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Abstract— On the case study of block turbo decoders for error
correction, the paper shows that the use of unconventional frame-
work like Madeo can produce interesting FPGA implementations.

Error correction algorithms are known to be very important
for communication data rate and reliability. As reconfigurable
architectures are attractive for fast prototyping and flexibility,
they are often considered as support for implementation of
communication, including mobile communication.

Madeo is an open framework for designing physical FPGA
architectures and their applications. On the basis of an abstract
model for reconfigurable circuits, Madeo provides the necessary
tools (logic synthesis and physical tool) to program them.

The paper describes the block turbo decoder principle, dis-
cusses existing solutions and presents characteristics of a partial
implementation on the open framework Madeo. Three elements
of a block turbo decoder have been designed using Madeo and
the physical solutions compete very well with existing solutions
for such problems.

I. INTRODUCTION

Communication activities such as protocol processing, con-
tent analysis, or error corrections are domains where adapt-
ability and automatic implementation methods are critical to
improve the objectives. The need for flexibility gives a strong
motivation for the use of reconfigurable devices, and rises
questions about development methods, portability, power and
performance efficiency.

In the context of the fast development of the FPGA tech-
nology, an usual answer is to use HDL languages to develop
functionalities, or domain specific tools. However, it remains
a set of problems that could be solved in a more elegant way,
such as the physical control of the target circuit, and how to
address arithmetic components.

In this paper, we advocate the use of an open framework to
model and address reconfigurable architectures. The idea is to
use a common abstract model in which concrete descriptions
are archived in terms of elementary active components (logic
cells, arithmetic units, memories, sensors. . . ), routing devices,
and structural organization. The abstract model is a kind of
windows allowing basic CAD tools to discover architecture
capabilities, enabling the work of a generic place and route,
floor planning, editing software. We define the model and the
basic tools as the ’physical layer’ of our framework (called
Madeo). Several FPGAs have been described in this model,
the Xilinx Virtex is serving for practical testing (section IV-B).

A second mission of the framework is to translate computa-
tions in terms of routes and active components. For fine grain
FPGAs, this is logic synthesis. More complex platforms must
allow arithmetic function allocations. The set of functionalities
is define as the ’logic layer’ which internal principles are
given section IV-A. In the case of fine grain architectures, the
logic synthesis functionality is restricted to the production of
combinational or FSM circuits for a target FPGA technology.

Above the logic layer, higher level tools such as language
compilers, or structural process compositions define the com-
putation organizations. Feed-backs from the real architecture
constraints and from the mapping tools allow to make decision
with an accurate vision of the resources, as an example, to fold
a linear network on a given surface under programmer control.

Madeo tools are applied on parts of a block turbo decoder,
an error correction algorithm described in section II.

Error correcting codes (channel coding) are one of the
solutions available to improve digital communication quality.
The purpose of channel coding is to introduce some redun-
dancy into the binary information sequence, in a controlled
manner. This allows us to overcome the effects of noise and
interference encountered in the transmission of the signal
through the channel. Turbo codes are a family of error cor-
recting codes built from a concatenation of elementary codes
[1]. Turbo coding consists of two key design innovations:
parallel concatenated encoding and iterative decoding. Iterative
decoding is a sub optimal alternative that provides extremely
good performance while requiring only a modest level of
complexity. There are two classes of codes: linear block
codes and convolutional codes. Nowadays, turbo codes are
considered to be the most efficient coding schemes for channel
coding (two to four dB are gained in comparison with classical
error correcting codes). In the last few years, many block turbo
decoder architectures have been designed at ENST Bretagne
[2]. For these different studies, the design methodology has
been as follow: C language is used for behavioral simulations
to compare the performance and complexity of the decoders,
next, VHDL or SystemC [3] RTL descriptions of the architec-
tures are necessary for functional simulations and syntheses.
This traditional design flow is usually used to design specific
circuits (ASIC/FPGA).

Section V proposes to show how the framework allows
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elements of a block turbo decoder to be produced. The solution
makes use of Galois Field properties, that are described in the
development language as an arithmetic class, easy to test and
reuse. Three elements are investigated. Two lead to a combi-
national circuit produced from an applicative description. The
third one mix logic synthesis and structural placement. The
development is concise and well supported at the language
level. The circuits produced are inherently more parallel and
more optimized than solutions obtained using previous tools.

II. BLOCK TURBO DECODER

The iterative decoding process can be used with the block
code family of product codes. Block turbo codes are an
alternative solution to convolutional turbo codes. They are
especially attractive for high-speed applications and offer a
very good coding gain at high code rates.

A. Iterative process of product codes (n,k,δ)2

In 1954, Elias [4] proposed product codes that are series of
concatenated codes. The product code inherits the properties
of codes that compose it. Let us consider an example with
the two identical BCH codes (n, k, δ) as illustrated in Figure
1. So, the parameters of the resulting product code are given
by: n2 (code length), k2 (number of information symbols) and
δ2 (minimum Hamming distance). In this case, the elementary
BCH (Bose Chaudhuri Hocquenghem) code is able to correct
t = �(δ− 1)/2� errors. In 1972, Chase [5] proposed an al-
gorithm that approximates the optimum sequence decoding
of block codes with low computing complexity and small
performance degradation. In 1994, R. Pyndiah [6] presented a
new iterative decoding algorithm for decoding product codes,
based on the iterative SISO (Soft Input Soft Output) decoding
of concatenated block codes. In fact, the iterative decoding
algorithm consists of cascaded SISO elementary decoders for
rows and columns. Moreover, a reconstruction of the matrix
is necessary between each decoding.

