
Resource Provisioning for Cloud Computing 
Ye Hu1, Johnny Wong1, Gabriel Iszlai2 and Marin Litoiu3 

1University of Waterloo, 2IBM Toronto Lab, 3York University 

 

 

Abstract 
 

In resource provisioning for cloud computing, an 
important issue is how resources may be allocated 
to an application mix such that the service level 
agreements (SLAs) of all applications are met. A 
performance model with two interactive job 
classes is used to determine the smallest number 
of servers required to meet the SLAs of both 
classes. For each class, the SLA is specified by 
the relationship: Prob [response time ≤ x] ≥ y. 
Two server allocation strategies are considered: 
shared allocation (SA) and dedicated allocation 
(DA). For the case of FCFS scheduling, analytic 
results for response time distribution are used to 
develop a heuristic algorithm that determines an 
allocation strategy (SA or DA) that requires the 
smallest number of servers. The effectiveness of 
this algorithm is evaluated over a range of operat-
ing conditions. The performance of SA with non-
FCFS scheduling is also investigated. Among the 
scheduling disciplines considered, a new disci-
pline called probability dependent priority is 
found to have the best performance in terms of 
requiring the smallest number of servers. 

1 Introduction 
To meet the increasing demand for computing 
resources, the size and complexity of today’s data 
centers are growing rapidly. At the same time, 
cloud computing infrastructures are becoming 
more popular. An immediate question is how the 
                                                 
Copyright © 2009 Ye Hu, Johnny Wong, Marin Litoiu 
and IBM Canada Ltd. Permission to copy is hereby 
granted provided the original copyright notice is re-
produced in copies made.  

resources in a cloud computing infrastructure may 
be managed in a cost-effective manner. Static 
resource allocation based on peak demand is not 
cost-effective because of poor resource utilization 
during off-peak periods. In contrast, autonomic 
resource management could lead to efficient re-
source utilization and fast response in the pres-
ence changing workloads. This paper is concerned 
with resource allocation strategies that are rele-
vant to autonomic resource management.  

The two-level resource management archi-
tecture presented in [1] provides a framework for 
our investigation. At the lower level, there are 
multiple application environments (AEs). Each 
AE consists of a set of computing resources that 
are shared by one or more applications. At the 
higher level, a global arbiter performs resource 
allocation across AEs.  

In this paper, we consider the processing of 
interactive jobs only. These jobs generally have 
small processing requirements and require good 
response time performance. The SLAs under con-
sideration are based on the probability distribution 
of response time, namely, Prob [response time ≤ 
x] ≥ y where x is a threshold value and y is the 
target probability. Our approach is to use per-
formance models to obtain results that can be used 
to guide resource allocation decisions. 

In our investigation, the computing resources 
at each AE are modeled by servers. When the 
global arbiter makes resource allocation decisions, 
information on the number of servers that should 
be allocated to each AE would be very helpful. 
This corresponds to the smallest number of serv-
ers required to meet the SLAs of all applications 
that are assigned to the AE. 

Jobs processed by an AE are classified ac-
cording to their workloads and SLAs. One or 
more applications may be included in the same 
class. The number of servers required is affected 

101



by the resource allocation strategy and job sched-
uling discipline within the AE. The allocation 
strategies under consideration are shared alloca-
tion (SA) and dedicated allocation (DA). In SA, 
the servers are shared by all job classes. DA, on 
the other hand, allocates to each job class a fixed 
number of servers; these servers are not available 
to the other classes. As to job scheduling, the dis-
ciplines considered include first-come first-served 
(FCFS) and two priority disciplines where job 
classes with more demanding SLAs are given 
higher priority.    

In [2], a multi-server queueing model was 
used to show that SA is superior to DA with re-
spect to mean response time over all jobs. How-
ever, the issue of SLA was not included in the 
investigation. When SLAs are considered, SA 
may not be the better strategy under all operating 
conditions. 

In general, a cloud computing infrastructure 
[3, 4] may provide service to a large number of 
job classes. Results on the performance difference 
between SA and DA for an arbitrary number of 
classes are difficult to obtain. This is because of 
the potentially large number of possible allocation 
strategies that need to be evaluated. Additional 
complexity is introduced when the impact of 
scheduling discipline is included in the investiga-
tion. To keep the complexity at a manageable 
level, we consider the special case of two job 
classes. In spite of this simplification, our results 
are directly applicable when the global arbiter, 
taking into consideration issues such as applica-
tion isolation, management and security, decides 
to use a divide-and-conquer approach in which an 
AE contains at most two job classes. In addition, 
our results provide valuable insights into the per-
formance of alternative resource allocation strate-
gies and job scheduling disciplines, and can be 
used to develop heuristic methods for resource 
allocation when more than two classes are as-
signed to an AE [5].  

Our investigation includes (i) a comparative 
evaluation of SA and DA under FCFS scheduling; 
(ii) a heuristic algorithm that determines a re-
source allocation strategy (SA or DA) that results 
in the smallest number of servers required to meet 
the SLA of both classes; and (iii) a comparative 
evaluation of FCFS, head-of-the-line priority 
(HOL) [2] and a new scheduling discipline called 
probability dependent priority (PDP). 

