
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Appearance based object modeling using texture database:
Acquisition, compression and rendering

R. Furukawa 1 , H. Kawasaki 2, K. Ikeuchi 2 and M. Sakauchi 2

1 Faculty of Information Sciences, Hiroshima City University, Hiroshima, Japan
2 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Abstract

Image-based object modeling can be used to compose photorealistic images of modeled objects for various ren-
dering conditions, such as viewpoint, light directions, etc. However, it is challenging to acquire the large number
of object images required for all combinations of capturing parameters and to then handle the resulting huge data
sets for the model. This paper presents a novel modeling method for acquiring and preserving appearances of ob-
jects. Using a specialized capturing platform, we first acquire objects’ geometrical information and their complete
4D indexed texture sets, or bi-directional texture functions (BTF) in a highly automated manner. Then we com-
press the acquired texture database using tensor product expansion. The compressed texture database facilitates
rendering objects with arbitrary viewpoints, illumination, and deformation.

1. Introduction

Making renderable models from actual objects is a challeng-
ing problem. Modeling manually using a CG modeler is time
consuming and the cost is high. The models can be made
more easily by acquiring the shapes of the objects using a
range finder and making simple textures from several pho-
tographs. However, observing the objects from an arbitrary
viewpoint or changing the directions of the light sources re-
quires models that are more detailed.

One possible method is estimating detailed reflection
models for all the surfaces using physics-based computer vi-
sion techniques 9. The advantage of this method is that the
object can be rendered very realistically if the object’s sur-
face model is correct. The drawback is that sometimes the
surface property is so complicated that it is intractable to de-
scribe with simple mathematical forms (for example, com-
plicated surface textures such as fur). Even if it is possible to
represent reflection formulaically, estimation of parameters
for all the surfaces is a difficult problem, especially if the
formula has many parameters.

One alternative method is to model the surface proper-
ties of the object from the sampled photographic data, as it
is. Objects can be rendered realistically using a combination
of geometrical data and textures sampled from photographs

12, 3, 18. For example, the surface light field rendering tech-
nique captures light rays emitted from the object’s surface
instead of from the camera plane. Originally, these light rays
could be defined by a 4D parameter called the bi-directional
reflectance distribution function (BRDF). Since BRDF is a
point-wise function, for efficient handling of mesh models,
bi-directional texture function (BTF), defined as a six dimen-
sional function with 2D texture associated with 4D light and
view direction5, is often captured for each polygon patch.
Using this BTF data, we could render an object by IBR more
freely as in conventional model-based 3D CG applications;
however, data for 6D parameterized textures is huge and dif-
ficult to acquire and handle. Recent approaches 12, 3, 18. use
2D or 3D subsets of the whole BTF or BRDF.

In this paper, we present a BTF-based object modeling
technique for rendering with arbitrary viewpoints, illumina-
tion and deformation. To realize this goal, we acquire and
manage a full BTF dataset with 4D lighting/viewing param-
eterization. To enable commonly used PCs to handle the
enormous amount of data, we have developed a new method
to compress the BTF data. Our method simultaneously uti-
lizes several independent data correlations, which are inher-
ent in high-dimensionally parameterized BTF data. By ex-
ploiting more than one correlation, our compression algo-
rithm achieves more efficient compression rates than does

c© The Eurographics Association 2002.

257

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

singular value decomposition (SVD), which is often used for
texture compression. Objects with unaltered geometry can
be rendered as an approximation of the original appearance.
With deformation, rendering results are correct with respect
to shading effects and specular locations, although effects of
interreflection and shadows become erroneous as the geom-
etry is altered.

2. Background and Related Works

In IBR research, dealing with changes in rendering condi-
tions (the viewpoint/light direction) has been a difficult prob-
lem because the original idea of IBR was to “replay” the
light information of the scene as is 7 8. One possible solu-
tion for realizing arbitrary view/light direction is to use geo-
metric information. In an actual implementation, the surface
light field, a term coined by Miller et al. 10, is a function that
assigns an RGB value to every ray emanating from every
point on a surface. Using this function and geometric data
makes it possible to compose scenes from an arbitrary view-
point. Since the appearance data of surface light fields can be
regarded as an approximation of BTF with added effects of
interreflection and shadows, it can be expressed by the same
parameterization and value type as those of BTF. Since the
dimension of BTF is 6D, obtaining BTFs of a 3D object is a
challenging problem5.

The most closely related work to ours is that of Nishino
et al.12, Wood et al.18, Chen et al.3 and Furukawa et al. 6.
Nishino et al. realize image synthesis with an arbitrary light
direction, and a view direction with one degree of freedom
(rotation about a fixed axis). Wood et al. achieve image com-
position from an arbitrary viewpoint and a fixed lighting
condition. Chen et al. propose a method for exploiting graph-
ics hardware acceleration, realizing real-time rendering, and
composing images from arbitrary viewpoints and zoom-ups
with a fixed lighting direction. Furukawa et al. capture BTF
database by using a specialized capturing platform and ren-
der objects using the database.