Information
symbols

Checks
   on
rows

Checks
  onChecks on columns

Checks

k1

k2
n2

n1

Fig. 1. Principle of product codes

B. Elementary SISO BCH decoder (n, k, δ)

BCH codes are a special type of linear cyclic block codes.
Actually, a code is linear if and only if the set of code
words forms a vector subspace over a finite field like a Galois
field. Moreover, in a cyclic code, for every code word c =

(c0,c1, . . . ,cn−2,cn−1), c′ = (cn−1,c0, . . . ,cn−3,cn−2) is also a
code word. Thus all n shifts of c are also code words. A Galois
field is a mathematical structure that contains a finite number
of elements upon which addition and multiplication is defined.
So a BCH (n, k, δ) code forms a Galois field GF(2n) defined
by a generator polynomial. This means that the size of the
Galois field (i.e. the number of elements in the field) uniquely
determines the field. An elementary SISO BCH decoder is
shown in Figure 2, where k stands for the number of half-
iterations.

• R′
k is the vector received from the previous half-iteration,

• Rk is the vector received from the channel (R′
k = Rk for

the 1st half-iteration),
• Wk is the vector that contains the extrinsic information,

that is, the additional information given by the decoder
concerning the reliability of the decoded bit,

• Dk is the result of binary decoding,
• αk and βk are constants that depend with the current half-

iteration.

Fig. 2. Block diagram of half iteration elementary SISO decoder

The decoding algorithm of an elementary SISO BCH can
be summarized as follows [2]:

1) Search for the p least reliable binary symbols of R′
k,

their positions being called I1, I2, . . .,Ip,
2) Build the τ test patterns T Q (Q∈[1..τ -1]), which are a

combination of elementary test vectors T 0 with inver-
sions for the least reliable binary symbols,

3) For each test vector T Q, compute ZQ : ZQ = T Q ⊕
sign o f R′,

4) For each test vector T Q, do the BCH binary decoding,
5) For each vector CQ found, compute the square Euclidean

distance between R′k and CQ,
6) Select codeword Cd having the minimal distance with

R′
k. Then Dk = Cd is the result of the binary decoding,

7) Select the closest test vectors to Dk, called competitors,
8) Compute the vector Fk that contains the reliability for

each binary symbol of Dk,
9) Compute the vector Wk that contains the extrinsic infor-

mation

The BCH binary decoding that is used by each test vector,
involves four major steps. We first calculate the syndrome
values, which represent the sequence of errors in the frequency
domain. The number of syndrome values is equal to the
number of parity symbols 2t. Then we solve the key equation
by determining the error locator polynomial γ(x) from the
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syndrome values. This calculation is realized by the Peterson
algorithm [7]. The roots of the error locator polynomial γ(x)
are computed using the Chien search algorithm [8] in order
to provide the errors location in the test vector. The received
word is finally corrected.

The least reliable binary symbols of R′
k are obtained by

a comparison of the reliability of all binary symbols. The
number of least reliable binary symbols depends on the code
length and the error correction power of the BCH code. For
example, if the code length and the error correction power are
128 and 1 respectively, we keep the five least reliable binary
symbols in the elementary BCH decoder. These least reliable
binary symbols are then used for the construction of the test
patterns.

The elementary SISO decoder that we have chosen is
dedicated to BCH code (128,120,4) correcting one error in
a 128-symbol codeword.

III. RELATED WORK

Nowadays, turbo codes are becoming a popular technol-
ogy for communication systems as well as for memory
and data storage systems. In fact, it is considered to be
the most efficient coding scheme because it offers the best
trade off between complexity and performance for error
correction. Several digital communication system standards
use turbo codes, like IEEE 802.16, DVB-RCS/RCT, UMST,
CDMA2000 or CCSDS. Moreover, future mobile applications
(wireless communication systems, high quality video players,
global positioning systems etc.) will consider the use of turbo
codes. Thus, these new applications present new challenges for
designers. In particular, performance (e.g. throughput, latency,
flexibility) and Quality of Service (QoS) in mobile appliances
must be in accordance with power consumption. For this
reason, the trade off between performance, QoS and energy
consumption is the most important system design issue.

Traditional technologies do not respond to these new con-
straints. Current Microprocessors and Digital Signal Pro-
cessors (DSPs) provide low power implementations but the
computational efficiency is insufficient for new applications.
Hardware implementations based on Application Specific In-
tegrated Circuits (ASICs) are efficient in terms of throughput
and latency compared to processor implementations. But, they
are not suitable for applications that need flexible and adaptive
architectures. For these reasons, future mobile applications
need new hardware technologies.

