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ABSTRACT

Anthropogenic influences are expected to cause the probability distribution

of weather variables to change in non-trivial ways. This study presents sim-

ple non-parametric methods for exploring and comparing differences in pairs

of probability distribution functions. The methods are based on quantiles

and allow changes in all parts of the probability distribution to be investi-

gated, including the extreme tails. Adjusted quantiles are used to investigate

whether changes are simply due to shifts in location (e.g. mean) and/or scale

(e.g. variance). Sampling uncertainty in the quantile differences is assessed

using simultaneous confidence intervals calculated using a bootstrap resam-

pling method that takes account of serial (intraseasonal) dependency. The

methods are simple enough to be used on large gridded data sets. They

are demonstrated here by exploring the changes between European regional

climate model simulations of daily minimum temperature and precipitation

totals for winters in 1961–90 and 2071–2100. Projected changes in daily

precipitation are generally found to be well described by simple increases in

scale, whereas minimum temperature exhibits changes in both location and

scale.
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1 Introduction

The comparison of two time series is a common task in climate research.

Daily precipitation, for example, might be compared at two sites, or during

two periods at one site. Many comparisons could be made, but here the focus

is on differences in the marginal probability distributions of the two series.

Our interest and examples are motivated by a desire to explore possible

future changes in the distributions of meteorological variables due to climate

change. For example, there is much interest in how extremes in the tails of

the distribution (e.g. the 90th and higher percentiles) might change in future

climates (IPCC 2001). Changes in such quantities are likely to have greater

societal impact than changes in the mean of the distribution (e.g. Beniston

et al. 2005, manuscript submitted to Climatic Change).

Two distributions can be compared graphically by plotting estimates of

the density functions, such as histograms, or by quantile-quantile plots. Infer-

ences about the similarity of distributions of weather variables have generally

been made with parametric statistical tests, such as the t-test for equality

of means, or the F-test for equality of variances; see von Storch and Zwiers

(2001) or Wilks (1995) for details. However, such tests rely on strong distri-

butional assumptions to which their performance can be sensitive, they give

only a limited view of how the distributions differ when more detail can be
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useful, and their implementation in the presence of serial dependence (e.g.

correlation) can be troublesome. The t-test for example is unable to detect

changes in scale, the F-test is unable to detect changes in location, and both

can have low power if the distributions are not normal (e.g. Wilcox 1997,

chapter 5). This study describes a simple technique that depicts how two

distributions differ and that can be used to assess whether or not the differ-

ence can be characterised by a change in location or scale, often measured

respectively by sample means and variances. The technique is flexible and

can be tailored to focus on parts of the distribution, such as the extreme

lower or upper tails, that are of specific interest, and it takes proper account

of possible temporal and spatial dependence within and between the two

series.

The technique is described in section 2 and demonstrated with an applica-

tion in section 3. The example application examines the changes in distribu-

tions of daily minimum temperature and daily precipitation throughout Eu-

rope over the 21st century, as simulated by the Danish Meteorological Insti-

tute’s high resolution (50km grid) regional climate model HIRHAM4 (Chris-

tensen et al. 1998) for the European Union project PRUDENCE (Christensen

et al. 2002). The simulations comprise a control (1961–90) and a scenario

(2071–2100) integration, the latter forced by the IPCC A2 emissions sce-

nario (Nakićenović et al. 2000). Boundary conditions are supplied by the
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Hadley Centre’s global, atmosphere-only model HadAM3H, which is driven

by observed sea ice and sea-surface temperatures (HadISST1) in the control;

sea ice and sea-surface temperatures in the scenario are determined from

changes simulated by the coupled model HadCM3. See the PRUDENCE

project web-site at http://prudence.dmi.dk for more details.

2 Statistical method

a Hypotheses

The aim is to understand any differences between the probability distribu-

tions of two variables, such as daily maximum temperatures at two sites.

Simple characterisations of the possibly complex differences are often able

to capture the main features and aid understanding. Two such characterisa-

tions are of particular interest: differences in location or scale, for which the

distributions are related by a constant translation or scaling respectively.

