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Abstract. In mobile packet data and voice networks, a special coding scheme,
known as the incremental redundancy hybrid ARQ (IR HARQ), achieves
higher throughput efficiency than ordinary turbo codes by adapting its error
correcting code redundancy to fluctuating channel conditions characteristic
for this application. An IR HARQ protocol operates as follows. Initially, the
information bits are encoded by a “mother” code and a selected number of
parity bits are transmitted. If a retransmission is requested, only additional
selected parity bits are transmitted. At the receiving end, the additional parity
bits are combined with the previously received bits, allowing for an increase
in the error correction capacity. This procedure is repeated after each sub-
sequent retransmission request until the entire codeword of the mother code
is transmitted. A number of important issues such as error rate performance
after each transmission on time varying channels, and rate and power control
are difficult to analyze in a network employing a particular HARQ scheme,
i.e., a given mother code and given selection of bits for each transmission. By
relaxing only the latter constraint, namely, by allowing random selection of
the bits for each transmission, we provide very good estimates of error rates
allowing us to address to a certain extent the rate and power control problem.

1. Introduction

In conventional automatic repeat request (ARQ) schemes, frame errors are ex-
amined at the receiving end by an error detecting (usually cyclic redundancy check
(CRC)) code. If a frame passes the CRC, the receiving end sends an acknowledge-
ment (ACK) of successful transmission to the receiver. If a frame does not pass
the CRC, the receiving end sends a negative acknowledgement (NAK), request-
ing retransmission. User data and its CRC bits may be additionally protected by
an error correcting code which increases the probability of successful transmission.
Such ARQ schemes which combine the ARQ principle with error control coding are
known as hybrid ARQ schemes.

The standard measure of ARQ protocol efficiency is throughput, defined as the
average number of user data bits accepted at the receiving end in the time required
for transmission of a single bit. Therefore the level of redundancy of the error cor-
recting code employed in an HARQ scheme has two opposing effects on the scheme
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efficiency, namely, with increased redundancy the probability of successful trans-
mission increases but the percentage of user data in the frame decreases. Usually,
a fixed rate code which is well suited to the channel characteristics and throughput
requirements is selected.

In applications with fluctuating channel conditions within a range of signal-
to-noise ratios (SNRs), such as mobile and satellite packet data transmission, the
so called incremental redundancy (IR) HARQ schemes exhibit higher throughput
efficiency by adapting their error correcting code redundancy to different channel
conditions. An IR HARQ protocol operates as illustrated by the example in Fig. 1.
At the transmitter, the information and CRC bits are encoded by a systematic

at the transmitter
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Figure 1. Incremental redundancy HARQ protocol.

“mother” code. In Fig. 1, the codeword at the transmitter is represented by a
string of 25 boxes. The first 5 (gray in the figure) correspond to the systematic
bits. Initially, only the systematic part of the codeword and a selected number of
parity bits are transmitted (transmission #1 in the figure). The selected parity
bits together with the systematic bits form a codeword of a punctured mother
code. Decoding of this code is performed at the receiving end. If a retransmission
is requested, the transmitter sends additional parity bits possibly under different
channel conditions or at different power (depicted as taller boxes in transmission
#2 in the figure). Decoding is again attempted at the receiving end, where the new
parity bits are combined with those previously received. The procedure is repeated
after each subsequent retransmission request until all the parity bits of the mother
code are transmitted.

First ideas for systems combining error correction and ARQ date back to the
work of Wozencraft and Horstein in 1960 [1], [2]. A historic overview of further
development of such techniques, now known as hybrid ARQ, can be found in [3].
Recent interest in the scheme comes from the quest for reliable and efficient trans-
mission under fluctuating conditions in wireless networks. An information-theoretic
analysis of some HARQ protocols, concerning throughput and average delay for
block-fading Gaussian collision channels have been reported in [4]–[7]. Another
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line of recent work on HARQ is concerned with the mother code and its punctur-
ing. Given the number of parity bits which are at each stage omitted form the
mother code (i.e., punctured and not transmitted), their identity is determined by
a puncturing pattern. The throughput of HARQ schemes is strongly affected by
the power of the mother code used in the system and the family of codes obtained
by puncturing. Thus recently proposed HARQ schemes use powerful turbo codes,
and design of puncturing patterns is an important issue [8]–[16].

