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Abstract

n this paper we prove by entirely elementary means a very effective version of the Hilbert Irreducibility

-

n

Theorem. We then apply our theorem to construct a probabilistic irreducibility test for sparse multivariate poly

omials over arbitrary perfect fields. For the usual coefficient fields the test runs in polynomial time in the input

K

size.
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1. Introduction

s
i

The question whether a polynomial with coefficients in a unique factorization domain i
rreducible poses an old problem. Recently, several new algorithms for univariate and mul-

-
w
tivariate factorization over various coefficient domains have been proposed within the frame

ork of polynomial time complexity, see e.g. Berlekamp (1970), Lenstra et al. (1982), Kalto-

j
fen (1985a), Chistov and Grigoryev (1982), Landau (1985). All algorithms in the references
ust given are polynomial in l (n +1) , where l is the number of bits needed to represent the

c

v

oefficients of the polynomial to be factored, n is its total degree, and v is the number of its

p
variables. The algorithms for finite fields are probabilistic (Las Vegas – always correct and
robably fast.) If v is not fixed, l (n +1) may not represent the input size since the input poly-

n

v

omial may only consist of a few monomials. In this sparse case, J. von zur Gathen (1985a)

M
has developed a probabilistic irreducibility test and factorization algorithm, the former of the

onte Carlo kind and polynomial in the degree and the number of non-zero monomials of the

T
polynomial to be tested for irreducibility. His algorithm is based on the Hilbert Irreducibility

heorem, as was our older multivariate to bivariate reduction (cf. Kaltofen (1985a), §7), and a

*
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.generalized version of the sparse Hensel lifting scheme of Zippel (1981)

In §3 we shall prove a new very effective Hilbert Irreducibility theorem, which, applied
sto the rational coefficient case, states roughly the following: If a polynomial f (x ,. . . , x ) i1 v

i 1 1 2 1 2 v −1 1 v −1 2rreducible then the probability that f (x +w , c x +w ,.. . , c x +w , x ) becomes reduci-
ble for randomly chosen integers c ,. . . , c , w ,.. . , w of O (deg f + log 1/ε) digits is2 v −1 1 v −1

2 )
d
less than ε. In von zur Gathen (1985a), Lemma 4.3, the integers have O (deg f + log 1/ε

igits and the substitutions are somewhat more complicated (c x + u x + w for x .) Wei 1 i 2 i i

c
g
also use elementary methods to prove our result whereas von zur Gathen follows the algebrai
eometric approach of Heintz and Sieveking (1981) which is based on Bertini’s theorem.

o
i

In §4 we then use our effective Hilbert Irreducibility Theorem to establish Monte-Carl
rreducibility tests for sparse multivariate polynomials. The tests are similar to probabilistic

a
primality testing except that they definitely establish irreducibility but compositeness only with

small failure probability. For rational coefficients the test runs in time polynomial in the
t

l
number of non-zero monomials of the input polynomial, its total degree, and its coefficien
ength. Our theorem also applies to coefficients from a field of positive characteristic p pro-

i
vided the p -th root of any element can be taken within this field. Therefore our theorem
ncludes the important case in which the coefficients lie in a finite field. We propose a

(
different irreducibility test in this case, which, unlike the algorithms by Chistov and Grigoryev
1982) and von zur Gathen (1985a), does not require one to work in an algebraic extension of

r
p
the coefficient domain. All irreducibility tests rely on polynomial-time irreducibility tests fo
olynomials in two or three variables.

Notation: By Z we denote the integers, by Q the rationals and by C the complex numbers.
,Z denotes the field of residues modulo the prime p . D shall denote an integral domainp

1 v -
a
QF(D ) its field of quotients, char(D ) its characteristic. D [x ,. . . , x ] denotes the polynomi
ls in x ,. . . , x over D , D (x ,. . . , x ) the corresponding field of quotients; deg ( f ) denotes1 v 1 v x 1

1 2xt 1 1 v x ,he highest degree of x in f ∈ D [x ,. . . , x ], deg ( f ) the highest total degree of f in the

evariables x and x , and deg( f ) = deg ( f ) the total degree of f . The coefficient of th1 2 x , . . . ,x1 v

v v e
d
highest power of x in f is referred to as the leading coefficient of f in x and will b

enoted by ldcf ( f ). We call f monic in x if ldcf ( f ) is a unit of D . As is well-known,x v xv v

D 1 v[x ,. . . , x ] is a unique factorization domain (UFD) provided that D is a UFD. In this case
fthe content of f ∈ D [x ,. . . , x ] in x , cont ( f ), is the greatest common divisor (GCD) o1 v v xv

v 1 v −1 v s
d
all coefficients of f (x ) as elements in D [x ,. . . , x ]. The primitive part of f in x i

efined as

pp ( f ) =
cont ( f )
h 1hhhhhhhh fx

x
v

v

v vxand we call f primitive in x if f = pp ( f ). We also note that the total degree of a factor of

s
f with respect to any variable set is less than or equal to the total degree of f in that variable
et. The infinity norm of f ∈ Q[x ,. . . , x ], the maximum of the absolute values of the1 v
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f
t
rational coefficients of f , will be denoted by e f e . The squareroot of the sum of squares o
he coefficients of f , the square norm of f , will be denoted by e f e .2

1L v l v
l

l −1 v
l −1

0 v m v
m

0 i jet f (x ) = a x + a x +. . .+ a and g (x ) = b x +. . .+ b with a , b ∈ D [x
., . . . , x ], a b ≠ 0. By res ( f , g ) we denote the resultant of f and g with respect to xv −1 l m x v

xv

v

1 v −1 v -

s

As is well-known, res ( f , g ) ≠ 0 if and only if GCD( f , g ) over D (x ,. . . , x )[x ] is a con

tant.

