 CERI, BARBARA PERNICI, AND G I 0 WIEDERHOLD, MEMBER, IEEE

Invited Paper

This paper surveys methodological approaches for distributed
database design. The design of distribution can be performed top-
down or bottom-up; the first approach is typical of a distributed
database developed from scratch, while the second approach is
typical of the development of a multidatabase as the aggregation
of existing databases. We review the design problems and metho-
dologies along both directions, and we describe DATAID-D, a top-
down methodology for distribution design. We indicate how the
methodology is part of a global approach to database design; how
to collect the requirements about the distribution of data and
applications; and how to progressively build the distribution of a
schema. Our approach is exemplified through one case study.

I. INTRODUCTION

Due to demand for system availabilityand autonomy, and
enabled by advances in database and communication tech-
nology, distributed database systems are becoming wide-
spread. Many database management systems now support
extensions for distribution, and at the same time structur-
ally distributed transaction management systems are avail-
able on the market [Ill, [19]. The designers of distributed
database applications are now facing a new and relevant
problem: how to distribute the data and programs on dif-
ferent computers to obtain the intended performance, reli-
ability, and availability. Distribution design is thus emerg-
ing as a new problem area of database design, which
requires i ts own theory, design methodologies, and sup
port tools.

The degree of sophistication of distributed database
management systems (DBMS) is often measured by the
degree of distribution transparency provided to the users.
In an ideal situation, the user does not need to be aware

Manuscript received November 26, 1985; revised October 30,
1986. This research was partially conducted within the KBMS Proj-
ect at Stanford University, which is supported by DARPA under
Contract N39-84-C-11. It draws heavily on research performed
under the DATAID Project in Italy, supported by the CNR within
the Progetto Finalizzato lnformatica. The conclusions drawn
remain the responsibility of the authors.

S. Ceri i s with the Dipartimento di Matematica, Universiti di
Modena, Modena, Italy.

B. Pernici is with CSISEI-CNR, Dipartimento di Elettronica,
Politecnico di Milano, 20133 Milano, Italy.

G. Wiederhold i s with the Computer Science Department, Stan-
ford University, Stanford, CA 94305, USA.

I E E E Log Number 8714302.

of datadistribution, and the system takes the responsibility
of distributing access operations to the databases at dif-
ferent sites. However, the actual distribution of data affects
the overall performance of the system: time and cost
required for accessing multiple data objects differ greatly
depending on whether all dataobjects are stored at the same
site or are spread over multiple sites. Replication of data
affects the overall reliability and availability of the system,
because several copies of the same information become
availablewith independent failure modes. At the same time,
data replication affects performance, due to the require-
ment of maintaining the consistency of copies. Thus the
database designer must carefully consider the distribution
of data, even when the system supports a high degree of
transparency.

One key principle in distribution design is to achieve
maximum locality of data and applications. While distrib-
uted databases enable more sophisticated communication
between sites, the major motivation for developing a dis-
tributeddatabaseistoreducecommunication byallocating
dataascloseaspossibletotheapplicationswhichusethem.
Thus in a well-designed distributed database "90 percent
of the data should be found at the local site, and only 10
percent of the data should be accessed on a remote site"
[41]. However, it rarelyoccursthat dataand applications can
be cleanly partitioned and assigned to a particular site; more
often, the designer is faced by tradeoffs because several
applications need to access the same data from different
locations. In this case, the most effective design is the one
which ensures locality to the largest number of applica-
tions. A basic assumption of this paper is that the database
designer is able to predict both the logical properties which
characterize the "locality" of data with respect to appli-
cations and the quantitative information measuring the
"load" of applications, in terms of frequency of execution
requests at each site. The difficulty of designing the dis-
tribution of a database is, in fact, due to the interference
of logical and quantitative considerations.

A. Top-Down and Bottom-Up Approaches to Distribution
Design

Distribution design can be performed top-down or bot-
tom-up. The former approach is typical of distributed data-

001&9219/87/05~533501.00 @ 1987 IEEE

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987 533
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

bases developed from scratch, while the latter approach is
typical of the development of multi-database systems as an
aggregation of existing databases.

The top-down approach assumes that the designer
understands the requirements of a database application
from the user, and transforms them into formal specifi-
cations. During this process, the designer performs con-
ceptual, logical, and physical design phases, which pro-
gressively refine high-level, system-independent spec-
ifications of the database into low-level, system-dependent
specifications. During conceptual design, the designer is
expected to ignore any detail concerning the physical
implementation (in particular, data distribution). The result
is a global database schema which incorporates, at an
abstract level, all the data elements of the database and the
patterns of their use. A design phase specific to distributed
databases, called distribution design, maps the global
schema to several, possibly overlapping subschemas, each
one representing the subset of information which is asso-
ciated with one site. Then the design of each individual
database is completed.

The bottom-up approach assumes, instead, that a spec-
ification of the databases at each site exists already, either
because there are existing databases that have to be inter-
connected to form a multi-database (or federated) system
([la], [32]), or because the conceptual specification of the
databases has been done for each site independently. In
either case, the site specifications have to be integrated in
order to generate a global specification.

While top-down and bottom-up approaches appear to
represent two extremes, in many practical cases the
designer proceeds partially bottom-up and partially t o p
down. We will present the two approaches in separate sec-
tions and then discuss the interaction between them.

B. Structure of the Paper

In Section I I , we illustrate the topdown approach to dis-
tribution design. We indicate how distribution is incor-
porated into centralized database design methodologies,
then we classify the design problems; we also review pre-
vious work on the top-down approach.

In Section I l l we describe DATAID-D, a methodologyfor
the topdown design of data distribution.

In Section lVwe illustrate the bottom-up approach to dis-
tribution design. We classify the problems, present some
solutions, and review previous work on the bottom-up
approach. We also discuss how topdown and bottom-up
approaches relate to each other.

11 . THE TOP-DOWN APPROACH

A general method for designing centralized databases
includes four phases: requirements analysis, conceptual
design, logical design, and physical design [8], [MI, [43], [47].

Requirements Analysis deals with the collection of users'
unstructured specificationsof thedatabaseapplication, and
produces an unambiguous definition and classification of
theelements to beconsidered in thedesign of thedatabase.
The information is collected in a design data dictionary.

Conceptual Design, sometimes further divided in View
Design and View Integration, produces a conceptual spec-
ification of a global, integrated database schema and of the
applications that are performed on it.

Local Design transforms the integrated conceptual
schema into adatabase schemaof a given DBMS type (Rela-
tional, Network, or Hierarchical). The choice of DBMS type
will be affected by the requirements of the conceptual
model as well as by pragmatic considerations.

Physical Design is performed according to the capabili-
ties and features of the particular DBMS chosen, and pro-
duces the definition of physical access structures which
implement the database.

The design of distribution adds to the above phases an
additional one, called Distribution Design, which assumes
as input a global, site-independent schema and produces
as a result the subschemas for each site of the distributed
database. In principle, distribution design can be applied
to any of the global conceptual, logical, or physical sche-
mas. This choice is subject to the following tradeoff:

Details about implementation should be decided only
when the database distribution is given, to allow con-
centrating on the physical design of each local data-
base independently. Independent physical design is
mandatory if the site DBMSs are heterogeneous.
On the other hand, a precise description of data and
operations helps in estimating the performance of var-
ious distributions.

This tradeoff suggests that the distribution design should
be performed at the beginning of the logical design phase.
At that time, data and operations are described precisely
and the first implementation problems are considered.

A. Problem Classification

Database distribution requires determining the frag-
mentation and allocation of data.