The remainder of this paper is organized as 
follows. Our performance model is described in 

Section 2. Section 3 presents results on the merits 
of SA and DA under FCFS. A heuristic algorithm 
to select the preferred resource allocation strategy 
under FCFS is also developed and evaluated. The 
impact of priority scheduling on performance is 
investigated in Section 4. Related work is dis-
cussed in Section 5. Finally, Section 6 contains 
some concluding remarks. 

2 Performance Model 

In our performance model, computing resources 
at each AE are modeled by servers. There are two 
job classes; each has its own workload and SLA. 
With two job classes, the number of AEs is either 
1 or 2 and the corresponding resource allocation 
strategies are SA or DA. Our models for SA and 
DA are shown in Figures 1 and 2. For SA, job 
arrivals from the two classes are combined into a 
single stream and served by a pool of m servers. 
For DA, each job class has its own dedicated pool 
of servers, and we use m1 and m2 to denote to 
number of servers allocated to class 1 and class 2, 
respectively.  

We assume that for class i (i = 1, 2), the job 
arrival process is Poisson with rate ߣ௜ and the ser-
vice time distribution of both classes is exponen-
tial with mean 1/μ . As mentioned earlier, the 
SLA is based on the relationship Prob [response 
time ≤ x] ≥ y. We use SLA(x, y) to denote such an 
SLA. 

We assume that for DA, jobs are processed 
in FCFS order. A number of scheduling discip-
lines are considered for SA, namely FCFS, HOL, 
and PDP. 

 
 

 Figure 1: Shared Allocation 

AE 

 

102



Figure 2: Dedicated Allocation 

3 Resource Provisioning 

3.1 Analytic Results for FCFS 

Under DA, the model for each job class can be 
viewed as an M/M/m model with FCFS schedul-
ing. The same model is also applicable when 
FCFS is used in SA. For this model, analytic re-
sults for the response time distribution are availa-
ble in [6]. Let F(x) be the cumulative distribution 
function (CDF) of response time, i.e., F(x) = Prob 
[response time ≤ x]. In [6], it was shown that: 

ሻݔሺܨ ൌ ܲሺ0ሻ ൤∑ ሺ1 െ ݁ିఓ௫ሻ ఘ
೙

௡!
௠ିଵ
௡ୀ଴ ൅

     ௠ఘ೘

௠!ሺଵି௠ାఘሻ
ቀଵି௘

షሺ೘షഐሻഋೣ

ఘ௠ି
െ 1 ൅ ݁ିఓ௫ቁቃ      (1) 

 
where ܲሺ0ሻ ൌ ሺ∑ ఘ೙

௡!
൅ ௠ఘ೘

௠!ሺ௠ିఘሻ
௠ିଵ
௡ୀ଴ ሻିଵ  

is the probability that the system is empty, 
ߩ ൌ ߣ μ⁄  is the traffic intensity, and λ and µ are 
the arrival rate and service rate, respectively. Note 
that m > ߩ, otherwise the system does not have 
sufficient capacity to handle the load. 

3.2 Allocation Strategies 

Consider first DA. The results in Equation (1) can 
be used to determine ݉஽ଵ and ݉஽ଶ, the smallest 
number of servers required to meet the SLA of 
class 1 and class 2, respectively. For ݉஽௜ (i = 1, 2), 
the value of ߩ in Equation (1) is given by ߣ௜ μ⁄ . 

An algorithm that determines the smallest 
number of servers required is included as Algo-
rithm 1 below. This algorithm starts with ݉ ൌ

ۂߩہ ൅ 1 and increases m until the target probabil-
ity y is achieved. Let SLAi be the SLA of class i (i 
= 1, 2). ݉஽௜ can be obtained by setting the arrival 
rate to ߣ௜ he service rate to µ, and SLAሺݔ,  ሻ toݕ
SLAi.  

AE1 

, t

Let ݉஽  be the smallest number of servers 
required under DA to meet the SLA of both 
clas s.  g by: se  ݉஽ is iven 

 ݉஽ ൌ ݉஽ଵ ൅ ݉஽ଶ (2) 

AE2 

Algorithm 1 
Input: // Arrival rate ߪ    

 Aሺݔ,   ሻ   //Service level agreementݕ
 // Service rate ߤ 

SL
Outp // Minimum number of  ut: ݉ 

      Servers required 
1: ݉ ൌ ہ ൅ߪ μ⁄

ሺ
 ۂ1

2: while ܨ ሻݔ ൏  ++m  ,ݕ
3: return ݉ 

Consider next SA. Under FCFS, the CDF of 
response time can be obtained by extending the 
work in [7] to the case of multiple servers. The 
resulting CDF is the same as that for the M/M/m – 
FCFS model with arrival rate equal to ߣଵ ൅ ଶߣ , 
i.e., the aggregated rate of the two classes. Fur-
thermore, both classes have the same CDF of re-
sponse time which is given by Equation (1) with 
ߩ ൌ ሺߣଵ ൅ ଶሻߣ μ⁄ .   

