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Abstract RDF is increasingly being used to represent large amounts
of data on the Web. Current query evaluation strategies for RDF are
inspired by databases, assuming perfect answers on finite repositories.
In this paper, we focus on a query method based on evolutionary com-
puting, which allows us to handle uncertainty, incompleteness and un-
satisfiability, and deal with large datasets, all within a single conceptual
framework. Our technique supports approximate answers with “anytime”
behaviour. We present scalability results and next steps for improvement.

1 Introduction

The Resource Description Framework (RDF) standard [22] is increasingly being
used to represent large amounts of data on the Web [10], such as the openly
available datasets for the billion triple challenge1. Such Semantic Web data is
intrinsically incomplete, is too large to represent entirely, and contains errors,
omissions and ambiguity. However, most query languages and evaluation strate-
gies for Semantic Web data are inspired by databases: the SPARQL [27] query
language assumes perfect answers on finite repositories and most RDF stores
rely on database back-ends or database-style implementations [6, 17].

We introduced evolutionary RDF query answering [25] as an alternative to
these approaches, a new querying paradigm which, we claim, has the potential
to efficiently produce approximate answers for large RDF datasets. In short,
our algorithm finds variable assignments such that the data graph entails the
query graph after variable substitution. Instead of using database-style indices,
we randomly generate various “individuals” with complete variable assignments
and evolve these individuals using an evolutionary algorithm. A fitness function
rewards approximate answers and yields maximum value for perfect solutions. At
the current state, our implementation shows some good convergence properties,
even though the quality of the answers is not yet fully satisfying.

In this paper, we investigate evolutionary RDF query answering from the per-
spectives of approximation and scalability; first, studying how our evolutionary
approach behaves in the light of uncertainty, incompleteness and unsatisfiability,
and secondly, how it scales when applied to realistic datasets. The outcome of
our analysis is encouraging, as it indicates nice computational properties of our
method, and that it effectively deals with different kinds of uncertainty.
1 http://challenge.semanticweb.org
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After giving some background in section 2 we describe our evolutionary algo-
rithm for RDF query answering in section 3. In section 4, we study the space and
run-time requirements of our algorithm. In section 5, we discuss the application
of our technique to approximate queries on imperfect data.

2 Background

We first introduce an example which will be used throughout the paper to il-
lustrate our approach. A short snippet of RDF, taken from the SwetoDblp pub-
lications dataset [1], is shown in Listing 1.1. It states that the “Principles of
Database Systems” book was written by some unnamed blank node, whose first
element is Jeff Ullman, with a homepage at Stanford. All authors in the SwetoD-
blp dataset are RDF sequences (ordered lists). A simple SPARQL query over the
SwetoDblp dataset, selecting the titles of all books, is shown in Listing 1.2. In
the rest of the paper, we use a subset of this SwetoDblp2 dataset containing 3m
triples and a collection3 of FOAF profiles containing 15k triples for evaluation.

Listing 1.1. RDF snippet from SwetoDBLP dataset� �
<Ullman88> rdf:type opus:Book .
<Ullman88> rdfs:label "Principles of Database and Knowledge-Base Systems" .
<Ullman88> opus:author _:b1 .
_:b1 rdf:_1 dblp:ullman .
dblp:ullman foaf:homepage <http://www-db.stanford.edu/~ullman/> .� �

Listing 1.2. SPARQL query for book title� �
SELECT ?title WHERE {
?publication rdf:type opus:Book .
?publication rdfs:label ?title .

}� �
2.1 Formal problem description

The formal definitions for the problem we address are standard and closely
follow the formalism presented in [23, 26]. RDF [22], the data model of the
Semantic Web, is a language for asserting statements about arbitrary identifiable
resources. Formally, given three infinite sets I,B and L called respectively URI
references, blank nodes and literals, an RDF triple (s, p, o) is an element of
(I ∪ B) × I × (I ∪ B ∪ L). Here, s is called the subject, p the predicate, and o
the object of the triple. An RDF graph (or dataset) is then a set of RDF triples.