Fragmentation is the process of subdividing a global
object (entity or relation) into several pieces, called frag-
ments.

Allocation is the process of mapping each fragment to
one or more sites.

Fragments must be appropriate units of allocation. Thus
the database designers should define fragments as homo-
geneous collections of information from the viewpoint of
transaction access [IO], i.e., such that all instances of frag-
ments are uniformly accessed by the transactions.

Two types of fragmentations are possible:
Horizontal fragments consist of subsets of the instances

(or tuples) of a global object. Each fragment is associated
with a predicate (called qualification) which indicates the
distinguishing property possessed by the instances or
tuples of that fragment. It is always possible to reduce an
overlapping horizontal fragmentation to a nonoverlapping
fragmentation by redefining horizontal fragments in an
appropriate way; therefore, we can assume without loss of
generality that horizontal fragments are disjoint.

Vertical fragments are derived by projecting global
objects over subsets of their attributes. In order for the pro-
jection to be lossless [MI, it is required that each fragment
include a key attribute of the global object, or at least an
internal tuple identifier.

Mixed fragmentations can be built by alternating hori-
zontal and vertical fragmentations.

The rationale of horizontal fragmentation is to produce
fragmentswith themaximum potential localitywith respect

534 PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

to operations, i.e., such that each fragment is located where
it is mostly used.

The possibility of not partitioning an entity at all should
beconsidered. In particular, i f the benefit observed byfrag-
menting an entity is weak, the overhead due to horizontal
partitioning might not be compensated by the advantage
of local processing.

The rationale of vertical fragmentation is to cluster attri-
butes frequently used together. An ideal vertical fragmen-
tation exists when each application uses just one subset ,of
attributes; otherwise, some applications will be harmed,
since they will need to access both fragments. In this gen-
eral situation, one has to balance potential benefits (due to
the possibility of placing each fragment close to the appli-
cations which mostly use it) against potential disadvantages
(due to the same applications accessing two fragments).

In the fragmentation process, the designer applies
repeatedly horizontal and vertical fragmentation to each
object until appropriate fragments are obtained.

The allocation of fragments can be either nonredundant
or redundant:

in anonredundantallocation, each fragment is mapped

in a redundant allocation, each fragment is mapped to
to exactly one site;

one or more sites.

With a redundant allocation, the designer must decide
the degree of replication of each fragment. The benefit of
replication grows with the ratio between retrieval and
updates because maintaining the consistency of the data-
base requires distributing the updates to all the copies.
However, the system may permit temporary inconsisten-
cies, and in this case replication becomes moreconvenient.
The benefit of replication decreases with the increase of
storage costs, since replicated copies require more space.
Moreover, replication increases resiliency from failures,
since

the independent loss of several copies of the same

applications can access alternative copies when some
information is unlikely;

failure affects the copies usually accessed.

Given the above classification of problems, the top-down
approach to distribution design consists of solving for each
global object the following design problems:

horizontal partitioning (H)
vertical partitioning (V)
nonredundant allocation (A)
redundant allocation (R).

Whiletheseproblemsareclearlyrelated,mostofthework
in the literature has attacked these problems indepen-
dently.

B. Previous Work on Top-Down Distribution Design

The early work performed on the problem of data dis-
tributionwasaddressedtothefileallocationproblem;afile
was considered to be the “unit of allocation,” thus disre-
garding the fragmentation problem. A knowledgeable user
could, of course, present fragments as files to this problem
definition. More recently, work in “distributed database

design” has centered on both the fragmentation and allo-
cation problems, and their interactions.

7) File Allocation Problem: The file allocation problem
was originally investigated by Chu [16], who presented an
integer programming formulation of the problem for a fixed
number of copies of the file. Casey [61 addressed similarly
the problem with a variable degree of replication of each
file. Eswaran [23] proved that Casey’s formulation is
NP-complete.

The file allocation problem was generalized by Mah-
moud and Riordon [31] to incorporate the determination of
channel capacity, and by Morgan and Levin [35] to incor-
porate program allocation. Fisher and Hochbaum [24]
improved Morgan and Levin‘s optimization algorithm.
Finally, lrani and Khabbaz [281 studied the file allocation
problem for distributed supercomputer systems.

Reference [20] provides an excellent survey of several file
allocation methods.

2) Distributed Database Design: Research in distributed
database design typically assumes the relational model of
data; this choice is appropriate because links among remote
files are not too useful: remote links are not as beneficial
aslocalIinks;itisaheavytasktoutiIizeandmaintainremote
links which violate site autonomy.

Chang and Cheng [I41 indicated the way in which a rela-
tion can be fragmented by giving a methodology for rela-
tion decomposition intofragments. Note that they used the
terms horizontal and vertical for describing fragmentation
exactly in the opposite way as they are used in all the sub-
sequent literature on fragmentation (and in this paper).

The theory of horizontal fragmentation was studied by
Maier and Ullman [33], Paredaens and De Bra [39], and Ceri
and Pelagatti [V. Dependency-preserving horizontal de-
compositions are discussed in [25].

The problem of determining an optimal horizontal frag-
mentation for a distributed database has been investigated
by Ceri, Navathe, and Wiederhold [9]: the formulation of
the nonredundant allocation problem is given by a linear
integer program, and heuristics are presented for decom-
posing the problem into smaller subproblems and for
determining a redundant allocation starting from the opti-
mal nonredundant allocation.

Vertical fragmentation was addressed for centralized
databases by Hoffer and Severance [27l and by Hammer and
Niamir [26]; an application of vertical fragmentation to sys-
tems with memory hierarchies (i.e., with a “fast” and a
“slow” memory) is presented by Eisner and Severance [21].
March and Scudder have discussed how vertical fragmen-
tation can be useful for the recovery of databases in [MI.
Navathe, Ceri, Wiederhold, and Dou have studied the
application of vertical fragmentation to distributed data-
bases in [37l.

In [42], the problem of distributing thedatabaseon aclus-
ter of processors is considered. The motivation of such an
architecture is high performance, availability, and reliabil-
ity. The problem deviates from the standard distribution
design because applications also need to be allocated to
processors; thus an object to be allocated can be either an
application or a fragment. The model considers capacity
constraints for the CPUs, processors’ input-output, and
network communications.

Apers addressed in his thesis the design and allocation
of both horizontal and vertical fragments of relations [I],

CERl et a/.: DISTRIBUTED DATABASE DESIGN METHODOLOGIES 535
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

[2]. In this work, design and allocation are based on query
processing strategies, treating nonredundant and redun-
dant allocation of fragments in a uniform way.

Ill. THE DATAID-D METHODOLOGY

This section reviews the DATAID-D methodology for dis-
tributed database design, developed at the Politecnico di
Milano [12]. The emphasis in DATAID-D is on providing a
methodological framework to the designer, indicating the
relevant design problems, which parameters are required
to solve each of them, and how each problem can be
approached.

Several tools for distribution design have been devel-
oped, providing facilities for documentation and for auto-
matic selection among design alternatives in some sub-
problems. Design tools for deciding about the horizontal
and vertical fragmentation of relations are presented in [q,
[9], [37, [42]; their integration within a design support envi-
ronment is discussed in [13]. All these tools can be used
consistentlywith the DATAID-D approach. In this paper, we
stress the methodological approach of DATAID-D and we
deliberately omit any discussion about tools; in this way,
the results presented here can be immediately applied to
design problems, even if the design team has no tools avail-
able. Decision processes for selecting among design alter-
natives are based on simple heuristics rather than complex
mathematical formulations; and therefore can be handled
manually. We refer to [I31 for a discussion about tool sup
port to distribution design.