We here have two goals motivated directly by questions in practice. The first is
to evaluate the error rate performance after each transmission, which is equivalent
to evaluating performance of punctured turbo codes on time varying channels. The
second is to show how one should go about choosing the signal power and the
number of bits for transmission j after a failed transmission j−1. To approach and
solve both problems, we introduce the idea of random transmission assignments of
the mother code bits, which is related to our previous work on randomly punctured
turbo codes [20], [21].

2. Channel Model and Performance of the Mother Code

2.1. Time-Invariant Channel. We first consider a binary input memoryless
channel with output alphabet Ω and transition probabilities W (y|0) and W (y|1),
y ∈ Ω. Performance of turbo codes on such channels has been widely studied by
various techniques; particularly successful are those based on density evolution [17]
and EXIT charts [18]. For our analysis of the mother turbo code and IR HARQ
scheme performance on time-varying channels (described in the following section),
it is especially convenient to use the coding theorems for turbo code ensembles
established recently by Jin and McEliece in [19]. We briefly review their results
below.

When a codeword x ∈ C ⊆ {0, 1}n has been transmitted, the probability that
the maximum likelihood (ML) detector finds codeword x′ at Hamming distance h
from x more likely can be bounded as follows:

(2.1) Pe(x,x′) ≤ γh,

where γ is the Bhattacharyya noise parameter defined as

(2.2) γ =
∑

y∈Ω

√
W (y|x = 0)W (y|x = 1)

if Ω is discrete and as

γ =
∫

Ω

√
W (y|x = 0)W (y|x = 1) dy

if Ω is a measurable subset of R.
For an (n, k) binary linear code C with the weight enumerator Ah (i.e., Ah

codewords of weight h), we have the well known union-Bhattacharyya bound on the
ML decoder word error probability

P CW ≤
n∑

h=1

Ahγh.

To derive their coding theorems, Jin and McEliece use the union-Bhattacharyya
bound on the ML decoder word error probability averaged over the set of all turbo
codes with identical component codes but different interleavers.
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Suppose that the mother turbo code consists of L pseudorandom interleavers,
and L recursive convolutional encoders. There are k! possible choices for each in-
terleaver. Consequently, for a given set of L recursive convolutional encoders, there
are (k!)L different (n, k) turbo codes, corresponding to all different interleavers.
We denote this set by C(n). By the mother turbo code ensemble [C], we will mean
a sequence of turbo code sets {C(n)} with a common rate. We are interested in
asymptotic performance of C(n) when n →∞.

For a turbo code ensemble [C], the average number of codewords of weight h in
C(n) is denoted by A

[C](n)

h . The bound on the ML decoder word error probability
averaged over the ensemble is obtained by averaging the (additive) union bound:

(2.3) P
[C]
W ≤

n∑

h=1

A
[C](n)

h γh.

To further analyze this expression, we write

(2.4) P
[C]
W ≤

n∑

h=1

A
[C](n)

h γh ≤
Dn∑

h=1

A
[C](n)

h +
n∑

h=Dn+1

A
[C](n)

h γh,

where Dn is a sequence of numbers such that

(2.5) Dn →∞ and
Dn

nε
→ 0 ∀ε > 0.

The average number of codewords of weight h > Dn in the ensemble [C] can be
bounded in terms of the ensemble noise threshold defined as follows [19]:

c
[C]
0 = lim sup

n→∞
max

Dn<h≤n

log A
[C](n)

h

h
.

It was shown in [19] that for a turbo code ensemble [C] with the number of com-
ponent codes L ≥ 2, the ensemble noise threshold c

[C]
0 is a finite positive number.

Therefore, we have

(2.6) A
[C](n)

h ≤n exp
(
hc

[C]
0

)
, Dn < h ≤ n,

where ≤n means that the inequality holds for large enough n. By using the inequal-
ity (2.6), we see that on a binary-input memoryless channel whose Bhattacharyya
parameter γ < exp(−c

[C]
0 ), the second term of the right-hand-side of the bound

(2.4) goes to zero as n increases. The analysis of the first term of (2.4) is related
to the analysis of the minimum distance of turbo codes [22]–[26]. For turbo codes
with L > 2 interleaver branches, Kahale and Urbanke proved that the minimum
distance of a turbo code with a random interleaver is at least Ω(n1−2/L) with high
probability [22]. For this case, it was shown in [19] that we have the so-called
interleaver gain:

(2.7) P
[C](n)

W = O(n−L+2+ε) for any ε > 0.