The probability of an event E will be denoted by P (E ), the cardinality of a set S by
card(S ). The vertical stroke e stands for the divisibility relation.

2. Preliminary Results

r
a

First we prove a lemma stating that the set of zeros of a multivariate polynomial ove
n integral domain D is of small measure. (Measure 0 if card(D ) = ∞.)

-Lemma 1 (cf. Schwartz (1980)): Assume that t (y ,. . . ,y ) ∈ D [y ,. . . , y ] is a non-zero poly1 v 1 v

nomial of total degree d and let S ⊆ D . Then the probability

P (t (c ,. . . ,c ) = 0 e c ∈ S , 1 ≤ i ≤ v ) ≤
card(S )
h dhhhhhh .1 v i

1Proof: Induction on v . For v = 1, t (y ) has at most d roots in D , hence the probability

hhhhhhhd
)

P (t (c ) = 0 e c ∈ S ) ≤
card(S1 1

1 v −1 y yvv
n

d

Assume, the statement is true for v −1. Let l (y ,. . . ,y ) = ldcf (t ), n = deg (t ). The

eg(l ) ≤ d −n and by induction hypothesis

P (l (c ,. . . ,c ) = 0 e c ∈ S , 1 ≤ i ≤ v −1) ≤
card(S )

d −nhhhhhhh

1

1 v −1 i

v −1 1 v −1 v ,In case l (c ,. . . ,c ) ≠ 0 there are at most n roots for t (c ,. . . , c , y ). Therefore

P (t (c ,. . . ,c ) = 0) = P (t = 0 e l = 0) P (l = 0) + P (t = 0 e l ≠ 0) P (l ≠ 0)1 v

1 v −1 1 v 1 v −1 )

≤

≤ P (l (c ,. . . ,c ) = 0) + P (t (c ,. . . ,c ) = 0 e l (c ,. . . ,c ) ≠ 0

card(S )
d −nhhhhhhh +

card(S )
h nhhhhhh =

card(S )
h dhhhhhh . `

s
l

Secondly, we prove that squarefreeness of an irreducible multivariate polynomial i
ikely to be preserved by evaluation.

Lemma 2: Let f (y ,. . . ,y ,x ) ∈ F [y ,. . . ,y ,x ] be irreducible in F (y ,. . . , y )[x ], F a field,1 v 1 v 1 v

x y , . . . ,y n 1 v1 v
=

l

and assume further that ∂ f /∂x ≠ 0. Let n = deg ( f ), d = deg ( f ) and a (y ,. . . , y )

dcf ( f ). We now select w ,.. . , w randomly from a subset S ⊆ F . Then the probabilityx 1 v
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.hhhhhhhhd(2n +1)
)

P (a (w ,...,w ) = 0 or f (w ,...,w ,x ) not squarefree) ≤
card(Sn 1 v 1 v

tProof: Since f is irreducible and ∂ f /∂x ≠ 0, GCD( f , ∂ f /∂x ) = 1. Therefore the resultan

∆ (y ,. . . ,y ) = res
I
J
L

f ,
∂x
∂ fhhh

M
J
O

≠ 0.

f

f 1 v x

k
k −1

1 k ≤
n
Notice that deg(∆ ) ≤ (2n −1)d . Now let ∂ f /∂x = k a x +. . .+ a with k a ≠ 0, 1 ≤ k

, where a ∈ F [y ,. . . , y ] are the coefficients of x in f , deg(a ) ≤ d , 1 ≤ i ≤ n . If we

1

i 1 v
i

i

v n k f 1 v 1 v s
s
select w ,.. . , w such that (a a ∆ )(w ,.. . , w ) ≠ 0, then fd(x ) = f (w ,.. . , w , x ) i
quarefree. For were it not, then GCD( fd, dfd/dx ) ≠ 1 implying that ∆ = res( fd, dfd/dx ) = 0.

B fd f 1 v

fd

ut ∆ = ∆ (w ,.. . , w ) ≠ 0, a contradiction.

Since deg(a a ∆ ) ≤ (2n +1)d , by lemma 1 we conclude that randomly chosen w ,.. . , w don k f 1 v

n k f `not nullify a a ∆ with probability at least 1 – (2n +1)d /card(S ).

Notice that if char(F ) = 0, then the condition ∂ f /∂x ≠ 0 in the previous lemma is

o
automatically satisfied. However, in the case that char(F ) = p > 0, this condition cannot be
mitted. E.g. if F is a finite field with p elements, then x + y is irreducible but for every w

∈ p p

p

F , x + w = (x + w ) is not squarefree. Lemma 4 in section 3 proves, to some extent,
that this is the only kind of counter-example possible.