DATAID-D is built as an extension of the DATAID-1 meth-
odology for centralized database design, which is divided
into 4 phases [8]:

requirements analysis
conceptual design
logical design
physical design.

DATAID-D requires the addition of two phases to the
original DATAID-I architecture (see Fig. 1):

Analysis of Distribution Requirements: This phase is
required in order to collect information about distribution,
such as partitioning predicates for horizontal fragmenta-
tions and the frequency of activation of each application
from each site. Since the structure of data and applications
must be known in order to collect information about their
distribution, distribution requirements are collected start-
ing from some of the results of the conceptual design phase.

Distribution Design: This phase starts from the speci-
fication of the global database schema and from the col-
lected distribution requirements, and produces several
databaseschemata,oneforeachsiteofthedistributeddata-
base, each one describing the portion of data that will be
allocated to that site.

The input for Distribution Design isa specification of data
and applications produced by the previous design phase,
in the form of global database schema and logical access
tables. Global database schemas are described using a sim-
ple version of the ER model [E], which includes just binary
relationships; logical access tables indicate the type of data-
base access operations performed by each application on
each entity. In DATAID-I, conceptual modeling is per-
formed on a more sophisticated model, called the Extended

ER model [8], which also includes generalization hierar-
chies and n-ary relationships. The first part of Logical
Design, Global Logical Design, transforms EER schemata
into simplified ER schemata and is performed before dis-
tribution design. The final part of Logical Design, which
transforms an ER schema into either a relational or a Coda-
syl schema, is deferred until after distribution design, and
is performed independently for each site.

In this paper, we concentrate on distribution; thus we
deliberately omit all discussion of requirements analysis,
conceptual design, and global logical design (which are
performed before distribution design), or of local logical
design and physical design (which are performed sepa-
rately for each site after distribution design). In our exam-
ple, we will assume that the results of phases preceding
distribution design are all available. Refer to [8] for those
aspects of the DATAID-I methodologywhich are not related
to distribution.

Obviously, our clean separation of the design process
into phases is an idealization introduced here for simpli-
fying the presentation and also for abstracting the decision
process. The actual course of the design of a distributed
database will require several feedbacks between phases.

Requirements
I

REWIREMENTS
ANALVSIS I

r - l
I

Design Data Dictionary

CONCEPTUAL
DESIGN

I I
Global Global
Data Operatim
Schema Schemata

I I

I t 4-

GLOBAL LOGICAL
DESIGN I

I 1
Global S c h m Access Tables
Simplified Logical

I I

ANALVSIS (
DISTRIWTIOI
REQUIREMENT!

77-

i DISTRIBUTION

Logical
Schernata Access Tables

Logical

at each site at each s i t e

M LOCAL LOGICAL
DESIOI

LOGICAL
OESING

1

Local Logical Schemata
(Relational or Codasyl)

LOCAL PHYSICAL
DESIGN

536 PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, M A Y 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

A. Analysis of Distribution Requirements

The goal of analyzing distribution requirements is to col-
lect all the information that will later be used to drive dis-
tribution designs. Collecting requirements is adifficult pro-
cess which entails communicating with users to understand
their needs; however, in this paperwe just stress the results
which should be produced, Le., thetypeof information that
should be collected.

Inputs to this phase are users’ requirements for distri-
bution and the global data and operation schemata. Three
types of tables are built as output of this phase: a frequency
table for the applications, partitioning tables for entities,
and polarization tables which relate data and applications.

The frequency table gives the number of activations of
each application at each site. We assume that all applica-
tions are potentially executable at all sites; clearly, when
one application is never executed at one site, then the fre-
quency entry in the corresponding position is zero.

The partitioning tables indicate potential horizontal par-
titioning criteria which apply to each entity in the schema.
In practice, each partitioning criterion indicates a potential
reason for introducing horizontal fragmentation, and is
induced by one or more applications which access a given
subset of data at a given location.

Two types of paritioning are defined:
Primaryparritioning, where the partitioning of an entity

E is expressed using several disjoint predicates on the attri-
butes of E. Let p be a generic predicate of some attribute
of€;then,abinarypartitioningofEisgiven bythefragments
F1 and F2, such thatp holdsfortuplesof F1 and (notp) holds
for tuples of F2 .

Derivedpartitioning, where the partitioning of an entity
E2 is determined by a binary relationship (of the ER model)
between €2 and another entity E l which is already parti-
tioned. Let €1 be an entityfragmented into F11 and F12 and
let E2 be a second entity connected to El by the binary rela-
tionship R. Then, the derived partitioning of €2 is defined
as follows:

F21 is the set of tuples related to tuples of F11 by R;
F22 is the set of tuples related to tuples of F12 by R.

We also constrain F21 and F22 to be disjoint: hence, not
all binary relations R can be used to derive a partitioning;
in order for this constraint to hold, it i s sufficient (but not
necessary) that R be a 1 : 1 or 1 : n relationship from E l to €2.

The polarization table indicates, on a quantitative basis,
how the partitions influence the locality of processing of
applications. A polarization value indicates the probability
that a given fragment is accessed by a given application
issued by a given site; we indicate only those values which
deviate from a uniform distribution.

B. Distribution Design

The goal of Distribution Design is to allocate data at sites,
starting from the global data schema, logical access tables,
and the distribution requirements.

The output of the Distribution Design phase is a logical
schema and logical access tables for each site. These are
used during the following local logical design phase and
during physical design phases performed independentlyat
each site.

Distribution design in DATAID-D is subdivided into four
phases:

fragmentation design
nonredundant allocation
redundant allocation
reconstruction of local schemata.

Fragmentation design applies horizontal and vertical
fragmentation to entities in order to determine possible
units of allocation for the subsequent design phases. Each
fragment, to be a good unit of allocation, must contain
instances which are accessed roughly in the same way (i.e.,
with the same frequency) by each application executed at
each site. This uniform behavior allows considering frag-
ments as uniform units of allocation, during the subse-
quent allocation phases. Obviously, a too strict application
of this criterion would result in fragmentation down to the
level of an individual attribute or an individual tuple; there
exists a threshold beyond which further fragmentation is
not feasible. Fragmentation design is mostly a logical deci-
sion, which is performed by selecting some of the predi-
cates from polarization tables and composing them into
logically defined fragments.

Nonredundant allocation is performed by mapping each
fragment to the site where it is mostly used. The potential
frequency of use of each fragment at each site is obtained
as the summation over all transactions issued from that site
of the product between polarizations and frequencies of
use of the fragment. It is thus possible to identify the site
which accesses the fragment most frequently, and hence
allocate the fragment to that site.

A quantitative measure of the number of accesses to a
given fragment from a given site is trivially obtained from
frequency and polarization tables. Let

Cj frequency of application i from site j
pj,k polarization of fragment k for application i from site

i.
Then the number of accesses to fragment k from site j is
given by

nkj = ,, ,Z f i j pilk.

Therefore, fragment k is allocated to the site 7 such that

n k j = maxalli nkj.

1.ruresk

Redundant allocation is performed by selecting addi-
tional sites for each fragment with respect to the initial non-
redundant allocation, using “greedy” heuristics. At each
iteration, the most beneficial site for storing a copy of the
fragment (if any) is added to the set of allocations. However,
the benefit in retrieval accesses must outbalance the major
costs and complexitydue to updating of redundant copies.