For turbo codes with L = 2 interleaver branches, Breiling in [23] proved that the
minimum distance of turbo codes is upper bounded by O(log n), and three groups
of authors in [24, 25, 26] showed that, for some specially constructed interleavers,
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the minimum distance of turbo codes grows as O(log n). Thus, for an ensemble of
two-branch turbo codes with “good” interleavers, we have

lim
n→∞

Dn∑

h=1

A
[C](n)

h = 0

when Dn <n const · log n. It follows that for both L > 2 with random interleavers
and L = 2 with specially designed interleavers, we have

(2.8) lim
n→∞

P
[C](n)

W = 0

when γ < exp(−c
[C]
0 ).

2.2. Time-Varying Channel. We again consider a DMC with the binary
input alphabet {0, 1} and output alphabet Y, but this time we assume that the
channel varies during the transmission of a single codeword, namely, channel tran-
sition probabilities at time i are Wi(b|0) and Wi(b|1), b ∈ Y. When codeword
x ∈ {0, 1}n has been transmitted, the probability that the maximum likelihood
(ML) detector finds codeword x′ ∈ {0, 1}n more likely can be bounded as follows:

Pe(x, x′) ≤
∑

y∈Yn

√
Wn(y|x)Wn(y|x′),

where we denote

Wn(y|x) =
n∏

i=1

Wi(yi|xi).

It is easy to see that

Pe(x,x′) ≤
∑

y∈Yn

√
Wn(y|x)Wn(y|x′)

]

=
n∏

i=1

(∑

b∈Y

√
Wi(b|xi)Wi(b|x′i)

)
.(2.9)

Note that when xi = x′i, the corresponding factor
∑

b∈Y
√

Wi(b|xi)Wi(b|x′i) in the
product (2.9) equals 1 and can be omitted. When xi 6= x′i, the corresponding factor∑

b∈Y
√

Wi(b|xi)Wi(b|x′i) equals to the Bhattacharyya noise parameter γi of the
channel at time i-th:

γi =
∑

b∈Y

√
Wi(b|0)Wi(b|1)

Therefore, the bound (2.9) can be written as

(2.10) Pe(x, x′) ≤
∏

i: xi 6=x′i

γi.

Note that when all γi have the same value γ (time-invariant channel case), the
above bound reduces to the well known γh bound (2.1), where h is the Hamming
distance between x and x′.

We now assume that the codewords of the mother code are transmitted in m
transmissions, and the decoding is performed after the last transmission has been
received. This will help us to later analyze an IR HARQ protocol with at most
m transmissions. Let I = {1, . . . , n} denote the set indexing the bit positions
in a codeword. For the m transmissions, set I is partitioned in m subsets I(j),
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for 1 ≤ j ≤ m. During the j-th transmission, only bits at positions i where
i ∈ I(j) are transmitted. We assume that the channel is slowly time-varying,
namely that Wi(y|0) and Wi(y|1) remain constant for all bits at positions i taking
part in the same transmission. Consequently, the Bhattacharyya noise parameter
for transmission j depends only on j:

γi = γ(j) for all i ∈ I(j).

Let hj = dH(x, x′, I(j)) denote the Hamming distance between sequences x and
x′ over the index set I(j). The bound (2.10) can be written as

Pe(x, x′) ≤
m∏

j=1

γ(j)hj , hj = dH(x, x′, I(j)).

In the case of only two transmissions, we have

Pe(x, x′) ≤ γ(1)dH(x,x′
,I(1)) · γ(2)dH(x,x′

,I(2)) = γ(1)h1γ(2)h−h1 ,

where h is the Hamming distance between x and x′.
Let Ah1...hm denote the number of codewords with weight hj over the index set

I(j), for 1 ≤ j ≤ m. The union bound on the ML decoder word error probability
is given by

(2.11) PW ≤
|I(1)|∑

h1=1

· · ·
|I(m)|∑

hm=1

Ah1...hm

m∏

j=1

γ(j)hj .

