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This paper surveys methodological approaches for distributed 
database design. The design of distribution  can  be  performed  top- 
down or bottom-up;  the  first  approach is typical of a  distributed 
database developed  from scratch, while  the  second  approach is 
typical of  the  development  of  a  multidatabase as the  aggregation 
of existing databases. We review the  design  problems  and  metho- 
dologies  along both directions,  and  we  describe DATAID-D, a  top- 
down  methodology  for  distribution  design. We indicate  how  the 
methodology is part of a  global  approach to database design; how 
to  collect  the  requirements  about  the  distribution  of data and 
applications;  and how  to progressively build  the  distribution of a 
schema. Our  approach is exemplified  through  one case study. 

I. INTRODUCTION 

Due  to demand for system availabilityand autonomy, and 
enabled by advances in database and communication  tech- 
nology, distributed database  systems  are becoming wide- 
spread. Many database management systems now  support 
extensions for  distribution, and at the same time  structur- 
ally distributed  transaction management systems are avail- 
able on  the market [Ill, [19]. The designers of distributed 
database applications are now  facing a new and relevant 
problem: how  to  distribute  the data and programs on  dif- 
ferent  computers to obtain  the  intended performance, reli- 
ability, and availability. Distribution design is thus emerg- 
ing as a new  problem area of database  design, which 
requires i ts own theory, design methodologies, and sup 
port tools. 

The degree of  sophistication  of  distributed database 
management systems  (DBMS) is often measured by the 
degree of  distribution transparency provided to  the users. 
In an ideal situation, the user  does not need to be aware 
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of  datadistribution, and the system  takes the responsibility 
of  distributing access operations to  the databases at dif- 
ferent sites. However, the actual distribution  of data  affects 
the overall performance of  the system: time and cost 
required  for accessing multiple data objects  differ greatly 
depending on whether  all dataobjects are stored at the same 
site or are  spread over multiple sites. Replication of data 
affects the  overall  reliability and  availability  of  the system, 
because  several copies of  the same information become 
availablewith  independent  failure modes.  At the same time, 
data replication affects performance, due to the  require- 
ment of  maintaining  the consistency of copies.  Thus the 
database designer must carefully  consider the  distribution 
of data, even when  the system supports a high degree of 
transparency. 

One key principle  in  distribution design is  to achieve 
maximum  locality of data and  applications.  While  distrib- 
uted databases enable more sophisticated communication 
between sites, the major motivation  for developing a dis- 
tributeddatabaseistoreducecommunication byallocating 
dataascloseaspossibletotheapplicationswhichusethem. 
Thus in a well-designed distributed database "90 percent 
of  the data should  be found at the  local site, and only 10 
percent of  the data should be accessed on a remote site" 
[41]. However, it rarelyoccursthat dataand  applications can 
be cleanly partitioned and assigned to a particular site; more 
often, the designer is faced by tradeoffs because  several 
applications need to access the same  data from  different 
locations. In this case, the most effective  design is  the  one 
which ensures locality to  the largest number  of applica- 
tions. A basic assumption of this paper is that  the database 
designer is able to predict  both  the  logical  properties  which 
characterize the  "locality"  of data with respect to appli- 
cations and the  quantitative  information measuring the 
"load" of applications, in terms of frequency of execution 
requests  at  each  site.  The difficulty  of designing the dis- 
tribution of a database is, in fact, due to the  interference 
of logical and quantitative considerations. 

A. Top-Down and Bottom-Up Approaches to Distribution 
Design 

Distribution design can be performed top-down or  bot- 
tom-up. The former approach is typical  of  distributed data- 
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bases developed from scratch, while  the latter  approach is 
typical  of the development  of  multi-database systems as an 
aggregation of  existing databases. 

The top-down  approach assumes that the designer 
understands the requirements  of a database application 
from  the user, and  transforms them  into formal  specifi- 
cations. During  this process, the designer performs  con- 
ceptual, logical, and physical  design phases, which pro- 
gressively refine  high-level,  system-independent spec- 
ifications  of the database into low-level, system-dependent 
specifications. During conceptual design, the designer is  
expected to ignore any detail concerning the  physical 
implementation (in particular, data distribution). The result 
is a  global database  schema which incorporates, at an 
abstract level, all the data elements of  the database and the 
patterns  of  their use. A design phase specific to distributed 
databases, called  distribution design,  maps the global 
schema to several, possibly  overlapping subschemas,  each 
one  representing the subset of  information  which is asso- 
ciated with one site. Then the design of each individual 
database is completed. 

The bottom-up approach assumes,  instead, that a spec- 
ification  of  the databases  at  each site exists already, either 
because there are existing databases that have to be inter- 
connected to  form  a multi-database  (or  federated) system 
([la], [32]), or because the conceptual  specification of  the 
databases  has been done for each site independently. In 
either case, the site specifications have to be integrated in 
order to generate a global  specification. 

While  top-down and bottom-up approaches appear to 
represent two extremes, in many practical cases the 
designer proceeds partially bottom-up and partially t o p  
down. We will present the  two approaches in separate sec- 
tions  and then discuss the  interaction  between  them. 

B. Structure of  the Paper 

In Section I I ,  we illustrate  the topdown approach to dis- 
tribution design. We indicate how  distribution is incor- 
porated into centralized database design  methodologies, 
then we classify the design  problems; we also review pre- 
vious work  on  the top-down approach. 

In Section I l l  we describe DATAID-D, a  methodologyfor 
the topdown design  of data distribution. 

In Section lVwe illustrate the  bottom-up approach to dis- 
tribution design.  We classify the problems,  present some 
solutions, and review  previous work  on  the  bottom-up 
approach. We  also  discuss how  topdown and bottom-up 
approaches relate to each other. 

11 .  THE TOP-DOWN APPROACH 

A general method  for  designing  centralized databases 
includes four phases: requirements analysis, conceptual 
design, logical design, and physical  design [8], [MI, [43],  [47]. 

Requirements Analysis  deals with  the  collection of users' 
unstructured  specificationsof  thedatabaseapplication, and 
produces an unambiguous definition and  classification  of 
theelements to beconsidered in  thedesign  of thedatabase. 
The information is collected in a  design data dictionary. 

Conceptual Design, sometimes further  divided  in View 
Design and View Integration,  produces a conceptual spec- 
ification  of a global,  integrated database  schema and  of the 
applications  that are performed  on it. 

Local Design  transforms the integrated  conceptual 
schema into adatabase schemaof  a  given DBMS type (Rela- 
tional,  Network, or Hierarchical). The choice  of DBMS type 
will be affected by the requirements  of the conceptual 
model as well as by pragmatic  considerations. 

Physical Design is  performed according to  the capabili- 
ties and features of the particular DBMS chosen, and  pro- 
duces the  definition of  physical access structures which 
implement the database. 