Let ݉௦௜  be the smallest number of servers 
required under SA to meet ܵܣܮ௜  ሺ݅ ൌ 1, 2ሻ. ݉௦௜ 
can be obtained from Algorithm 1 by setting the 
arrival rate to ߣଵ ൅ ߣଶ, the service rate to µ, and 
SLAሺݔ, ሻݕ  to SLAi. ݉ௌ , the smallest number of 
servers required to meet the SLA of both classes, 
is then given by: 

 ݉ௌ ൌ max ሺ݉ௌଵ,݉ௌଶሻ   (3)   
  
3.3 SA and DA Comparison 

In this section, we use numerical examples to 
evaluate the performance difference of DA and 
SA under FCFS scheduling. The input parameters 
considered are shown in Table 1, where ߣ௜ is the 
arrival rate of class i, and ݔ௜ and ݕ௜ are parameters 
of ܵܣܮ௜, representing the response time threshold 
and target probability, respectively. We restrict 
the values of ߣଵ  and ߣଶ  such that ߣଵ ൅ ଶߣ ൑ ܭ ൌ
40. We feel that this represents a sufficiently wide 
range of workload. The service rate ߤ is set to 1. 

103



  
 ௜ 0.1, 0.2, … , 40.0ߣ
 ௜ 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0ݔ
 ௜ 0.8, 0.85, 0.9, 0.96ݕ

 
Table 1: Parameter values  

 
Our evaluation is based on the total number 

of servers required to meet the SLA of both 
classes, as given by ݉஽ and ݉ௌ in Equations (2) 
and (3), respectively. For each combination of ߣ௜, 
௜ݔ  and ݕ௜  (i = 1, 2), SA (or DA) is superior if 
݉௦ ൏ ݉஽  (or ݉஽ ൏ ݉ௌ ). Our results show that 
when both classes have the same SLA, SA always 
performs better than, or has the same performance 
as, DA. However, when ܵܣܮଵ  and ܵܣܮଶ  are dif-
ferent, neither SA nor DA is superior for all com-
binations of parameter values. For example, the 
results for the two cases shown in Table 2 indicate 
that DA is superior for case 1, but SA is superior 
for case 2.  

 
Case ߣଵ ݔଵ, ,ଶݔ ଶߣ ଵݕ ଶ ݉஽ݕ ݉ௌ

1 0.6 3, 0.8 3.0 5, 0.95 5 6 
2 0.6 3, 0.95 3.6 5, 0.8 8 7 

 
Table 2: Two Example Cases 

 
Our goal is to develop an efficient algorithm 

that determines the preferred allocation strategy 
(DA or SA) for given values of ߣ௜, ݔ௜ and ݕ௜ (i = 1, 
2). This would facilitate resource management 
because the preferred strategy requires the small-
est number of servers to meet the SLA of both 
classes. 

3.4 Heuristic Algorithm 

To develop our algorithm, we first remove the 
dependency of the preferred allocation strategy on 
 ଶ by using a metric that representsܣܮܵ ଵ andܣܮܵ
their difference. We then characterize, for a given 
value of the difference metric, the dependency of 
the preferred strategy on the arrival rates ߣଵ and 
ଶߣ . The results are used to develop a heuristic 
algorithm that determines the preferred strategy. 

3.4.1   SLA Difference  
We note that for a given SLA, different arrival 
rates could result in different number of servers 

required. In Figure 3, we plot the smallest number 
of servers required ݉ against the arrival rate ߣ for 
a pair of SLAs. We observe that the value of ݉ 
for SLA(3, 0.95) is always larger than or equal to 
that for SLA(5, 0.8). Through extensive testing 
involving other SLA pairs, the following pattern 
is observed. Let ݉ሺߣ, -ሻ be the smallest numܣܮܵ
ber of servers required for the given ߣ and SLA. 
For any pair of SLAs, either 

 or        
 

݉ሺߣଵ, ଵሻܣܮܵ ൒ ݉ሺߣଶ, ଶሻܣܮܵ
݉ሺߣଵ, ଵሻܣܮܵ ൑ ݉ሺߣଶ, ܵ ଶሻ ܣܮ

over the range of values of ߣ considered (which is  
0 < λ ≤ 40). This pattern led us to use a single 
metric to  the difference in ݉ for a pair of 
SLAs.  

 

 describe

Let ܩሺܵܣܮሻ be the average number of serv-
ers required to meet the given SLA over the range 
of a t  ሻ is given by: rrival ra es considered. ܩሺܵܣܮ

ܣܮሺܵܩ ଵሻ ൌ
௄ ׬ ݉ሺݔ଴

where ܭ ൌ -ሻ can be computed numeriܣܮሺܵܩ .40
cally. We define a metric called “SLA Difference” 
between ܵܣܮ  and ܵܣܮ  (denoted by D) as fol-
low

, ௄ݔሻ݀ܣܮܵ  (4)
   

ଵ ଶ
s: 

ܦ ൌ ଵሻܣܮሺܵܩ| െ  ଶሻ| (5)ܣܮሺܵܩ
 

 

 
 

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10

m

Arrival Rate

SLA (3, 0.95)

SLA (5, 0.80)

Figure 3: Smallest Number of Servers Required 

3.4.2   Dependency on Arrival Rates 
We now present results that show the impact 

of ߣ ,ܦଵ and ߣଶ on the merits of SA and DA. Con-
sider the two scenarios summarized in Table 3. 
The SLA pair for scenario 1 is not the same as 
that for scenario 2, but the SLA difference of the 
two scenarios are almost the same (equal to 22.6). 
The results for these two scenarios are shown in 

104



Figures 4 and 5, respectively. For each combina-
tion of ߣଵ  and ߣଶ , the corresponding intersection 
is grey if DA is the better strategy, and white if 
SA is better or as good as DA. We observe similar 
patterns of grey and white for both scenarios 1 
and 2. Let ஽݂ be the fraction of intersections that 
are grey (i.e., DA is better). Our results indicate 
that for both scenarios, ஽݂ is approximately 5.2%.  