Currently, reconfigurable technologies are being investi-
gated to respond to the trade off between performance, QoS
and energy consumption. This approach integrates flexibility
with the computational efficiency of traditional hardware ar-
chitectures. Moreover, dynamic reconfiguration enables some
parts of the architecture to be configured during the application
execution in order to enhance performance and/or to reduce
power consumption.

A. Reconfigurable turbo decoder achitectures

Some recent research activities have focused on the recon-
figurable architectures of decoders for error correcting codes.

These works are characterized by reconfigurable technologies
(FPGA, processor-FPGA or processor-ASIC), configuration
type (static or dynamic) and flexibility criteria (power con-
sumption, performance and/or processing complexity). All the
experimentations concern convolutional turbo codes.

In [9], the software programming model is extended to the
design flow for a reconfigurable processor called XiRisc. This
reconfigurable processor is a processor architecture composed
of a DSP Risc core coupled to a run-time reconfigurable hard-
ware device (PiCoGA called Pipelined, Configurable Gate-
Array) mapping application specific computational kernels.
The implementation of a Universal Mobile Communication
Systems (UMTS) turbo decoder on a XiRisc reconfigurable
processor is described. This approach enables a software
designer to assess the costs and gains due to executing selected
pieces of C code as single instructions on an FPGA-based
reconfigurable function unit.

A flexible architecture for Viterbi and turbo decoding was
designed and implemented on an FPGA [10]. This architecture
can provide throughputs in the range of 60 Mbps for constraint
length 3-9 Viterbi decoding and 3.54 Mbps for SOVA based
Turbo decoding (4 iterations). Configuration of the architec-
ture characteristics requires a single clock cycle and does
not require FPGA reprogramming. The architecture flexibility
was obtained from the design of configurable data routers.
Configurable data routers consist of banks of multiplexers that
enable the routing of the path metrics to be controlled. Another
implementation [11] mapped a reconfigurable turbo decoder.
In this case, reconfiguration enables the appropriate algorithm
to be selected in any circumstance. In fact, two main algo-
rithms are employed in convolutional turbo codes: the SOVA
algorithm and the Log-MAP algorithm. Thus, it is beneficial
to be able to reconfigure the decoder for different data rates
and delay specifications of different service channels.

In [12], a dynamically reconfigurable FPGA-based turbo
decoder which has been optimized for power consumption is
presented. The turbo decoders were designed and mapped to
an Altera Stratix FPGA on a Nios development board. The
Nios embedded processor is a configurable general-purpose
Risc processor that can be integrated into Altera FPGAs. In
this turbo decoder architecture, the Nios processor measures
the Signal to Noise Ratio (SNR). When the SNR changes,
the processor picks up a correct bit-stream stored in the board
SRAM, reconfigures the FPGA and generates a new decoder
appropriate for the current channel noise statistics. The key
power-saving technique proposed is the use of a decoder
run-time dynamic reconfiguration in response to variations in
channel conditions. Based on the assumption that SNR can
be sampled successively every 250,000 bits, the FPGA was
periodically reconfigured during the transmission process.

B. Framework dedicated to reconfigurable architectures

Reconfigurable systems suffer from a great lack of generic
tools at all design levels. Traditionally, digital hardware de-
signers have created circuits by manipulating Boolean logic,
by interconnecting logic gates or transistors, or perhaps by
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writing a program in a hardware description language such
as VHDL or Verilog. These methods of expressing hardware
concepts are applied to reconfigurable systems especially
for FPGA implementation. However, reconfigurable mapping
software differs from standard hardware compilers and CAD
algorithms not just because of the constraints of FPGA-based
implementation, but also due to the types of users these sys-
tems hope to support. Moreover, for complete reconfigurable
systems, other optimizations must be performed and these
optimizations have to handle the constraints of reconfigurable
contexts. Finally, dynamic reconfigurable systems face even
greater challenges. Methods for detecting erroneous configu-
rations, automatically scheduling reconfigurations and placing
logic to minimize the amount of reconfiguration necessary, all
still need to be developed.

One of the most unique considerations of reconfigurable
systems, as opposed to standard hardware implementations,
is the need for high performance mapping tools. Systems
that can be programmed to implement an application in a
matter of microseconds, and lengthy mapping times limit
the usefulness of these systems. There are many different
methods and approachs to the technology mapping of circuits
for FPGA implementation. But, we need flexible CAD tools
that can target a wide variety of FPGA architectures efficiently
and hence rapid comparisons of the architectures. A VPR
(Versatile Place and Route) CAD tool was designed [13].
This tool is flexible enough to allow comparisons of many
different FPGA architectures. It can perform placement and
either global routing or combined global and detailed routing.
More recently, just-in-time (JIT) compilation for FPGA was
developed [14], enabling the development of a standard binary
for FPGAs . This compiler facilitates the portability of binaries
across FPGA architectures. It consists of lean versions of
technology mapping, placement and routing algorithms, which
require an order of magnitude less execution time and memory
requirements.