The design  of distribution adds to the above  phases  an 
additional one, called  Distribution Design, which assumes 
as input a global,  site-independent schema and  produces 
as a  result the subschemas for each site of the  distributed 
database. In principle,  distribution design can be applied 
to any of the global  conceptual,  logical,  or  physical sche- 
mas. This choice is subject to the  following tradeoff: 

Details  about implementation should be decided only 
when  the database distribution is given, to allow con- 
centrating on  the physical design of each local data- 
base independently.  Independent  physical  design is 
mandatory if  the site DBMSs  are heterogeneous. 
On  the  other hand, a  precise description of data and 
operations  helps in estimating the performance of var- 
ious  distributions. 

This tradeoff suggests that the  distribution design  should 
be performed at the  beginning of the logical  design phase. 
At  that  time, data and operations are described  precisely 
and the first implementation problems are considered. 

A. Problem Classification 

Database distribution requires determining  the frag- 
mentation  and  allocation of data. 

Fragmentation is the process of subdividing  a global 
object  (entity  or  relation)  into several pieces, called  frag- 
ments. 

Allocation is the process of  mapping each fragment to 
one or more sites. 

Fragments must be appropriate  units  of  allocation. Thus 
the database designers should define fragments as homo- 
geneous collections  of information  from  the  viewpoint of 
transaction access [IO], i.e., such that all instances of frag- 
ments are uniformly accessed by the transactions. 

Two types of  fragmentations are possible: 
Horizontal fragments consist of subsets of the instances 

(or  tuples)  of a global  object. Each fragment is  associated 
with a predicate  (called  qualification) which indicates the 
distinguishing  property possessed by the instances or 
tuples  of  that  fragment. It is always possible to reduce an 
overlapping  horizontal  fragmentation to a  nonoverlapping 
fragmentation by redefining  horizontal  fragments in an 
appropriate way; therefore, we can  assume without loss of 
generality  that  horizontal  fragments are disjoint. 

Vertical fragments are derived by projecting  global 
objects over subsets of  their  attributes. In order  for the  pro- 
jection to be lossless [MI, it is required that each fragment 
include  a key attribute  of  the  global  object,  or at  least  an 
internal  tuple  identifier. 

Mixed fragmentations can be built by  alternating hori- 
zontal and vertical  fragmentations. 

The rationale  of  horizontal  fragmentation is to  produce 
fragmentswith  themaximum  potential  localitywith respect 
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to operations, i.e., such that each fragment is  located where 
it is  mostly used. 

The possibility  of  not  partitioning an entity at all  should 
beconsidered. In particular, i f the benefit observed byfrag- 
menting an entity is weak, the overhead due  to  horizontal 
partitioning  might  not be compensated by the advantage 
of local processing. 

The rationale  of vertical fragmentation is  to cluster attri- 
butes frequently used together. An ideal vertical fragmen- 
tation exists when each application uses just  one subset ,of 
attributes; otherwise, some applications will be harmed, 
since they will need to access both fragments. In this gen- 
eral situation, one has to balance potential  benefits (due to 
the  possibility  of  placing each fragment close to  the appli- 
cations which mostly use it) against potential disadvantages 
(due to  the same applications accessing two fragments). 

In  the fragmentation process, the designer applies 
repeatedly horizontal and vertical fragmentation to each 
object  until appropriate fragments are obtained. 

The allocation  of fragments can be  either  nonredundant 
or redundant: 

in anonredundantallocation, each fragment is mapped 

in a redundant allocation, each fragment is mapped to 
to exactly one site; 

one  or  more sites. 

With a redundant allocation, the designer must  decide 
the degree of  replication  of each fragment. The benefit  of 
replication grows with  the ratio  between retrieval and 
updates because maintaining  the consistency of  the data- 
base requires  distributing  the updates to all the copies. 
However, the system  may permit temporary inconsisten- 
cies, and in this case replication becomes moreconvenient. 
The benefit  of  replication decreases with  the increase of 
storage  costs,  since replicated copies require  more space. 
Moreover,  replication increases resiliency from failures, 
since 

the  independent loss of several copies of  the same 

applications can access alternative copies when some 
information is unlikely; 

failure affects the copies usually accessed. 

Given the above classification of problems, the top-down 
approach to  distribution design consists of  solving  for each 
global  object the  following design problems: 

horizontal  partitioning (H) 
vertical partitioning (V) 
nonredundant  allocation (A) 
redundant  allocation (R). 

Whiletheseproblemsareclearlyrelated,mostofthework 
in  the  literature has attacked these problems  indepen- 
dently. 

B. Previous  Work on Top-Down Distribution Design 

The early work  performed on  the  problem  of data dis- 
tributionwasaddressedtothefileallocationproblem;afile 
was considered to be the  “unit  of allocation,” thus disre- 
garding the fragmentation problem. A knowledgeable user 
could,  of course, present fragments as files to this problem 
definition.  More recently, work  in  “distributed database 

design” has centered on  both  the fragmentation  and allo- 
cation problems, and their interactions. 

7) File Allocation Problem: The file  allocation  problem 
was originally investigated by Chu [16], who presented an 
integer programming formulation  of  the  problem  for a fixed 
number of copies of  the  file. Casey [61 addressed similarly 
the  problem  with a variable degree of  replication  of each 
file. Eswaran [23] proved  that Casey’s formulation is 
NP-complete. 

The file  allocation  problem was generalized by Mah- 
moud and Riordon [31] to incorporate the  determination  of 
channel capacity, and  by Morgan and Levin [35] to incor- 
porate  program allocation. Fisher and Hochbaum [24] 
improved Morgan and Levin‘s optimization  algorithm. 
Finally, lrani and Khabbaz [281 studied the  file  allocation 
problem  for  distributed supercomputer systems. 

Reference [20] provides an excellent survey of several file 
allocation methods. 

2) Distributed Database  Design:  Research in distributed 
database design typically assumes the  relational  model of 
data; this  choice is appropriate because links among remote 
files are not  too useful: remote links are not as beneficial 
aslocalIinks;itisaheavytasktoutiIizeandmaintainremote 
links  which violate site autonomy. 

Chang and  Cheng [I41 indicated  the way in  which a rela- 
tion can be  fragmented  by giving a methodology  for rela- 
tion decomposition  intofragments. Note  that  they used the 
terms horizontal and vertical for describing  fragmentation 
exactly in  the opposite way as they are  used in all the sub- 
sequent literature on fragmentation (and in this paper). 

The theory of  horizontal fragmentation was studied  by 
Maier and Ullman [33], Paredaens and De Bra [39], and Ceri 
and Pelagatti [V. Dependency-preserving horizontal de- 
compositions are  discussed in [25]. 

The problem  of  determining an optimal  horizontal frag- 
mentation for a distributed database has been investigated 
by Ceri,  Navathe, and Wiederhold [9]: the  formulation  of 
the  nonredundant  allocation  problem is given  by a linear 
integer program, and heuristics are presented for decom- 
posing the  problem  into smaller subproblems and for 
determining a redundant  allocation  starting from  the  opti- 
mal nonredundant allocation. 