Further direct analysis of this expression seems formidable, even in the case of only
two transmissions for which we have

PW ≤
|I(1)|∑

h1=1

|I(2)|∑

h2=1

Ah1h2γ(1)h1γ(2)h2

=
n∑

h=1

|I(1)|∑

h1=1

Ah1 h−h1γ(1)h1γ(2)h−h2 .

We thus resort to finding the expected performance over all possible transmission
assignments where a bit of a mother code is assigned to transmission j with prob-
ability αj , αj > 0,

∑
j αj = 1. The expected (and asymptotic as n → ∞) number

of bits assigned to transmission j equals to αjn. In the place of (2.11), we derive
an expression for the expected word error probability to which the results of [19]
can be directly applied.

2.3. Random Transmission Assignment. We will assume that a bit of a
mother code is assigned to transmission j with probability αj , αj > 0,

∑
j αj = 1.

Such scheme can actually be implemented as follows:
(1) For each bit position i, i = 1, 2, . . . , n, generate a number θi independently

and uniformly at random over [0, 1).
(2) Compute m numbers λj as follows:

λj = 1−
j∑

i=1

αi for 1 ≤ j ≤ m.

Note that 0 = λm < λm−1 < · · · < λ2 < λ1 < 1.
(3) Make the transmission assignment for each bit i, i = 1, 2, . . . , n, as follows:
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(a) if θi ≥ λ1, assign bit i to transmission 1, otherwise
(b) if λj ≤ θi < λj−1, for some j s.t. 2 ≤ j ≤ m, assign bit i to

transmission j.
We are interested in the expected performance of the mother code under the

above probabilistic model. If each bit of a codeword with Hamming weight h is
randomly assigned to transmission j with probability αj , then the probability that
the sub-word corresponding to the j-th transmission has weight hj for 1 ≤ j ≤ m
is given by

(2.12)
(

h

h1

)(
h− h1

h2

)
. . .

(
h− h1 − · · · − hm−1

hm

)
αh1

1 αh2
2 . . . αhm

m .

Therefore, for a given codeword with Hamming weight h, the expected value of
Ah1,...,hm

is given by

Ah1,...,hm
= Ah

(
h

h1

)(
h− h1

h2

)
. . .

(
h− h1 − · · · − hm−1

hm

)
αh1

1 αh2
2 . . . αhm

m ,

and consequently, the expected value of the union bound (2.11) is

PW ≤
∑

hi≥0;
∑

hi≤n

Ah1,...,hmγ(1)h1γ(2)h2 . . . γ(m)hm

=
∑

h

Ah

{ ∑
∑

hi=h

(
h

h1

)(
h− h1

h2

)
. . .

(
h− h1 − · · · − hm−1

hm

) m∏

j=1

(
γ(j)αj

)hj
}

=
∑

h

Ah

( m∑

j=1

γ(j)αj

)h

.

We define the average Bhattacharyya noise parameter seen by the mother code
as

(2.13) γ =
m∑

j=1

γ(j)αj .

Then, we have

(2.14) P
[C]
W ≤

n∑

h=1

A
[C](n)

h γh.

Following the results of [19], if

(2.15) γ < exp(−c
[C]
0 ),

we have limn→∞ P
[C](n)

W = 0.

3. A Random Transmission Assignment IR HARQ Scheme

We consider an IR HARQ scheme with at most m transmissions where a bit
is assigned to transmission j with probability αj . Transmission j takes place if
transmission j − 1 fails. The rates αj may be predetermined (e.g., specified by a
standard) or determined based on current network conditions. In both cases, we are
interested in evaluating performance after j transmissions, 1 ≤ j ≤ m. In the latter
case, we are interested in determining αj to achieve some required performance.
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The random transmission assignment for an incremental redundancy HARQ
protocol can be implemented by an ”on-the-fly” dynamic version of the algorithm
described in the beginning of Sec. 2.3:

Before the IR HARQ protocol starts:
(1) For each bit position i, i = 1, 2, . . . , n, generate a number θi indepen-

dently and uniformly at random over [0, 1).
(2) Compute λ1 as λ1 = 1− α1.
(3) If θi ≥ λ1, assign bit i to transmission 1.