For querying RDF, we restrict ourselves to a subset of SPARQL [27]: se-
lect and construct queries with one or more where clauses of simple graph
patterns. Graph patterns are subsets of (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ),
where V is a set of variables (disjoint from U ∪ I ∪B). The rest of SPARQL can
be supported within the same conceptual framework. In the remainder of the
2 http://eardf.few.vu.nl/dblp3m.nt.gz
3 http://eardf.few.vu.nl/foaf.nt.gz
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paper we refer to this sub-language. We define the semantics of a query through
a mapping µ which is a partial function µ : V → U ∪ I ∪B. For a triple pattern
t, µ(t) is the triple obtained when the variables in t are replaced according to µ.

The set of solutions to a query Q over a data-set D is now defined as follows:
let D be an RDF data-set over U ∪ I ∪B, and Q a graph pattern. Then we say
that a mapping µ is a solution for Q in D if, and only if, µ ∈

⋂
t∈Q{µ | dom(µ) =

var(t) and µ(t) ∈ D}, where var(t) is the set of variables occurring in t. In the
following we will often call the graph pattern Q a query, a solution for Q in D
an assignment, and will refer to a triple pattern within a query as a clause.

2.2 Evolutionary algorithms

Evolutionary algorithms [14] are based on a population of individuals that evolve
based on natural selection and inheritance. Each individual represents a candi-
date solution which competes with its siblings based on “survival of the fittest”.
Evolutionary algorithms have proven to be efficient on a wide range of optimisa-
tion, modeling, and simulation problems; using them for satisfiability problems
(as we do here) leads to good results when some knowledge about the problem
is incorporated in the evolution process [8, 13].

In general, convergence of an evolutionary algorithm depends on the algo-
rithm, the type of problem, and the fitness landscape (how the fitness is dis-
tributed over the solutions). For an evolutionary algorithm with elitist selection
as we use here, lower and upper bounds on convergence can be determined [19].
Recently, Teytaud and Gelly [29] have shown that evolutionary algorithms that
only compare fitness values can converge linearly at best, and suggest ranking
solutions instead; we do so, by weighting parts of the solutions. Later in the
paper, we empirically demonstrate convergence for some RDF queries.

2.3 Evolutionary RDF querying

Existing RDF stores such as Sesame [6] or YARS [17] mostly employ standard
database techniques for query answering. Generally speaking, all systems con-
struct partial indices for simple triple patterns such as (∗po) and (sp∗) during
loading time. During query execution, single patterns can be answered with di-
rect index lookups, while joins require nested loops with backtracking.

We propose a different approach which consists of, iteratively, guessing a set
of complete assignments for the query variables (a “candidate solution”), verify-
ing those assignments, and if no solutions are found, loop and trying again [25].
The main difference with traditional database querying approaches is that we
verify candidate solutions instead of generating them.

In order to minimize query answering time, our evolutionary algorithm should
improve its assignments with each loop, arrive at some solution relatively fast,
and verify each candidate solution rapidly. To achieve those goals, we combine an
evolutionary algorithm with Bloom filters [3], to respectively generate candidate
solutions and to test them. Additionally, we use a dictionary encoding to reduce
memory usage during evolution.
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Verification of solutions Bloom filters [3] are compact data representations that
support only set insertion and membership evaluation. On insertion, a bitmask
is computed by applying k hash functions to the inserted key. Bits indicated by
the mask are set to 1 in the filter (default value is 0). For membership evaluation,
the element’s bitmask is computed and evaluated against the stored mask of the
set. Since computed hash functions may collide, a lookup may result to false
positives (if all k hash functions collide). This collision rate p depends on the
ratio m/n between filter bitsize and number of stored elements, and on the k
number of hash functions used: p = (1− e− kn

m )k.
In our application, the size of our filters can be adjusted during data loading

time to achieve a given collision rate; alternatively, with a given filter and domain
size, we can estimate the confidence of false positives in the answers using the
same equation. Typically, the number of hash functions is set to k = 4, to achieve
good collision rates with varying data sizes.