Vertical fragmentation was addressed for  centralized 
databases by  Hoffer and Severance [27l and by  Hammer and 
Niamir [26]; an application  of  vertical  fragmentation to sys- 
tems with memory hierarchies (i.e., with a “fast” and a 
“slow”  memory) is presented by Eisner and Severance [21]. 
March and Scudder  have  discussed how vertical fragmen- 
tation can be  useful  for  the recovery of databases in [MI. 
Navathe,  Ceri, Wiederhold, and Dou have studied the 
application of vertical  fragmentation to  distributed data- 
bases in [37l. 

In [42], the  problem  of  distributing thedatabaseon  aclus- 
ter of processors is considered. The motivation  of such  an 
architecture is high performance, availability, and  reliabil- 
ity. The problem deviates from  the standard distribution 
design because applications also need to be allocated to 
processors; thus an object to be allocated can be  either an 
application  or a fragment. The model considers capacity 
constraints for  the CPUs, processors’ input-output, and 
network communications. 

Apers  addressed in his thesis the design and  allocation 
of  both  horizontal and  vertical fragments of relations [I], 
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[2]. In this  work,  design  and  allocation are based on query 
processing strategies, treating  nonredundant and redun- 
dant  allocation of fragments in a uniform way. 

Ill. THE DATAID-D METHODOLOGY 

This section reviews the  DATAID-D  methodology  for dis- 
tributed database design, developed at the Politecnico di 
Milano [12].  The emphasis in DATAID-D is on  providing a 
methodological  framework to  the designer, indicating  the 
relevant design  problems, which parameters are required 
to solve  each of  them,  and how each problem can be 
approached. 

Several tools  for  distribution design have been  devel- 
oped, providing facilities  for  documentation  and  for auto- 
matic selection  among  design  alternatives in some sub- 
problems. Design tools  for  deciding  about  the  horizontal 
and vertical  fragmentation  of  relations are presented in [q, 
[9], [37, [42]; their  integration  within a design  support  envi- 
ronment is discussed in [13]. All these tools can be used 
consistentlywith the  DATAID-D  approach.  In  this paper, we 
stress the methodological  approach  of DATAID-D and we 
deliberately omit any discussion  about tools; in  this way, 
the results presented  here can be immediately  applied to 
design  problems, even if  the design team has no  tools avail- 
able. Decision processes for  selecting  among  design  alter- 
natives are  based on simple  heuristics  rather  than  complex 
mathematical  formulations;  and  therefore can be handled 
manually. We refer to [I31  for  a  discussion  about tool sup  
port  to  distribution design. 

DATAID-D is built as an extension  of the DATAID-1  meth- 
odology  for  centralized database design, which is divided 
into 4 phases  [8]: 

requirements analysis 
conceptual  design 
logical  design 
physical design. 

DATAID-D requires the  addition  of  two phases to the 
original  DATAID-I  architecture (see  Fig. 1): 

Analysis of Distribution Requirements:  This  phase is 
required in order to collect  information about  distribution, 
such as partitioning predicates  for  horizontal  fragmenta- 
tions and the frequency  of  activation  of each application 
from each site. Since the structure  of data and applications 
must be known  in order to collect information about  their 
distribution,  distribution requirements are collected start- 
ing  from some of  the results of  the conceptual design phase. 

Distribution Design: This phase starts from  the speci- 
fication  of the global database  schema and from  the col- 
lected distribution requirements, and produces several 
databaseschemata,oneforeachsiteofthedistributeddata- 
base, each one describing the  portion of data that will be 
allocated to that site. 

The input  for  Distribution Design  isa  specification  of data 
and applications produced by the previous  design phase, 
in  the  form of global database  schema and  logical access 
tables. Global database  schemas  are described  using  a sim- 
ple  version  of the ER model  [E],  which includes  just  binary 
relationships;  logical access tables indicate the type  of data- 
base  access operations performed by each application  on 
each entity. In DATAID-I,  conceptual modeling is per- 
formed on a more sophisticated model, called the Extended 

ER model [8], which also includes  generalization  hierar- 
chies and  n-ary  relationships. The first  part  of Logical 
Design, Global Logical Design, transforms EER schemata 
into  simplified ER schemata and is performed before  dis- 
tribution design. The final  part  of Logical Design, which 
transforms an ER schema into  either a  relational or a Coda- 
syl  schema, is deferred until after distribution design, and 
is performed independently  for each  site. 

In this paper, we concentrate on  distribution;  thus we 
deliberately omit all  discussion  of  requirements analysis, 
conceptual design, and global  logical  design (which are 
performed before distribution design), or  of  local  logical 
design  and  physical  design (which are performed sepa- 
rately  for each site after distribution design). In  our exam- 
ple,  we will assume that the results of phases preceding 
distribution design are all available. Refer to [8] for  those 
aspects of  the  DATAID-I methodologywhich are not related 
to  distribution. 

Obviously, our clean separation  of the design process 
into phases is an idealization introduced here  for  simpli- 
fying  the  presentation  and also for  abstracting the decision 
process.  The actual  course of  the design of a distributed 
database will  require several feedbacks between phases. 

Requirements 
I 
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A. Analysis of  Distribution Requirements 

The goal of  analyzing distribution requirements is to col- 
lect all the  information that will later be used to drive  dis- 
tribution designs. Collecting requirements is adifficult  pro- 
cess which entails  communicating with users to understand 
their needs; however, in  this  paperwe just stress the results 
which should be produced, Le., thetypeof  information that 
should be collected. 

Inputs  to  this phase  are users’ requirements  for  distri- 
bution and the global data and operation schemata. Three 
types of tables are built as output of this phase: a frequency 
table  for the applications, partitioning tables for  entities, 
and polarization tables which relate data and applications. 

The frequency table gives the  number of  activations of 
each application at each site. We  assume that  all  applica- 
tions are potentially  executable at all sites; clearly, when 
one  application is never executed at one site, then  the fre- 
quency  entry in  the  corresponding  position is zero. 

The partitioning tables indicate  potential  horizontal  par- 
titioning  criteria  which apply to each entity in  the schema. 
In practice, each partitioning  criterion indicates a potential 
reason for introducing  horizontal fragmentation, and is 
induced by one  or  more  applications which access a  given 
subset of data at a given  location. 

Two types of paritioning are defined: 
Primaryparritioning,  where the  partitioning  of an entity 

E is expressed using several disjoint  predicates on  the  attri- 
butes  of E. Let p be  a  generic  predicate of some attribute 
of€;then,abinarypartitioningofEisgiven bythefragments 
F1 and F2, such thatp  holdsfortuplesof F1 and (notp) holds 
for  tuples of F2 .  

Derivedpartitioning,  where the  partitioning  of an entity 
E2 is  determined by a  binary  relationship  (of the ER model) 
between €2 and  another  entity E l  which is already parti- 
tioned. Let €1 be  an entityfragmented  into F11 and F12 and 
let E2 be a second entity  connected to El by the binary rela- 
tionship R. Then, the derived partitioning of €2 is defined 
as follows: 

F21 is  the set of  tuples  related to tuples of F11 by R; 
F22 is the set of tuples  related to tuples of F12 by R. 