Theabove benefit isdifficulttoquantify, sincemeasuring
the complexity of managing redundant copies is very dif-
ficult. However, it is possible to evaluate the difference
between the number of retrieval accesses that become local
due to addition of one copy versus the number of addtional
remote update accesses required to maintain that copy. This
number should be largely positive to justify the increase of
redundancy. The difference is evaluated for an object kand
a potential new copy stored at site j as follows:

CERl et a/.: DISTRIBUTED DATABASE DESIGN METHODOLOGIES 537 Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

The reconstruction of local schemata builds local sche-
mata from the final fragment allocation; this phase is also
responsible for the allocation of relationships of the ER
global schema.Assumingthat most relationships are imple-
mented as associations among the identifiers of the cor-
responding entities, the DATAID-D methodology suggests
placing relationships at the site of the entities or fragments
with the largest cardinality, so that few entity identifiers will
have to be transmitted.

C. Case Study: Airline Reservation System

1) Case Study Description: In this section, we present an
example of the application of DATAID-D methodology to
an airline reservation system. The airline maintains a data-
base distributed over three sites, i.e., airports l, 2, and 3,
eachofwhichisatthecenterofageographica1area;allother
airports which are serviced by the company are in one of
these areas. To help in visualizing the system, think of a
company operating in the U.S., with 1 = Denver, CO,
locatedintheWest,2= NewYork,NY,locatedintheNorth,
and 3 = Atlanta, GA, located in the South. A database stores
dataabout airport regulations, flight schedules, flight avail-
abilities, and passenger reservations.

We do not present here the conceptual and logical design
phases; instead, we present their results: the Global Data
Schema and the Global Operation Schemata. A Global Data
Schema of the database using the ER model [I51 is shown
inFig.2.Weassumethateachflightisdirectfromthedepar-
ture airport to the arrival airport, without intermediate
stops. All entities, attributes, and relationships are self-
explanatory; we have kept our example as small and simple
as possible, though it is sufficiently complex to show some
of the problems which arise in distribution design.

Distribution design also requires the collection of knowl-
edge about the most relevant applications that are per-
formed on data. The 80120 heuristic assures us that we will
obtain 80 percent of the accesses by analyzing the most fre-
quent20percentoftheappIications.DATAID-I collectsthis
information into Global Operation Schemata, which show
the use of entities and relationships for each application.

p GATE

Examples of operation schemata for 3 applications are
shown in Fig. 3.

The Make-Reservation application (Fig. 3(a)) is activated
every time that a new passenger (i.e., one not holding
another reservation) wants to get a reservation on one flight.
Inthiscase,theaccesstothedatabaseisthroughDeparture
and Arrival airport, Departure and Arrival time, and the
flight’s Date. These attributes are marked in the diagram
with a “K,” which indicates that they are used as keys in
accessing data. Arrows indicate that the access proceeds
from the Airport entities to the Flight entity via the two rela-
tions From and To. Numbers in the left and right lower cor-
ners of entities indicate, respectively, the total number of
instances and the average number of instances selected by
the application. Once a flight has been identified, a new
instance of the Passenger entity is created, as well as an
instance of the relationship Reservation; data about the pas-
senger’s Name, Telephone, and Class (corresponding to
the ticket’s fare) are also written (“ W ’) in the database.
NoticethattheAvaiIableSeatsattributeisfirstreadandthen
written (“0, W ” ; 0 indicates output).

A similar application, called Continue-Reservations,
allows taking reservations for passengers whose data have
already been collected and stored into the Passenger entity;
we do not show this application.

The Check-ln application is executed whenever a pas-
senger actually boards a plane: based on the passenger’s
Name and on the Number and Date of the flight, the
involved Passenger and Flight instances are detected (“ K ’
attributes). Then, the Class information is retrieved (“O”),
and based on this information and on the flight’s SeatMap,
a SeatNumber is assigned to the passenger. Both SeatMap
and SeatNumber attributes are written, together with the
number of CheckedBags by the passenger.

The Airport-Departures application builds a report
describing the departure information for the next 30flights
departing from the airport, to be displayed on TV monitors.
The Airport symbol and present Date and Time are used to
identify the involved Airport and Flight entities. For each
flight, the Number, Depa-rture-Time, Gate, Delay, and des-
tination airport Symbol and City are extracted from the
database. Information about the destination airport is
determined using the To relationship.

Notice that the last operation schema is linearized, fol-

NAME TELEPHONE

SECURITY RULES

Fig. 2. Global Data Schema of the airline reservation database.

538 PROCEEDINGS OF THE IEEE, VOt. 75, NO. 5, MAY 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

NUMBER
(K)

DATE
(K)

- CLASS (a)
NAME (K)

-
FLIGHT PASSENGER -

20000 1 1 1000000

d
SEAT MAP

(0.w)

SEAT NUMBER CHECKED RAGS
(w) (w)

(b)

GATE [a)

DELAY (a)
(0) NUMBER

(k) DATE
FLIGHT AIRPORT SYMBOL (a)

CITY [a)
__f

€3 SYMsOL (K)

AIRPORT

(C)

Fig. 3. Global Operation Schemata of the airline reservation database. (a) Make-Reser-
vation. (b) Check-In. (c) Airport Departures.

lowingthe application’s access path through data. As a more
general consideration, notice that operation schemata are
“procedural,” i.e., they indicate precisely the access path
of an application through the database; however, they are
built at a logical level, without postulating the existence of
access methods. Subsequent design phases (i.e., local log-
ical design and physical design) will decide which access
methods haveto be provided, based on theseschemataand
on quantitative information abouttheapplications’load [8].

Finally, quantitative data about applications are sum-
marized for each entity, building the logical access tables.
Fig. 4(a) shows the logicalaccess fable for the entity Flight.
Columns correspond to operations, rows correspond to the
entity’s attributes; positions in the matrix indicate the type
of action (“0,” “W,” “ K ”) performed on objects. The row
denoted by RA (relationship access) indicates whether a

relationship was used for accessing the entity, while the
row denoted by AN (accesses number) gives the total num-
ber of instances involved in the operation. For a more
detailed description, see [8].

2) Analysis of Distribution Requirements in the Airline
Reservation System: In this section we examine how dis-
tribution requirements are represented by the DATAID-D
methodology after the analysis of distribution require-
ments phase.

The frequency fable illustrated in Fig. 4(b) shows the fre-
quencyof applications a, b, cdescribed in the Global Oper-
ation Schemata in Fig. 3 at sites 1 (Denver), 2 (New York),
3 (Atlanta).

Partitioning fables for the Airline Reservation Database
are shown in Fig. 5(a) and (b). Fig. 5(b) shows the primary
partitioning table for entities Airport and Passenger. The

CERl et a/.: DISTRIBUTED DATABASE DESIGN METHODOLOGIES 539
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

E n t i t y : FLIGHT

A t t r i b u t e s

NUMBER

DATE

SEAT MRP

GATE

DELAY

AVAILABLE

SEATS

R4

AN

T

y
O p e r a t i o n s

FROn

30

Frequency
t a b l e 1 2 3

S i t e s

Opera t i ons

a 10000 20000 10000 I

(b)

intity access table (a) and frequency table (b).

aeslgner chooses the Area attribute as a partitioning cri-
terion for the Airport entity and the first three digits of tele-
phonenumber(areacode)asapartitioningattributeforthe
Passenger entity. For each possiblevalue of the partitioning
attribute, predicate selectivity gives the percentage of the
tuples of the entity with that value.

The designer then considers potential derived partition-
ing induced by the primary partitioning of Airports into
Areas. Four derived partitioning choices are considered in
Fig. 5(b):

The Flight entity can be partitioned in two ways, based
on the relationship From (with the departure airport) or To
(with thearrival airport) and the partitioningof airports into
areas. Notice that the same primary partitioning gives rise
to two different derived partitionings based on the use of
two different relationships.