With regard to data acquisition and compression, Nishino
et al. acquire a BTF subset with 3D parameterized light and
view (1D for view and 2D for light direction) by using a
turntable and a light dome. They compress the data using an
SVD-based compression algorithm called the eigentexture
method. Wood et al. acquire a subset of BRDF with a 2D
parameterized view and fixed lighting direction, generated
from photographs taken from every direction with a gantry.
They treat the 2D light field on each surface point as a unit
(lumisphere) and propose compression methods similar to
PCA and vector quantization. In the work of Chen et al.,
a 2D subset of BRDF is taken by capturing object images
from various directions. Their data compression is done with
an SVD-based method. The capturing platform Furukawa et
al. proposed can acquire a BTF subset with 3D view/light
parameterization. (See Table 1)

In all of the above research methods that acquire the BTF

of jagged objects, only subsets with 2D or 3D view/light
parameters are constructed, and the freedom of the render-
ing conditions (deformation/view/lighting) is inherently re-
stricted. On the other hand, our research, which fully cap-
tures the BTF with 4D view/light parameters, has no limita-
tions on either the view or the light directions. We can syn-
thesize the object’s image under arbitrary view and lighting
conditions. In addition, allowing distorted effects of inter-
reflection and shadows, we can render 3D objects deformed
from their original shapes.

Table 1: Dimension of light field

θlight φlight θview φview

Wood et al. ◦ ◦
Debevec etal. ◦ ◦
Nishino et al. ◦ ◦ ◦

Chen et al. ◦ ◦
Furukawa et al. ◦ ◦ ◦

Our method ◦ ◦ ◦ ◦

3. Data Acquisition

3.1. BTF capturing system

In order to model objects with textures for arbitrary
view/lighting directions, we have to provide a texture
database with multi-dimensional indices. To make this col-
lection of textures, we designed and constructed an orig-
inal data acquisition platform. As shown in Fig.1(a), this
system consists of two large concentric circles. One circle
is equipped with multiple CCD cameras and the other is
equipped with multiple halogen lamps. A PC controls these
CCD cameras and halogen lamps. At the center of this cir-
cle, there is a platform on which we place an object to be
captured; this platform is rotated around the vertical axis
by a stepping motor. In addition, the large circle equipped
with multiple lamps is rotated horizontally by another mo-
tor(Fig.1(b)). These stepping motors are individually con-
trolled by the PC. Therefore, this system can capture com-
plete BTF information by changing the parameters of turn
table angle (1D “α”), selection of camera (1D “β”), ro-
tation angle of lamp circle (1D“γ”), and selection of lamps
(1D ”δ”).

Using the capturing platform, we capture the images of
the object, changing the parameters by

α = ∆α iα, β = ∆β iβ , γ = ∆γ iγ , δ = ∆δ iδ ,

where notations ∆X are the capturing intervals and iX is the
index for each parameter X. Normally, we set ∆α = ∆γ .
The captured images are indexed by tuple (iα, iβ , iγ , iδ).

c© The Eurographics Association 2002.

258

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

(a) (b)

Figure 1: Image capturing platform (a)equipped with range
sensor (b) concentric arc system

From the images, we construct a 3D shape with a visual
hull technique using voxel carving 13, 16. First, we extract
the object silhouette by background subtraction (this pro-
cess is quite robust and accurate because we fix the cam-
era and light source position for the capturing process) and
then project this silhouette onto the voxel space to construct
the 3D shape. In this paper, we express acquired polygons
by P (ip)(0 ≤ ip < Np) where ip is the polygon index, Np

is the number of polygons, P () is the polygon specified by
polygon index.

Shape acquisition based on image silhouettes theoretically
cannot reconstruct concavities of objects. For such objects,
we capture their correct 3D geometrical data using laser
range scanners that allow concavities, and align the captured
geometries to those retrieved by voxel carving. The align-
ment procedure is based on Wheeler’s iterative method17.

Textures are acquired by mapping images into fixed tri-
angles for each polygon. The acquired textures are specified
by polygon index ip and the indices for capturing parame-
ters (iα, iβ , iγ , iδ). We reparameterize these textures so that
the indices are separated into two pairs, the first representing
view directions and the second representing light directions.
Both view and light directions are represented by certain lo-
cal coordinates which are fixed onto the object. The process
is done in the following form:

ivθ ≡ iα, ivφ ≡ iβ , ilθ ≡ iγ − iα, ilφ ≡ iδ .

∆vθ ≡∆α, ∆vφ ≡∆β , ∆lθ ≡∆α, ∆lφ ≡∆δ .