We  also constrain F21 and F22 to be disjoint: hence, not 
all binary  relations R can  be  used to derive  a  partitioning; 
in order  for  this  constraint to hold, it i s  sufficient (but  not 
necessary) that R be a  1 : 1 or 1 : n relationship from E l  to €2. 

The polarization table indicates, on  a quantitative basis, 
how  the  partitions  influence  the  locality of processing  of 
applications. A  polarization value indicates the  probability 
that a given  fragment is accessed by a given  application 
issued by a  given site; we indicate only those values which 
deviate from  a  uniform  distribution. 

B. Distribution Design 

The goal of Distribution Design is to allocate data at  sites, 
starting from  the global data schema, logical access tables, 
and the  distribution requirements. 

The output of the  Distribution Design phase is a logical 
schema and  logical access tables for each site. These  are 
used during  the  following local  logical  design phase and 
during physical  design phases performed  independentlyat 
each site. 

Distribution design in DATAID-D is subdivided into  four 
phases: 

fragmentation  design 
nonredundant  allocation 
redundant  allocation 
reconstruction of local schemata. 

Fragmentation design applies  horizontal  and  vertical 
fragmentation to entities in  order  to determine  possible 
units  of  allocation  for the subsequent  design phases.  Each 
fragment, to be a  good unit  of allocation,  must  contain 
instances which are  accessed roughly  in  the same  way  (i.e., 
with the same frequency) by each application executed at 
each  site.  This uniform behavior  allows  considering frag- 
ments as uniform  units of  allocation, during  the subse- 
quent allocation phases. Obviously, a too strict  application 
of  this  criterion  would  result  in  fragmentation  down to  the 
level of an individual  attribute  or an individual  tuple;  there 
exists a threshold beyond which  further  fragmentation is 
not feasible. Fragmentation  design is mostly  a  logical  deci- 
sion, which is performed by selecting some of the  predi- 
cates from  polarization tables and  composing them  into 
logically defined fragments. 

Nonredundant  allocation is performed by mapping each 
fragment to  the site where it is mostly used.  The potential 
frequency  of use of each fragment at each site is obtained 
as the summation over all  transactions issued from that site 
of the  product between  polarizations  and  frequencies  of 
use of the fragment. It is thus possible to identify  the site 
which accesses the fragment  most  frequently,  and hence 
allocate the fragment to that site. 

A quantitative measure of the  number of accesses to a 
given  fragment from  a given site is trivially  obtained  from 
frequency  and  polarization tables. Let 

Cj frequency of application i from site j 
pj,k polarization  of  fragment k for  application i from site 

i. 
Then the  number  of accesses to fragment k  from site j is  
given by 

nkj = ,, ,Z f i j  pilk. 

Therefore, fragment k is allocated to  the site 7 such that 

n k j  = maxalli nkj. 

1.ruresk 

Redundant  allocation is performed by selecting  addi- 
tional sites for each fragment with respect to  the  initial  non- 
redundant  allocation,  using  “greedy”  heuristics. At each 
iteration, the most beneficial site for  storing  a  copy  of  the 
fragment  (if any) is added to  the set of  allocations. However, 
the benefit in retrieval accesses must  outbalance the major 
costs and complexitydue  to  updating of  redundant copies. 

Theabove  benefit isdifficulttoquantify, sincemeasuring 
the  complexity  of  managing  redundant  copies is very dif- 
ficult. However, it is possible to evaluate the difference 
between the  number of  retrieval accesses that  become  local 
due to  addition of  one  copy versus the  number of addtional 
remote  update accesses required to maintain  that copy. This 
number  should  be  largely  positive to justify  the increase of 
redundancy. The difference is evaluated for an object  kand 
a potential new copy  stored at site j as follows: 
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The reconstruction of  local schemata builds  local sche- 
mata from the  final  fragment  allocation;  this phase is also 
responsible  for the allocation  of  relationships of  the ER 
global  schema.Assumingthat most relationships are imple- 
mented as associations among  the  identifiers  of  the  cor- 
responding  entities, the  DATAID-D methodology suggests 
placing  relationships at the site of the entities or fragments 
with  the largest cardinality, so that  few  entity  identifiers will 
have to be transmitted. 

C.  Case Study: Airline Reservation  System 

1) Case Study  Description: In this section, we present an 
example of the  application  of  DATAID-D  methodology to 
an airline  reservation system.  The airline  maintains  a data- 
base distributed  over  three sites, i.e., airports l, 2, and 3, 
eachofwhichisatthecenterofageographica1area;allother 
airports which are serviced by the  company are in one  of 
these areas.  To help in visualizing the system, think of  a 
company operating in  the U.S., with 1 = Denver, CO, 
locatedintheWest,2= NewYork,NY,locatedintheNorth, 
and 3 = Atlanta, GA, located in  the South. A database  stores 
dataabout  airport  regulations, flight schedules, flight avail- 
abilities, and passenger reservations. 

We do  not present  here the conceptual  and  logical  design 
phases;  instead, we present  their results: the Global Data 
Schema and the Global Operation Schemata. A Global Data 
Schema of the database using the ER model [I51 is  shown 
inFig.2.Weassumethateachflightisdirectfromthedepar- 
ture  airport  to  the arrival  airport, without intermediate 
stops. All entities,  attributes,  and  relationships are self- 
explanatory; we have kept  our example as small and  simple 
as possible, though  it is sufficiently  complex to show some 
of  the  problems which arise in  distribution design. 

Distribution design also requires  the  collection  of knowl- 
edge about the most relevant  applications  that are per- 
formed on data.  The 80120 heuristic assures  us that we will 
obtain 80 percent of  the accesses by analyzing  the  most  fre- 
quent20percentoftheappIications.DATAID-I collectsthis 
information  into Global Operation Schemata, which show 
the use of entities  and  relationships  for each application. 

p GATE 

Examples of operation schemata for 3 applications are 
shown in Fig. 3. 

The  Make-Reservation application (Fig. 3(a)) is activated 
every time that  a  new passenger (i.e., one not  holding 
another reservation) wants to get a reservation  on  one  flight. 
Inthiscase,theaccesstothedatabaseisthroughDeparture 
and  Arrival  airport,  Departure and Arrival time, and the 
flight’s Date.  These attributes are marked in  the diagram 
with a “K,” which indicates  that  they are used as keys in 
accessing  data. Arrows  indicate  that the access proceeds 
from  the  Airport entities to  the Flight  entity via the two rela- 
tions From and To. Numbers in  the left and right  lower  cor- 
ners of  entities  indicate,  respectively, the  total  number  of 
instances and the average number of instances selected by 
the application.  Once  a flight has been  identified, a new 
instance of the Passenger entity is created, as well as an 
instance of the relationship Reservation; data about the pas- 
senger’s  Name, Telephone, and Class (corresponding to 
the ticket’s fare) are  also written ( “ W ’ )  in  the database. 
NoticethattheAvaiIableSeatsattributeisfirstreadandthen 
written (“0, W ” ;  0 indicates  output). 