If transmission j − 1 fails for 2 ≤ j < m:
(1) Determine αj , if it was not predetermined.
(2) Compute λj as λj = λj−1 − αj .
(3) If λj ≤ θi < λj−1, assign bit i to transmission j.

If transmission m− 1 fails:
transmit all remaining bits.

We denote by γ(j) the average Bhattacharyya noise parameter seen by the
mother code after j-th channel transmission. For j < m, not all bits of the mother
code are transmitted. A bit is punctured (i.e., not transmitted) with probability
(1 − α1 − · · · − αj). To be able to use the results of Sec. 2.3, we will assume that
the punctured bits are transmitted over a really bad channel, i.e., a channel with
γ(j + 1) = 1. This assumption allows us to compute γ(j) as

γ(j) = α1 · γ(1) + · · ·+ αj · γ(j) + (1− α1 − · · · − αj) · 1.

This equation holds for 1 ≤ j < m and for j = m as well since the last term
becomes equal to 0. Note that γ(m) = γ, where γ is defined by (2.13).

In this paper, by evaluating performance after transmission j, we will mean
computing γ(j). Recall that the knowledge of γ(j) allows only the computation
of upper bounds on the average error probability of the turbo code ensembles.
However, it has been conjectured in [19], based on experimental evidence, that those
upper bounds are asymptotically close to the best possible, and that probability of
error of an ensemble exhibits a threshold behavior, i.e., either approaches zero or
goes to 1 as n →∞. For the same reasons, we will require that γ(j) < exp(−c

[C]
0 ),

which in turn implies limn→∞ P
[C](n)

W = 0.

3.1. First Transmission and Punctured Turbo Code Ensembles. If a
bit is assigned to the first transmission with probability α1, the transmitter receives
on the average α1 · n bits of the mother code over the channel with Bhattacharyya
noise parameter γ(1). Parameter γ(1) is determined by the current channel model
and level of noise, which depend on the speed of the mobile and other conditions in
a wireless network, and by the signal power which is chosen by the transmitter. The
remaining (1− α1) · n bits of the mother code are not transmitted. As mentioned
above, we can equivalently assume that they are transmitted over a really bad
channel, i.e., a channel with γ(2) = 1. This assumption allows us to compute γ(1),
the average Bhattacharyya noise parameter after the first transmission, as

γ(1) = α1 · γ(1) + (1− α1) · 1.

Our goal is to guarantee limn→∞ P
[C](n)

W = 0, and we have seen that can be done
by choosing α1 or γ(1) or both so that γ(1) < exp(−c

[C]
0 ), i.e.,

(3.1) α1 · γ(1) + (1− α1) · 1 < exp(−c
[C]
0 ).



HYBRID ARQ WITH RANDOM TRANSMISSION ASSIGNMENTS 9

Condition (3.1) can be written in a form which clearly shows the tradeoff be-
tween the rate of the first transmission code and the signal power:

α1(1− γ(1)) > 1− exp(−c
[C]
0 )

To satisfy this lower bound on the product of α1 and 1− γ(1), the transmitter can
either increase the code redundancy α1 or increase the signal power which results
in a decrease of γ(1) and increase of 1− γ(1). An increase in redundancy results in
the lower throughput of the user while an increase in the power results in a higher
interference level experienced by other users in the network. Since γ(1) is positive,
there is a minimal redundancy requirement:

(3.2) α1 > 1− exp(−c
[C]
0 ).

In the case of predetermined α1, the required signal power is specified by

(3.3) γ(1) <
exp (−c

[C]
0 )− (1− α1)

α1
.