The last two rows show two alternative ways of parti-
tioning the Passenger entity based on the relationships from
Reservation to Flight, partitioned by departure areas. Notice
that in this case the derivation mechanism is in two steps,
since i t is applied from Airport to Flight and then from Flight
to Passenger. In the former case, passengers are partitioned
based on the flight on which they hold the first reservation;
in the latter case, passengers are partitioned based on al l
the reservations that they hold. Seven cases are possible
(illustrated in the NOTE table): passengers can hold reser-
vations on flights that leave only from one area (A, B, C),
orfromtwoareas(AB,BC,AC),orfinallyfromallthreeareas

(ABC). The above seven cases are required because Reser-
vation is a many-to-many relationship (each passenger can
hold multiple reservations) and yet in the definition of the
fragmentation we want to map each passenger in the real
worldto exactlyone instance of the Passenger entity. In the
first case, each Passenger instance is statically assigned to
a partition when the first reservation is made, while in the
second case the mapping of Passenger instances to parti-
tions is dynamic: whenever a passenger changes reserva-
tion, the corresponding entity instance might move from
one partition to another.

Fig. 6 shows the polarization table. Columns are associ-
ated with activations of applications at each site, rows with
partitioning predicates. Each entry indicates the percent-
age of accesses to a fragment if the particular partitioning
criterion is selected. In practice, only afew entries are spec-

P r i m a r y p a r t i t i o n i n g t a b l e

E n t i t y P r e d i c a t e S e l e c t i v i t y P r e d i c a t e s P a r t i t i o n Name

AIRPORT

25 .AREA = ' S '

45 AREA = 'N'
30 AREA = ' W ' AREA

PASSENGER TELEPHONE

(FIRST 3 DIGITS)
OR '408"' OR"'
TELEPHONE = '415 * '

35

TELEPHONE = 'W*'
OR ' 7 1 3 * ' O R . . .

TELEPHONE = '212 * '
35

30 OR ' 6 1 7 * ' O R . . .

(a)

r D e r i v e d p a r t i t i o n i n g t a b l e

Entity
P r e d i c a t e P a r t i t i o n Base Entity Assoc ia t i on f o r

t h e d e r i v a t i o n S e l e c t i v i t y Narfe

FLIGHT SAME AREA AIRPORT FROM

WTE:FLIGHT DEPARTURE P a r t i t i o n i n g i s based on 7 p red ica tes : P red ica te
S e l e c t i v i t y

P1 : All f l igh ts reserved by the passenger depar t f ran a rea A

10 P7 : All f l i gh ts rese rved by the passenger depart from a l l areas

10 P6 : All f l i g h t s r e s e r v e d by the passenger depart fm areas B and C

10 P5 : All f l i g h t s r e s e r v e d by the passenger depart from areas A and C

10 P4 : A11 f l i g h t s r e s e r v e d by the passenger depart from areas A and B

20 P3 : All f l i g h t s r e s e r v e d by the passenger depart from area C

20 P2 : All f l i g h t s r e s e r v e d by the passenger depart from area B

20

-
(b)

Fig. 5. (a) Primary partitioning table. (b) Derived partition-
ing table.

540 PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

AIRPORT

by AREA

PASSENGER

by PHONE

PASSMGER
by FIRST
RESERVATION
LOCATION

PASSENGER

by
DEPARTURE

FLIGHT by

DEPARTURE

FLIGHT by
ARRIVAL

Fig. 6. Polarization table.

a C b

1 2 3 1 2 3 1 2 3

ified; the remaining entries can be computed by assuming
uniform distribution of the remaining instances. Some sub-
matrices are not relevant because the application does not
use the entity; these are crossed out in the table.

To illustrate, let us discuss the first submatrix associated
with the Make-Reservation application (Fig. 3(a)) and using
the partitioning of the Airport entity by areas (respectively,
Pl for area 1, P2 for area 2, and P3 for area 3). The matrix
indicates that if we partition airports by areas, then a query
about reservations issued at area 1 has 80 percent proba-
bilityof beingrelatedtoairportsinarea1.Fortheothertwo
positions in column 1 we assume uniformity over the
remaining 20 percent of access.

3) Distribution Design in the Airline Reservation System:
Distribution design consists of four steps: the selection of
fragmentation criteria for each entity, the determination of
nonredundant allocation, the introduction of redundancy
over the nonredundant allocation, and, finally, the recon-
struction of local schemata at each site (see Fig. 7).

a) Fragmentation design:Given the potential partition-
ingcriteriacontained in the polarization tables, the designer
must here select the most appropriate one for each entity,
and validate that the partitioning itself is convenient. This
requires the quantitative analysis of the relevant applica-
tions, which can be classified in three classes: those which
are made easier by the partitioning, those which are made
more difficult, and, finally, those which are not affected.
Then, the partitioning is convenient if the first class is

\

PASSENGER.l U

P A S S E N G E R . 4 U
P A S S E N G E R . 5 U
PASSENGER. 7

S i t e 1

1
AC

PASSENGER. 2 U

PASSENGER. 4 U

PASSENGER. 6 U

PASSENGER. 7

S i t e 2

\

I

PASSENGER. 3 U

PASSENGER. 5 U

PASSENGER. 6 U
PASSENGER. 7

(rl - - - - - _ _ A I R P O R T . 3 S i t e 3

1
Fig. 7. Result of distribution design: local schematafor sites
1-3.

"larger" than the second class. In our case study:

1) vertical partitioning is not useful to determine units
of allocation, in fact, no application exists that can be
clearly eased by a vertical partitioning;

2) conversely, all entities have a horizontal fragmenta-
tion:

the Airport entity has a primary horizontal frag-
mentation based on Area (fragments Airport.1,
Airport.2, Airport.3);
the Flight entity has a derived horizontal frag-
mentation based on the Departure airport (frag-
ments Flight.1, Flight.2, Flight.3);
the Passenger entity has a derived horizontal frag-
mentation based on Departure of all Flights on
which the passenger is booked (fragments Pas-
senger.1 to Passenger.7).

b) Nonredundant allocation: In some cases, nonre-
dundant allocation follows easily from the selection of the
partitioning criterion. For instance, Airport.1, Flight.1, and
Passenger.1 are immediatelyallocated at si t e l , and likewise
Airport.2, Flight.2, and Passenger.2 are allocated at site 2

CERl et a/.: DISTRIBUTED DATABASE DESIGN METHODOLOGIES 541
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

and Airport.3, Flight.3, and Passenger.3 are allocated at site
3. For other fragments of the entity Passenger, we need to
select the site which mostly uses the fragment according
to the polarization tables and frequency tables; thus we
allocate Passenger.4, Passenger.6, and Passenger.7 to site
2, Passenger.5 to site 3.

c) Redundant allocation: Redundancy is then consid-
ered; in many cases, costs associated with redundancy out-
balance benefits for all fragments of the same entity. This
is the case in the Airport and Flight entities. For the frag-
ments of the Passenger entity we introduce instead a lim-
ited degree of redundancy: Passenger.4, Passenger.5, and
Passenger.6, which correspond to passengers holding
reservations on flights departing from two areas, are stored
atthetwocorrespondingsites. Likewise, Passenger.7,which
includes passengers with flights leaving from all three areas,
is stored at all sites.

d) Reconstruction oflocalschemata: This step is mostly
concerned with the fragmentation and allocation of rela-
tionships of the ER global data model. According to the
above allocation of fragments, the relationships Reserva-
tion and Check-In happen to have a natural allocation such
that all links are local (because each passenger is associated
to one Passenger instance at each site where he holds a
reservation or checks in). The From relationship is also nat-
urally allocated, since Airport and Flight entities are par-
titioned horizontally according to the From relationship;
hence, all links are local. Instead, the distribution of theTo
relationship needs to be discussed, since it links entity
instances which may be stored at two different sites. In our
solution, the instances of the To relationship are stored at
the same site as the corresponding instances of the Flight
entity.