A similar  application,  called Continue-Reservations, 
allows taking reservations for passengers whose data have 
already been  collected  and  stored into  the Passenger entity; 
we do not show this  application. 

The Check-ln  application is executed whenever a pas- 
senger actually boards a plane: based on  the passenger’s 
Name and on  the  Number and Date of the flight,  the 
involved Passenger and  Flight instances are detected ( “ K ’  
attributes). Then, the Class information is  retrieved (“O”), 
and based on this  information and on  the flight’s SeatMap, 
a SeatNumber is assigned to  the passenger. Both SeatMap 
and SeatNumber attributes are written,  together with  the 
number  of CheckedBags by  the passenger. 

The Airport-Departures  application  builds a  report 
describing the departure information  for  the next 30flights 
departing from  the airport, to be  displayed on TV monitors. 
The Airport  symbol  and  present Date and Time are  used to 
identify  the  involved  Airport and Flight  entities. For  each 
flight, the Number, Depa-rture-Time, Gate,  Delay, and des- 
tination  airport Symbol and City are extracted from  the 
database. Information about the destination  airport is 
determined  using the To relationship. 

Notice  that  the last operation schema is linearized,  fol- 

NAME  TELEPHONE 

SECURITY RULES 

Fig. 2. Global  Data Schema of the  airline reservation database. 
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Fig. 3. Global  Operation Schemata of the  airline  reservation database.  (a) Make-Reser- 
vation.  (b)  Check-In. (c) Airport  Departures. 

lowingthe application’s access path through data. As a more 
general consideration, notice  that operation schemata are 
“procedural,” i.e., they  indicate precisely the access path 
of an application  through  the database;  however, they are 
built at a logical level, without  postulating  the existence of 
access methods. Subsequent design phases  (i.e., local log- 
ical design and physical design) will decide which access 
methods haveto  be provided, based on theseschemataand 
on quantitative  information abouttheapplications’load [8]. 

Finally, quantitative data about  applications are  sum- 
marized for each entity,  building  the  logical access tables. 
Fig.  4(a) shows the logicalaccess fable for  the  entity Flight. 
Columns  correspond to operations, rows correspond to the 
entity’s attributes; positions in  the matrix  indicate  the  type 
of  action (“0,” “W,” “ K ” )  performed on objects. The row 
denoted by RA (relationship access) indicates whether a 

relationship was used for accessing the  entity,  while  the 
row  denoted by AN (accesses number) gives the  total  num- 
ber of instances involved in  the operation. For a more 
detailed  description, see [8]. 

2) Analysis of Distribution Requirements in the  Airline 
Reservation System: In this section we examine how dis- 
tribution requirements are represented  by the DATAID-D 
methodology after the analysis of  distribution  require- 
ments phase. 

The frequency fable illustrated in Fig.  4(b)  shows the fre- 
quencyof  applications a, b, cdescribed in  the Global  Oper- 
ation Schemata in Fig. 3 at  sites 1 (Denver), 2 (New York), 
3 (Atlanta). 

Partitioning fables for  the  Airline Reservation  Database 
are shown in Fig. 5(a) and (b). Fig. 5(b)  shows the primary 
partitioning  table  for  entities  Airport and Passenger.  The 
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E n t i t y  : FLIGHT 

A t t r i b u t e s  

NUMBER 

DATE 

SEAT  MRP 

GATE 

DELAY 

AVAILABLE 

SEATS 

R4 

AN 

T 

y 
O p e r a t i o n s  

FROn 

30 

Frequency 
t a b l e  1 2 3 

S i t e s  

Opera t i ons  

a 10000 20000 10000 I 

(b) 

intity access table (a) and  frequency  table  (b). 

aeslgner chooses the Area attribute as a  partitioning  cri- 
terion for  the  Airport  entity and the  first  three  digits  of  tele- 
phonenumber(areacode)asapartitioningattributeforthe 
Passenger entity. For each possiblevalue of the  partitioning 
attribute,  predicate  selectivity gives the percentage of the 
tuples  of the  entity  with that value. 

The designer then considers  potential  derived  partition- 
ing  induced  by the primary  partitioning  of  Airports  into 
Areas. Four derived partitioning choices are considered in 
Fig.  5(b): 

The Flight  entity can be partitioned in two ways, based 
on the  relationship From (with  the departure  airport) or To 
(with  thearrival  airport) and the  partitioningof airports into 
areas. Notice  that the same primary  partitioning gives rise 
to two different  derived  partitionings based on  the use of 
two different  relationships. 

The  last two rows show two alternative ways of parti- 
tioning the Passenger entity based on  the relationships from 
Reservation to Flight, partitioned by departure areas. Notice 
that in this case the derivation mechanism is  in two steps, 
since i t  is applied from  Airport  to Flight  and then  from Flight 
to Passenger. In  the former case, passengers  are partitioned 
based on  the  flight  on  which they hold  the  first reservation; 
in  the latter case, passengers are partitioned based on al l  
the reservations that  they  hold. Seven  cases are possible 
(illustrated in  the NOTE table): passengers  can hold reser- 
vations on flights  that leave only  from  one area (A, B, C), 
orfromtwoareas(AB,BC,AC),orfinallyfromallthreeareas 

(ABC). The  above  seven  cases  are required because Reser- 
vation is a many-to-many relationship (each passenger  can 
hold  multiple reservations)  and yet in  the  definition  of  the 
fragmentation we want to map each  passenger in  the real 
worldto exactlyone  instance  of the Passenger entity. In  the 
first case, each Passenger instance is statically assigned to 
a partition  when  the  first  reservation is made, while  in  the 
second case the  mapping of Passenger instances to parti- 
tions is dynamic: whenever a passenger  changes  reserva- 
tion, the  corresponding  entity instance might move from 
one  partition to another. 

Fig. 6 shows the polarization table. Columns are  associ- 
ated with activations  of  applications at each  site, rows with 
partitioning  predicates. Each entry indicates the percent- 
age of accesses to a  fragment  if the particular partitioning 
criterion is selected. In practice, only  afew entries are  spec- 

P r i m a r y   p a r t i t i o n i n g   t a b l e  

E n t i t y  P r e d i c a t e   S e l e c t i v i t y   P r e d i c a t e s   P a r t i t i o n  Name 

AIRPORT 

25  .AREA = ' S '  

45 AREA = 'N' 
30 AREA = ' W '  AREA 

PASSENGER  TELEPHONE 

(FIRST 3 DIGITS) 
OR '408"' OR"' 
TELEPHONE = '415 * '  

35 

TELEPHONE = 'W*' 
OR ' 7 1 3 * '  O R . . .  