Thirdly, we establish that evaluations rarely allow a GCD of higher degree to occur.

n
For more clarity in the later proof of theorem 2 we shall defer the application of lemma 1 and
ot formulate this lemma in terms of probabilities.

dLemma 3: Let f , . . . , f ∈ F [x ,. . . , x ], F a field, with deg( f ) ≤ δ for 1 ≤ i ≤ k an1 k 1 v i

G 1 k 1CD( f , . . . , f ) = 1. Furthermore, assume that f (0 , . . . , 0) ≠ 0. Then there exists a poly-
nomial ∆(y ,. . . , y ) ∈ F [y ,. . . , y ] with deg(∆) ≤ 2δ such that for any elements c ,. . . , c2 v 2 v

2
2 v

∈ 2 v 1 ≤ i ≤ k i 1 2 1 v 1F with ∆(c ,. . . , c ) ≠ 0 the GCD ( f (x , c x ,. . . , c x )) = 1.

,Proof: As can be seen easily from the fact that x /e f (x , y x ,. . . , y x )1 1 1 2 1 v 1

G 1 ≤ i ≤ k i 1 2 1 v 1 1 2 vCD ( f (x , y x ,. . . , y x )) = 1 in F [x , y ,. . . , y ]. Therefore we can find (not
necessarily unique) polynomials s ,. . . , s ∈ F (y ,. . . , y )[x ] with deg (s ) < δ such that1 k 2 v 1 x i

i
Σ

1

=1

k

i 2 v 1 i 1 2 1 v 1 .

T

1 = s (y ,. . . ,y ,x ) f (x ,y x ,. . . ,y x )

his identity leads to a linear system over F (y ,. . . , y ) in 2δ equations and k δ unknown2 v

vc i
2 v

2oefficients of s . Hence we can find a solution in
∆(y ,. . . ,y )
h 1hhhhhhhhhh F [y ,. . . , y ] where ∆ is a

.2m by 2m , m ≤ δ, determinant of coefficients of powers of x in f (x , y x ,. . . , y x )1 i 1 2 1 v 1

T 2
2 v 2 vherefore deg(∆) ≤ 2δ and any choice of c ,. . . , c with ∆(c ,. . . , c ) ≠ 0 forces

GCD ( f (x , c x ,. . . , c x )) = 1 since s (c ,. . . , c , x ) f (x , c x ,. . . , c x ) =1 ≤ i ≤ k i 1 2 1 v 1 i =1
k

i 2 v 1 i 1 2 1 v 1Σ
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1. `

In theorem 2 we will need a non-monic version of the Hensel lemma whose statement
,i ≡ (k ,. . . ,k )kand proof follows for completeness. We adopt the following vector notation: 1 v

i
1
k

v
k

1 1 v v i i
k 1 vi0 ≡ (0, . . . ,0), yi ≡ y .. .y , ki ± ki ′ ≡ (k ±k ′, . . . , k ±k ′), ki ≤ ki ′ if, for all i , k ≤ k ′, and

i ≥ 0i, and −∞ otherwise.ki e ≡ k +. . .+ k ifkfinally e 1 v

1 v 1 v n
x
Theorem 1 (Hensel lemma): Let f (y ,. . . ,y ,x ) ∈ F [y ,. . . ,y ,x ], F a field, be of degree n i

, l (y ,. . . ,y ) = ldcf ( f ) such that l = l (0 , . . . , 0) ≠ 0 and f (x ) = f (0 , . . . , 0, x ) is square-
f

1 v x 0i 0i

ree. Suppose

I
L l x + g (x )

M
O

I
L l x + h (x )

M
O = l f (x ), i + j = n0i

i
0i 0i

j
0i 0i 0i

0i 0iis a non-trivial factorization of l f in F [x ]. Then there exist, for all ki with e ki e ≥ 1, unique
polynomials g (x ), h (x ) ∈ F [x ] with deg(g ) < i , deg(h ) < j such thatki ki ki k

l 1 v 1 v

i

(y ,. . . ,y ) f (y ,. . . ,y ,x ) = (1)

i
M
J
O
.yi

M
J
O

I
J
L

l (y ,. . . ,y )x + h (x )y
I
J
L

l (y ,. . . ,y )x + g (x )1 v
i

ki ≥ 0i
ki

ki
1 v

j

ki≥0i
ki

k

P

Σ Σ i

roof: We truncate the multivariate Taylor series in (1) to maximum order m and establish
ni e ≤ m in that truncated equation by inductiokthe existence and uniqueness of g , h , 0 ≤ eki ki

ki≥0i ki
kΣ iiyi = 0i and the statement is true by assumption. Rewrite l = lk

w

on m . For m = 0,

ith l ∈ F , and lf −l x = f yi with f ∈ F [x ] and deg( f ) < n . We now considerikik
ik

iki ≥ 0iki
2 n

k Σ
ik ni e = m , iki , eythe coefficient of

I
J
L

lx + g yi
M
J
O

I
J
L

lx + h yi
M
J
O

− l x ,i 2 nk
ik

i≥0ik

i jk
ik

i≥0ik

i Σ Σ

g

namely

(l x + h ) + h (l x + g ) +i 0i
i

0iki 0i
j

0ik

0i ≤ si ≤ ki ,1 ≤ e si e ≤ e ki e −1
si

i
ki−si

j
ki−si si ki−sΣ i

I
L l (x h + x g ) + g h

M
O

dwhere we denote the sum in this expression by b . By induction hypothesis, b is unique anki ki

ikikikdeg(b ) < n . It is necessary and sufficient for (1) to be true to order m that g and h , e ki e
= m , satisfy

g (l x + h ) + h (l x + g ) = f − b .ikiki 0i
i

0iki 0i
j

0ik

i0 0i
j

0i 0i
i

0i ,
b
Since f is squarefree, l x + h and l x + g have no common polynomial factor which

y the extended Euclidean algorithm for polynomials guarantees the existence of g and h .ikik

ikikikikUnder the degree constraints deg(g ) < i , deg(h ) < j and the fact deg( f −b ) < n these
polynomials are also unique. `
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y
p
Remark: The purpose of multiplying f with l before lifting is to be able to uniquel

redetermine the leading coefficients of any possible polynomial factorization of f = g h .