The most relevant property of this solution is that all
requests about flights can be answered by looking only at
the data which are allocated at the departure site of the
flight; no remote information is required for preparing for
the flight's departurewhen the database is heavily used. As
a drawback, passenger information is replicated, and a
careful management of passenger information must be
done when reservations are taken.

IV. BO~OM-UP DISTRIBUTION DESIGN

In the bottom-up approach, schemata representing the
portion of data stored at each individual site constitute the
starting point in the design, and distribution design con-
sists of identifying the data which are common to them, as
well as their differences.

During operation, most multi-database systems provide
only global query capability and local update capability, so
that each local system may only be updated by transactions
issued at that site. If the designer cannot modify the local
databases of a multi-database system, then conflict reso-
lution has to be incorporated into the query processing
capability of the system.

Multidatabase support provides an automatic mapping
of queries issued according to the global view into queries
applicable to the local schemata, and coordinates the exe-
cution of queries and the collection of results.

A. Design Problems in Building a Global Schema

Problems in the bottom-up design of a multi-database
system are due to the need for building a global schema
(also called Superview in [18], [36]). The integration process
recognizes matching entities and their attributes.

To integrate databases we need to select a suitable type
of data model for the global schema. Previous work on view
integration has demonstrated the power of generalization
hierarchies to support view integration. A generalization
hierarchy allows defining a type-subtype relationship
between two entities; this can be useful when two views
give a partially overlapping description of the same entity.
Then, the classical solution of theview integration problem
consists in generating three entities, one with the common
attributes and the other two with the nonoverlapping attri-
butes [22]. An example is shown in Fig. 8, where two views
of the Flight entity have some common attributes; in the
global view, the common attributes are associated with the
supertype, and one subtype is generated for each view
including the nonoverlapping attributes. Generalization
hierarchies are represented by double-line arrows.

The need for generalization hierarchies indicates that
conceptual models such as the ER model (extended with
generalization hierarchies), the structural model, or the
functional model are good candidates for the view inte-
gration process. In this paper,we use the ER model extended
with generalization hierarchies, as shown in Fig. 8; gen-
eralization hierarchies are represented by double-line
arrows.

In the example, two views of the Flight entity have some
common attributes; in the global view, we generate a gen-
eralization hierarchy, with one supertype and two sub-
types; the supertype has the common attributes, while the
subtypes correspond each to one view; "difference" attri-
butes are related to the subtypes.

Another general question is the order o f integration of
views. When several views are present, integration is typ
ically performed by merging one view at a time with the
global schema, which is thus built progressively. Thus the
general problem thatweconsider is howto build the super-
view of two views. It is, in general, better to integrate first
the largest or most important views, followed by the small-
est or least important ones.

7) Recognizing Similarities: The first step in the integra-
tion of two schemata is to recognize their similarities; these
provide the starting'point for integration. Matches can be
recognized because of the naming or structure similarities
of overlapping portions of the schemata. Matches can also
bededuced from similarityof data in pre-existingdatabases
or files. Similar valuesets indicateoverlap. Domainsof attri-
butes can be matched by comparing their projections.
Observing that files or domains have the same or nearly the
same cardinality can be an initial hint.

If different applications on different database locations
use copies of the same source data, then there is surely some
overlap between the databases.

2) Recognizing Conflicts: Integration should also iden-
tify conflicts, i.e., different representations or domain def-
initions of similiar data in different schemata [3], [22], [38].
Conflicts can be resolved by incorporating differences in
theglobal model or by inducingcompromises in the source

542 PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5 , M A Y 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

VIEW 1 VIEW 2 -
I

DATE
AIRPLANE

MEAL SERVED AVAILABLE AVAILABLE

SEATS

GLOBAL VIEW

NUMBER 1-1 FLIGHT io AVAILABLE SEATS

DATE SEAT MAP

Fig. 8. Merge of two views using generalization hierarchies.

models [471. Conflicts which cannot be resolved at design
time require selection of policies for answering queries with
inconsistent data.

Schema differences include naming conflicts, scale dif-
ferences, and structural differences.

Naming conflicts: There are two types of naming con-
flicts: synonyms occur when data objects which represent
the same world objects have been given different names
in the two views; homonyms occur when data objects with
the same name in two views represent different real-world
objects. Once naming conflicts are detected, they are easily
handled by storing name correspondence tables in the
global schema.

9 Domain differences: The most insidious problems are
due to domain differences. A relation Personnel at a site
handlingthe payroll may not includecontractor personnel,
who are paid indirectly. At the site where projects are man-
aged, contractor personnel are included, but auditors, who
are not assignable to any project, are not. Detection of such
problems is best achieved by comparing the source data-
bases or files, and noting inconsistencies. Generalization
hierarchiescan be used for representing the solution to this
problem. In the above case, permanent personnel, con-
tractor personnel, and auditors could all be subtypes of the
same entity Personnel. Applications, such as payment, are
then performed in different ways according to the subtype
that they use.

Scaledifferences: Scale differences may be found in dif-
ferent views of the same numeric values. The data should
be retrieved using, if possible, the more precise scale, and
joined or output using conversion formulas. Conversion
formulas should be stored as a part of the global schema,
if the distributed DBMS can support them.

Structural differences: Structural differences may be
due to different design choices in each view; for instance,

the same real-world object can be modeled as an attribute
in one view and as an entity in another view. Only a few
of these differences can be dealt with by generalization in
the global schema. In view design, structural differences
are typically solved by changing one or both views. When
dealing with autonomous databases, structural differences
typically require writing complex query modification pro-
cedures, to be stored in the global schema, if the distrib-
uted DBMS can support them [18].

Many of the above conflicts should be reported and fixed
before integration, and local systems should be modified
to reflect integration whenever possible. Otherwise, the
global schema should include information about conflicts,
and policies for resolution. Clearly, the management of
conversion formulas , query modification procedures, or
conflict resolution policies, mentioned in this section,
requirean extension of the capabilities of traditional DBMS
in the direction of more sophisticated multi-database sys-
tems; in absence of such extensions, the above features
must be carefully supported by application programs.

3) Dealing with Inconsistent Data During Operation: In
practice, operational multi-databases have errors; an error
rate of up to 1 percent per stored records is not unusual.
They may be due to input transcription, omission or failure
in synchronization of updates, and improper recoveryfrom
system errors. The database designer must decide the pol-
icies for dealing with inconsistencies that arise duringoper-
ation of the global database.

Let us consider, for instance, the situation where two
instances of the Employee entities stored at different sites
happen to have the same identifier, but different values for
the salary attribute. This situation can be due to several rea-
sons:

It i s possible that the same identifier corresponds to
twodifferentemp1oyees;thissituationcan besolved bysys-

CERl et a/.: DISTRIBUTED DATABASE DESIGN METHODOLOGIES 543
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

tematically modifying values as they are extracted from the
database. For instance, it is possible to introduce system-
wide unique identifiers, concatenating all local identifiers
with site identifiers.

Another possibility is that the same employee has two
different jobs at the two sites, and the salary attributes just
refer to the two different jobs. This may be considered at
the level of schema integration, treating thetwo salaryattri-
butes as homonyms. Otherwise, it is possible to manage
this data inconsistency by indicating in the global schema
that all queries interested in the global salary should com-
pute it as the summation of the two local salaries.