Here, ivθ and ivφ represents view directions, and ilθ and
ilφ represents light directions. ∆vθ , ∆vφ, ∆lθ and ∆lφ

denotes sampling intervals for all the indices. From the
re-indexed texture set, each texture is specified by tuple
(ip, ivθ , ivφ, ilθ , ilφ). To express a texture specified by the
index, we use a notation of T (ip, ivθ , ivφ, ilθ , ilφ) in this
paper. We denote domains of these indices by

0≤ ivθ <Nvθ ,0≤ ivφ < Nvφ,0≤ ilθ < Nlθ ,0≤ ilφ < Nlφ

Although there are more sophisticated parameterization14,
we use the simple parameter space described above in order
to avoid resampling of textures. Since we sampled the im-
ages by relatively coarse intervals in parameter space (30◦)
for the experiments described later, degradation of quality of
textures due to resampling was not neglectable.

An example of a re-indexed set of textures is shown in
Fig. 4. Fig. 4 (a) is the modeled object (a toy post) and
(b) visualizes a subset of the texture data which originates
from a single polygon, which can be considered to be a set
of textures {T (ip,∗,∗,∗,∗)}, where ∗ means “don’t care”.
Since the shape of the object is roughly convex, we used
only voxel carving to generate a 3D model. In Fig. 4(b),
each column (vertical sequence) of textures is a subset of a
certain view direction, which is {T (ip, ivθ , ivφ,∗,∗)}, and
each row (horizontal sequence) of textures is a subset of a
certain light direction, which is {T (ip,∗,∗, ilθ , ilφ)}. There
is some change in the appearance of the textures in Fig. 4(b)
due to erroneous polygon localization in images (some tex-
tures have blue colored areas while others don’t). If the er-
rors of polygon location have large discontinuities in param-
eter space (ivθ , ivφ, ilθ , ilφ)), they sometimes cause “dou-
ble image” artifacts. If the errors are continuous along the
parameter space, they have a relatively small impact on ren-
dering results.

The set of textures acquired from raw images is not the
BTF in the rigorous meaning since it includes effects of in-
terreflection and shadows. However, we use the acquired tex-
ture set as a BTF dataset for rendering bacause objects with
unaltered geometry can be rendered as an approximation of
the original appearance. With deformation, rendering results
are correct with respect to shading effects and specular lo-
cations, although effects of interreflection and shadows be-
come erroneous as the geometry is altered from the original
shape.

4. Compression of Parameterized Texture using Tensor
Products expansion

Now, we have constructed an indexed set of textures, or
BTF. Before describing our compression method for the
huge amount of data, let us briefly overview the compres-
sion methods of existing surface light field research.

One well known method to compress texture images uses
PCA/SVD-based compression 123. In that research, texture
data is rearranged into 2D indexed elements, or a matrix. The
matrix is approximated as a sum of the outer products of vec-
tors using SVD. The approximation is more efficient if the
row vectors (or column vectors) of the matrix have strong
correlations. In the eigentexture method 12, texture images
for each polygon are rasterized into vectors specified by a
1D view index. Matrices are formed by aligning these vec-
tors according to view indices. In the work of Chen et al.
3, compression is done in a way similar to the eigentexture

c© The Eurographics Association 2002.

259

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

method, except textures are first re-sampled for uniformly
distributed 2D view directions and then compressed. The re-
sampling of textures prevents uneven approximation, and 2D
indexing of the view enables efficient hardware-accelerated
rendering.

Let us examine our indexed texture set for a single poly-
gon shown in Fig. 4, in which each column of textures cor-
responds to a certain view direction, and each row corre-
sponds to a certain light direction. We can see that the tex-
tures in each row tend to have similar average intensities.
This is because diffuse reflection, which amounts to most of
the reflection, tends to depend only on light direction. For
each column, texture patterns are most similar because they
are captured from fixed view directions. Thus, the changes
in intensity and texture pattern are strongly correlated be-
tween columns and rows of textures. If we compress the
textures by PCA/SVD-based techniques such as the eigen-
texture method, and arrange the coefficients of eigentextures
(principal components) by view and light indices, it is ex-
pected that there still remain strong correlations along these
indices. To utilize these correlations for efficient compres-
sion, we pack the texture database into tensors and approxi-
mate the tensor using tensor product expansion (TPE).

Tensor and TPE are generalizations of matrices and SVD.
As matrices are expanded into sums of products of vectors,
tensors can be expanded into sums of tensor products2. Let
A be a 3D tensor of size L×M×N . A can be expressed as

A =
∑

r

αrur⊗ vr⊗wr, (1)

where r is an index of terms, αr is a coefficient of term r,
ur , vr and wr are unit vectors, and the operator ⊗ means
tensor product. Thus, the form above means

Ai,j,k =
∑

r

αrur,ivr,jwr,k. (2)

|ur |= 1, |vr|= 1, |wr|= 1,

αr ≥ αs if r < s

where Ai,j,k is an element of tensor A with indices of i, j,k,
ur,i is ith element of vector ur . We can approximate ten-
sor A by neglecting terms with small significance (i.e. terms
with small αr). Truncating the form into a sum of K terms,
we achieve a compression rate of K(L+M +N)/LMN.