Let X and Y denote the two variables, and let their distribution functions

be F (x) = P (X ≤ x) and G(y) = P (Y ≤ y), where P (A) denotes the

probability of an event A. See von Storch and Zwiers (2001) or Wilks (1995)

for basic introductions to probability distributions. The following hypotheses
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are of interest for understanding changing distributions:

H0 F (z) = G(z)

HS F (σXz) = G(σY z)

HL F (µX + z) = G(µY + z)

HLS F (µX + σXz) = G(µY + σY z)

(1)

for all −∞ < z < ∞ and unknown constants µX , µY , σX > 0 and σY > 0.

Hypothesis H0 claims no difference between F and G, HS a difference only in

scale, HL a difference only in location, and HLS a difference only in location

and scale. The relative impacts of location and scale changes have been

discussed using parametric approaches by Mearns et al. (1984), and Katz

and Brown (1992) among others.

In the remainder of this section, functions of quantiles that summarise the

differences between F and G are defined, and simple, informative plots are

described that support an informal assessment of the legitimacy of hypotheses

(1). Methods are presented for computing confidence intervals to represent

the variability of the quantile estimators, and formal testing of the hypotheses

is discussed.
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b Quantiles

The p-quantile (100p-percentile) of a continuous distribution is the value

below which a proportion p of the probability mass falls. For example, the

p-quantile, xp, of F satisfies F (xp) = p. If {X1, . . . , Xm} and {Y1, . . . , Yn}

are samples from distributions F and G, and X(1) ≤ . . . ≤ X(m) and Y(1) ≤

. . . ≤ Y(n) are the order statistics (samples arranged in increasing order),

then estimators for the p-quantiles of F and G are

x̂p = X(bpm+0.5c) and ŷp = Y(bpn+0.5c),

where bzc denotes the integer part of z. Different quantile estimators might

be preferred if the sample sizes are small (Parrish 1990). See Bonsal et al.

(2001) for an application examining changes in temperature quantiles, and

Wilcox (1997) for more material on such non-parametric statistics.

Three useful statistics for summarising a distribution are the median,

inter-quartile range and Yule-Kendall skewness measure, which are computed

from just three quantiles:

mX = x̂0.5,

sX = x̂0.75 − x̂0.25,

aX = (x̂0.75 − 2x̂0.5 + x̂0.25)/sX .

(2)

These statistics are resistant measures of the location, scale and shape (asym-

metry) of F , and can be compared with the corresponding statistics, mY , sY

7



and aY , for G. See Lanzante (1996) for examples demonstrating the benefits

of using such measures.

For illustration, these statistics are now computed from all of the winter

daily minimum temperatures simulated by HIRHAM4 at a single grid point

(46.4805◦N, 7.9761◦E) in both the control (X) and scenario (Y ) 30-year in-

tegrations. Winter is defined to cover December, January and February

(DJF), yielding sample sizes m = n = 2700. In the control, mX = −12.2◦C,

sX = 10.1◦C and aX = −0.23; in the scenario, mY = −8.2◦C, sY = 7.3◦C

and aY = −0.06. Histograms and boxplots of the grid-point temperatures

are reproduced in Fig. 1. Note that the skewness measures compare the

relative heights of the lower and upper boxes in the boxplots. These statis-

tics and plots indicate a general warming together with a reduction in scale

and a change in shape of the distribution: the long, colder tail evident in

the control becomes shorter, resulting in a more symmetric distribution in

the scenario. Similar behaviour has been noted in observations such as the

Central England Temperature series (Antoniadou et al. 2001).

Another informative comparison is made by the quantile-quantile plot

of ŷp against x̂p for p = 1/N , 2/N , . . . , 1, where N = min(m,n). The

hypotheses (1) correspond to different linear relationships between the two
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sets of quantiles:

H0 yp = xp

HS yp = σY (xp/σX)

HL yp = µY + (xp − µX)

HLS yp = µY + σY (xp − µX)/σX

(3)

for all 0 < p < 1. The right-hand sides of equalities HS, HL and HLS are the

quantiles for the distribution obtained by adjusting F to have respectively

the same scale, location, and location and scale as G.