Dictionary During graph parsing a term dictionary is constructed, which maps
terms to integer keys and vice versa. The domain of each variable (candidate
assignments) and all generated individuals (selected assignments) are expressed
as integer vectors, holding dictionary keys. For readibility, those integers are
substitued by their corresponding terms throughout the examples in this paper.

3 An evolutionary algorithm for RDF querying

We now describe the details of our evolutionary encoding: the representation
of variable assignments as individuals, the fitness evaluation, the evolutionary
operators that modify the population, and some convergence results.

3.1 Encoding of individuals and constraints

To setup our evolutionary algorithm, we need to choose a representation for the
individuals (candidate solutions) and for the query (constraints). Each individual
is a fully instantiated solution to our problem, ie. an assignment for all variables.
Therefore, the encoding template for the individuals is the set of terms defined by
the query, as shown in Table 1(a). In order to increase the genetic material, and
in contrast to our earlier encoding [25], each variable is considerated separately,
resulting in two different genes for the same variable ?publication.

The domain of a variable depends on its usage in the graph. In total, we have
seven possible domains: s, p, o, sp, so, po, spo. During graph parsing we populate
the three domains s, p and o with nodes occurring at subject, predicate and
object position. Then a variable’s domain is the intersection of its position in
the query clauses. Table 1(b) shows the domains for our standard example.

A candidate solution is optimal if it satisfies all of the Bloom filter tests and
equality constraints. Each constraint is associated to a reward.We use four fil-
ters (spo, sp, so, po) to check both complete and partial triple assignments to
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(a) Encoding template for individuals

?publication1 ?publication2 ?title

(b) Domain snippets for the variables

Variable Domain

?publication1 s: <Ullman88>, :b1, dblp:ullman
?publication2 s: <Ullman88>, :b1, dblp:ullman
?title o: <http:/. . .>, :b1, dblp:ullman, "Principles. . .", opus:Book

Table 1. Encoding of individuals (candidate solutions)

Constraint to satisfy Expected reward
Ê bloom(spo|?publication1 rdf:type opus:Book) 3× w1

Ë bloom(sp|?publication1 rdf:type) w1

Ì bloom(po|rdf:type opus:Book) w1

Í bloom(so|?publication1 opus:Book) w1

Î bloom(spo|?publication2 rdfs:label ?title) 3× w2

Ï bloom(sp|?publication2 rdfs:label) w2

Ð bloom(po|rdfs:label ?title) w2

Ñ bloom(so|?publication2 ?title) w2

Ò equal(?publication1,?publication2) w3 × w1+w2
2

Table 2. Translation of SPARQL query into constraints

increase fitness granularity. Table 2 shows the constraints for the query in List-
ing 1.2. Constraints 1–4 are generated from the first where clause (?publication
rdf:type opus:Book), 5–8 correspond to (?publication rdfs:label ?title),
the last one is created by the double usage of ?publication. Constraint 3 is
removed from the list as it is satisfied by definition.

3.2 Fitness evaluation

A fittness function should be designed in such a way that individuals closer to
the optimal solution can be identified by the system. For our application, an
optimal solution consist of a valid variable assignment.

A candidate solution is optimal if it satisfies all constraints. The quality of in-
dividuals is therefore related to the number of satisfied constraints. To illustrate
the fitness consider Table 3(a). The query instantiated with the assignment cor-
responding to the individual is checked against all relevant corresponding Bloom
filters and Equality constraints. For each constraint that is validated this candi-
date solution is rewarded, as shown in Table 3(b). Table 3(c) shows the complete
fitness evaluation for this individual; half of the constraints are validated, leading
to a total reward of 6× w2.