There are several different ways to pack texture set infor-
mation into tensors. One of them is to pack a tensor set from
a polygon {T (ip,∗,∗,∗,∗)} (here, symbols “*” mean “don’t
care”) into a 3D tensor, using the first tensor index for indi-
cating texel, the second for view direction, the third for light
direction. This is done by constructing tensors A(ip) of size
Nt× (NvθNvφ)× (NlθNlφ) (Nt is the number of texels in
a texture) for each polygon P (ip) by

A(ip)i, (ivθ Nvφ+ivφ), (ilθ Nlφ+ilφ)

= Texel(i, T (ip, ivθ , ivφ, ilθ , ilφ)) (3)

where Texel(i, ·) denotes ith texel value of a texture. 2D
arrangement of textures by view and light indices (i and j in
the form above) is the same as the one shown in Fig 4(b).

One drawback of this packing is that textures which have
strong specular reflection do not align into columns in the
arrangement of Fig 4(b). Examining the figure, we can see
some bright textures aligned in a diagonal direction. Those
bright textures include strong specular components. There
are also some blank textures aligned in the same way. These
textures cannot be captured because the lights for the halo-
gen lamps on the capturing platform are occluded by the
circle equipped with cameras for the view/light condition.
These diagonally aligned elements are difficult to approxi-
mate by the form (2), and we have found them to be harm-
ful for TPE compression. Since these textures are almost
uniform textures, we subtract DC components from all the
textures and approximate only AC components by TPE. DC
components are stored separately.

As opposed to SVD, for which there exists a robust algo-
rithm to calculate optimal solution, an algorithm to obtain
the optimal solution for TPE is still an open area of research.
Murakami et. al proposed a fast calculation method for TPE,
applying the power method which was originally used for
calculating SVD 11. Although their algorithm is not guar-
anteed to produce the optimal solution, we use this method
because it is fast and its solution is sufficient for the pur-
pose of compression. A brief description of their algorithm
to calculate the expansion of a 3D tensor A is as follows:

• By iterating the following procedure, obtain
αs,us,vs,ws of equation (1) for s = 1,2, · · ·.
– Initialize us,vs,ws as arbitrary unit vectors.
– Obtain the residual tensor R through the operation

R←A−∑s−1
r=1 αsus⊗ vs⊗ws.

– If (‖R‖/‖A‖)2 is less than ε, stop the calculation,
where ‖ · ‖ means the 2-norm of a tensor (the root of
the sum of squared elements in a tensor), and ε is the
tolerable squared error rate.

– Iteratively update ur,vr,wr until these vectors con-
verge by applying the following steps.

◦ Obtain ũr, ṽr, w̃r by the following contract opera-
tion:

ũr,i ←
M∑

j=1

N∑
k=1

Ri,j,kvr,j ,wr,k

ṽr,j ←
N∑

k=1

L∑
i=1

Ri,j,kwr,k,ur,i

w̃r,k ←
L∑

i=1

M∑
j=1

Ri,j,kur,i,vr,j

c© The Eurographics Association 2002.

260

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

◦ Update ur,vr,wr as the normalized ũr, ṽr, w̃r:
ur ← ũr

|ũr| , vr ← ṽr

|ṽr | , wr ← w̃r

|w̃r | .

To test the efficiency of the compression method, we
compressed textures using an SVD technique (eigentex-
ture method) and TPE-based compression with two differ-
ent dimensions. The sample object was a toy post shown
in Fig. 4. Each texture has 136 pixels. There exist 2592
(12×3×12×6) textures for each polygon. Intervals of az-
imuth and elevation angles are 30◦. For SVD we packed the
pixel values into matrices B(ip) with size of 136× 2592,
which can be expressed as

B(ip)i, (ivθ Nvφ Nlθ Nlφ+ivφ Nlθ Nlφ+ilθ Nlφ+ilφ)

= Texel(i,T (ip, ivθ , ivφ, ilθ , ilφ)).

We tried two different packing methods for TPE based
compression. One method consists of packing textures into
3D-tensors A whose size is 136× 36× 72, where the three
tensor indices correspond to texel location, view direction
(ivθ and ivφ) and light direction (ilθ and ilφ) respectively,
using the form 3. The other method is packing textures into
4D-tensors C whose size is 136× 36× 12× 6, where the
four tensor indices correspond to texel location, view direc-
tion (ivθ and ivφ), and light direction indices (ilθ and ilφ).
The packing is done by the form

A2(ip)i,(ivθNvφ+ivφ),ilθ,ilφ

= Texel(i,T (ip, ivθ , ivφ, ilθ , ilφ))