W

3. An Effective Hilbert Irreducibility Theorem

e proceed to prove a random, but very effective version of the Hilbert irreducibility
e

c
theorem for multivariate polynomials over an arbitrary field F with one restriction. In th
ase in which char(F ) = p > 0 we require that for each element a ∈ K there exists a b ∈ K

such that b = a . This condition is, of course, satisfied if F is a finite field.p

The fundamental theorem of this section follows now.

-Theorem 2: Let f (x ,. . . , x ) ∈ F [x ,. . . , x ], F a field, have total degree δ and be irredu1 v 1 v

v 2 v −1 1 v −1 m
e
cible. Assume that ∂ f /∂x ≠ 0. Let S ⊆ F and let c ,. . . , c , w ,.. . , w be rando
lements in S . Then the probability

)P ( f (x + w , c x + w ,.. . , c x + w , x1 1 2 1 2 v −1 1 v −1 2

δ
1 2 .hhhhhhh24δ

)

P

becomes reducible in F [x , x ]) ≤
card(S

roof: By lemma 2 the probability that f (w ,.. . , w , x ) remains squarefree and of the1 v −1

xv
=

d

same degree as f is at least 1 − (2n +1)d /card(S ) where n = deg ( f ) and d

eg ( f ). Assume now that this is the case.x , . . . ,x1 v −1

1 2 eWe first show how to evaluate f such that it remains irreducible in F (x )[x ]. Writ

g (y ,. . . ,y ,x ) = l (y ,. . . ,y ) f (y +w ,.. . ,y +w ,x )

where

1 v −1 1 v −1 1 1 v −1 v −1

l (y ,. . . ,y ) = ldcf ( f )(y +w ,.. . ,y +w ).1 v −1 x 1 1 v −1 v −1v

1 v −1 1 v −1 e
s
Let F [[y ,. . . , y ]] denote the domain of formal power series in y ,. . . , y over F . W
et

g (y , x ) = g (y , c y ,. . . ,c y , x )i 1 1 2 1 v −1 1c

and

l (y ) = l (y , c y ,. . . ,c y ).i 1 1 2 1 v −1 1c

1 1 ci x ci ∈
F
Then each factor ĥ (y , x ) ∈ F [[y ]][x ] of g with ldcf (ĥ ) = l corresponds to a factor h

[[y ,. . . , y ]][x ] of g with ldcf (h ) = l such that1 v −1 x

1 ci 1 2 1 v −1 1 .

S

ĥ (y , x ) = h (y ,x ) = h (c y ,. . . ,c y , x )

ince if that were not the case we could present, by theorem 1, two different factorizations of
,g , which, when evaluated at y = 0 would result in one and the same factorization of g (0ci 1 ci

sx ) ∈ F [x ]. But this is impossible due to the uniqueness of the Hensel lifting procedure, a
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W

proven in theorem 1.

e will show that for integers c ,. . . , c not nullifying a certain polynomial π(z ,. . . , z )

2

2 v −1 2 v −1

v −1
n −1∈ F [z ,. . . , z ] of degree at most 4d (2 −1) no factor derived from g in such a way can

be a polynomial dividing g .c

Let

i

h (y ,. . . ,y ,x ) = b yi x jik
i , jk

i ≥ 0ik

i

0
1 v −1

j =
Σ Σ

xb 1 v 1 v −1e a factor of g (y , , . . . , y , x ) in F [[y ,. . . , y ]][x ] with 0 < i < n and ldcf (h ) = l and
let

hd(y ,. . . ,y ,x ) = bd yi x jik
i , jk

i ≥ 0ik

n −i

0
1 v −1

j =
Σ Σ

ji ,ki , jk hbe its cofactor, i.e. g = h hd. There must exist at least one b or bd wit

2d < e ki e ≤ 4d and (b ≠ 0 or bd ≠ 0).i , jki , jk

To see this, assume the contrary. Then

I
J
L

b yi x
M
J
O

I
J
L

bd yi x
M
J
O

= g (y ,. . . ,y ,x )i j
1 v −1

k
i , jk

i e ≤ 2dk

n −i

0 ≤ e0

i j

j =

k
i , jk

i e ≤ 2dk

i

0 ≤ e0j =
Σ Σ Σ Σ

i jksince no monomial a yi x , a a non-zero element of F , with 2d < e ki e ≤ 4d in the left pro-
.