In addition to this overall evaluation, each variable involved in a satisfied
contraint receives a reward This information is used later to determine how to
control mutation.
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(a) Candidate solution to evaluate

dblp:ullman <Ullman88> "Principles. . ."

(b) Evaluation of the total reward for that candidate assignment

Constraint to satisfy Result Reward
Ê bloom(spo | dblp:ullman rdf:type opus:Book) false 0
Ë bloom(sp | dblp:ullman rdf:type) false 0
Í bloom(so | dblp:ullman opus:Book) false 0
Î bloom(spo | <Ullman88> rdfs:label "Principles. . .") true 3× w2

Ï bloom(sp | <Ullman88> rdfs:label) true w2

Ð bloom(po | rdfs:label "Principles. . .") true w2

Ñ bloom(so | <Ullman88> "Principles. . .") true w2

Ò equal(dblp:ullman <Ullman88>) false 0

(c) For satisfied constraints, reward is equally
distributed to each variable involved

?publication1 ?publication2 ?title

Î 0 3×w2
2

3×w2
2

Ï 0 w2 0
Ð 0 0 w2

Ñ 0 w2
2

w2
2

Table 3. Evaluation of a candidate solution

3.3 Evolution process

In the basic form, starting with an initial population, individuals recombine and
mutate to produce offspring. In each iteration, individuals are evaluated using the
fitness function: the unfittest are removed and replaced by new individuals. When
a stop criterion, such as minimal fitness or maximum number of generations, is
satisfied the best individuals are presented as final solutions.

During a loop, the evolution consists of the consecutive execution of four
“operators”: parent selection, recombination (crossover), mutation and survivor
selection. We now describe our implemented choice for each of these operators.

Parent selection Evolution loops create new individuals and destroy previous
ones. Parent selection is aimed at selecting from the current population the
individuals that will be allowed to mate and create offspring, and is commonly
aimed at the best individuals. Several parent selection schemes can be used. We
employ a tournament-based selection, in which two individuals are randomly
picked from the population, the best one is kept as the first parent. This process
is repeated to get more parents.

Recombination Recombination acts as exploration during the search process.
This operator is aimed at creating new individuals in unexplored regions of
the search space. Its operation takes two parents and combines them into two
children. After various experiments, we opted for a classical one-point crossover
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(a) Selection of a random pivot gene

dblp:ullman <Ullman88> "Principles. . ."

<Ullman88> dblp:ullman :b1

(b) Creation of two children

dblp:ullman <Ullman88> :b1

<Ullman88> dblp:ullman "Principles. . ."

Table 4. One-point crossover operator process

(a) Select the gene with lowest reward

dblp:ullman <Ullman88> "Principles. . ."

0 3× w2 3× w2

(b) Assign a random new value

<Ullman88> <Ullman88> "Principles. . ."

Table 5. Mutation operator process

operator, in which one pivot gene is randomly selected and the parts around it
are swapped between the parents, demonstrated in Table 4.

Mutation As compared with the crossover operator whose objective is to do
“big jumps” in the search space, the mutation operator is meant to explore the
neighbourhood of an individual. A slight modification is applied to one or more
genes. This perturbation is commonly referred to as an exploitation scheme. In a
standard genetic algorithm mutation is blind, ie., the gene to modify is randomly
selected. After some experimentation, we instead designed a mutation operator
which is biased towards mutating badly performing genes, based on the score
per variables computed during fitness evaluation. The process of this operator
is depicted in Table 5.

Such a mutation operator improves convergence of a population by identify-
ing the less efficient assignments. However, such a greedy strategy may lead to
local optima without reaching global optima. To reduce the risk of premature
convergence we therefore also apply blind mutation after our optimised local
search. This mutation is applied randomly, with low probability, to one gene.