It is interesting to compare the above results with those obtained by the au-
thors in [20], where randomly punctured turbo codes were studied. We briefly
present the connection. The general structure of a punctured turbo code is shown
in Fig. 2. The puncturing device punctures each codeword symbol independently

turbo code

k bits

puncturing device

n bits (1−λ)n bits

Figure 2. Punctured turbo codes. The puncturing device punc-
tures each bit independently with probability λ. The expected
number of remaining bits equals (1− λ)n.

with probability λ. Therefore, if an (n, k) rate R code is punctured, the expected
number of punctured bits equals λn and the resulting code expected rate, as well as
the asymptotic rate when n →∞, equals R/(1− λ). For each mother code in the
set C(n), we will have a set of 2n punctured codes corresponding to the 2n possible
puncturing patterns. Each code in this set appears with the probability determined
by the puncturing pattern. The set of codes obtained by puncturing all codes in
the set C(n) is denoted C(n)

P . By the punctured code turbo code ensemble [CP ], we
will mean a sequence of randomly punctured turbo code sets {C(n)

P }.
In [20], we analyzed the expected error rate performance of the punctured

codes by bounding their expected weight enumerators. If a codeword of weight d
enters a puncturing device, the codeword at the output will have a weight h with
probability

(
d
h

)
(1 − λ)hλd−h. Since on the average A

[C](n)

d codewords of weight d
enter the puncturing device, the expected number of punctured codewords of weight
h is given by

(3.4) A
[Cp](n)

h =
∑

d≥h

A
[C](n)

d

(
d

h

)
λd−h(1− λ)h.
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By applying the bound (2.6) on A
[Cp](n)

h in the above expression and using the
Chernoff bound, we showed in [20] that if the codeword symbols of a turbo code
ensemble [C] with a finite noise threshold c

[C]
0 are punctured with probability λ

satisfying

(3.5) log λ < −c
[C]
0 ,

then there exists a finite noise threshold for the punctured code ensemble c
[CP ]
0 such

that

(3.6) c
[CP ]
0 ≤ log

[
1− λ

exp (−c
[C]
0 )− λ

]

and

(3.7) A
[CP ](n)

h ≤n exp
(
hc

[CP ]
0

)
, Dn < h ≤ n.

Similarly as in [19], by using the inequality (3.7), in the bound (2.3), it can be
shown (see [20] for details) that for a turbo code ensemble [C] with L ≥ 2 compo-
nent encoders, punctured at rate λ and a binary-input memoryless channel whose
Bhattacharyya parameter satisfies

(3.8) γ < exp(−c
[CP ]
0 ),

we have

(3.9) lim
n→∞

P
[CP ](n)

W = 0.

Here λ satisfies (3.5) and c
[CP ]
0 satisfies (3.6). Now, we can compare these results

with those obtained by the random transmission assignment approach in the be-
ginning of the section. Note that since λ = 1− α1, condition (3.2) is equivalent to
(3.5), and condition (3.8) together with (3.6) is equivalent to (3.3).

3.2. Subsequent Transmissions. We now assume that the decoding after
transmission j − 1 failed. On the average nαj bits will participate in the j-th
transmission, and the remaining (1 − α1 − · · · − αj) · n bits of the mother code
will not be transmitted. We again assume that they are transmitted over a really
bad channel, i.e., a channel with γ(j + 1) = 1, and compute γ(j), the average
Bhattacharyya noise parameter after the j-th transmission, as

γ(j) = α1 · γ(1) + · · ·+ αj · γ(j) + (1− α1 − · · · − αj) · 1.

Again, our goal is to guarantee limn→∞ P
[C](n)

W = 0, and we have seen that can be
done by choosing αj or γ(j) or both so that

(3.10) γ(j) < exp(−c
[C]
0 ).

Condition (3.10) can be written in a form which clearly show the tradeoff
between the rate of the j-th transmission code and the signal power:

αj(1− γ(j)) > 1− exp(−c
[C]
0 )−

j−1∑

i=1

α(i)(1− γ(i)).

Similar conclusions as those of the analysis for the first transmission hold: to satisfy
the above lower bound on the product of αj and 1 − γ(j), the transmitter can
either increase the code redundancy α1 or increase the signal power which results
in a decrease of γ(j) and increase of 1− γ(j). An increase in redundancy results in
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the lower throughput of the user while an increase in the power results in a higher
interference level experienced by other users in the network. Since γ(j) is positive,
there is a minimum redundancy requirement:

αj > 1− exp(−c
[C]
0 )−

j−1∑

i=1

α(i)(1− γ(i)).

In the case of predetermined αj , the required signal power is specified by

γ(j) <
exp (−c

[C]
0 )− (1− αj)−

∑j−1
i=1 α(i)(1− γ(i))

αj
.