TELEPHONE = '212 * '  
35 

30 OR ' 6 1 7 * '  O R . . .  

(a) 

r D e r i v e d   p a r t i t i o n i n g   t a b l e  

Entity 
P r e d i c a t e   P a r t i t i o n  Base Entity Assoc ia t i on   f o r  

t h e   d e r i v a t i o n  S e l e c t i v i t y  Narfe 

FLIGHT SAME AREA AIRPORT FROM 

WTE:FLIGHT DEPARTURE P a r t i t i o n i n g   i s  based  on  7 p red ica tes :  P red ica te  
S e l e c t i v i t y  

P1 : All f l igh ts   reserved  by   the   passenger   depar t   f ran   a rea  A 

10 P7 : All f l i gh ts   rese rved   by  the passenger  depart  from a l l  areas 

10 P6 : All f l i g h t s   r e s e r v e d  by  the  passenger  depart fm areas B and C 

10 P5 : All f l i g h t s   r e s e r v e d  by  the  passenger  depart  from  areas A and C 

10 P4 : A11 f l i g h t s   r e s e r v e d  by  the  passenger  depart  from  areas A and B 

20 P3 : All f l i g h t s   r e s e r v e d  by  the  passenger  depart  from  area C 

20 P2 : All f l i g h t s   r e s e r v e d  by  the  passenger  depart  from  area B 

20 

- 
(b) 

Fig. 5. (a) Primary partitioning  table.  (b)  Derived  partition- 
ing table. 
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Fig. 6. Polarization table. 

a C b 

1 2 3 1 2 3 1 2 3  

ified; the  remaining  entries can be computed by assuming 
uniform  distribution of the  remaining instances.  Some  sub- 
matrices are not relevant because the  application does not 
use the entity; these are crossed out in the table. 

To illustrate, let us  discuss the  first submatrix associated 
with  the Make-Reservation application (Fig.  3(a)) and using 
the  partitioning of the  Airport  entity by areas (respectively, 
Pl for area 1, P2 for area 2, and P3 for area  3). The matrix 
indicates that  if  we  partition  airports  by areas, then a query 
about reservations issued at  area 1 has 80 percent  proba- 
bilityof beingrelatedtoairportsinarea1.Fortheothertwo 
positions in  column 1 we assume uniformity over the 
remaining 20 percent of access. 

3) Distribution Design in the Airline Reservation System: 
Distribution design consists of  four steps: the selection of 
fragmentation criteria  for each entity, the  determination  of 
nonredundant allocation, the  introduction  of redundancy 
over the  nonredundant allocation, and, finally, the recon- 
struction  of local schemata  at  each  site  (see Fig. 7). 

a) Fragmentation design:Given the  potential  partition- 
ingcriteriacontained  in  the  polarization tables, the designer 
must here select the most appropriate one  for each entity, 
and validate that  the  partitioning itself is convenient. This 
requires the  quantitative analysis of  the relevant applica- 
tions, which can be classified in three classes: those which 
are made easier by the partitioning,  those  which are made 
more  difficult, and, finally, those which are not affected. 
Then, the  partitioning is convenient if  the  first class is 

\ 

PASSENGER.l  U 
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P A S S E N G E R . 5 U  
PASSENGER. 7 

S i t e  1 

1 
AC 

PASSENGER. 2 U 
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PASSENGER. 6 U 

PASSENGER. 7 

S i t e  2 
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PASSENGER. 5 U 
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PASSENGER. 7 

(rl - - - - - _ _  A I R P O R T .  3 S i t e  3 

1 
Fig. 7. Result of distribution design:  local  schematafor sites 
1-3. 

"larger" than  the second class. In  our case study: 

1) vertical partitioning is not  useful to determine  units 
of allocation, in fact, no application exists that can be 
clearly eased by a vertical partitioning; 

2) conversely, all  entities have a horizontal fragmenta- 
tion: 

the  Airport  entity has a primary  horizontal frag- 
mentation based on Area (fragments Airport.1, 
Airport.2, Airport.3); 
the Flight entity has a derived horizontal frag- 
mentation based on  the Departure  airport (frag- 
ments Flight.1,  Flight.2,  Flight.3); 
the Passenger entity has a derived horizontal frag- 
mentation based on Departure of all Flights on 
which  the passenger is  booked (fragments Pas- 
senger.1 to Passenger.7). 

b) Nonredundant allocation: In some  cases, nonre- 
dundant  allocation  follows easily from  the selection of  the 
partitioning  criterion. For  instance, Airport.1, Flight.1, and 
Passenger.1  are immediatelyallocated at si t  e l ,  and likewise 
Airport.2,  Flight.2, and Passenger.2  are allocated at site 2 
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and Airport.3,  Flight.3, and Passenger.3 are allocated at site 
3. For other fragments of  the  entity Passenger, we  need to 
select the site which mostly uses the fragment  according 
to the  polarization tables and frequency tables; thus  we 
allocate Passenger.4,  Passenger.6, and Passenger.7 to site 
2, Passenger.5 to site 3. 

c) Redundant allocation:  Redundancy is then consid- 
ered; in many cases, costs  associated with redundancy out- 
balance benefits for  all fragments of  the same entity. This 
is the case in the  Airport and Flight entities. For the frag- 
ments of  the Passenger entity we introduce instead a lim- 
ited degree of redundancy: Passenger.4,  Passenger.5, and 
Passenger.6, which correspond to passengers holding 
reservations on flights  departing  from  two areas, are stored 
atthetwocorrespondingsites. Likewise,  Passenger.7,which 
includes passengers with flights leaving from all  three areas, 
is stored at all sites. 

d) Reconstruction oflocalschemata: This  step is  mostly 
concerned with  the fragmentation and allocation  of rela- 
tionships  of  the ER global data model.  According to  the 
above allocation  of fragments, the relationships Reserva- 
tion and Check-In happen to have a natural  allocation such 
that  all  links are local (because  each  passenger is associated 
to  one Passenger instance at  each  site where he holds a 
reservation or checks in). The  From relationship is also nat- 
urally allocated,  since Airport and Flight entities are par- 
titioned  horizontally  according to  the From relationship; 
hence, all links are  local.  Instead, the  distribution  of  theTo 
relationship needs to be discussed,  since it links  entity 
instances which may be  stored at two  different sites. In  our 
solution, the instances of  the To relationship are stored at 
the same site as the corresponding instances of  the  Flight 
entity. 

The most relevant property  of  this  solution is that  all 
requests about  flights can be answered by looking  only at 
the data which are allocated at the departure site of  the 
flight; no remote information is required  for preparing for 
the flight's departurewhen  the database is heavily used. As 
a drawback,  passenger information is  replicated, and a 
careful management of passenger information must  be 
done  when reservations  are taken. 

IV. BO~OM-UP DISTRIBUTION DESIGN 

In the  bottom-up approach,  schemata representing the 
portion  of data stored at  each individual site constitute  the 
starting  point in the design, and distribution design con- 
sists of  identifying  the data which are common to them, as 
well as their differences. 