The quantile-quantile plot of the scenario versus control grid-point tem-

peratures is reproduced in Fig. 2a. Estimates of the linear relationships (3)

for hypotheses H0, HL and HLS are superimposed, where the location pa-

rameters, µX and µY , are estimated by the medians mX and mY , and the

scale parameters, σX and σY , by the inter-quartile ranges sX and sY . The es-

timated location-scale model for HLS (dotted line) is reasonably close to the

quantile-quantile plot except for some discrepancies at low and high tempera-

tures. This indicates that, while the changes to the body of the temperature

distribution are well described by a change in location and scale, a more

complex model is required to describe the changes in the extreme tails of the

distribution.
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c Exploring changes in gridded fields

The quantile-quantile plot is practicable if only a small number of pairwise

comparisons are to be made. With gridded data, comparing distributions

between two time periods at each of several thousand grid points is often of

interest. In this case, it is more valuable to plot maps showing the change

in a single quantile, such as ŷp − x̂p, at each grid point. Values of p can be

chosen to cover different parts of the distribution: for the centre, p = 0.25,

0.5 and 0.75 might suffice; for the lower or upper tail, p = 0.01, 0.05 and 0.1

or p = 0.9, 0.95 and 0.99 could be used. All nine of these quantiles will be

examined in our application. The 0.1- and 0.9-quantiles correspond to the

IPCC (2001) definition of an extreme event; the rarer quantiles provide more

information about the tails. Sample size will dictate how far into the tails

quantile estimators are acceptably precise.

If there is no difference between F and G (hypothesis H0) then from (3)

ŷp − x̂p is expected to be approximately zero for each p. If maps of these

quantile differences show non-zero values then a simple explanation could be

a change in location. If hypothesis HL and the corresponding relationship

(3) hold then the estimators

ŷp − {mY + (x̂p −mX)}

for the location-adjusted quantile differences are expected to be zero, and
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maps of these differences are useful for diagnosing a location shift. If signifi-

cant patterns still remain then it is possible to look for an additional change

in scale. If hypothesis HLS and the corresponding relationship (3) hold then

the estimators

ŷp −
{
mY + sY

(
x̂p −mX

sX

)}

for the location- and scale-adjusted quantile differences are expected to be

zero, and maps of these differences are useful for diagnosing location and

scale shifts. Careful scrutiny of such maps can lead to a good understanding

of how distributions differ at each grid point, and how these differences vary

geographically.

For illustration, the quantile differences between the control and scenario

temperatures at the example grid point are shown in Fig. 2b. The location-

and scale-adjusted differences confirm the earlier finding that model HLS

provides a reasonable fit except in the tails. See Beniston and Stephenson

(2004) and McGregor et al. (2005) for other applications of this technique.

d Confidence intervals

Sample estimates d̂p = ŷp − x̂p differ from the true differences dp = yp − xp

due to sampling uncertainty. This can be quantified by calculating confidence

intervals for dp. The interval [Lp, Up] is a pointwise (1−α)-confidence interval
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for dp if

P (Lp ≤ dp ≤ Up) = 1− α. (4)

The probability that the interval contains the true quantile difference is 1−α.

See von Storch and Zwiers (2001) for background on confidence intervals and

other aspects of statistical inference.

There are many ways to construct confidence intervals. The approach

employed here is based on bootstrap resampling, a popular and effective tech-

nique that can be adapted to account for dependence within and between the

samples. Dunn (2001), for example, uses the bootstrap to estimate point-

wise confidence intervals for rainfall quantiles from a single sample; see also

Wilks (1995, 1997). A discussion of bootstrap confidence intervals and their

implementation in the current setting is deferred to the appendices. Point-

wise confidence intervals for the quantile differences between the control and

scenario temperatures at the example grid point are shown in Fig. 3, where

it can be seen that the uncertainty is greater in the relatively long, colder

tail.

The hypotheses (1) refer not to single quantiles but to entire distributions:

if hypothesis H0 holds, for example, then dp = 0 for all p. Suppose that limits

L′p and U ′p are available for each of M values, p1, . . . , pM , of p such that

P (L′p ≤ dp ≤ U ′p for all p = p1, . . . , pM) = 1− α. (5)
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If the pointwise limits Lp and Up satisfying expression (4) are used to define

these simultaneous confidence intervals then the coverage probability 1 − α

is unlikely to be obtained in (5). For example, if the different quantiles were

independent then the pointwise limits would give

P (Lp ≤ dp ≤ Up for all p = p1, . . . , pM) =
M∏

k=1

P (Lpk ≤ dpk ≤ Upk) = (1−α)M .