N
duct could be cancelled by higher terms in the product of the complete expansion of h and hd

otice that g does not contain a monomial in yi of degree larger than 2d . But this contrad-

e
icts the fact that f is irreducible. Without loss of generality we now can assume the
xistence of a vector pi and an integer m such that

.b ≠ 0 with 2d < e pi e ≤ 4d and 0 ≤ m < ipi ,m

Set

t (y ,. . . ,y ) = b yiij
i ,mj

i e = e pi ej
pi ,m 1 v −1

e
Σ

1w m
1 v −hich is the coefficient of x in h of order e pi e in y ,. . . , y and which is a non-zero

polynomial in F [y ,. . . , y ]. By choosing c ,. . . , c such that1 v −1 2 v −1

tpi ,m 1 2 1 v −1 1(y , c y ,. . . ,c y ) ≠ 0

-we guarantee that h (y ,x ) has a non-zero coefficient of order e pi e in y . Therefore h canci 1 1 c

i 2 v −1

i

cnot be a polynomial dividing g . The polynomial π(z ,. . . , z ) then can be chosen as the
tproduct of t (1, z ,. . . , z ) ≠ 0 over all possible factor candidates h . Since there are api ,m 2 v −1

1 v −1 -
p
most n irreducible factors of g in F [[y ,. . . , y ]][x ] and we do not need to consider com

lementary candidates there are at most 2 −1 possibly reducible factors to refute (see also
n

n −1

−1
2 v −1 πremark below). Thus deg(π) ≤ 4d (2 −1) and we know that each non-zero c ,. . . , c of
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eprevents the polynomial g (x , x ) from having a factor in F [[x ]][x ] all of whosci 1 2 1 2

i 1 2c1 x 1
coefficients have order in x less than deg (g (x , x )). Therefore this bivariate polynomials

is irreducible in F (x )[x ] and so is1 2

1 1 2 2 2 v −1 v −1 v −1 2 .

W

f (x + w , c x + w ,.. . ,c x + w , x )

e finally must refute a possible content in F [x ]. Let l (y ,. . . , y ) be the coefficient of1 i 1 v −1

nx i
1 1 v −1 v −1 i nin f (y +w ,.. . , y +w , x ), deg(l ) ≤ d . Note that l is our previous l and also l (0

l, . . . , 0) ≠ 0. Since f is irreducible GCD (l ) = 1. By lemma 3 there exists a polynomia0 ≤ i ≤ n i

1∆ 2
2 v −1 0 ≤ i ≤ n i 1 2with deg(∆) ≤ 2d such that ∆(c ,. . . , c ) ≠ 0 implies GCD (l (y , c y ,. . . ,

c y )) = 1. For such c our evaluated polynomial cannot have a content in x , i.e. a factorv −1 1 i 2

1 .

I

in F [x ]

n summary, we must avoid zeros of π∆. By lemma 1, random c ,. . . , c from S make
( 2 v −1

2 v −1

π∆)(c ,. . . , c ) ≠ 0 with probability 1 − (deg(π) + deg(∆)) / card(S ). Taking the choice of
the w into account, the probability of success is at least

I
J
L

1 −
card(S )
(2n +1)dhhhhhhhh

M
J
O

I
J
L

1 −
card(S )

4d (2 −1) + 2dhhhhhhhhhhhhhhh
M
J
O

≥ 1 −
card(S )

4δ2 − 3dhhhhhhhhh ≥ 1 −
card(S )

4δ2hhhhhhh

R

with δ = deg( f ). `

n −1 2 δ δ

emark: The bound 4δ2 /card(S ) can be substantially improved if one knows the number rδ

r r
t
of factors of g (0 , . . . , 0, x ) in F [x ]. E.g. 2δ(2 + 2δ)/card(S ) is a possible upper bound fo
he probability of failure.

As we have already pointed out after lemma 2, the condition ∂ f /∂x ≠ 0 is automati-v

l
c
cally satisfied if char(F ) = 0. For characteristic p > 0 we can prove that theorem 2 is stil
orrect without this assumption about the derivative of f provided that for each element a ∈

-F there exists an element b ∈ F such that b = a . We need the following additional lemp

L

mas.

emma 4: Let F be a field of characteristic p > 0 and let f (x ) = a x +. . .+ a ∈ F [x ] ben
n

0

∈
F
irreducible. Furthermore, assume that there exists an index i , 1 ≤ i ≤ n , such that for all b

, b ≠ a . Then f (x ) is irreducible in F [x ] for all integers λ ≥ 0.p
i

p λ

Proof: By induction on λ. For λ = 0, f (x ) is irreducible in F [x ] by assumption. Now
-assume that f (x ) is irreducible in F [x ], but suppose f (x ) is not. Then there exist polyp p λ

n

λ−1

omials g , h ∈ F [x ], g non-constant and irreducible, GCD(g , h ) = 1 such that

)f (x ) = g (x ) h (x ), k ≥ 1 (*p kλ

,and either k ≥ 2 or h ≠ 1. Differentiating (*) we get, since λ ≥ 1

k
dx
dghhh h = −g

dx
dhhhh .
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ence, dh /dx = 0, which is equivalent to h (x ) = hd(x ), hd ∈ F [x ], and either k = p l or

d k p kd

p

g /dx = 0, each of which imply that g (x ) = gd(x ) gd ∈ F [x ] non-constant, kd ≥ 1. There-
fore, (*) can be rewritten, with y = x , asp

p kdf
λ−1

(y ) = gd(y ) hd(y ).

e
m
By induction hypothesis we conclude that hd = 1 and kd = 1. Thus h = 1 and k ≥ 2 and w

ust have f (x ) = (g (x ) ) which means that each coefficient a is the p -th power of ap l p
i

λ

`c loefficient of g (x ) , contradicting our second assumption.

lLemma 5: Let f (x ,. . . , x ) ∈ F [x ,. . . , x ], F a field of characteristic p > 0, have tota1 v 1 v

i -
m
degree δ and assume that there exists an index i , 1 ≤ i ≤ v , such that ∂ f /∂x ≠ 0. Further

ore, let S ⊆ F and let c ,. . . , c , w ,.. . , w be random elements in S . Then the probabil-
ity

2 v 1 v

P (
dx

df (x +w , c x +w ,.. . ,c x +w )hhhhhhhhhhhhhhhhhhhhhhhhhhhhh = 0) ≤
card(S )
h δhhhhhh .