Survivor selection At this point of the evolution we have both a parent pop-
ulation and an offspring population (created by the parents). During survivor
selection we select the individuals to keep for the next evolution round. We chose
a generational selection: after each evolutionary cycle the parent population is
discarded and replaced by its offspring.

3.4 Convergence results

Figure 1(a) shows the fitness of the best individual when trying to answer an
example query on the FOAF dataset (using 200 individuals, for 500 generations).
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Figure 1. Best fitness on FOAF and DBLP queries, avg. over 100 runs

Three phases can be observed: first a rapid improvement during initialisation,
when constraints are easy to satisfy, then a slower improvement when individ-
uals solve the more difficult (join) constraints, and finally near-constant fitness
when an optimum is found. The curve is typical for evolutionary algorithms and
confirms the expected convergence behaviour.

Figure 1(b) shows the result on the DBLP dataset, with same evolution
parameters. Now only the first phase is visible and the evolution stops during
the second one. Although a partial solution during the initialisation phase is
reached quickly, the individuals have difficulty finding further improvements;
more work is needed to prevent a local optimum.

4 Discussion on scalability

Using an evolutionary approach combined with Bloom filters has several scalabil-
ity benefits. First, during query evaluations users can decide to trade soundness
for speed, by stopping the evolution before perfect solutions are found, and to
trade soundness for memory size, by using smaller bloomfilters with higher col-
lision rate. In this section, we explore such scalability advantages in more detail.

4.1 Fast dictionary construction

Dictionaries often improve performance when handling large amounts of data.
All terms are rewritten into dictionary keys (in our case, integer indices).Using
these keys during computation improves performance because keys require on
average less memory space than the full terms and because integer comparison
is faster than a string comparison of the terms.

Constructing dictionaries is however not trivial, as during construction a list
of all seen terms and their assigned keys must be kept [20]. For building the
dictionary, we employ move-to-front hashtables [30], which are a particular type
of chained hashtables using linked lists for overflow entries. When accessed, el-
ements are moved to the front of their list. This simple heuristic relies on the
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(a) parsing

dataset memory

FOAF 65 MB
DBLP 230 MB

(b) querying

dataset memory

FOAF 15 MB
DBLP 140 MB

Table 6. Average memory usage using 200 individuals

Zipfian distribution of terms in texts, so that often used terms are on aver-
age available in the front of the list. Since terms in RDF data follow a similar
distribution [24], we use the same data structure and heuristic.

To insert a term in these hashtables, its hash value is computed using some
hash function, and used as index into an array of lists. The term is compared
to the other terms in the list at that position. If found, the corresponding key
is returned, and the list element is moved to the front of the list. If not found,
this term is added to the end of the list along with a new key, incremented using
some counter, is assigned to him.

An expensive computation in the move-to-front hashtable is the string term
comparison, performed at each list element to see whether the existing list term
is the same as the one being inserted. To improve performance, we store and
compare only the Adler-32 fingerprint [9] of each term. Comparing these finger-
prints is a fast bitwise operation, while collision rate is extremely low since both
hash value and fingerprint value need to collide.

4.2 Small memory footprint

Since the bloom filters, the domain, and all individuals are compactly repre-
sented, all runtime data fits in memory, avoiding the disk I/O bottleneck [4, 18].
Actual memory usage during prototype experiments is shown in Table 6, for the
smaller FOAF dataset and the larger DBLP dataset. During parsing, most mem-
ory is used during dictionary and bloom filters construction; during evolution
the memory is used to hold the bloom filters, the assignments of all individuals
and the hash table of the dictionary, used for printing final solutions. Both parse
and query actions indeed require a reasonable amount of memory; more compact
bloomfilter variations are possible, eg. for network distribution [5].

4.3 Short and fast evolution cycles

During evolution, we verify whether solutions are present in each of the bloomfil-
ters. Membership testing in the bloomfilter consists of computing the k hashval-
ues, which are used as a bitmask for the filter. All computation stays in memory,
and all bitwise operations are very fast.