During operation, most multi-database systems provide 
only  global  query  capability and local update capability, so 
that each local system  may only  be updated  by transactions 
issued  at that site. If  the designer cannot modify  the local 
databases of a multi-database system, then  conflict reso- 
lution has to be  incorporated into  the  query processing 
capability  of  the system. 

Multidatabase support  provides an automatic mapping 
of queries issued according to  the  global view into queries 
applicable to the local schemata, and  coordinates the exe- 
cution  of queries and the  collection  of results. 

A. Design Problems in Building a Global Schema 

Problems in  the  bottom-up design of a multi-database 
system  are due to the need for building a global schema 
(also called Superview in [18],  [36]).  The integration process 
recognizes matching  entities and their attributes. 

To integrate databases we  need to select a suitable type 
of data model  for  the  global schema.  Previous work  on view 
integration has demonstrated the power of generalization 
hierarchies to support view  integration. A generalization 
hierarchy allows defining a type-subtype  relationship 
between two entities; this can be  useful  when two views 
give a partially  overlapping description  of  the same entity. 
Then, the classical solution of  theview  integration  problem 
consists in generating three entities, one  with  the  common 
attributes  and  the  other  two with  the nonoverlapping  attri- 
butes [22]. An example is shown in Fig.  8, where two views 
of the Flight entity have some common attributes; in  the 
global view, the  common  attributes are  associated with  the 
supertype, and one subtype is  generated for each view 
including  the nonoverlapping attributes. Generalization 
hierarchies are represented by  double-line arrows. 

The need for generalization hierarchies indicates that 
conceptual models such as the ER model (extended with 
generalization hierarchies), the  structural model, or  the 
functional  model are good candidates for  the view  inte- 
gration process. In this paper,we use the ER model extended 
with generalization hierarchies, as shown in Fig. 8; gen- 
eralization hierarchies are represented by  double-line 
arrows. 

In the example, two views of  the Flight entity have  some 
common attributes; in  the global view, we generate a gen- 
eralization hierarchy, with  one supertype and two sub- 
types; the supertype has the common attributes, while  the 
subtypes correspond each to one view; "difference"  attri- 
butes are related to  the subtypes. 

Another general question is the order o f  integration  of 
views. When several  views  are present, integration is typ 
ically performed by merging  one view at a time  with  the 
global schema, which is  thus  built progressively. Thus the 
general problem  thatweconsider is howto  build  the super- 
view of  two views. It is, in general, better to integrate  first 
the largest or most important views, followed by the small- 
est or least important ones. 

7) Recognizing Similarities: The first step in the integra- 
tion  of  two schemata is to recognize their similarities; these 
provide  the  starting'point  for  integration. Matches can be 
recognized because of  the  naming  or  structure similarities 
of overlapping portions  of  the schemata. Matches can  also 
bededuced  from  similarityof data in pre-existingdatabases 
or files. Similar valuesets indicateoverlap.  Domainsof  attri- 
butes can be matched by comparing  their  projections. 
Observing  that files or domains have the same or nearly the 
same cardinality can be an initial  hint. 

If  different  applications  on  different database locations 
use  copies of  the same source data, then  there is surely  some 
overlap  between the databases. 

2) Recognizing Conflicts: Integration  should also iden- 
tify conflicts, i.e., different representations or  domain  def- 
initions  of  similiar data in different schemata [3], [22], [38]. 
Conflicts can be resolved by  incorporating differences in 
theglobal  model  or  by  inducingcompromises in  the source 
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Fig. 8. Merge of two views  using  generalization  hierarchies. 

models [471. Conflicts  which cannot  be resolved at design 
time  require selection of policies for answering queries with 
inconsistent data. 

Schema differences  include  naming conflicts, scale dif- 
ferences, and structural differences. 

Naming conflicts: There are two types of  naming con- 
flicts: synonyms occur when data objects  which represent 
the same world  objects have been given different names 
in  the two views; homonyms  occur when data objects with 
the same name in  two views represent different  real-world 
objects. Once  naming  conflicts are detected, they are  easily 
handled  by  storing name correspondence tables in  the 
global schema. 

9 Domain differences:  The most insidious  problems are 
due to domain differences. A relation Personnel at a site 
handlingthe  payroll may not  includecontractor personnel, 
who are paid  indirectly.  At  the site where  projects are man- 
aged, contractor  personnel are included,  but auditors, who 
are not assignable to any project, are not.  Detection of such 
problems is best achieved by comparing  the source data- 
bases or files, and noting inconsistencies. Generalization 
hierarchiescan  be used for representing the  solution  to  this 
problem. In  the above case, permanent personnel, con- 
tractor personnel, and  auditors  could all  be subtypes of  the 
same entity Personnel. Applications, such as payment,  are 
then  performed  in  different ways according to  the subtype 
that they use. 

Scaledifferences: Scale differences may be found  in  dif- 
ferent views of  the same numeric values.  The  data should 
be  retrieved using, if possible, the  more precise scale, and 
joined  or  output using  conversion  formulas.  Conversion 
formulas should be stored as a part  of  the  global schema, 
if the  distributed DBMS  can support them. 

Structural differences: Structural differences may be 
due to  different design choices in each  view; for instance, 

the same real-world  object can be modeled as an attribute 
in  one view  and as an entity in another view. Only a few 
of these differences can be dealt with by generalization in 
the  global schema. In view design, structural differences 
are typically solved by  changing one  or  both views. When 
dealing with autonomous databases, structural differences 
typically  require  writing complex query  modification pro- 
cedures, to be  stored in  the  global schema, if  the  distrib- 
uted DBMS  can support  them [18]. 

Many of  the above conflicts  should be reported and  fixed 
before  integration,  and  local systems should be modified 
to reflect  integration whenever possible. Otherwise, the 
global schema should  include  information about conflicts, 
and policies for  resolution. Clearly, the management of 
conversion formulas , query  modification procedures, or 
conflict  resolution policies, mentioned  in  this section, 
requirean extension of  the capabilities of  traditional DBMS 
in  the  direction  of  more sophisticated multi-database sys- 
tems; in absence of such  extensions, the above  features 
must be  carefully  supported  by  application programs. 

3) Dealing with  Inconsistent Data During Operation: In 
practice, operational multi-databases have  errors;  an error 
rate of up  to 1 percent  per stored records is not unusual. 
They  may be  due to  input transcription,  omission  or  failure 
in synchronization of updates, and improper  recoveryfrom 
system errors. The  database designer must  decide the  pol- 
icies for dealing with inconsistencies that arise duringoper- 
ation  of  the  global database. 

Let  us consider, for instance, the  situation  where two 
instances of  the Employee entities  stored at different sites 
happen to have the same identifier,  but  different values for 
the salary attribute. This situation can be due  to several  rea- 
sons: 

It i s  possible that  the same identifier corresponds to 
twodifferentemp1oyees;thissituationcan besolved bysys- 
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tematically modifying values as they are extracted from the 
database.  For instance, it is possible to  introduce system- 
wide unique identifiers,  concatenating all local  identifiers 
with site identifiers. 