1 1 2 1 2 v 1 v

1

Proof: Write

f (x ,. . . ,x ) = a x .. .x .Σ k
i 1

k
vk

i e ≤ δk
1 v

0 ≤ e

1 v

i
i i 1

k
k ni such that a ≠ 0 and p /e k . The coefficient of x ikThen, by assumption there exists a

f (x + y , z x + y ,. . . , z x + y ) ∈ F [x , y ,. . . , y , z ,. . . , z ] is1 1 2 1 2 v 1 v 1 1 v 2 v

1 v 2 v ki 1
k

2
k

i −1
k

i
k

i +1
k

v
kvγ 1 2 i −1 i i +1(y ,. . . ,y ,z ,. . . ,z ) = a y y .. .y z y .. .y +. . .

e
g
where the given monomial only occurs once since we can unambiguously deduce from th
iven exponents the term in the expansion it came from. Therefore γ ≠ 0 with deg(γ) ≤ δ.

Thus, by lemma 1, γ(w ,.. . , w , c ,. . . , c ) = 0 with at most the given probability, but this1 v 2 v

11 1 v 1 v `is obviously necessary for df (x +w ,.. . , c x +w )/dx = 0.

We now formulate our irreducibility theorem in the most general way we shall prove

T

here.

heorem 3 (Effective Hilbert Irreducibility Theorem): Let f (x ,. . . , x ) ∈ F [x ,. . . , x ], F a1 v 1 v

h
c
field, have total degree δ and be irreducible. If char(F ) = p > 0 we require that eac
oefficient of f in F possesses a p -th root in F . A sufficient condition for this to be true is

.that F be perfect. Let S ⊆ F and let c ,. . . , c , w ,.. . , w be random elements in S2 v −1 1 v −1

Then the probability

P ( f (x + w , c x + w ,.. . , c x + w , x )1 1 2 1 2 v −1 1 v −1 2

1 2

δ
.hhhhhhh24δ

)
becomes reducible in F [x , x ]) ≤

card(S
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eProof: If char(F ) = 0 or ∂ f /∂x ≠ 0 then our theorem is identical to theorem 2. Thereforv

tassume that char(F ) = p > 0 and tha

f (x ,. . . ,x ) = fd(x ,. . . ,x , x ), µ ≥ 1,1 v 1 v −1 v
p µ

w 1 v −1 1 v −1ith fd(x ,. . . , x , z ) ∈ F [x ,. . . , x , z ] and ∂ fd/∂z ≠ 0 (i.e. µ is as large as possible).

i
Since f is irreducible so must be fd and we can apply theorem 2 to fd. Looking at the last
nequality in the proof of theorem 2, randomly chosen w ,.. . , w , c ,. . . , c from S keep1 v −1 2 v −1

2f 1 1 2 1 2 v −1 1 v −1 2 1d(x +w , c x +w ,.. . , c x +w , x ) irreducible in F [x , x ] with probability at least 1 –
(4δ2 −3d )/card(S ) where d = deg ( fd) = deg ( f ); note that deg( fd) ≤ δ.δ

x , . . . ,x x , . . . ,x 11 v −1 1 v −

µ

jN i 1 v −1 v
p i

iow there must exist a coefficient a (x ,. . . , x ) of (x ) in f such that not all ∂a /∂x , 1
a

p
≤ j ≤ v −1, vanish. Otherwise, by virtue of our assumption, f would be a p -th power of

olynomial, hence reducible. Let w ,.. . , w , c ,. . . , c in addition to the constraints of
theorem 2 also be such that, for

1 v −1 2 v −1

ad (x ) = a (x +w , c x +w ,.. . ,c x +w ),

d i 1

i 1 i 1 1 2 1 2 v −1 1 v −1

ad /dx ≠ 0. Then

f̂ (x , x ) = f (x +w , c x +w ,.. . ,c x +w , x )1 2 1 1 2 1 2 v −1 1 v −1 2

1 2must be irreducible in F [x , x ]. For, interpreting the evaluated polynomial corresponding to
efd as an element of F (x )[x ] it is clear that its coefficient ad is not a p -th power. Henc1 2 i

1 2
ˆ

c
lemma 4 applies and shows that f̂ is irreducible in F (x )[x ]. By the proof of theorem 2, f
annot possess a content in F [x ].1

1 v −1 s
f
It remains to estimate with which probability the additional condition on the w ,.. . , c i
ulfilled. By lemma 5 this is true with probability at least 1 – d /card(S ), thus the overall rate

of success is at least

1 −
I
J
L card(S )

4δ2 − 3dhhhhhhhhh +
card(S )
h dhhhhhh

M
J
O

≥ 1 −
card(S )

4δ2hhhhhhh .
δ δ

`

r
G

We remark that one can generalize theorem 3 to arbitrary fields. Using von zu
athen’s (1985a) Lemma 4.2 we get a slightly smaller success probability 1 – 5d 2 /card(S )d

c
c
for these exceptional fields. We note, however, that the usual fields occurring in algebrai
omputation are perfect, such as fields of characteristic 0, finite fields, and algebraically closed

fields, and therefore do not discuss the details of that generalization.