We approximated the matrices and tensors by SVD/TPE
so that each matrix/tensor had a root of sum of squared error
less than 15.0 (Range of pixel value is from 0 to 255). The
threshold was chosen so that the average approximation rate
became about 0.01. The experiment was done for 100 poly-
gons. Table 2 shows the result, which describes data sizes
needed to store each term, average numbers of terms needed
to approximate textures for each polygon, and average data
sizes for each polygon including stored AC components. It
was assumed that the compressed data were expressed as
a collection of 2 byte short numbers. Because the freedom
of the approximation model decreases in order of SVD, 3D
TPE, and 4D TPE, the number of terms needed for approxi-
mation increases in the same order. TPE-based compression
uses less size to store 1 term of the expanded data, but it
needs more terms for approximation. As a result, data size
3D TPE compression was about 2.4 times less than SVD.
Although the data size for 1 term of 4D TPE was smaller
than that of 3D TPE, the average data size of 4D TPE com-
pression was larger than 3D TPE because of the increased
number of terms. Figure 2 plots the data sizes of compressed
textures for each polygon, compressed using SVD and 3D
TPE method. The horizontal axis represents polygon index
ip, and the vertical represents the compressed size of the tex-
ture data.

Fig. 3 shows how TPE approximates textures. Fig. 3(b) is

Table 2: Compression result

Data Average Average
size number data

(1 term) of term size

SVD 5456 8.56 46703

3D TPE 488 23.22 19107

4D TPE 380 34.99 21072

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100
ID of polygon

C
om

pr
es

se
d

da
ta

si
ze

SVD

3D TPE

Figure 2: Data sizes of compressed textures (SVD and
TPE)

the AC components of the original texture (a). (b) is approx-
imated by term 1 (c) and the residual of term 1 is (d). The
texture is approximated by terms including term 3, 5 and 9
(shown in (e)-(g)). The resulting approximation is shown in
(h).

5. Rendering

5.1. Texture synthesis

To render modeled objects we have to generate textures
for each polygon. Let us assume that we have vertices
V (iv)(0 ≤ iv < Nv) which form polygons P (ip)(0 ≤
ip < Np), where iv represents the index of vertices, V (iv)
is the vertex specified by index iv and Nv is the num-
ber of vertices. Polygon P (ip) consists of three vertices
V (t(ip, j))(0≤ j ≤ 2), where t(ip, j) is a table that enables
us to look up vertex indices by polygon indices.

For the rendering process, the user can specify virtual
camera position, light direction, object position (translation
and rotation) and geometrical deformation. From the camera
position and object position, rotation from the camera coor-
dinate system to the object coordinate system, which we ex-
press as Ro, is calculated. Let us assume that view direction
and light direction can be expressed by vc and lc in the cam-
era coordinate system. Normally, vc is a fixed vector (for ex-
ample [0,0,−1]t). Thus, view and light directions expressed
by the object coordinate system are Rovc, Rolc.

c© The Eurographics Association 2002.

261

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Approximation by TPE: (a) Original image, (b)
AC components of textures, (c) Term 1 of TPE, (d) Residual
image after subtraction of term 1, (e) Term 3, (f) Term 5,
(g) Term 9, (h) Result image

From the given deformation, we calculate the 3D rota-
tion of surface point V (iv) relative to the object coordi-
nate system, which can be expressed as Rd(iv). If there
is no geometrical deformation, Rd(iv) = I (I is an iden-
tity rotation) for all vertices. Relative rotation of each vertex
V (iv) from the camera coordinate system can be expressed
as Rd(iv)◦Ro.

Rd(iv) may be directly calculated if a mathematical
model of the deformation is given. If it is not available,
we can calculate Rd(iv) from a geometrical transformation
caused by deformation. To do so, we calculate the normal
vector at V (iv) with and without deformation, which we
describe as n′(iv) and n(iv), respectively. Further, we cal-
culate normalized direction vectors of edges connected to
vertex V (iv) with and without deformation, which we de-
scribe as e′(iv , j)(j = 0,1,2, · · · ,E(iv)− 1) e(iv , j)(j =
0,1,2, · · · ,E(iv)− 1), where E(iv) denotes the number of
edges connected to vertex V (iv). Then we obtain the ro-
tation Rd(iv) such that n′(iv) ≈ Rd(iv)n(iv),e′(iv , j) ≈
Rd(iv)e(iv , j)(j = 0,1,2, · · · ,E(iv) − 1). We used the
method of Arun et. al 1 for the calculation.

Now, we get

vr(iv)≡ (Rd(iv)◦Ro)vc

lr(iv)≡ (Rd(iv)◦Ro)lc,

where vr(iv) and lr(iv) are view and light directions
at vertex V (iv) expressed by object coordinate sys-
tem. Describing azimuth and elevation angles of the
direction vector by azm(·) and elv(·), four angles
azm(vr(iv)), elv(vr(iv)),azm(lr(iv)) and elv(lr(iv))
have direct correspondence to indices of the texture
database, ivθ , ivφ, ilθ and ilφ. Since the pair of view and
light directions [vr(iv)), lr(iv)] represent conditions of the
texture used for rendering, we call it “rendering condition.”
Also, we call the view direction of the pair “rendering view
condition,” and the light direction “rendering light condi-
tion.”