Another  possibility is that the same employee has two 
different  jobs at the  two sites, and the salary attributes  just 
refer to  the  two  different jobs. This may be considered at 
the level of schema integration,  treating thetwo salaryattri- 
butes as homonyms.  Otherwise, it is possible to manage 
this data inconsistency  by  indicating in  the  global schema 
that all queries  interested in  the global salary should  com- 
pute  it as the summation  of the  two local salaries. 

A third reason for  discrepancy may  be obsolescence. 
This  again can be solved at the schema level, treating  the 
two salaries as homonyms (i.e,, old salary and new salary). 
Otherwise, it i s  possible to operate at the  query  modifi- 
cation level, indicating  that  the most recent value should 
be used (in  this case, the salary attributes must be time- 
stamped, but obviously  this is  an additional  major cost). 

A fourth reason for  the  inconsistency  presented above 
is actual incorrectness,  due to spurious  errors. 

The four situations above have shown  that the database 
designer has  several options  on  how  to manage inconsis- 
tencies. While inconsistencieswill  bedetected at execution 
time, the  determination of  policies  for  solving  inconsis- 
tencies is  a  design  problem. Policies include: 

Presenting any one  of the inconsistent values without 
notifying  the user: the most  straightforward but at the same 
time most dangerous solution. 

Presenting all inconsistent values, and  showing to  the 
user the sources of the  information.  In  this case, the user 
should be able to evaluate the causes of  inconsistencies. 

Evaluate  some  aggregate function  on  the inconsistent 
values and present the result of the  function  to the user. 
Possible  aggregate functions  include average, minimum, 
maximum. This technique was used where  observations 
were expected to differ since they  occurred at different 
times [4]. 

Present the most recent value. This policy  requires the 
time-stamping  of  update  operations (which is certainly 
rather  costly). It is based on  the assumption  that incon- 
sistencies are due to deferred updates, and  thus the latest 
value is also the most likely one. 

Present the value from  the most reliable system.  This 
policy is based on the  assumption  that the designer is able 
to evaluate the  reliability  of sites in  the  distributed data- 
base. 

B. An  Example of Bottom-Up  Integration 

Assume that two operational  airlines  decide to have a 
multidatabase system in order to allow  queries  about flight 
availabilities from any office  of the  two companies. Let the 
conceptual schema illustrated in Fig. 2 and discussed in 
Section 1li-C be associated with  airline A, and let the con- 

ceptual schema of Fig. 9  represent the data of  airline B. Let 
us look at the features of  the schema of  airline  B and com- 
pare the schema with  the schema of  airline A. Clearly, the 
new schema is simpler; in particular,  there is no  informa- 
tion about  airport  sand  check-ins.  Information  aboutdepar- 
ture and arrival  of  flights is represented as attributes of the 
entity  Flight. The  basic information about passengers and 
flights is, however, very similar. 

Fig.  10 represents the global schema built after  integra- 
tion.  A  generalization  hierarchy is used to represent two 
subtypes F1ight.A and Flight.B, while the  supertype  Flight 
contains all common attributes. They include  the Flightld, 
called flight  Number  in schema A; here, a synonym is rec- 
ognized.  Common  attributes also include  the  flight Date, 
which was encoded in  the first  positions of the  attribute 
Departure Time;  here, a  more difficult analysis is required. 
The entity F1ight.A is related to  the  entity Passenger through 
the  relationship  Checkln,  showing  that  this information is  
available only for  entities  of schema A. Finally, the  infor- 
mation  about the departure  and  arrival  airports is repre- 
sented in different ways for  entities F1ight.A and Flight.B, 
reflecting  the  different  representations.  Notice  that a query 
requesting information about  flights  departing from  a given 
airport  (for instance, the  Airport-Departure application  of 
Section Ill-C)should betranslatedinverydifferentwaysfor 
the  two local schemata. 

C. Earlier  Work in Bottom-Up  Distribution Design 

Many  of  the  considerations  of  this  section  are  derived 
from  the paper by Dayal and  Hwang [IB]. The integration 
of multi-databases is also discussed by  Breitbart  and  Paolini 
[5], Litwin [29], Wong and Bazex [MI, and Dayal[17l. These 
papers describe how queries  should be decomposed into 
subqueries to each local system; we have not discussed this 
topic, since it is more related to the development of  a  multi- 
database  system than to  the design of applications  for such 
systems. 

View  integration is  mainly discussed in  the  frameworkof 
database design  for  centralized systems by ElMasri and 
Wiederhold  [Dl, Batini, Lenzerini,  and  Moscarini [3], and 
Navathe,  Sashidar, and ElMasri [MI. Though  generalization 
hierarchies are modeled in slightly  different ways, the use 
of generalization  hierarchies in view  integration is sug- 
gested by most references in view  integration, including 
[22] (using the Structural Model), [3] (using the EER model), 
and [I81  (using the  functional data model). 

D. Interaction Between Top-Down and Bottom-Up 
Approaches 

In Section I I ,  we  have presented the  pure  topdown 
approach, in  which thedatabasedesigner  ignoresany phys- 
ical detail (including  distribution)  when  performing con- 
ceptual design. While this  approach is  theoretically valu- 
able, there can be practical  situations  for which it is 
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Fig. 9. Conceptual  schema of airline B.  
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Fig. 10. Global schemata built after  integration. 

inappropriate. For instance, assume that the database 
describes an enterprise which is organized by functions, 
with each function immediately  mapped to one database 
location. 

Even if  thedesign is started from scratch, abstractingfrom 
distribution  information  might be unnatural  in  this case. 
One possible  approach to  the design is to proceed  partially 
topdown and partially  bottom-up, by collecting  require- 
ments and performing conceptual  design  for each function 
independently, then  integrating  all  conceptual schemata 
intoaglobal one, and finally  redistributingthe  information. 
Clearly, with this  approach we retain the  notion of the view 
where each object was originally  defined, because in  turn 
this  notion  will suggest the allocation of the object. How- 
ever, redistribution is useful  for introducing replication and 
for  “moving” some objects from one  local schema to 
another. 

In summary,a”pure”top-down  approach todistribution 
is advisable for views that have no correspondence with 
distribution,  while a bottom-up approach  isadvisable  when 
views have an immediate  correspondence to database loca- 
tions; all intermediate  situation are possible and should be 
dealt with by  intermediate approaches. 

V. CONCLUSIONS 

As distributed  applications are becoming  a  reality,  dis- 
tribution design is becominga new and  relevant areawithin 
database design. Distribution requires i ts  own theory, 
problem  definitions,  solution  methods,  and  methodolo- 
gies. 

This paper has presented  a survey of top-down and  bot- 
tom-up approaches to  distribution design and has focused 
on the  DATAID-D topdown methodology; approaches  have 
been  exemplified  and  compared. 
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