Some research teams are working on design space ex-
ploration methodologies for reconfigurable architectures that
take place at the algorithmic level. In [15], a design space
exploration method for reconfigurable architectures dedicated
to data intensive applications is proposed. The designer can
quickly obtain relative performance estimations (speed, power
consumption and area) of several reconfigurable architectures
from an algorithmic description of the application (a subset
of the C language). Other exploration methods dedicated to
reconfigurable architectures have been proposed. For exam-
ple, an exploration method that is focused only on energy
estimation has been developed [16].

In fact, research activities concern only one of the steps
of the reconfigurable design flow. We thus propose a new
framework, Madeo [18], [22], that is composed of generic
CAD tools dedicated to reconfigurable architectures. This
framework enables the designer to define and synthesize
applications from a behavioral description and to implement
the design on generic reconfigurable architectures with regards
to several reconfigurability considerations at once. The next

behavioral/structural specification

architecture model

configuration data

Database

physic synthesis (1)

logic or arithmetic synthesis (2)

High level compiler and tools (3)

Fig. 3. Synthesis flow in an open framework for reconfigurable architectures

section details the features of the Madeo framework.

IV. SYNTHESIS FLOW

The tool organization is shown figure 3. The flow is de-
scribed as a synthesis scenario.

For the undertaken design, the top level is a structural
composition of functions for a block turbo decoder. As we
are working in an object-oriented system1, the description is
a complex hierarchy of objects carrying different parameters
driving or resulting from synthesis, and a stack of intermediate
formats ranging from the behavioral specification to a physical
implementation. The designer knowledge is in the code located
at this level, fixed in new general purpose support classes, in
the developed algorithm and possibly a structural composition
of a circuit. The developments are highly reusable, including
for software synthesis[24].

Smalltalk-80 is used to define the circuit behaviors, and to
control the physical composition. This language was selected
in the initial steps of the project for its late-binding character-
istics that ease greatly the integration and use of new numeric
classes, such as the Galois fields.

With late-binding, the decision to execute one function or
another one, is normally taken at runtime, based on the class
of the object receiving a message. There is no need for type
specification, and so an algorithm can work on new classes
of data without recompilation, provided that the computation
still make sense. For example, it is possible to test a linear
algorithm on integer type and then switch to a Galois field,
just by changing the operated data.

For hardware design, this is valuable since it will become
possible to tune a solution by fixing the algorithm and just
varying data classes, or details in a class (a floating point
number, as example). This can be more natural than keeping
the data constant and varying the algorithm in many cases
(tuning on numeric errors, as example). It will be shown that
the properties of late-binding are preserved by exchanging

1Smalltalk-80, variant Visualworks
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interpretation for static compilation on a determined set of
data.

As shown in figure 3, components can be stored in a
database for different architectures and different degrees of
implementation.

A. Logic layer

At layer 2, we are considering components that are combi-
national or sequential functions described in methods. Methods
are functions that allow an object to answer a message.

The first compilation stage is to build a program tree using
the standard compiler. A directed acyclic graph (DAG) is
derived from this tree and usual compiler optimizations are
applied. In the case of fine grain, the synthesis proceeds by
building a representation of the computations in terms of pre-
computed tables organized in a hierarchy of graphs.

An important characteristic of the synthesis is a compilation
context (CC) that defines the data that will be processed. Data
are all the objects of the input parameters. They are described
as intervals, sets of constant objects, classes, or composition
of these items. CCs reject the type specification outside of the
algorithm, letting an automatic type inference mechanism to
retrieve other CCs everywhere in the computation description.
The initial CC can be computed or extracted from another
synthesis.

The DAG is visited top-down, breadth-first, and the nodes
are progressively fitted with their own CC based on results
upward in the graph. During the visit, the simple nodes
are translated into an equivalent table by calling the real
method in the high level environment, while the more complex
nodes are processed by a new compiler call. The control
of the visit is given to the programmer who make choices
such as maximum depth, maximum table capacity, speculative
execution of conditional branches, loop unrolling.

CCs are Cartesian products of object collections which size
must be kept under control, which is a restriction similar
to the problem of general purpose programming on an 8-
bit microprocessor. Under the constraint that CC collections
are small enough to avoid huge table apparitions, processing
will produce a hierarchical oriented graph of tables that is
a symbolic form equivalent to the future network of FPGA
LUTs.

Optimizations are achieved on the table network with the
aim of reducing the number of nodes and the number of
values in the CCs. These optimizations are more efficient
than the ones based on operation semantics because they are
based on the real effect of the computation. As example of
optimizations achieved on the table graph, all unary and/or
bijective nodes are removed, boolean condition status are
enforced in the conditional blocks, un-taken tuples appearing
in CCs are removed.

These mechanisms allow to be retrieved the semantic behav-
ior on specific classes without developing a specific compiler.
They provide opportunities of mapping, such as the production
of C programs simulating on a network of tables, or computing
on distributed memories. The translation system is robust,

Application code
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Fig. 4. Main steps of the logic layer

because the flow of data is always decreasing downward the
graph: the number of different values produced by a function
is smaller or equal to the number of different tuples in the CC.

The next stage of layer 2 is to produce a binary represen-
tation of the tables. This representation is given by encoding
support based on the object classes, or index of the objects in
an enumeration. The encoding can have an important impact
either on the logic generated and the data path width between
nodes.