Textures in the BTF database are sampled at discrete di-
rections of view and light, so we interpolate the sample
textures to generate textures needed for rendering. We call
the view/light direction pairs in the database “sample con-
ditions,” and we use the terms “sample view conditions”
and “sample light conditions” in a similar way as render-
ing conditions. If we plot sample view conditions or sam-
ple light conditions, regarding their azimuth and elevation
angles as 2D orthogonal coordinates, the plots form lattice
points aligned by fixed intervals for each axis.

We generate textures corresponding to calculated ren-
dering conditions [vr(iv), lr(iv)]] using the weighted sum
of neighbor samples. Let ṽ0(iv), ṽ1(iv), ṽ2(iv) be three
neighbor sample view conditions of a rendering view con-
dition vr(iv). In addition, let W v

0 (iv),W v
1 (iv),W v

2 (iv) be
weights for the neighbor sample view conditions, fulfilling

c© The Eurographics Association 2002.

262

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

the constraint W v
0 (iv)+W v

1 (iv)+W v
2 (iv) = 1. Selection

of the neighbor sample view conditions is done by the fol-
lowing process: Let us define

i−vθ ≡
⌊

azm(vr(iv))
∆vθ

⌋
,

i−vφ ≡
⌊

elv(vr(iv))
∆vφ

⌋
,

rvθ ≡ azm(vr(iv))− i−vθ∆vθ ,

rvφ ≡ elv(vr(iv))− i−vφ∆vφ

where
·� denotes floor function. Since ∆vθ and ∆vφ

are intervals for azimuth and elevation angle of sam-
ple view conditions, (azm(vr(iv)), elv(vr(iv))) exists
in the region surrounded by (i−vθ∆vθ, i−vφ∆vφ), ((i−vθ +

1)∆vθ , i−vφ∆vφ), (i−vθ∆vθ ,(i−vθ + 1)∆vφ) and ((i−vθ +

1)∆vθ ,(i−vθ + 1)∆vφ). Then sample view conditions and
their weights are defined as[

azm(ṽ0(iv))
elv(ṽ0(iv))

]

≡

[
i−vθ∆vθ

i−vφ∆vφ

]
if (rvθ + rvφ)≤ 1[

(i−vθ +1)∆vθ

(i−vφ +1)∆vφ

]
otherwise,

[
azm(ṽ1(iv))
elv(ṽ1(iv))

]
≡

[
(i−vθ +1)∆vθ

i−vφ∆vφ

]
,

[
azm(ṽ2(iv))
elv(ṽ2(iv))

]
≡

[
i−vθ∆vθ

(i−vφ +1)∆vφ

]
,

[
W v

0 (iv)
W v

1 (iv)
W v

2 (iv)

]

≡

[
1− (rvθ + rvφ)
rvθ

rvφ

]
if
(rvθ + rvφ)≤ 1[

(rvθ + rvφ)−1
1− rvφ

1− rvθ

]
otherwise.

By the definition above, three sample view conditions
ṽm(iv)(m = 0,1,2) are selected so that the triangle
they form includes the rendering view condition vr(iv)
in the orthogonal coordinate plane of azimuth and ele-
vation angles, and we can regard the triple of weights
[W v

0 (iv),W v
1 (iv),W v

2 (iv)]t as barycentric coordinates for
the view condition in the azimuth-elevation coordinate
space. If the rendering view condition vr(iv) is placed on
the sample view condition ṽ0(iv), the weight W v

0 (iv) is 1
and linearly decreases to 0 as vr(iv) moves toward the op-
posite side of the triangle formed by the three sample view
conditions.

For the light direction, let l̃0(iv), l̃1(iv), l̃2(iv)
be the three neighbor sampling light conditions
of the rendering light condition lr(iv), and let
W l

0(iv),W l
1(iv),W l

2(iv)(W l
0(iv) + W l

1(iv) + W l
2(iv) =

1). be the weights for the sampling light conditions.
Weights can be seen as barycentric coordinates for the light
condition. Neighbor sampling light conditions and their
weights are calculated in similar way as that of sampling
view conditions and their weights which is described above.

Using above notations, we can generate texture Tg of
polygon P (ip) calculated from the rendering condition on
vertex V (iv) as

Tv(ip,vr(iv), lr(iv))

≡
2∑

m=0

2∑
n=0

W v
m(iv)W l

n(iv)T (ip, ṽm(iv), l̃n(iv))

T (ip, ṽm(iv), l̃n(iv))

≡ T (ip,azm(ṽm(iv))/∆vθ elv(ṽm(iv))/∆vφ ,

azm(̃ln(iv))/∆lθ , elv(̃ln(iv))/∆lθ).