Although independence is unrealistic, it remains true that simultaneous in-

tervals are generally wider than pointwise intervals with the same coverage.

The method used here to construct simultaneous intervals is described in

appendix A.

e Hypothesis tests

The simultaneous intervals (5) can be used to test of H0: the hypothesis

is rejected at significance level α unless L′p ≤ 0 ≤ U ′p for all p. Rather

than use all p1 = 1/N , p2 = 2/N , . . . , pM = pN = 1, attention can be

restricted to a subset of quantiles, the choice of which involves a trade-

off between statistical power and the strength of conclusions. Power re-

duces as more quantiles are considered because the simultaneous intervals

widen and a real change in distribution is less likely to be detected. On the

other hand, a hypothesis test based on only a few quantiles ignores possible

changes in other parts of the distribution. Our selected set of nine quan-
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tiles (p = 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99) form a compromise, but

other choices may be more appropriate in other applications. A small simu-

lation study of the power of tests based on these quantiles is summarised in

appendix C.

Simultaneous confidence intervals for the quantile differences between the

control and scenario temperatures at the example grid point are shown in

Fig. 3. The line dp = 0 lies outside the shaded simultaneous 90% confi-

dence intervals, which therefore support rejection of H0 at the 10% level of

significance.

One might attempt to test HL by constructing confidence intervals for

yp−{µY +(xp−µX)}, which is zero for all p if HL holds, by substituting it for

dp in the previous section. This is successful only if µX and µY are specified.

For example, choosing µX = x0.5 and µY = y0.5 produces confidence intervals

for yp−{y0.5 + (xp−x0.5)}. Such intervals, however, do not support a test of

HL because HL leaves µX and µY unspecified: even if the confidence intervals

for yp − {y0.5 + (xp − x0.5)} failed to contain zero for all p, other choices for

µX and µY might yield a different conclusion. Similar considerations apply

to confidence intervals for yp − σY xp/σX and yp − {µY + σY (xp − µX)/σX}.

Some authors (e.g. Sun et al. 2001) have proposed rejecting HL if a hori-

zontal line cannot pass completely through the confidence band for dp, that is

if maxp L
′
p > minp U

′
p. Such a test is conservative, however: if HL holds then
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the band will contain the true value of µY − µX with the appropriate proba-

bility, but the probability that it contains any constant line is greater, so HL

will be rejected too infrequently. Parametric models can be used to test for

specific departures from HL, HS or HLS, but such tests can be sensitive to

model assumptions, as mentioned in section 1.

Our preferred approach for testing hypotheses H0, HL, HS and HLS would

be first to test HLS against the general alternative that there are some dif-

ferences between the distributions that cannot be described by location and

scale changes, then HL or HS against HLS if the first test were passed, and

finally H0 against HL or HS if the second test were passed. Several non-

parametric procedures exist for the latter two tests when there is no serial

dependence: see Conover et al. (1981) and Lehmann (1975, p. 95) for ex-

ample. We have failed to find any published non-parametric tests for HLS

against the general alternative, so we are investigating elsewhere the use of

minimised distance measures, such as the Kolmogorov-Smirnov distance and

the quantile distance considered by Zhang and Yu (2002), as test statistics.

3 Temperature and precipitation fields

The use of quantiles and adjusted quantile differences for diagnosing distribu-

tional changes were illustrated in the previous section with data at a single
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grid point from the HIRHAM4 integrations. In this section, the methods

are applied across the entire spatial domain, first for winter daily minimum

temperatures and then for winter daily total precipitation.

a Temperature

The summary statistics (2) are displayed in Fig. 4. In the control, cooler

median temperatures are found over northeastern Europe, regions that also

exhibit greater variability, and there is widespread negative skewness. The

uniform increase in scenario median temperatures is greater in cooler regions,

the general decrease in variability is greatest in the continental interior, and

skewness moves closer to zero except, most noticeably, for a band in the east

that may correspond to snow retreat (Kjellström 2004).