4. An Example

Here we study an example R = 1/3 turbo code specified by the 1xEV-DV
wireless standard as a mother code. The turbo encoder consists of L = 2 recursive
convolutional encoders with rates R1 = 1/2 and R2 = 1 connected in parallel
through an “S-random” interleaver. The component code transfer functions are

G1(D) =
[
1,

1 + D + D3

1 + D2 + D3

]
and G2(D) =

[
1 + D + D3

1 + D2 + D3

]
.

For an IR HARQ scheme, the bits of the mother code are assigned randomly to 15
transmissions so that the rates of the resulting punctured codes are

1, 0.95, 0.9, 0.85, . . . , 0.4, 0.35,
1
3
.

Note that the rate of the punctured mother code after transmission j is given by
Rp(j) = R/

∑j
i=1 αi. Thus we can compute transmission rates αi corresponding to

the above set of punctured code rates. The assignment of bits to transmissions is
implemented as described in Sec. 3.

We determined the throughput and the average FER performance of this IR
HARQ scheme by simulation. The simulations were done for the standard inter-
leaver lengths of k = 384 and 3840, and BPSK over an AWGN channel for a range
of Es/N0. The average throughput performance for this HARQ scheme is plotted
in Fig. 3. We can see that, for a range of puncturing rates, random puncturing
delivered codes whose performance ensured that the throughput be in the region
between the cutoff rate and the capacity. After a certain rate the performance
of the punctured codes leaves this region. The analysis presented in this paper
shows how to estimate this point. We next show that for this particular example,
the estimate is in a very good agreement with the numerical value observed in the
simulation.

We have computed the average weight enumerator A
[C](n)

d of the mother codes
in the set C(n) by applying the technique of [27] for code length n = 1152 and code
rate R = 1/3, and obtained

c
[C](n)
0 = max

Dn<d≤n

log A
[C](n)

d

d
= 0.5198.

Since c
[C]
0 >n c

[C](n)
0 , the minimal redundancy requirement (3.2) for the first trans-

mission gives

(4.1) α1 > 0.4054 and thus Rp =
R

α1
< 0.822.
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Figure 3. Average throughput performance of an BPSK IR
HARQ scheme on AWGN channel for two interleaver lengths.

Although our results give only a necessary condition on the minimal α1, the simu-
lation results of Fig. 3 show that an abrupt loss in performance occurs roughly for
the code rate of 0.82.

Fig. 4 compares the average FER performance of the punctured turbo codes
with rates 0.7, 0.8 and 0.9 and interleaver lengths k = 384 and 3840. Condition
(3.2) on the minimal punctured code redundancy, α1 > 1− exp(−c

[C]
0 ), implies that

the punctured code rates below R/α1 < 0.82 are necessary to guarantee γ(1) <

exp(−c
[C]
0 ). From Fig. 4, we see that when rates are 0.7 and 0.8, the FER of the

k = 3840 code drops noticeably faster to 10−3 than that of the k = 384 code. We
also see that, when the rate is 0.9, the FERs of both the k = 384 and the k = 3840
codes do not go below 0.1.

5. Conclusions

Because of their good performance, HARQ schemes are included in current
proposals for wireless data/voice networks. A number of important issues such
as error rate performance after each transmission and rate and power control are
difficult to analyze in a network employing a particular HARQ scheme, i.e., a given
mother code and given selection of bits for each transmission. We here addressed
two issues motivated directly by questions in practice. The first was to evaluate the
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Figure 4. Average FER performance of punctured turbo codes
on an AWGN channel for two interleaver lengths k = 384 and 3840.
The mother turbo code has rate 1/3, and the punctured codes have
rates 0.7, 0.8, and 0.9.

error rate performance after each transmission, which is equivalent to evaluating
performance of punctured turbo codes on time varying channels. The second was
to show how one should go about choosing the signal power and the number of bits
for transmission j after a failed transmission j − 1. To approach and solve both
problems, we introduced the idea of random transmission assignments of the mother
code bits. Although theoretical results we obtained are mainly upper bounds and
necessary conditions, simulation results show that they can be very useful tools for
predicting end evaluating performance of practical schemes.
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