After logic generation, two techniques can be used to obtain
efficient circuits for an FPGA technology:

• synthesis, where the binary representation is a simple
PLA on which logic minimization and partitioning are
achieved externally2.

• re-synthesis, when a first general solution is optimized
by the production of a don’t care set passed to the logic
minimization programs[26].

In the second case, reducing the CCs always improve the
solutions and logic processing is generally very fast. In the
case of common functions an existing general solution is
known or easy to find. At the opposite, synthesis can be very
slow in an unpredictable way.

Sequential circuits are usually synthesized as combinational
functions with registers allocated in the loop between current
state and next state.

Finally, layer 2 has translated a symbolic function with
a precise input specification into a hierarchy of optimized
networks adapted to a particular LUT FPGA. The synthesis
layer groups optimization at the expression level given a
restricted set of operands, and at the logic level using synthesis
or re-synthesis techniques.

The main steps of the logic layer are illustrated in figure 4
and one simple example is described in figures 5 and 6.

B. Physical layer

The abstract model for reconfigurable architectures covers
all the resources and organization necessary to achieve basic
mapping operations:

• placing and routing logic networks, by resource allocation
for logic computation and for signal interconnection.

• floor-planning, by computing a minimal arrangement of
placed subgraphs from the network.

• interactive editing, with usual functions such as signal
routing and more original capabilities such as operating

2We use SIS[21] and variants
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Fig. 5. DAG of the expression 2*x + (3*y) associated to the Smalltalk method
named addprod:avec:, the compilation context for x and y is an interval of
integer values from 1 to 10

Fig. 6. DAG after high level optimizations (after unary node removal), LUT
production of the remaining node (still maned + but it is no more an addition)
and Blif format corresponding to the result of SIS logic synthesis tool

geometric transformations on a module, and program-
ming complex circuit structures in a general purpose
language.

As shown figure in 3, there are two inputs to this part of the
framework. In a similar way as the logic layer has isolated data
and functions, the physical layer isolates support architecture
and application functions. Searching for performances can be
achieved by a programmer acting on a fixed architecture,
or by a computer architect tuning FPGA details for a fixed
benchmark.

The low level layer of Madeo proposes a tool to describe
interactively a new architecture in the abstract model. Another
alternative is to specify the architecture textually, in a grammar

0 ... n−1 n 2n−1...

motRecu motRecu motRecu motRecu motRecu.........

+

+

+

+

Fig. 7. Cascade organization of syndrome computation with partial sum
decomposition

representing the model. As an effect of this open structure, it
is also obviously possible to compute evolutions on circuit
architectures.

V. DESIGNING PARTS OF BLOCK TURBO DECODER

APPLICATION USING MADEO FRAMEWORK

In this section, we present some results of the syndrome
computation using the Madeo approach. We also show how
Madeo can be used to investigate some new decoder imple-
mentations by taking the benefits of a generic code specifica-
tion and how we can deal with Galois field arithmetic. The
specification style may have an impact on the final results: we
show in the search of the least reliable symbol and in the parity
computation that the algorithmic decomposition and the grain
of the elementary cell synthesized by SIS may influence final
results. Finally, we investigate different LUTs based FPGAs
for future work and their implementation from application
to physical synthesis using Madeo physical tool. Eventually,
we compare Madeo results to a more classical approach for
different parts of the block turbo.

A. Syndrome specification

The syndrome is evaluated using equation 1. This equation
represents the computation of the first syndrome where α j is
an element of GF(128) and r′j elements are test vector bits
of 128 bits. If the value of the syndrome is not null then it
reveals transmission error.

S1 =
127

∑
j=0

r′j ∗α j =
n−1

∑
j=0

r′j ∗α j +
2n−1

∑
j=n

r′j ∗α j + · · ·+
127

∑
j=128−n

r′j ∗α j

(1)
With Madeo, partial sum of the equation 1 are defined in

the operator ’motRecu’ where the α j elements are considered
as constants from GF(128). The ri bit of the test vector allows
its associated Galois field element to be considered in the sum
only if the ri value is equal to 1. Partial sum can be organized
as shown in figure 7 for the final computation.

High level optimizations can be done on the syndrome
expression such as constant folding and ’unary node removal’,
even if the elements belong to Galois Field. These optimiza-
tions allow reducing drastically the initial specification density,
preserving only the + operators as shown in figure 8.
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Fig. 8. Graph reduction after high level optimizations (each ri represents 4
binary elements of the test vector)

0 ... n−1 n 2n−1...

motRecu motRecu motRecu motRecu motRecu.........

+
............

+ +

+

+

Fig. 9. Tree organization of the syndrome computation

The synthesis of the syndrome depends on the granularity of
the partial sum (number of binary elements of the test vector).
It contributes to the complexity of the syndrome computation
as shown in table I for a 4-input LUT based FPGA. The
minimum case is obtained for a grain of partial sum equal
to the grain of target FPGA which the more favorable case
for logic synthesis with SIS.