2λ

A similar observation is made in Figures 6 
and 7 where we consider two scenarios that have 
larger SLA differences (see Table 4). For these 
scenarios, the SLA difference ܦ is 83.45 and the 
resulting ஽݂ is increased to about 64%. 

Through extensive testing, it was found that 
the above observation is true for scenarios where 
the SLA differences are very close to each other. 
We also observe that ஽݂ tends to increase with D. 
Based on these results, we conclude that SLA 
difference is potentially useful in our effort to 
develop a heuristic algorithm that determines the 
preferred strategy. 

1λ

 
Scenario ܵܣܮଵ ܵܣܮଶ ܦ

1 SLA(4.5, 0.85) SLA(2.5, 0.9) 22.58 
2 SLA(4, 0.8) SLA(2.5, 0.9) 22.60 

 
Table 3: SLA pairs where ܦ ൌ 22.6 

 
Scenario ܵܣܮଵ ܵܣܮଶ ܦ 

3 SLA(5, 0.85) SLA(3, 0.95) 83.45 
4 SLA(4.5, 0.8) SLA( 03, .95) 83.48 

 
Table 4: SLA pairs where ܦ ൌ 83.5 

 
 

1λ

2λ

Figure 4: Scenario 1 

Figure 5: Scenario 2 

2λ

1λ

Figure 6: Scenario 3 

1λ

2λ

Figure 7: Scenario 4 

105



3.4.3   Description of Algorithm 
We observe from the results in Figures 4 to 7 that 
there are well-defined regions where DA or SA is 
likely the preferred strategy. These regions are 
separated by a straight line, as illustrated in Figure 
8. Based on this observation, we define, for a 
given SLA difference, an angle α such that at least 
 of the intersections in region 2 indicate that %ݍ
DA is the preferred strategy. In our investigation, 
we use ݍ ൌ 90. Using numerical examples, a plot 
of the angle α against SLA difference is shown in 
Figure 9. 
 

1λ

2λ

α
 

Figure 8: Heuristic method 
 

 
 

Figure 9: SLA difference vs. Angle 
 
Our algorithm uses an “angle table” to cap-

ture the relationship between SLA difference and 
the angle ߙ. An example of such a table is shown 
in Table 5 where the SLA difference is organized 
into 5 intervals. An angle ߙ is pre-determined for 
each interval; the pre-determined value is the av-

erage of the ߙ’s for the SLA differences within 
the interval. 

 
SLA Difference Angle α (degree) 

[0, 30) 0 
[30, 62) 22 
[62, 78) 52 
[78, 82) 69 

[82, 86.1) 77 
 

Table 5: Angle Table 
 
Our algorithm is included as Algorithm 2 be-

low. We first compute ܩሺܵܣܮଵሻ  and ܩሺܵܣܮଶሻ 
using Equation (4). These values are then used to 
compute the SLA difference D. The angle ߙ cor-
responding to D is obtained from the angle table. 
If the intersection ሺߣଵ, -ଶሻ is below the line deߣ
fined by the angle ߙ (i.e., in region 2 of Figure 8), 
DA is the preferred strategy; otherwise SA is the 
preferred strategy.  

 
Algorithm 2 

,ଵߣ        ଶߣ
ܣܮܵ    ,   ଶ    // SLAsܣܮܵ
Input: // Arrival rates  

ଵ
 or SA // Alloc tOutput:   DA  a ion Strategy 

1:  Compute ܩሺܵܣܮଵሻ and ܩሺܵܮ ଶሻ 
2:  C ute S  ence ܩሺ ଵሻܣܮ െ  ଶሻܣܮሺܵܩ

ܣ
ܵ

3:  Se  obtain ߙ 
omp LA differ
arch angle table to

4:  if tanିଵ ଶߣ ⁄ଵߣ ൑  return DA, else return SA ,ߙ

3.5 Performance Evaluation 

In this section, the heuristic algorithm pre-
sented in Section 3.4 is evaluated with respect to 
its ability to come up with a strategy (DA or SA) 
that results in the smallest number of servers. Our 
evaluation is based on the following consideration. 
Each time the global arbiter makes a resource 
allocation decision, it determines the number of 
servers required by the two job classes, using ߣ௜, 
௜ݔ  and ݕ௜  (i = 1, 2) as input parameters. Since 
these parameters may have different values at 
different time instants when resource allocation 
decisions are made, our approach is to consider a 
large number ܮ, of combinations of ߣ௜, ݔ௜ and ݕ௜ (i 
= 1, 2). The performance of the heuristic algo-
rithm for each combination is determined, and the 