A third reason for discrepancy may be obsolescence.
This again can be solved at the schema level, treating the
two salaries as homonyms (i.e,, old salary and new salary).
Otherwise, it i s possible to operate at the query modifi-
cation level, indicating that the most recent value should
be used (in this case, the salary attributes must be time-
stamped, but obviously this is an additional major cost).

A fourth reason for the inconsistency presented above
is actual incorrectness, due to spurious errors.

The four situations above have shown that the database
designer has several options on how to manage inconsis-
tencies. While inconsistencieswill bedetected at execution
time, the determination of policies for solving inconsis-
tencies is a design problem. Policies include:

Presenting any one of the inconsistent values without
notifying the user: the most straightforward but at the same
time most dangerous solution.

Presenting all inconsistent values, and showing to the
user the sources of the information. In this case, the user
should be able to evaluate the causes of inconsistencies.

Evaluate some aggregate function on the inconsistent
values and present the result of the function to the user.
Possible aggregate functions include average, minimum,
maximum. This technique was used where observations
were expected to differ since they occurred at different
times [4].

Present the most recent value. This policy requires the
time-stamping of update operations (which is certainly
rather costly). It is based on the assumption that incon-
sistencies are due to deferred updates, and thus the latest
value is also the most likely one.

Present the value from the most reliable system. This
policy is based on the assumption that the designer is able
to evaluate the reliability of sites in the distributed data-
base.

B. An Example of Bottom-Up Integration

Assume that two operational airlines decide to have a
multidatabase system in order to allow queries about flight
availabilities from any office of the two companies. Let the
conceptual schema illustrated in Fig. 2 and discussed in
Section 1li-C be associated with airline A, and let the con-

ceptual schema of Fig. 9 represent the data of airline B. Let
us look at the features of the schema of airline B and com-
pare the schema with the schema of airline A. Clearly, the
new schema is simpler; in particular, there is no informa-
tion about airport sand check-ins. Information aboutdepar-
ture and arrival of flights is represented as attributes of the
entity Flight. The basic information about passengers and
flights is, however, very similar.

Fig. 10 represents the global schema built after integra-
tion. A generalization hierarchy is used to represent two
subtypes F1ight.A and Flight.B, while the supertype Flight
contains all common attributes. They include the Flightld,
called flight Number in schema A; here, a synonym is rec-
ognized. Common attributes also include the flight Date,
which was encoded in the first positions of the attribute
Departure Time; here, a more difficult analysis is required.
The entity F1ight.A is related to the entity Passenger through
the relationship Checkln, showing that this information is
available only for entities of schema A. Finally, the infor-
mation about the departure and arrival airports is repre-
sented in different ways for entities F1ight.A and Flight.B,
reflecting the different representations. Notice that a query
requesting information about flights departing from a given
airport (for instance, the Airport-Departure application of
Section Ill-C)should betranslatedinverydifferentwaysfor
the two local schemata.

C. Earlier Work in Bottom-Up Distribution Design

Many of the considerations of this section are derived
from the paper by Dayal and Hwang [IB]. The integration
of multi-databases is also discussed by Breitbart and Paolini
[5], Litwin [29], Wong and Bazex [MI, and Dayal[17l. These
papers describe how queries should be decomposed into
subqueries to each local system; we have not discussed this
topic, since it is more related to the development of a multi-
database system than to the design of applications for such
systems.

View integration is mainly discussed in the frameworkof
database design for centralized systems by ElMasri and
Wiederhold [Dl, Batini, Lenzerini, and Moscarini [3], and
Navathe, Sashidar, and ElMasri [MI. Though generalization
hierarchies are modeled in slightly different ways, the use
of generalization hierarchies in view integration is sug-
gested by most references in view integration, including
[22] (using the Structural Model), [3] (using the EER model),
and [I81 (using the functional data model).

D. Interaction Between Top-Down and Bottom-Up
Approaches

In Section I I , we have presented the pure topdown
approach, in which thedatabasedesigner ignoresany phys-
ical detail (including distribution) when performing con-
ceptual design. While this approach is theoretically valu-
able, there can be practical situations for which it is

SEAT MAP

F L I G H T PASSENGER

AVAILABLE
ARRIVAL ARRIVAL T IME SEATS

d
NAME T E L E P M N E

Fig. 9. Conceptual schema of airline B.

544 PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, M A Y 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

NAME TELEPHONE

I AIRPORT

Fig. 10. Global schemata built after integration.

inappropriate. For instance, assume that the database
describes an enterprise which is organized by functions,
with each function immediately mapped to one database
location.

Even if thedesign is started from scratch, abstractingfrom
distribution information might be unnatural in this case.
One possible approach to the design is to proceed partially
topdown and partially bottom-up, by collecting require-
ments and performing conceptual design for each function
independently, then integrating all conceptual schemata
intoaglobal one, and finally redistributingthe information.
Clearly, with this approach we retain the notion of the view
where each object was originally defined, because in turn
this notion will suggest the allocation of the object. How-
ever, redistribution is useful for introducing replication and
for “moving” some objects from one local schema to
another.

In summary,a”pure”top-down approach todistribution
is advisable for views that have no correspondence with
distribution, while a bottom-up approach isadvisable when
views have an immediate correspondence to database loca-
tions; all intermediate situation are possible and should be
dealt with by intermediate approaches.

V. CONCLUSIONS

As distributed applications are becoming a reality, dis-
tribution design is becominga new and relevant areawithin
database design. Distribution requires i ts own theory,
problem definitions, solution methods, and methodolo-
gies.

This paper has presented a survey of top-down and bot-
tom-up approaches to distribution design and has focused
on the DATAID-D topdown methodology; approaches have
been exemplified and compared.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for providing very useful and detailed comments for revi-
sion of this paper.

CERl et a/.: DISTRIBUTED DATABASE DESIGN METHODOLOGIES

REFERENCES
P. M. C. Apers, “Query processing and data allocation in dis-
tributed database systems,” Ph.D. dissertation, Vrije Uni-
versiteit, Amsterdam, The Netherlands, Sept. 1982.