That the probability distribution of scenario temperatures is not every-

where merely a location shift of the control distribution is evident in Fig. 5,

where the greater increase in cold quantiles, particularly in the continental

interior, is clear. Fig. 6 of the location-adjusted quantile differences indicates

that the distributional changes over much of the seas and western Europe can

be described by a shift in location. Fig. 7 indicates that additional changes in

scale describe some of the remaining changes in northern and eastern Europe,

but that some regions exhibit a more complex distributional change.
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b Precipitation

Location shifts may be inappropriate descriptions of changes in distributions

of non-negative variables such as precipitation. A positive location shift

would exclude values near zero; a negative shift would admit negative val-

ues. Although common measures of location such as the median may still

change, such effects are better described by shifts in scale and shape. Distin-

guishing between wet and dry days, the former denoting days on which the

precipitation strictly exceeds an amount u, may also be important.

Let F and G denote the distribution functions for excess wet-day precip-

itation above u = 1mm in the control and scenario integrations. Let also

x̂p and ŷp be the estimators for the p-quantiles of F and G. The scale- and

shape-change hypothesis is formulated as

HSS F (σXz
αX ) = G(σY z

αY )

for all z > 0 and unknown, positive constants σX , σY , αX and αY . This

hypothesis corresponds to the non-linear relationship

yp = σY (xp/σX)αY /αX .

Taking logarithms yields

y∗p = log σY + αY (x∗p − log σX)/αX ,
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where x∗p = log xp and y∗p = log yp. This has the same form as the final equal-

ity (3) and shows that a scale-shape change of wet-day precipitation excess

is equivalent to a location-scale change of log-transformed excess. Adjusted

quantile differences can therefore be defined as in section 2c. For example, if

hypothesis HSS holds then the estimators

ŷ∗p −
{
m∗Y + s∗Y

(
x̂∗p −m∗X

s∗X

)}

for the location- and scale-adjusted transformed quantile differences are ex-

pected to be zero, where m∗X = x̂∗0.5, s∗X = x̂∗0.75 − x̂∗0.25, and m∗Y and s∗Y

are defined similarly. Inverting the transformation yields scale- and shape-

adjusted quantile ratios:

ŷp

mY (x̂p/mX)s
∗
Y /s
∗
X
.

Maps of these scale- and shape-adjusted quantities are useful for diagnosing

scale and shape changes. Setting s∗X = s∗Y yields quantities appropriate for

diagnosing a pure scale change.

These methods are illustrated by application to winter daily total precipi-

tation from the control and scenario integrations. Summary statistics are re-

produced in Fig. 8. In the control, greater median precipitation amounts are

found windward of steep altitude gradients, regions that also exhibit greater

variability, and there is widespread positive skewness. Scenario median pre-

cipitation decreases only in the Mediterranean and over the Scandinavian
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mountains, a pattern that is replicated for scale, but the spatially complex

changes in skewness are difficult to summarise. The change in proportion of

wet days is shown in Fig. 9, revealing a decrease in the Mediterranean and in

the far north, and an increase in the intervening latitudes that is strongest

around the North and Baltic Seas.

The changes in six quantiles are investigated in Fig. 10. (Low quantiles are

of less interest so are excluded.) All quantiles decrease in the Mediterranean

and over the Scandinavian mountains. Largest increases are found elsewhere

in Scandinavia and in eastern Europe. The scale-adjusted quantile ratios in

Fig. 11 indicate that changes in scale of the distributions can explain many

of the differences over northern Europe, the Alps and around the Adriatic.

Accounting for additional changes in shape (not shown) explained little of

the remaining differences.