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90

α

SLA Difference

106



average performance over the ܮ  combinations  
used or evaluation purposes. 

is
 f
For each combination, the values of ߣ௜  ௜ݔ ,

and ݕ௜  (i = 1, 2) are selected according to their 
respective probability distributions. These values 
are generated using random numbers. The prob-
ability distributions used in our evaluation are 
summarized in Table 6. These distributions repre-
sent the frequencies at which values of ߣ௜, ݔ௜ and 
 ௜ (i = 1, 2) are seen by the global arbiter. Noteݕ
that three different distributions are used for ߣଵ 
and ߣଶ, and only one distribution is used for each 
of the other parameters. The notation in Table 6 is 
explained as follows: 
 
• U (a,  uniform between ܽ and ܾ  b) –
• N ( -ଶ) – normal with mean 20 and variߪ ,0

ance ߪଶ (values ≤ 0 and > 40 are excluded) 
2

• E (ݐ) – exponential with mean ݐ (values > 40 
are excluded) 
 

 
Pa am ter r e Distribution 

 ଶ U (0, 40)ߣ ,ଵߣ
N (20  , (ଶߪ

E (ݐ) 
ଵݔ  ଶ,  U (a, b)ݔ
 ଶ U (0.8, 0.95)ݕ ,ଵݕ

 
Table 6: Probability distributions 

 
For our heuristic algorithm, its effectiveness 

is measured by: S = Prob [heuristic algorithm 
finds a correct strategy]. By correct strategy, we 
mean a strategy that requires the smallest number 
of servers to meet the SLA of both classes. In case 
DA and SA lead to the same smallest number, 
then both are considered as a correct strategy. The 
performance metric ܵ is obtained as follows. We 
repeat the steps shown in Procedure 1  ܮ  times 
(the initial value of t ௖௢௥௥௘௖௧ is zero). 
ܵ is then given by: ܵ ൌ .  

he variable ݊
݊௖௢௥௥௘௖௧ ⁄ܮ

Our results for ܮ ൌ 10,000  and 6 different 
settings of the probability distributions are shown 
in Table 7; for all settings, the distribution used 
for ݕଵ and ݕଶ is U (0.8, 0.95). These results show 
that our heuristic algorithm has at least a 96% 
probability of finding a correct strategy for all the 
cases considered. They indicate that the heuristic 

algorithm is effective in determining a strategy 
that requires the smallest number of servers. 
 
Proce u  d re 1

rate values 
2: if ߣଵ ൅ ଶߣ ൐ 40, the p 1. 
1: Gene for ଵ ଶ. ߣ  and ߣ

n goto ste
3: Generate values for ݔ , ,ଶݔ ଶ. ଵݕ ଵ, andݕ

 ob
 strategy (d ted ଵ). 
4:  Apply Alg ithm 2 o tain an allocation or  t

eno by ܴ
5: Compute ݉஽ and ݉ௌ using Equations (2) and 

(3 The correct strategy (den ted by ܴଶ) is 
D f ݉஽ ൑ ݉ௌ or  if ݉ௌ

). o
A i SA ൑ ݉஽. 

6: if ܴଵ is the same as ܴଶ, then ݊௖௢௥௥௘௖௧++. 
 
  

 ܵ ଶݔ ,ଵݔ ଶߣ ,ଵߣ
U (0, 40) U (2, 5) 0.973 
U (0, 40) U (2, 10) 0.979 
N (20, 5) U (2, 5) 0.961 
N (20, 10) U(2, 5) 0.966 

E (10) U (2, 5) 0.982 
E (20) U (2, 5) 0.984 

 
        Table 7: Probability of correct strategy 

4 Priority Disciplines 
In this section, we consider scenarios where the 
scheduling discipline is not restricted to FCFS. 
Obvious choices are disciplines that give priority 
to the job class that has a more demanding SLA, 
e.g., a smaller response time threshold ݔ and/or a 
larger target probability ݕ . Such disciplines are 
only applicable under shared allocation (SA). 
Two priority disciplines are considered: head-of-
the-line priority and a new discipline called prob-
ability dependent priority. 

4.1 Head-of-the-Line Priority 
In head-of-the-line priority (HOL), the job class 
with the larger ܩሺܵܣܮሻ value has higher priority. 
Whenever a server becomes available, jobs in the 
higher priority class are considered first. If the 
queue of the higher priority class is empty, then 
jobs in the lower priority class are considered. 
Within the same class, jobs are processed in FCFS 
order. 

107



4.2 Probability Dependent 
Priority 

Probability dependent priority (PDP) is a new 
scheduling discipline designed to maximize the 
probability of meeting a given response time goal. 
This should have a positive effect in terms of 
minimizing the number of servers required. Let ߬௜ 
be the measured frequency that the response time 
of class he threshold ݔ௜. The following count-
ers are n PDP (both are zero initially): 

 i ≤ t
used i

• ݈௜  - number of class ݅ jobs com leted 
 

ܽݐ݋ݐ p
so far

௜ݐ݁݉ •  - number of completed class ݅  jobs 
that has response time ൑  ௜ݔ

Each ti class ݅ job completes service, the fol-
lowing are performed: 

me a 
 steps 

 .௜ is incremented by one݈ܽݐ݋ݐ •
• If this job has response time ൑  ௜ isݐ݁݉ ,௜ݔ

incremented by one.  
• Comput  a new value of ߬௜ usin  the equa-

tion: ߬௜ ௜ݐ݁݉ ⁄݈ܽݐ݋ݐ
e g
ൌ ௜.  