4. Probabilistic Irreducibility Testing

-
t

We now apply theorem 3 to construct a probabilistic irreducibility test for a sparse mul
ivariate polynomial f (x ,. . . , x ) ∈ F [x ,. . . , x ], F an arbitrary field (with the restriction

s
1 v 1 v

tated in theorem 3 in case that char(F ) > 0). Our algorithm outputs ‘‘definitely irreducible’’
tor ‘‘probably composite’’ or ‘‘failure’’ where the chance that the irreducibility of f is no
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-
m
recognized as such is less than a given constant ε << 1. The algorithm selects random ele

ents in S ⊆ F and calls an irreducibility test for polynomials in two or three variables,

o
depending on the characteristic of F . Apart from the calls to these unspecified subroutines
ur algorithm works in polynomially many steps in deg( f ) and monomials(f ), where

monomials(f ) denotes the number of non-zero monomials in f .

If we furthermore specify F = Q or Z , then our algorithm is also of polynomial com-
p

p

lexity in the number of bits needed to encode the coefficients of f and log 1/ε. In this case
r

G
the required polynomial-time subroutines exist. (Cf. Kaltofen (1985a) for F = Q and von zu

athen and Kaltofen (1985) for F = Z . The latter algorithm is only a probabilistic one andp

)may, with controllably small probability, return ‘‘failure’’.

For char(F ) = 0 our algorithm is quite simple:

[
Algorithm 1:
Given an irreducible polynomial f (x ,. . . , x ) ∈ F [x ,. . . , x ], char(F ) = 0, this algorithm

a
1 v 1 v

ttempts to prove the irreducibility of f with a failure chance less than ε << 1:]

m(R) [Random choices:] From a set S ⊆ F with card(S ) ≥ 4 deg( f ) 2 /ε select randodeg( f )

e 2 v −1 1 v −1lements c ,. . . , c , w ,.. . , w .

(I) [Irreducibility test:]
fd(x , x ) ← f (x +w , c x +w ,.. . , c x +w , x ).1 2 1 1 2 1 2 v −1 1 v −1 2

x x1 1
IF deg ( fd) < deg ( f ) THEN RETURN (‘‘failure’’). ELSE call an algorithm testing

sfd(x , x ) for irreducibility in F [x , x ]. IF fd is irreducible THEN RETURN ‘‘ f i1 2 1 2

`

C

definitely irreducible’’ ELSE RETURN ‘‘ f is probably composite’’.

omplexity analysis for F = Q: We first multiply by a common denominator of all rational
coefficients of f . Therefore we may assume that f ∈ Z[x ,. . . , x ]. Now let δ = deg( f )1 v

ik
ika δ δnd choose S the interval {−2 δ2 /ε ≤ s ≤ 2 δ2 /ε}. We evaluate each monomial b xi of f ,

i e ≤ δ, and then add up to get fd. It is easy to see thatke

g (x , x ) = b (x +w ) (c x +w ) . . .(c x +w ) x
k
2i 1 1

k
2 1 2

k
v −1 1 v −1

k
ki 1 2k

1 2 v −1 v

ikc 2
1
ian be computed in O (δ ) integer operations. In fact, the coefficient of x in g is

k M
J
O

w c w ... c wi
k M

J
O

. . .
I
J
Lib

I
J
L

1 1 v −1 v −1

1 v −1

1 1 2 2 2 v −1 v −1 v −1k −i
1

i
v −1

v −1
1
k −i

2
i

2
k −i

v −
1i +. . .+ i = i 1

1

v −
k

i

0 ≤ i ≤ k , . . . ,0 ≤ i ≤

k Σ

e ki e δ e ki e
ki

2 )
a
which is O (2 (2 δ2 /ε) ) in magnitude. Therefore log e g e = O (δ + δ log 1/ε + log e f e
nd log e fd e = O (log µ + log e g e ) where µ = monomials(f ). To add up all g takes O (µ δ )i

2
kik

2 s
o
integer operations. In summary, algorithm 1 runs in O (µ δ ) integer operation with integer
f

O (δ + δlog
ε
h1h + log e f e + log µ)2
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m
b
digits. The later is also a bound for log e fd e . The algorithm needs O (v δ + v log 1/ε) rando
it choices. This analysis does not account for testing fd(x , x ) for irreducibility. We can1 2

4

l
call Kaltofen (1985a), Algorithm 2, but the cost of this call might be quite high, O (δ1

og e fd e ), which most likely does not reflect the true behavior of that algorithm. However,
t

3

he actual cost can be expected to grow quickly with δ. This is why we chose S dependent
on ε, the wanted failure probability, and call the bivariate algorithm just once.

We now treat the case in which F has only finitely many elements. Algorithm 1 obvi-
r

a
ously may run into problems since the sufficiently large subset S of F may not exist. Ou
pproach here is to work in F = F [x ]. We now present the algorithm.

[
Algorithm 2:

*
1

Given an irreducible polynomial f (x ,. . . , x ) ∈ F [x ,. . . , x ], card(F ) < ∞, this algorithm
a

1 v 1 v

ttempts to prove the irreducibility of f with a failure chance less than ε << 1:]

d(C) [Check for content in F = F [x ]:] Rewrite f to f (x ,. . . , x ) ∈ F [x ,. . . , x ] an*
1

*
2 v

*
2 v

v * *
1erify that all coefficients of f in F have no GCD in F [x ]. Otherwise RETURN

(

(‘‘ f is definitely composite’’).