Basic cell grain 2 bits 4 bits 8 bits 16 bits
for partial sum

nb LUTs 424 217 502 725

TABLE I

SYNDROME COMPLEXITY ASSOCIATED WITH THE GRANULARITY OF

PARTIAL SUM FOR A 4-INPUT LUT TARGET FPGA

Another algorithmic organization can be defined as pro-
posed in figure 9. This new type of organization affects the
complexity of the syndrome as shown in table II. This can be
explained by the fact that the filter element (represented by
the operator motRecu ) is not integrated in the same manner
into the operator + for the global computation.

A circuit obtained by synthesis from equation 1 corresponds
to the first syndrome computation. In fact, this can be used for

the computation of all other syndromes because new results
can be obtained just by modifying r j values. As the circuit
produced initially is implemented for any possible values of
r j bits, it can be used to compute the other syndromes and
more if required.

B. Generic code for algebraic operators

The code used for the syndrome computation is based on the
operator + achieving addition in Galois Field. This operator
is specific of GF(128), that is determined by the application
context. In fact, the syndrome specification can be used for
other contexts like for GF(32) (in the case of BCH(32,26,4)
decoder), just by adapting the constants. In the next section,
we show how to define specific operator in Galois field like
GF(2n).

Arithmetic over Galois Field
For the finite fields like GF(2n), the elements may correspond
to integer values or binary vectors associated with the binary
coefficients of the corresponding polynomial form. The arith-
metic operations are defined as follows:

• +: is an exclusive-or of associated binary values
• ∗: corresponds to an Euclidian division using the gen-

erator polynomial. This is classically achieved using
logarithm tables in order to replace the main operation
by an addition.

In the case of GF(128), we defined the logarithm tables
associated to the generator polynomial (for instance x7 +x3 +1
for the turbo decoder BCH(128,120,4)) using a generic ap-
proach that can be adapted to generate any GF(2n) arithmetic.
Other implementations of this type of arithmetic are proposed
in [20].

Impact of the encoding approachs
For the implementation of the GF(128) adder, we can choose
different binary representations for the Galois field values. The
table II shows that the best choice is the one that corresponds
to binary vectors associated with the binary coefficients of the
corresponding polynomial form, other binary representation
may produce poor results.

Algorithmic binary indexation
organization polynomial form (ordinal encodage)
Cascade org. 217 217

Tree org. 393 1876

TABLE II

SYNDROME COMPLEXITY DEPENDS ON ALGORITHMIC ORGANIZATION

AND BINARY REPRESENTATION OF GF(128) VALUES (CASE OF 4 BIT

PARTIAL SUM)

C. Architectural investigation

In this section, we show how to use Madeo framework to in-
vestigate the complexity of the final circuit. This investigation
is done on two other elements of block the turbo decoder (the
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Fig. 10. Algorithmic organization of the search of the least reliable symbol
(first cascade decomposition and second tree decomposition)

search of the least reliable symbol and parity computation).
The criteria taken into account are the algorithmic decompo-
sition (a tree or a cascade decomposition), the grain of the
target FPGA and finally the hierarchical level considered for
applying logic synthesis with SIS.

Case of the least reliable symbol
The search of the least reliable symbol consists in finding the
minimum reliability of the n symbols and its corresponding
position in the received vector. The computation is achieved
using a basic cell that is composed of two elements: one
gives the minimum of two reliabilities (each defined with
4 bits) and the second one gives the index position of the
minimum in the vector (index contains between 0 and 127).
These two blocks are separately synthesized by SIS. No
variation of the basic cell is done here but we observe the
effect of algorithmic decomposition of the problem (a cascade
decomposition or a tree decomposition as shown in figure
10) onto the complexity of the final implementation. In both
decompositions, the variation of the values (index value for
reliability position) are not really the same. So the complexity
of the basic cell varies.

The global complexity of the circuit can be evaluated as
follows:

• for a tree organization, min ∗ �n/2	+ max ∗ (�n/2�− 1)
LUTs

• for a cascade organization, min+max∗ (n−2) LUTs

where min correspons to the minimal complexity of the basic
cell, max to the maximum complexity of the basic cell and n
of the problem size. The min-max values of the complexity of
the basic cell are presented in the table III. They are associated
to the grain of the target FPGA and depend on the dynamic

variation of the index element of the basic cell through the
computation flow. When the index variation increases, the
complexity of the basic cell increases as well but not in a
linear way.

grain LUT- LUT- LUT- LUT- LUT- LUT- LUT-
of FPGA 2 3 4 5 6 7 8
Min-max
compl. of 72 42 31 21 8 7 7
basic cell 93 49 38 28 15 14 12

TABLE III

MIN-MAX COMPLEXITY OF BASIC CELL FOR THE SEARCH OF THE LEAST

RELIABLE SYMBOL IN TERMS OF NUMBER OF LUT-NS

The complexity can be reduced, if we investigate the dy-
namic variation of the values. For instance in the case of LUT-
4 and for a tree organization of the search of the least reliable
from 128 symbols, we obtain : 31 ∗ 64 + 33 ∗ 32 + 34 ∗ 16 +
35∗8+36∗4+37 = 4045 LUTs ( 31 for the first stage of the
tree, 33 for the second stage,...). For the cascade organization,
the reduction is not so regular and more difficult to predict.