4 Discussion

The methods presented here are simple and flexible tools for comparing en-

tire distributions of meteorological variables. Such investigations are able

to highlight differences, such as changes in the tails of a distribution, that

have important, practical consequences and that could be missed by exam-

ining only means and variances. The application considered in section 3

19



demonstrates the ability of the methods to highlight the main features in

large, gridded datasets, a situation in which traditional, graphical compar-

isons would be impracticable. The analysis can also be used to motivate a

closer examination of sites that exhibit complex distributional changes.
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APPENDIX A

Bootstrap confidence intervals

This appendix first describes a method for obtaining pointwise confidence

limits with coverage probability (4). If

P (l ≤ d̂p − dp ≤ u) = 1− α

then Lp = d̂p − u and Up = d̂p − l are valid confidence limits. Requiring

P (d̂p − dp < l) = P (d̂p − dp > u) = α/2 (A.1)

ensures equal-tailed intervals, a useful property that highlights any asymme-
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try in the uncertainty associated with d̂p, but need not yield the shortest

interval. Bootstrap estimates of l and u can be obtained in the following

way. Let {X∗1 , . . . , X∗m} and {Y ∗1 , . . . , Y ∗n } be samples formed by resampling

the original sequences. Discussion of how to perform this resampling is post-

poned to appendix B. When the original samples are representative of the

populations from which they were drawn, the distribution of d̂p − dp is well

approximated by that of d̂∗p − d̂p, where d̂∗p = ŷ∗p − x̂∗p, x̂∗p = X∗(bpm+0.5c) and

ŷ∗p = Y ∗(bpn+0.5c). The distribution of d̂∗p− d̂p can be approximated numerically

by creating a large number, B, of resamples: if d̂∗p1, . . . , d̂∗pB are the values of

d̂∗p for the B resamples, and d̂∗p(1) ≤ . . . ≤ d̂∗p(B) are the order statistics, then

estimates of l and u satisfying equalities (A.1) are

l∗ = d̂∗p(b1) − d̂p and u∗ = d̂∗p(b2) − d̂p,

where b1 = b(α/2)B + 0.5c and b2 = b(1− α/2)B + 0.5c. Taking B = 1000

typically yields a sufficiently close approximation. The resulting confidence

limits,

Lp = d̂p − u∗ and Up = d̂p − l∗,

define what is known as a ‘basic’ bootstrap confidence interval.

However, there are technical reasons and evidence from simulation stud-

ies (Falk and Kaufmann 1991) that another type of bootstrap interval should

be preferred for constructing confidence intervals for quantiles. Suppose that
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there exists a function h(·) such that the distribution of ĉp = h(d̂p) is sym-

metric about cp = h(dp). Estimates of l and u that satisfy P (l ≤ ĉp − cp ≤

u) = 1− α can then be found as before: l∗ = ĉ∗p(b1) − ĉp and u∗ = ĉ∗p(b2) − ĉp.

By symmetry, however, it is also the case that P (l ≤ cp− ĉp ≤ u) = 1−α, so

valid confidence limits for cp are Lp = l∗+ĉp = ĉ∗p(b1) and Up = u∗+ĉp = ĉ∗p(b2).

Applying the inverse transformation yields ‘percentile’ bootstrap confidence

limits for dp:

Lp = d̂∗p(b1) and Up = d̂∗p(b2).

Note that the symmetrising function h(·) is not used, and so need not be

known, to compute these limits.

Bootstrapping confidence intervals for quantiles is mathematically sound,

DiCiccio and Romano (1988) for example, but is more difficult than for

many other quantities, such as means, in the sense that larger sample sizes

are required to obtain the same level of accuracy. Several modifications of

the bootstrap, such as smoothing (Hall et al. 1989), have been proposed to

improve matters but these are more complicated to implement and are not

considered here.

Simultaneous intervals (5) can be estimated using a method described by

Davison and Hinkley (1997, section 4.2.4). From the B bootstrap samples

obtained previously, compute d̂∗p1, . . . , d̂∗pB for each p of interest. Equal-tailed,
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simultaneous confidence intervals have limits L′p = d̂∗p(k) and U ′p = d̂∗p(B+1−k)

for some 1 ≤ k ≤ B/2. For any k, the bootstrap estimate of the coverage

probability (5) is

1

B

B∑

b=1

I(d̂∗pb ≤ d̂∗p(k) or d̂∗pb ≥ d̂∗p(B+1−k) for at least one p),

where I(A) = 1 when A is true, and 0 when A is false. It is sufficient,

therefore, to choose k such that this estimate is as close as possible to 1−α.

This value can be found with an appropriate search routine.