• Update ௜ܲ, the priority of class ݅, which is 
defined as follows: ௜ܲ ൌ ௜ݕ െ ߬௜. 

 
In PDP, the job class with the larger ௜ܲ has 

higher priority. In case both classes have the same 
priority value, then the next job class to receive 
service is selected at random. Note that with PDP, 
a job class has higher priority if it is meeting the 
SLA with a smaller margin or is falling behind by 
a larger margin. In addition, the priority of a job 
class may change over time because ߬௜ is updated 
each time a class ݅ job completes service. 

4.3 Performance Evaluation 
In this section, the performance difference of  
FCFS, HOL, and PDP is investigated. For FCFS, 
results are provided by the heuristic algorithm in 
Section 3.4. As to HOL and PDP, analytic results 
for the r po e time istribution are difficult to 
obtain, s m tion i sed. 

es ns  d
o si ula s u

Let ݉ி , ݉ு  and ݉௉  be the smallest number 
of servers required by FCFS, HOL, and PDP, re-
spectively, such that the SLA of b  s are 
met. We say that 

oth classe

• FCFS is a top discipline if ி  and 
ி , 

݉ ൑ ݉ு
݉ ൑ ݉௉

• HOL is a top discipline if ݉ு ൑ ݉ி  and 
݉ு ൑ ݉௉, and 

• PDP is a top discipline if ݉௉ ൑ ݉ி  and 
݉௉ ൑ ݉ு. 

The methodology presented in Section 3.5 is used 
in our evaluation. The performance metrics are ݍி, 
 ,௉, the fractions of time that FCFS, HOLݍ ு andݍ
and PDP are a top discipline, respectively. The 
steps shown in Procedure 2 are repeated ܮ times 
(the initial values of ݊ி, ݊ு and ݊௉ are zero). ݍி, 
ுݍ  and ݍ௉  are then given by ݍி ൌ ݊ி ⁄ܮ ுݍ  ൌ
݊ு ⁄ܮ , and ݍ௉ ൌ ݊௉ ⁄ܮ .  

 
Proce u  d re 2

rate values 
2: if ߣଵ ൅ ଶߣ ൐ 40, the p 1. 
1: Gene for ଵ ଶ. ߣ  and ߣ

n goto ste
3: Generate values for ݔଵ, ,ଶݔ  .ଶݕ ଵ, andݕ
4: Apply Algorithm 2 to obtain a correct strategy 

for FC se Equations (2) or (3) to        
de ி. 

FS and u

5: O nd ݉ lation. 
termine ݉

a  b
6: if  and , then nF ++. 

btain ݉ு ௉ y simu
ி ி

7: if  and , then nH ++. 
݉ ൑ ݉ு ݉ ൑ ݉௉
ு ு

8:   t n . 
݉ ൑ ݉ி ݉ ൑ ݉௉

if ݉௉ ൑ ݉ி and ݉௉ ൑ ݉ு, he nP ++
9: if ݉௉ ൏ ݉ி and ݉௉ ൏ ݉ு, then n++, 

ி൅ൌݏ ݉ி െ݉௉, a ு െ ݉௉. nd ݏு൅ൌ ݉
 

Our results for ܮ ൌ 10,000  and 6 different 
settings of the probability distributions are pre-
sented in Table 8. These results show that PDP is 
superior to HOL and FCFS in terms of the frac-
tion of time that it is a top discipline. Specifically, 
PDP is a top discipline over 97% of the time, 
compared to less than 30% for HOL and less than 
2% for FCFS. 

 
 ௉ݍ ுݍ ிݍ ଶݔ ,ଵݔ ଶߣ ,ଵߣ

U (0, 40) U (2, 5) 1.6% 25.5% 98.3% 
U (0, 40) U (2, 10) 0.9% 29.4% 97.1% 
N (20, 5) U (2, 5) 1.3% 24.8% 98.5% 
N (20, 10) U (2, 5) 1.1% 23.1% 98.8% 

E (10) U (2, 5) 1.4% 27.5% 98.4% 
E (20) U (2, 5) 1.5% 24.6% 98.0% 

 
Table 8: Performance Comparison 

 
To provide further insight into the perform-

ance advantage of PDP, we compute, for those 
combinations of ߣ௜, ݔ௜ and ݕ௜ (i = 1, 2) where PDP 
is the top discipline (i.e., ݉௉ ൏ ݉ி  and ݉௉ ൏
݉ு), the average difference between the number 
of servers required by PDP and that required by 
each of the other two disciplines. This is done by 

108



step 9 of Procedure 2 where ݏி and ݏு are used to 
accumulate the difference between ݉ி  and ݉௉ 
and that between ݉ு and ݉௉ ; ݊ is used to keep 
track of the number of combinations where PDP 
is the top discipline (݊, ݏி and ݏு are initially 0). 
The average differences are then given by 
Δி ൌ ிݏ ݊⁄  and Δ ൌ ⁄ுݏ .  ு ݊

Results for Δி  and Δு  for the 6 settings of 
probability distributions are shown in Table 9. 
These results show that the difference in number 
of servers required is consistent across probability 
distributions, with an average of about 1.4 for Δி 
and about 1.2 for Δு. 