Case of parity computation
It is used to extend BCH code by adding an extra bit to the
code associated to the parity of the bit vector (or-exclusive
of the bits of the vector). The parity block can be designed
considering the grain of the target FPGA (LUT-N, N inputs,
one output) and the grain of the basic computation block (cellP
for P input bits ). The table IV gives the complexity of a
basic computation cell in terms of number of LUT-N (grain
of target FPGA). Figure 11 details the real occupation of the
implementation of parity computation for 32 bits. We observe
that a basic cell with 4 inputs on a FPGA LUT-4 is quite
a good compromise for parity complexity. In this case, the
algorithmic decomposition has no impact because there is no
dynamic variation of the values (only binary local outputs).

LUT-N cell2 cell3 cell4 cell5 cell6 cell7 cell8
LUT-3 1 1 2 2 3 3 4
LUT-4 1 1 1 2 2 2 3
LUT-5 1 1 1 1 2 2 2
LUT-6 1 1 1 1 1 2 2
LUT-7 1 1 1 1 1 1 2
LUT-8 1 1 1 1 1 1 1

TABLE IV

COMPLEXITY IN TERM OF NUMBER OF LUT-NS FOR THE BASIC CELL FOR

PARITY ASSOCIATED TO THE GRANULARITY OF THE LUT-BASED FPGA

D. Layout definition and comparison with classical approach

The layout definition of the different elements of the turbo
decoder can be effectively done using Madeo physical tool
(figures 12 and 13) . It can take advantage of the regular
structure to deal with complex circuit like in the case of the
search of the least reliable symbol ( figure 13).
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Fig. 11. Complexity of the parity computation for 32 bits depending on the
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Fig. 12. Syndrome circuit placed and routed on Virtex structure using Madeo
physical tool

The result obtained in this project were compared to other
implementation obtained using classical approach, like
SystemC [3].

The systemC description implements the block turbo de-
coder (128,120,4)2.The design was integrated into an Altera’s
Nios R© Development Kit, StratixT M Professional Edition. The
implementations obtained with Madeo were done for VirtexI
of Xilinx and concern only the evaluation of the syndrome, the
search of the least reliable symbol and the parity computation.
One LUT from Virtex 1 has 4 inputs and 2 outputs and is
similar to one Logic element from Stratix.

Madeo adopts a parallel and combinatorial approach to
compute the syndrome, the least reliable symbol and the parity.
In the case of syndrome, the procedure is quite similar with
the SystemC approach and the area efficiency is about 50%
with Madeo. This is essentially due to high level optimizations
and the ability to manage constant values and non-standard
arithmetic (GF(128) arithmetic). For the search of the least

Fig. 13. The least reliable symbol (cascade organization) for
BCH(128,120,4)2 placed and routed on Virtex structure using Madeo physical
tool

Madeo SystemC

Syndrome 217LUTs ∼580LUTs
least 4045LUTs 5×127 comparisons(4 bits)

reliable 4×127 shifters with 2 registers
search of 5×7 and 5×4 flip-flop
parity 43 LUTs 8 LUTs (sequential version)

computation

TABLE V

COMPLEXITY COMPARISON FOR THE SYNDROME, THE LEAST RELIABLE

SYMBOL AND PARITY

reliable symbol and for the parity computation, the SystemC
description is completely sequential, thus it is not possible to
make comparison.

VI. CONCLUSIONS

The Madeo framework respects to common practices in the
domain of object-oriented programming, and makes use of
known CAD algorithms.

The major innovations in the layer decomposition of syn-
thesis tools structure are:

• fine grain reconfigurable architectures does not need a
fixed set of operators as it is the case for VLSI and general
purpose processors. The definition of these operators and
their use can be moved upward in the layers, at the
specification language level.
Common components can just be extracted from a
database.

• the optimization usually achieved on operators under
compiler control are processed on the intermediate form
of the table network in an efficient and more general way.
This is also interesting for logic minimization and parti-
tioning software.

• the usual HDL layer hide the component on which the
synthesis is achieved. Using a simple grammar, the fine
grain can be more efficiently used by system software
and placing algorithms.

The practical case of block turbo decoders has been inves-
tigated with good results in terms of number of cells, also
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leading to speed and power improvements. The specification
is expressed in a general purpose object-oriented language in
a mix of behavioral and structural high level code developed
on the top of a support for Galois Field.

These mechanisms can be reproduced for other input lan-
guages and we are working to facilitate the use of the
framework for different input syntaxes or programming styles.
There are difficulties in using Madeo that are inherent to
the synthesis method. The algorithm criteria are radically
different from the ones in sequential/imperative programming
style. The programmer must have in mind concurrency, speed
of convergence, and possible logic complexity. This is the
drawback of the concise specifications.

Beside FPGAs, Madeo is currently used to describe
data-path, emerging nano-fabrics[23] and to support system
synthesis[24]. It is also an efficient tool for reconfigurable
architecture design, due to the fast prototyping capabilities.
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SystemC: a case study of block turbo decoder”. XIX Conference on
Design of Circuits and Integrated Systems, November 2004.