APPENDIX B

Bootstrap resampling

When the original samples {X1, . . . , Xm} and {Y1, . . . , Yn} are indepen-

dent of one another, and each comprises independent and identically dis-

tributed variables, bootstrap resampling is straightforward: new samples

{X∗1 , . . . , X∗m} and {Y ∗1 , . . . , Y ∗n } are formed by resampling uniformly and

with replacement from the appropriate, original sample.

If there is dependence between or within the original samples then this

must be reproduced in the resamples for the bootstrap approximation to

be accurate. Dependence between samples can be preserved by resampling

Yi whenever Xi is chosen, for 1 ≤ i ≤ min(m,n). This would be appro-

priate if Xi and Yi were coincident (paired) measurements at two sites for

example. Several approaches have been developed to account for serial de-
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pendence within samples, two of which (pre-whitening and moving-blocks

resampling) are discussed by Wilks (1997). In our application, each sample

is a time series of daily grid-point values for consecutive winters. If depen-

dence between winters is weak then resampling data blocked into winters is

an acceptable solution. To be precise, each winter comprises r = 90 values

and the Xi form blocks Zj = {X(j−1)r+1, . . . , Xjr} for winters j = 1, . . . ,

m/r. We resample uniformly and with replacement from {Z1, . . . , Zm/r} to

obtain {X∗1 , . . . , X∗m}, and similarly for the Yi.

Another potential complication is the presence of time trends in the data.

In this case, the stationarity assumption that each Xi has distribution F and

each Yi has distribution G is unreasonable. The methods described in this

article are not designed for such data, so any trends should be removed

prior to the analysis. In general, however, bootstrap techniques are easily

modified to incorporate trends. For example, if {X̂1, . . . , X̂m} is an estimate

of an additive trend in the Xi then the detrended data, X̃i = Xi−X̂i, should

be resampled before adding back the estimated trend component to obtain

X∗i = X̃∗i + X̂i.

APPENDIX C

Power study

The power of the hypothesis test proposed in section 2 for H0 and based

on simultaneous, percentile bootstrap confidence intervals for nine quantiles

24



(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 and 0.99) with 1000 bootstrap

samples is compared with the power of the Kolmogorov-Smirnov test, the

two-sample t-test and the F-test.

Monte Carlo estimates of power are obtained from 1000 simulated data

sets. Each data set comprises two, independent samples of 300 independent

normal random variables. Serial dependence is supressed so that the t- and

F-tests are applicable without adjustment (see chapter 6 of von Storch and

Zwiers for example). The sample size is the effective size (von Storch and

Zwiers 2001, p. 115) of samples of length 2700 generated by a first-order

autoregressive process with correlation 0.8 at first lag. The power of the

tests to detect changes in location is determined by setting the variances of

the two samples equal to 1 and allowing the difference (δ) between the means

to range from 0 to 0.5. The power of the tests to detect changes in scale is

determined by setting the means of the two samples equal to 0 and allowing

the ratio (ρ) of the standard deviations to range from 1 to 1.5.

The results are plotted in Fig. 12. The t- and F-tests are designed and are

most powerful for detecting changes in respectively the means and variances

of normal distributions. The quantile and Kolmogorov-Smirnov tests, on

the other hand, are sensitive to any distributional changes and do not make

any such distributional assumptions. The results show that the quantile

test is conservative and less powerful than the Kolmogorov-Smirnov test for
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detecting location changes, but is generally more powerful for detecting scale

changes. Note that these results also give the powers of detecting changes in

scale (exp δ) and shape (ρ) when the data have log-normal distributions and

the tests are applied to the log-transformed data.
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LIST OF FIGURES

1. Histograms of a) control and b) scenario DJF daily minimum temper-

atures (◦C); c) boxplots of control and scenario temperatures. The

boxplot whiskers extend over the range of the data; three lower quan-

tiles (p = 0.01, 0.05 and 0.1) and three upper quantiles (p = 0.9, 0.95

and 0.99) are marked (•).

2. a) Quantile-quantile plot (—•—) of scenario versus control DJF daily

minimum temperatures (◦C) with straight lines corresponding to hy-

potheses H0 (——), HL (− − −) and HLS (· · · · · · ); b) quantile dif-

ferences (—•—), location-adjusted (− − −) and location- and scale-

adjusted (· · · · · · ) against probability. Nine quantiles (p = 0.01, 0.05,

0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99) are highlighted (•).