Note that azm(ṽm(iv))/∆vθ , elv(ṽm(iv))/∆vφ ,
azm(̃lm(iv))/∆lθ and elv(̃lm(iv))/∆lφ are all in-

tegers for m = 0,1,2 because [ṽm, l̃m] are sampling
conditions where corresponding textures exist in the BTF
database.

The final texture Tp(ip) of polygon P (ip) used for ren-
dering is generated by blending three textures, and is calcu-
lated from the rendering conditions on three vertices forming
the polygon, V (t(ip, j))(j = 0,1,2). The blended textures
are

Tv(ip,vr(t(ip,m)), lr(t(ip,m)),(m = 0,1,2).

The purpose of this process is to minimize the texture
gap between polygons. This blending is done in the same
way that pixel values of three vertices are blended when
Gouraud shading is applied. Suppose that the texture coor-
dinates (0,0), (1,0) and (0,1) are mapped to the vertices
V (t(ip,0)), V (t(ip,1)) and V (t(ip,2)) respectively, and
(s0(i), s1(i)) denote texture coordinates of ith texel. Then
the texture Tp(ip) can be expressed as

Texel(i,Tp(ip))
= (1− s0(i)− s1(i))

Texel(i,Tv(ip,vr(t(ip,0)), lr(t(ip,0))))
+s0(i)Texel(i,Tv(ip,vr(t(ip,1)), lr(t(ip,1))))
+s1(i)Texel(i,Tv(ip,vr(t(ip,2)), lr(t(ip,2))))

5.2. Alpha Estimation

When we acquire the textures, background images are re-
moved by background subtraction. In the process, back-
ground pixels are often “mixed” into the resulting fore-
ground images due to decision error of background pixels or

c© The Eurographics Association 2002.

263

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

complicated object contours. To manage this error, we esti-
mate the alpha values of textures at the contour of the object
based on currently published techniques4, 15.

To estimate the alpha value, we first detect the boundary
region between foreground and background. This is nontriv-
ial in general, and some fine algorithms have been proposed;
chroma-key based technique is most well known. At this
point, we already have the depth data of the object which
is accurately matched to the image; therefore, boundary de-
tection can be done automatically with good precision. The
following is the actual process to detect the boundary and
estimate the alpha value.

• Calculate the surface normal (np(ip)) for each polygon
P (ip). If arg(np(ip) ·vviewdirection) > θthreshold then
consider the polygon to be located on the boundary.

• Divide the boundary area into small patches using the De-
launay Algorithm. Select one patch and search the nearest
background and foreground areas by using a greedy algo-
rithm

• Make color value clusters for background and foreground
in RGB space by using the k-means algorithm. Then con-
struct a network among background and foreground clus-
ters

• Plot a pixel value from the selected patch into RGB space;
then search the nearest link. Each node is estimated as
background and foreground color. A ratio between fore-
ground to pixel and background to pixel gives the alpha
value.

Once the alpha values are estimated for the textures, we
can use these values to prevent colors of the background
image from appearing on the synthesized images. Texture
images are synthesized by weighted average of original tex-
tures. In the averaging process, we multiply weight value
by alpha value for each pixel. Since the sum of “modulated
weight” may be less than 1, we divide the RGB color values
by the sum.

6. Results

To demonstrate modeling of objects, we rendered a toy post
shown in Fig. 4, a can wrapped with shiny paper (an exam-
ple which has complicated surface attributes), and a stuffed
animal with and without deformation. Geometrical data of
the toy post was acquired only by voxel carving since the
shape was roughly convex. The shape of the can was arti-
ficially generated as a cylinder. For the stuffed animal that
has relatively complex shape, we used a range scanner to get
surfaces and aligned them into the geometrical data obtained
by voxel carving. The numbers of polygons forming the toy
post, the can and the staffed animal were 5000, 1818 and
5000, respectively. Fig.5-7 show the post, the can, and the
stuffed animal. To test the effectiveness of alpha value es-
timation, we rendered the stuffed animal without using the
alpha estimation process, and fig.8 shows the results. For

all experiments, capturing intervals of parameters (azimuth-
elevation of light/view) are 30◦. We can see that the lighting
on the deformed objects’ surfaces is correctly rendered. Two
magnified parts of the synthesized images (the left ear and
the right paw) are shown on the right side of Fig.7 and 8. We
can see that artifacts due to the background colors of original
images are much less severe in Fig.7 (with alpha estimation
process) than in Fig.8 (without alpha estimation).

We also tried to merge the 3D CG object which was
rendered by our image-based technique into conventional
model-based 3D CG software. Fig.9 shows the result. The
object in the center of the image is the image-based ren-
dered object, while the rest of the scene was rendered with
traditional 3D CG software. Since we set only one illumina-
tion in this situation, there are no soft shadows in the scene;
the scene looks natural and the object was rendered photo-
realistically.