 
 ଶ Δி Δுݔ ,ଵݔ ଶߣ ,ଵߣ

U (0, 40) U (2, 5) 1.41 1.29 
U (0, 40) U (2, 10) 1.36 1.16 
N (20, 5) U (2, 5) 1.49 1.29 

N (20, 10) U (2, 5) 1.43 1.26 
E (10) U (2, 5) 1.33 1.12 
E (20) U (2, 5) 1.36 1.17 

 
Table 9: Performance Difference 

5 Related Work 

Related work in autonomic resource management 
can be organized according to the approach used 
in the investigation, including queueing theory, 
control theory, machine learning, and cloud com-
puting. 

Queueing theory [8-11] is a well established 
and widely used methodology in performance 
evaluation of resource management strategies. In 
[8], the authors present utility models based on a 
system of N parallel M/M/1 queues and use re-
sults for the mean response time and throughput 
to maximize the total utility. In [9], a predictive 
multiclass queueing network model is used to 
compute the mean response time. A layered 
queueing network is used in [10] to study the ef-
fect of workload and system parameters on per-
formance. A regression based approximation of 
the CPU demand of client transactions is intro-
duced in [11]; the approximation is obtained using 
a queueing network model with each queue repre-
senting an application tier. 

Control theory [12-15] has been used in the 
design of dynamic resource management schemes. 
In [12], a system is developed that can meet ap-

plication-level quality of service while achieving 
high resource utilization. An analytic foundation 
of control theory for a self-managing system is 
described in [13]. In [14], the authors argue that 
control theory should be used to build and to con-
figure self-managing systems. The 1000 Island 
solution architecture is presented in [15]; this ar-
chitecture has multiple resource controllers that 
are based on control theory and optimization 
methods. 

Machine learning has also been used in 
autonomic resource management [16-18]. A 
lightweight on-line learning of correlations be-
tween system state and response time is described 
in [16]. In [17], an active learning approach is 
used to build predictive models to forecast the 
completion time of batch jobs. A combination of 
off-line reinforcement learning and queueing the-
ory is used to improve the accuracy of the predic-
tion [18]. 

Cloud computing [19] is emerging as a new 
computational model in which computing is of-
fered as a service over the Internet. A cloud can 
comprise a large number of hardware and soft-
ware resources shared by a large number of appli-
cations. Scheduling and optimization results in 
clouds have been reported recently [3, 4]. Both 
papers consider SLAs as mean response time per 
class and the objective function is the cost and 
respectively the profit of a cloud.  

6 Concluding Remarks 

The results in this paper provide valuable insights 
into the performance of alternative resource allo-
cation strategies and job scheduling disciplines for 
a cloud computing infrastructure. In our investiga-
tion, the service level agreement is based on re-
sponse time distribution, which is more relevant 
than the mean response time with respect to the 
performance requirement of interactive applica-
tions. We have developed an efficient and effec-
tive algorithm to determine the allocation strategy 
that results in smallest number of servers required. 
We have also developed a novel scheduling disci-
pline, called probability dependent priority, which 
is superior to FCFS and head-of-the-line priority 
in terms of requiring the smallest number of serv-
ers. Although our focus is on the case of two job 
classes, our findings can be used to develop 
guidelines for resource provisioning for more 
complex scenarios. 

109



Acknowledgements 

This work was supported by the IBM Toronto Lab 
Centre for Advanced Studies and the Ontario 
Centres of Excellence. 

About the Authors 

Ye Hu received his MMath degree in Computer 
Science from the University of Waterloo in 2009. 
He was an IBM CAS Fellowship student in 2007 
and 2008. He is currently a System Design Spe-
cialist at Thales Group Toronto Division. 
 Johnny Wong received his Ph.D. degree in 
Computer Science from the University of Califor-
nia at Los Angeles in 1975. Since 1975, he has 
been with the University of Waterloo where he is 
currently a Professor in the David R. Cheriton 
School of Computer Science. He was Director of 
the School from 2003 to 2006. His research inter-
ests are in the areas of performance evaluation, 
distributed systems, resource management, and 
information delivery. 
 Gabriel Iszlai is a Senior Technical Staff 
Member with the IBM Center for Advanced Stud-
ies in Toronto, Canada. He received his B.S. de-
gree in 1992. Prior to joining IBM he worked as 
Chief Scientist for ThinkDynamics, a company 
acquired by IBM in May 2003. He was one of the 
initial designers of the former ThinkControl ap-
plication, known today as IBM Tivoli Intelligent 
Orchestrator. Prior to that, he worked for over 8 
years in the IT industry for different European 
telecom companies.  
 Marin Litoiu is a professor at York Universi-
ty. Prior to that he was a Senior Research Staff 
Member with Centre for Advanced Studies, IBM 
Toronto Lab, where he led the research programs 
in Autonomic Computing, System Management 
and Software Engineering. He was the Chair of 
the Board of CSER, a Canadian Consortium for 
Software Engineering Research and Director of 
Research for Centre of Excellence for Research in 
Adaptive Systems. Dr. Litoiu holds doctoral de-
grees from University Polytechnic of Bucharest 
and from Carleton University. His research inter-
ests include autonomic computing; high perfor-
mance software design; performance modeling, 
performance evaluation and capacity planning for 
distributed and real time systems. 