3. Quantile differences (——) of DJF daily minimum temperatures (◦C)

against probability, with pointwise (grey) and simultaneous (black)

90% confidence intervals.

4. a) Median (◦C), b) inter-quartile range (◦C) and c) skewness measure

for DJF daily minimum temperatures in the control; d) differences

in the medians and e) ratios of the inter-quartile ranges between the

scenario and control, and f) skewness measure in the scenario.
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5. Differences (◦C) in nine quantiles of DJF daily minimum temperatures

between the scenario and control.

6. Differences (◦C) in nine quantiles of DJF daily minimum temperatures

between the scenario and control after adjusting for location.

7. Differences (◦C) in nine quantiles of DJF daily minimum temperatures

between the scenario and control after adjusting for location and scale.

8. a) Median (mm), b) inter-quartile range (mm) and c) skewness measure

for DJF daily total precipitation in the control; d) differences in the

medians and e) ratios of the inter-quartile ranges between the scenario

and control, and f) skewness measure in the scenario.

9. Difference in the proportions (%) of wet days between the scenario and

control.

10. Ratios of six quantiles of DJF daily total precipitation between the

scenario and control.

11. Ratios of six quantiles of DJF daily total precipitation between the

scenario and control after adjusting for scale.

12. a) Powers of the t (T), Kolmogorov-Smirnov (S) and quantile (Q) tests

for detecting changes in location; b) powers of the F (F), Kolmogorov-
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Smirnov (S) and quantile (Q) tests for detecting changes in scale. The

nominal significance level is marked (− − −).
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Figure 1: Histograms of a) control and b) scenario DJF daily minimum
temperatures (◦C); c) boxplots of control and scenario temperatures. The
boxplot whiskers extend over the range of the data; three lower quantiles
(p = 0.01, 0.05 and 0.1) and three upper quantiles (p = 0.9, 0.95 and 0.99)
are marked (•).
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Figure 2: a) Quantile-quantile plot (—•—) of scenario versus control DJF
daily minimum temperatures (◦C) with straight lines corresponding to hy-
potheses H0 (——), HL (− − −) and HLS (· · · · · · ); b) quantile differ-
ences (—•—), location-adjusted (− − −) and location- and scale-adjusted
(· · · · · · ) against probability. Nine quantiles (p = 0.01, 0.05, 0.1, 0.25, 0.5,
0.75, 0.9, 0.95, 0.99) are highlighted (•).
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Figure 3: Quantile differences (——) of DJF daily minimum temperatures
(◦C) against probability, with pointwise (grey) and simultaneous (black) 90%
confidence intervals.
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Figure 4: a) Median (◦C), b) inter-quartile range (◦C) and c) skewness mea-
sure for DJF daily minimum temperatures in the control; d) differences in
the medians and e) ratios of the inter-quartile ranges between the scenario
and control, and f) skewness measure in the scenario.
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Figure 5: Differences (◦C) in nine quantiles of DJF daily minimum temper-
atures between the scenario and control.
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Figure 6: Differences (◦C) in nine quantiles of DJF daily minimum temper-
atures between the scenario and control after adjusting for location.
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Figure 7: Differences (◦C) in nine quantiles of DJF daily minimum tem-
peratures between the scenario and control after adjusting for location and
scale.
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Figure 8: a) Median (mm), b) inter-quartile range (mm) and c) skewness
measure for DJF daily total precipitation in the control; d) differences in the
medians and e) ratios of the inter-quartile ranges between the scenario and
control, and f) skewness measure in the scenario.
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Figure 9: Difference in the proportions (%) of wet days between the scenario
and control.
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Figure 10: Ratios of six quantiles of DJF daily total precipitation between
the scenario and control.
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Figure 11: Ratios of six quantiles of DJF daily total precipitation between
the scenario and control after adjusting for scale.
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Figure 12: a) Powers of the t (T), Kolmogorov-Smirnov (S) and quantile (Q)
tests for detecting changes in location; b) powers of the F (F), Kolmogorov-
Smirnov (S) and quantile (Q) tests for detecting changes in scale. The nom-
inal significance level is marked (− − −).
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