Secondly, we perform the evolutionary operations (cross-over, mutation, etc.)
and sometimes assign new values to individuals. Again, since individuals are
encoded as integer vectors, these operations are very efficient.
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4.4 Suitable for parallel computation

Since evolution of individuals is in principal independent the computation can
be easily parallelised. Our evolutionary algorithm could use an island model with
independent demes [7], to evolve sub-populations in parallel.

Since our Bloom filters are relatively compact, they can be transported over
the network, allowing local evolution on distributed clients in a “thinking at
home” manner [15]. In a P2P setting, the dictionary itself may also be stored in
the network using distributed hashtables [28].

5 Discussion on approximations and applicability

In our technique, we have several points in which some approximation of data or
query can be performed. Generally speaking, when querying a dataset KB with
query Q, we can distinguish three kinds of approximations: one can approximate
the query Q by Q′, one can approximate KB by KB′, and one can approximate
the reasoning strategy, by for example returning unsound, partial, matches.

Our method can be seen as an approximation of all three kinds simultane-
ously. We approximate the dataset, somewhat similar to random sampling, since
the evolution can be stopped at any point without all constraints necessarily
satisfied, and without having explored the complete search space. At the same
time, we also approximate the query, using a simple form of query relaxation,
and approximate the reasoning strategy by returning unsound answers.

5.1 Approximate anwers through query relaxation

Query rewriting approximates the original, possibly unsatisfiable, query Q by Q′.
Relaxation through query rewriting can be done eg. by making clauses optional,
by breaking join dependencies, by replacing constants by variables, by replacing
constants using the class and property hierarchy in an associated ontology, or
by deleting (ignoring) problematic clauses [11, 21]

Hurtado et al. [21] add an explicit RELAX clause to SPARQL queries, which
are automatically and successively relaxed based on schema information such
as subClassOf and subPropertyOf. Similarly, Dolog et al. [11] explicitly model
user preferences and domain preferences, and use these preferences to automat-
ically relax query clauses by replacing values and predicates in the query with
preferred alternatives (eg. synonym values or related predicates).

We employ a similar but less fine-grained form of query relaxation, by re-
turning answers from individuals with sub-optimal fitness. The solutions encoded
by these individuals have found partial matches, and thus ignored some of the
clauses or clause parts in the query.

5.2 Approximate answers through unsoundness

On top of the notion of approximation by ignoring some triple patterns in the
query graph, we also introduce approximation by using an unsound method for
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checking whether a mapping µ is indeed a solution to a query Q for a graph D.
The reason for this is that Bloom filters are fast but unsound lookup mechanisms.

Because we generate several constraints for each query clause, and because
we have a population-based algorithm which returns only the best solution for
each problem, the error rate of answers returned to the user is several factors
lower. For the basic approach which uses four constraints for each clause (for
each pair and triple in the clause) the confidence level is:

1− p(query) = 1−
∏
C

(psp · pso · ppo · pspo) = 1−
∏
4C

p (1)

For instance, using a collision probability of 10%, the confidence level for
query with c clauses is: 1− (0.10)4c ' 1, indicating the absence of false positives
in the solution.

5.3 Dealing with imperfect queries

When users lack sufficient knowledge about the dataset that they are querying,
they are unable to formulate queries that return the intended result. In the
context of the Semantic Web, users frequently lack such knowledge, since data
come from multiple sources, with different schemas and often lacking any schema
information. Research on cooperative query answering [16] focuses on interactive
query formulation, helping users to refine their query until suitable results can
be returned.

In our case, when users investigate some dataset, eg. “what can I learn
about Tim from this FOAF file?”, a potential query would be “SELECT ?prop
WHERE ?sub foaf:name ”Tim”. ?sub ?prop ?obj”. Though thousands of prop-
erties may exist, the user is likely not to be interested in seeing all of them.
And here is where the approximation is made: instead of fetching all the results,
the evolutionary process is executed until some reasonable number of answers
becomes available.