[4] P. Elias, ”Error-free coding”, IRE Trans. on Inf. Theory, vol. IT-4,
pp.29-37, Sept. 1954.

[5] D. Chase, ”A class of algorithms for decoding block codes with
channel measurement information”, IEEE Trans. Inform. Theory, vol
IT-18, pp 170-182, January 1972.

[6] R. Pyndiah, A. Glavieux,A. Picart, S. Jacq, ”Near optimum decoding
of product codes”, GLOBECOM94 , November 1994.

[7] W. W. Peterson, ”Encoding and error correcting procedures for the
Bose-Chaudhuri codes”, IRE Transf. Theory, vol IT-6, pp. 459-470,
September 1960.

[8] R. T. Chien, ”Cyclic decoding procedures for the Bose-Chaudhuri
Hocquenghen codes”, IRE Transf. Theory, vol IT-10, pp. 357-363,
October 1964.

[9] A. La Rosa, L. Lavagno, C. Passerone, ”Implementation of a UMTS
turbo decoder on a dynamically reconfigurable platform”, Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, Volume 24, Issue 1, Jan. 2005.

[10] J. R. Cavallaro, M. Vaya, ”VITURBO: A reconfigurable architecture
for Viterbi and turbo decoding”, IEEE ICASSP2003, pp.497-500,
April 2003.

[11] I. Atluri, T. Arslan, ”Reconfigurability-power trade-offs in trubo de-
coder design and implementation”,IEEE ISVLSI’04, Februray 2004.

[12] J. Liang, R. Tessier, D. Goeckel, ”A dynamically-reconfigurable,
power-efficient turbo decoder”, in the Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines,
Napa, California, April 2004.

[13] V. Betz and J. Rose, A. Marquardt, ”Architecture and CAD for deep-
submicron FPGAs”, Kluwer Academic Publishers, 1999.

[14] R. Lysecky, F. Vahid, S. X.-D. Tan, ”Dynamic FPGA routing for just-
in-time FPGA compilation”, IEEE/ACM DAC2004, June 2004.

[15] L. Bossuet, G. Gogniat, J.-L.Philippe, ”Fast design space exploration
method for reconfigurable architectures”, ERSA’03, June 2003.

[16] S. Choi, J.W. Jang, S. Mohanty, V.K. Prasanna, ”Domain specific
modeling for rapid system level energy estimation of reconfigurable
architectures”, ERSA’02, June 2002.

[17] Goldberg A., Robson D., Smalltalk-80: the language and its imple-
mentation, Addison-Wesley Longman Publishing Co., Inc., 1983.

[18] Lagadec L., Pottier B., Villellas-Guillen O., ”An LUT-Based high
level synthesis framework for reconfigurable architectures”, Domain-
Specific Processors : Systems, Architectures, Modeling, and Simula-
tion, Marcel Dekker, p. 19-39, November, 2003.

[19] Llopis J.-L., Pottier B., ”Smalltalk blocks revisited, a logic generator
for FPGAs”, in , J.-M. Arnold, , K. Pocek (eds), Field programmable
Custom Computing Machine (FCCM’96), IEEE press, Napa, CA,
1996.

[20] Paar C., Rosner M., ”Comparison of Arithmetic Architectures for
Reed-Solomon Decoders in Reconfigurable Hardware”, IEEE Sym-
posium on FPGAs for Custom Computing Machines, Los Alamitos,
CA, p. 219-225, 1997.

[21] Sentovich E. M., Singh K. J., Lavagno L., Moon C., Murgai R.,
Saldanha A., Savoj H., Stephan P. R., Brayton R. K., Sangiovanni-
Vincentelli A., SIS: A System for Sequential Circuit Synthesis,
Rapport Technique n◦ UCB/ERL M92/41, DEECS, Berkeley, May,
1992.

[22] Fabiani E., Gouyen C., Pottier B., ”Intermediate level components for
reconfigurable platforms”, Synthesis, Architectures and Modeling of
Systems (SAMOS 3), vol. 3133, Springer-Verlag, Samos, Grece, 2003.

[23] Fabiani E., Lagadec L., Pottier B., Poungou A., Yazdani S., ”Abstract
execution mechanisms in a synthesis framework”, in , N. Carter, ,
S. Goldstein (eds), Workshop on Non-Silicon Computations (NSC3),
(conjoint avec ISCA 2004, ACM et IEEE), June, 2004.

[24] Fabregat G., Leon G., Le Berre O., Pottier B., ”Embedded system
modeling and synthesis in OO environments. A smart-sensor case
study”, in , G. Gao, , K. Palem (eds), CASES’99, Oct, 1999.

[25] Gao M., Jiang J.-H., Jiang Y., Li Y., Sinha S., Brayton R., ”MVSIS”,
International Workshop on Logic Synthesis, June, 2001.

[26] Lin B., Whitcomb S., Newton A., ”Symbolic don’t care and equiv-
alence in high level synthesis”, Logic and architecture synthesis,
Elsevier, 1991.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