appear in ACM Trans. Database Syst.
C. Batini, M. Lenzerini, and M. Moscarini, ”Views integra-
tion,” in Methodologyand Tools forDatabase Design, S. Ceri,
Ed. Amsterdam, The Netherlands: North-Holland, 1983.
R. L. Blum, Discovery and Representation of Causal Relation-
ships from a Large Timeoriented Clinical Database: The RX
Project (Lecture Notes in Medical Informatics, no. 19). New
York, NY: Springer-Verlag, 1982.
Y. J. Breitbart and P. Paolini, “Chairmen’s report, Session on
multidatabases,” in 3rd Int. Seminar on Distributed Data
Sharing Systems, F. A. Schreiber and W. Litwin,
Eds. Amsterdam, The Netherlands: North Holland, 1985.
R. C. Casey, “Allocation of copies of a file in an information
network,” in Proc. 7972 Springloint Computer Conf., AFIPS,
1972.
S. Ceri, M. Negri, and C. Pelagatti, “Horizontal data parti-
tioning in database design,” presented at ACM-SICMOD,
June 1982.
S. Ceri, Ed., Methodology and Tools for Database
Design. Amsterdam, The Netherlands: North-Holland, 1983.
S. Ceri, S. B. Navathe, and C. Wiederhold, ”Distribution
design of logical database schemas,” / E € € Trans. Software
Eng., vol. SE-9, no. 4, pp. 487-504, July 1983.
S. Ceri, B. Pernici, and C. Wiederhold, “An overview in the
design of distributed databases,” / E € € Database Eng. (Special
Issue on Database Design), IEEE Computer Society, 1984.
S. Ceri and C. Pelagatti, Distributed Databases: Principles and
Systems. New York, NY: McGraw-Hill, 1984.
S. Ceri and B. Pernici, ”DATAID-D: Methodology for distrib-
uted database design,” in Computer Aided Database Design,
A. Albano,V. de Antonellis, and A. di Leva, Eds. Amsterdam,
The Netherlands: North-Holland, 1985.
5. Ceri, B. Pernici, and C. Wiederhold, “Optimization prob-
lems and solution methods in the design of distributed data-
bases,” Politecnico di Milano, Department of Electronics,
Computer Laboratory, Internal Rep. 85-7, revised version.
S. K. Chang and W. H. Cheng, “A methodologyfor structured
database decomposition,” / € € E Trans. Software Eng., vol. SE-
6, no. 2, pp. 205-218, Mar. 1980.
P. P. Chen, “The entity-relationship model: Toward a unified
view of data,”ACM Trans. DatabaseSyst., vol. 1, no. 1, pp. 9-
36, 1976.
W. W. Chu, “Optimal file allocation in a multiple computer
system,” / € E € Trans. Cornput., vol. C-18, no. 10, pp. 885-888,

- , “Data allocation in distributed database systems,” to

545
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

Oct. 1%9.
[I 7 U. Dayal, “Processing queries over generalization hierar-

chies in a multidatabase system,” presented at the 9th Int.
Conf. on Very Large Data Bases, Florence, Italy, 1983.

[I81 U. Dayal and H. Y. Hwang, “View definition and general-
ization for database integration in a multibase system,” /€€€
Trans. Software Eng., vol. SE-10, no. 6, pp. 628-645, Nov. 1984.

[I91 / E € € Database Eng. (Special Issue on Highly Available Sys-
tems), IEEE Computer Society, vol. 6, no. 2, 1983.

[20] L. W. Dowdy and D. V. Foster, “Comparative models of file
assignment problem,”ACMComput. Surv.,vol. 14, no. 2,1982.

[21] M. J. Eisner and D. G. Severance, “Mathematical techniques
for efficient record segmentation in large shared databases,”
1. ACM, vol. 23, no. 4, Oct. 1976.

[22] R. ElMasri and G. Wiederhold, “Data model integration using
the structural model,” in ACM-SIGMOD (May 1979), pp. 191-
202.

[23] K. P. Eswaran, “Placement of records in a file and file allo-
cation in a computer network,” Informat. frocessing(Amster-
dam, The Netherlands: North-Holland), 1974.

[24] M. L. Fisher and D. S. Hochbaum, “Database location in com-
puter networks,”]. ACM, vol. 27, Oct. 1980.

[25] J. Grant, “Constraint preserving and lossless database trans-
formations,” Inform. Syst., vol. 9, no. 2, pp. 147-156, 1984.

[26] M. Hammer and 6. Niamir, “A heuristic approach to attribute
partitioning,” presented at ACM-SIGMOD, Boston, MA, 1979.

[27 J. A. Hoffer and D. G. Severance, “The use of cluster analysis
in physical database design,” in froc. 7 s t VLDB Conf., 1975.

[28] K. 6. lrani and N. G. Khabbaz, “A methodology for the design
of communication networks and the distribution of data in
distributed supercomputer systems,” / € E € Trans. Comput.,
vol. C-31, no. 5, 1982.

[29] W. Litwin, ‘“ALPHA, A multidatabase manipulation lan-
guage,” in Proc. I€€€ Data Engineering Conf. 7 (Los Angeles,
CA, Apr. 1984).

[30] V. Lum et a/., “1978 New Orleans Data Base Design Work-
shop Report,” IBM Rep. Rj2554 (33154), IBM Res. Lab., San
Jose, CA; and in froc. Int. Conf. on Very Large Data Bases,
1979.

[31] S. Mahmoud and J. S. Riordon, “Optimal allocation of
resources in distributed information networks,” ACM Trans.
Database Syst., vol. 1, no. 1, 1976.

[32] D. McLeod, “A federated architecture for database systems:

[33] D. Maier and J. Ullman, “Fragments of relations: First hack,”
in froc. Xf2 Workshop, 1981.

[34] S. T. March and G. D. Scudder, “On the selection of efficient
record segmentations and backup strategies for large shared
databases,” ACM Trans. Database Syst., vol. 9, no. 3, 1984.

[35] H. L. Morgan and K. D. Levin, “Optimal program and data
location in computer networks,” Commun. ACM, VOI. 20, no.
5, pp. 315-322, May 1977.

[36] A. Motro and P. Buneman, “Constructing superviews,” in
froc. SICMOD ’87, pp. 56-64, 1981.

[37l S. 6. Navathe, S. Ceri, G. Wiederhold, and J. Dou, “Vertical
partitioning algorithms for database design,” ACM Trans.

[38] S. B. Navathe,T. Sashidar,and R. EIMasri,”Relationship merg-
Database syst., vol. 9, no. 4, 1984.

ing in schema integration,” in froc. 70th Conf. on Very Large
Data Bases (Singapore), 1984.

[39] J. Paredaensand P. De Bra,“On horizontal decompositions,”
in froc. Xf2 Workshop, 1981.

[a] D. Reiner et a/., “The database design and evaluation work-
bench (DDEW) project at CCA,” /€€€ Database Eng. (IEEE
Computer Society), vol. 7, no. 4, Dec. 1984.

[41] J. 6. Rothnie and N. Goodman, “A survey of research and
development in distributed database management systems,”
in froc. 3rd Int. Conf. on Very Large Data Bases, 1977.

[42] D. Sacciand G. Wiederhold,”Database partitioning in aclus-
ter of processors,” ACM Trans. Database Syst., vol. 10, no. 1,
Mar. 1985.

[43] T. J. Teorey and J. P. Fry, Design o f Database Struc-
tures. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[44] J. Ullman, Principles ofDatabase Systems, 2nd ed. Rockville,
MD: Comput. Sci. Press, 1982.

[45] K.-Y. Whang, G. Wiederhold, and D. Sagalowicz, “Separa-

NCC, pp. 283-289,1980.

bility. An approach to physical database design,” I€€€ Trans.
Comput., vol. C-33, no. 3, pp. 209-222, Mar. 1984.

[46] G. Wiederhold, “A method for the design of multi-objective
databases,” in Computers in Engineering 7982, vol. 4, R. Ra-
ghavan, Ed. New York, NY: Amer. SOC. Mech. Eng., 1982.

[47l -, Database Design, 2nd ed. New York, NY: McGraw-Hill,
1983.

[a] K. K. Wong and P. Bazex, “MRDSM: A relational multidata-
bases management system,” in Third International Seminar
on Distributed Data Sharing Systems, F. A. Schreiber and W.
Litwin, Eds. Amsterdam, The Netherlands: North Holland,
1985.

Barbara Pernici is a Research Associate at
the CSlSEl Research Center of the Italian
National Research Council, Department of
Electronics, Politecnico di Milano, Milan,
Italy. She has been with the Department of
Electronics since 1981. Her research inter-
ests include distributed database design,
office information systems modeling and
design.

Dr. Pernici i s an affiliate member of the
IEEE Computer Societv and a member of

ACM.

546 PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5 , M A Y 1987
Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on August 10, 2009 at 15:09 from IEEE Xplore. Restrictions apply.