Evolutionary algorithms are designed to have a population of candidate so-
lution evolving towards a given optimum (according to a fitness function). The
initial population may be created randomly or using any other initialisation
scheme. Thus, a first set of answers can be such a starting point for a new evolu-
tion. Besides, the optimum to reach could be adapted to take into account some
new constraints. By taking advantage of those restart and robustness capabili-
ties, an incremental query answering system can be designed.

5.4 Dealing with imperfect data

Our initial approach for translating SPARQL queries into a constraint satisfac-
tion problem [25], gave equal importance to all the where clauses; in practical
queries, such equal importance might not be the case. In this paper, the intro-
duction of specific weights for different constraints caters for such differences,
allowing more “useful” approximate answers. The constraint weights can be
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tuned using three different strategies: a “static” strategy based on statistical
information, a “dynamic” one based on adjustment during evolution, and an
“adaptative” scheme based on interactive user feedback.

Static Relative importance of the clauses could be deduced from their probabil-
ity, depending on their occurrence frequency. We can simply count each triple oc-
currence into six wildcard patterns: (?s,p,o), (s,?p,o), (s,p,?o), (?s,?p,o),
(s,?p,?o) and (?s,p,?o). The first one, for instance, will count all combina-
tions of p and o. During query time, the value of the counter associated to a
pattern gives a hint on the difficulty of finding a variable binding for it.

Dynamic The importance of a clause can also be discovered dynamically, based
on the difficulty of solving them during evolution: a constraint that appears to be
hard to satisfy should be solved first. We can assume that a where clause is hard
to satisfy if no valid assignment is found for that particular constraint within
a finite time [12]. Initially, the weights associated to each clauses are set to a
default value. After each n iterations, the weight of a clause is incremented if the
best individual could not find a valid assignment for it. Once a valid assignment
has been found, those weights are set back to the default, neutral, value. Using
this scheme, hard constraints will gain importance until they are satisfied. Once
solved, more attention will be paid to the remaining unsatisfied constraints.

Interactive The third weighting schema allows users to explicitly indicate their
preferences. In terms of evolutionary algorithms, the user is then involved in
the variation-selection loop, which is called interactive evolutionary computation
[2]. In terms of the weighting scheme mentioned above, involving the user in
the search process means that he is able to change the weights according to
fitness values he sees. Then, the weights are used to correct the direction of
the search process towards “good” enough answers. Technically, the weights are
incorporated in the EA to determine either the fitness of candidate answers
and/or the operators to generate new candidates. For the former, one has to
take into account that users can only evaluate a small number of candidates,
meaning that these candidates have to represented to the user in an intelligible
way. Even when using a static fitness function, considerable speed-up can be
achieved by user involvement during the generation of new candidates.

6 Conclusion

We have introduced a novel method for querying RDF datasets based on an
evolutionary algorithm. Our method is not focused on finding perfect solutions
but on providing approximate solutions efficiently. We study this approach from
two perspectives: scalability and uncertainty. Regarding scalability, three aspects
show the positive behaviour of our method: the potential for parallelisation, small
memory usage, and minimal execution time of evolutionary cycles. Furthermore,
we show that our approach allows to deal very naturally with different types
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of uncertainty: approximate queries, approximate answers, and uncertain data.
Although the evolutionary operators still need improvement, we believe that our
analysis justifies further development of evolutionary methods for RDF querying.

Future work In this paper, we have focused on finding the best, possibly approx-
imate, solution to a given query. How to efficiently return many results instead
is an open issue. One direction for research is evolutionary taboo-search, using
individuals as scouts that explore the solution space; once a local optimum is
found, the area is tabooed and individuals focus on another part.

We currently do not support aggregation functions, since these are currently
not part of the SPARQL standard. Still, we can employ the evolutionary search
as a method to compute approximate aggregations “along the way”, without
requiring complete solutions before aggregating.
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