References 

[1] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. 
Das. Utility Functions in Autonomic Systems. 
Proc. 1st International Conference on Auto-
nomic Computing, New York, 2004. 

[2] L. Kleinrock. Queuing Systems Volume 2: 
Computer Applications. Wiley-Interscience, 
New York, 1976. 

[3] A. Lenk, M. Klems, J. Nimis, et al. What’s 
Inside the Cloud? An Architectural Map of 
Cloud Landscape. Proc. ACM/IEEE Sympo-
sium on Cloud Computing Challenges, 23-31, 
Vancouver, 2009. 

[4] J. Li, J. Chinneck, M. Woodside, and M. Li-
toiu. Fast Scalable Optimization to Configure 
Service Systems having Cost and Quality of 
Service Constraints. Proc.  IEEE Internation-
al Conference on Autonomic Systems, Barce-
lona, 2009. 

[5] Y. Hu. Resource Allocation for Multiple Job 
Classes. Master’s Thesis, University of Wa-
terloo, 2009. 

[6] M. Kwok. Performance Analysis of Distri-
buted Virtual Environments. PhD Thesis, 
University of Waterloo, 2006. 

[7] J.W. Wong and S.S. Lam. Queueing Network 
Models of Packet-Switching Networks, Part I: 
Open Networks. Performance Evaluation, 9-
21, 1982. 

[8] G. Tesauro, R. Das, W.E. Walsh, and J.O. 
Kephart. Utility-function-driven resource al-
location in autonomic systems. Proc. 2nd In-
ternational Conference on Autonomic Com-
putting, Seattle, 2005. 

[9] M.N. Bennani and D.A. Menasce. Resource 
Allocation for Autonomic Data Centers using 
Analytic Performance Models. Proc. 2nd In-
ternational Conference on Autonomic Com-
puting, Seattle, 2005. 

[10]  M. Woodside, T. Zheng, and M. Litoiu. Ser-
vice System Resource Management Based on 
a Tracked Layered Performance Model. Proc. 
3rd International Conference on Autonomic 
Computing, Dublin, 2006. 

[11]  Q. Zhang, L. Cherkasova, and E. Smirni. A 
Regression-Based Analytic Model for Dy-

110



namic Resource Provisioning of Multi-tier 
Applications. Proc. 4th International Confer-
ence on Autonomic Computing, Jacksonville, 
Florida, 2007. 

[12]  P. Padala, X. Zhu, M. Uysal, Z. Wang, S. 
Singhal, A. Merchant, K. Salem, and K. Shin. 
Adaptive Control of Virtualized Resources in 
Utility Computing Environments. Proc. 
European Conference on Computer Systems, 
Lisbon, 2007. 

[13]  Y. Diao, J.L. Hellerstein, S. Parekh, R. Grif-
fith, G.E. Kaiser, and D. Phung. A Control 
Theory Foundation for Self-Managing Com-
puting Systems. IEEE Journal on Selected 
Areas in Communications, 2213-2222, 2005. 

[14]  C. Karamanolis, M. Karlsson, and X. Zhu. 
Designing Controllable Computer Systems. 
Proc. USENIX Workshop on Hot Topics in 
Operating Systems, Santa Fe, New Mexico, 
2005. 

[15]  X. Zhu, D. Young, B. J. Watson, Z. Wang, J. 
Rolia, S. Singhal, B. McKee, C. Hyser, D. 
Gmach, R. Gardner, T. Christian and L. 
Cherkasova. 1000 Islands: Integrated Capaci-
ty and Workload Management for the Next 
Generation Data Center. Proc. 5th Interna-
tional Conference on Autonomic Computing, 
Chicago, 2008. 

[16]  S. Ghanbari, G. Soundararajan, J. Chen, and 
C. Amza. Adaptive Learning of Metric Cor-
relations for Temperature-Aware Database 
Provisioning. Proc. 4th International Confer-
ence on Autonomic Computing, Jacksonville, 
Florida, 2007. 

[17]  P. Shivam, S. Babu, and J. Chase. Learning 
Application Models for Utility Resource 
Planning. Proc. 3rd International Conference 
on Autonomic Computing, Dublin, 2006. 

[18]  G. Tesauro, N. K. Jong, R. Das, and M. N. 
Bennani. A Hybrid Reinforcement Learning 
Approach to Autonomic Resource Allocation. 
IEEE Internet Computing, 22-30, 2007. 

[19]  M. Litoiu and G. Iszlai. Performance Model 
Driven QoS Guarantees and Optimization in 
Clouds. Proc. ACM/IEEE Symposium on 
Cloud Computing Challenges, 15-22, Van-
couver, 2009. 

111