R) [Random choices:] From a set S ⊆ F with card(S ) ≥ 4 deg( f ) 2 /ε select ran-* * deg( f )*

d 3 v −1 2 v −1om elements c ,. . . , c , w ,.. . , w .

(I) [Irreducibility test:]

fd(x , x ) ← f (x + w , c x + w ,.. . ,c x + w , x ).2 3
*

2 2 3 2 3 v −1 2 v −1 3

x x
*

3 3
IF deg ( fd) < deg ( f ) THEN RETURN (‘‘failure’’). Compute the GCD of all

.coefficients of fd in F , g [x ]. Set f̂ (x , x , x ) ← fd(x , x )/g (x ) ∈ F [x , x , x ]* *
1 1 2 3 2 3

*
1 1 2 3

1 2 3 e
T
Now call an algorithm testing f̂ for irreducibility in F [x , x , x ]. IF f̂ is irreducibl

HEN RETURN (‘‘ f is definitely irreducible’’) ELSE RETURN (‘‘ f is probably com-
posite’’). `

The correctness of this algorithm follows from Gauss’ lemma stating that if a polyno-
tmial h (x ,. . . , x ) ∈ D [x ,. . . , x ], D a unique factorization domain, is irreducible, i1 v 1 v

1 vremains irreducible in QF(D )[x ,. . . , x ]. We again select a concrete field F to carry out

C

timing estimates.

omplexity analysis for F = Z : Let δ = deg( f ) and choose

1

p
*

1 1S = {s (x ) e s (x ) ∈ F [x ] and deg(s ) ≤
J
J
Q log p

(δ+2) log 2 + log δ − log εhhhhhhhhhhhhhhhhhhhhhhh
J
J
P
}.

=Notice that card(S ) ≥ 4 δ2 /ε. Step (C) takes O (µ δ ) field operations in Z , µδ 2
p

2 2 2hhhhhhhhεδ −log
plog

d

f

monomials(f ). Furthermore, fd can be computed in O (µ δ . δ ( ) ) where the secon

actor arises from computing powers of c and w . Also deg ( fd) = O (δ ) andi i x 1 log p
δ −log εhhhhhhhh
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eg ( fd) ≤ δ. Hence the calculation of the GCD g costs O (δ ( ) ) operations inx 2 3, x
* 3 2hhhhhhhhεδ −log

p
Zp

log
. Assuming that δ −log ε ≥ log p , algorithm 2 runs in

)hh)
1
ε

O (µ δ (δ +log4 2

t
a
binary steps. The algorithm needs O (v (δ −log ε)) random bit choices. Again, we do no
ccount for testing f̂ (x , x , x ) for irreducibility. We can call the algorithm presented in

v
1 2 3

on zur Gathen and Kaltofen (1985). That algorithm is also random and has a small probabil-
ity of failure. Furthermore, its complexity in δ is quite high.

In this section we only dealt with irreducibility testing of sparse polynomials. Theorem
)

a
3 can, of course, be employed to produce sparse factorizations in the spirit of Zippel (1981
nd von zur Gathen (1985b) (see also Kaltofen (1985b)). In Zippel (1981) the sparse Hensel

lifting is started with f (c ,. . . , c , x ), c ,. . . , c ∈ F whereas in von zur Gathen1 v −1 1 1 v −1

i( 1 2 3 1 3 2 3 v 1 v 2 v i i1985b) the evaluation is to f (x , x , c x + u x + w ,.. . , c x + u x + w ), c , u , w ∈

a
F . Unfortunately, we have no effective Hilbert Irreducibility Theorem for evaluations in F
nd neither we nor von zur Gathen (1985b) choose evaluations in the coefficient domain. In

t
order to use a unified Hensel procedure which always evaluates in F we could, however, view
heorem 3 in the following way. Let the coefficient field of f (x ,. . . , x ) be F (x ) (F (x , x )1 v 1 1 2

e
l
for char(F ) > 0). Then our algorithm must select random elements in this field which ar
inear in x (x for char(D ) > 0).1 2

5. Conclusion

y
T

Though we were able to prove a very effective version for the Hilbert Irreducibilit
heorem in the case in which the coefficients came from a transcendental extension of the

t
integers, the classical version with integral coefficients still defies such error estimates. Again
he set of evaluation points mapping the irreducible multivariate polynomial into a reducible

v
univariate one is of measure 0 (cf. D"orge (1926)). Although recent research has produced
ery concrete descriptions of integer point sets preserving polynomial irreducibility (cf. Fried

y
m
(1974) and Sprindzhuk (1983)), the possibility that the first integer preserving irreducibilit

ight be exponentially in size cannot be excluded yet. However, practical experience indi-

t
cates that the classical theorem also provides an excellent, though not proven, irreducibility
est.

Within the last two years since this paper has been written the Effective Hilbert Irredu-

d
cibility Theorem presented here has been applied in two new settings. First, it is used to
etermining the factorization pattern of a multivariate polynomial defined by a straight-line

e
a
program (cf. von zur Gathen (1985a) and Kaltofen (1985c)). Furthermore, it is used in th
lgorithm by Kaltofen (1985c) for factoring multivariate polynomials given by straight-line

s
t
programs into sparse factors. In retrospect, the usage of linear substitutions also eliminate
he so called ‘‘leading coefficient problem’’ during the Hensel lifting process and therefore

appears to be superior to classical evaluation techniques.
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