7. Conclusion and Future Work

In this paper, we have proposed a modeling method based
on actual textures. To construct models that can be rendered
for arbitrary view/light directions, we captured 4D texture
databases using a specialized platform. The platform has
special facilities that consist of two concentric circles for
the data acquisition process; these enabled us to easily cap-
ture sequential image data and a 3D model of the object,
and to subsequently generate the texture data sets with 4D
lighting/viewing parameters. To compress these 4D param-
eterized textures, we applied tensor products expansion and
achieved higher compression rates than that of SVD-based
compression.

To demonstrate the application of the captured models,
we rendered several models with various deformations. With
our proposed algorithm, we successfully rendered the de-
formed objects. For future work, we shall pursue applica-
tions of this method to CG animation and mixed reality sys-
tems.

References

1. K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-
squares fitting of two 3-D point sets”, IEEE trans.
PAMI, 9(5):698–700, 1987.

2. A. I. Borisenko and I. E. Tarapov. Vector and tensor
analysis with applications. Dover Publications, N.Y.,
1979.

3. W. C. Chen, R. Grzeszczuk, and J. Y. Bouguet, “Light
Field Mapping: Hardware-Accelerated Visualization of
Surface Light Fields”, SIGGRAPH 2001 Cource. 2001.

4. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski,
“A Bayesian Approach to Digital Matting”, Proceed-
ings of CVPR 2001, pp. 264–271, 2001.

c© The Eurographics Association 2002.

264

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

5. K. J. Dana, B.v. Ginneken, S. K. Nayar, and J. J. Koen-
derik, “Reflectance and texture of real-world surfaces”,
ACM Transactions on Graphics, 18(1):1–34, 1999.

6. R. Furukawa, H. Kawasaki, and K. Ikeuchi, “Acquir-
ing Bidirectional Texture Function for Image Synthesis
of Deformed Objects”, Proceedings of the Fifth Asian
Conference on Computer Vision, pp. 622–627, 2002.

7. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen, “The lumigraph”, ACM SIGGRAPH, pp. 43–54,
1996.

8. M. Levoy and P. Hanrahan, “Light field rendering”,
ACM SIGGRAPH, pp. 31–42, 1996.

9. T. Machida, H. Takeura, and N. Yokoya, “Dense Es-
timation of Surface Reflectance Properties for Merge-
ing Virtualized Objects into Real Images”, Proceedings
of the Fifth Asian Conference on Computer Vision, pp.
688–693, 2002.

10. G. Miller, S. Rubin, and D. Ponceleon, “Lazy decom-
pression of surface light fields for precomputed global
illumination”, Rendering Techniques (Eurographics’98
Proceedings), pp. 281–292, 1998.

11. J. Murakami, N. Yamamoto, and Y. Tadokoro, “High
Speed Computation of 3-D Tensor Product Expansion
by the Power Method”, IEICE Trans. (In Japanese),
J82-A(8):1351–1359, 1999.

12. K. Nishino, Y. Sato, and K. Ikeuchi, “Eigen-texture
method: Appearance compression based on 3D model”,
Computer Vision and Pattern Recognition, volume 1,
pp. 618–624, 1999.

13. M. Potmesil, “Generating octree models of 3D ob-
jects from their silhouettes in a sequence of images”,
Conputer Vision, Graphics, and Image Processing,
40(1):1–29, 1987.

14. S. M. Rusinkiewicz, “A New Change of Variables for
Efficient BRDF Representation”, Eurographics Ren-
dering Workshop 1998, pp. 11–22, 1998.

15. M. Ruzon and C. Tomasi, “Alpha Estimation in Natural
Images”, Proceedings of CVPR 2000, pp. 24–31, 2000.

16. R. Szeliski, “Rapid octree construction from image se-
quences”, Conputer Vision, Graphics, and Image Pro-
cessing, 58(1):23–32, 1993.

17. M. D. Wheeler and K. Ikeuchi, “Sensor modeling,
probabilistic hypothesis generation, and robust local-
ization for object recognition”, IEEE Trans. on PAMI,
17(3):252–265, 1995.

18. D. Wood, D. Azuma, W. Aldinger, B. Curless,
T. Duchamp, D. Salesin, and W. Steutzle, “Surface light
fields for 3D photography”, ACM SIGGRAPH, 2000.

c© The Eurographics Association 2002.

265

Furukawa, Kawasaki, Ikeuchi and Sakauchi / Appearance based object modeling using texture database

(a) (b)

Figure 4: Model and texture database: (a) an original im-
age of the modeled object, (b) visualization of parameterized
textures, in which each row of textures is captured from a cer-
tain view direction and each column of textures is captured
for a certain light direction.

Figure 5: Rendering examples: a toy post

Figure 6: Rendering examples: a can wrapped with shiny
paper

Figure 7: Rendering examples: a stuffed animal with alpha
estimation

Figure 8: Rendering examples: a stuffed animal without al-
pha estimation.

Figure 9: Rendering with model based 3D CG system

c© The Eurographics Association 2002.

333

